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1. Introduction

We show how to use Popov multipliers in stability analysis based on Inte-
gral Quadratic Constraints (IQC). The framework for using IQCs in stability
analysis was proposed by Megretskii in [5] and further refined by Megret-
skii and Rantzer in [6] and [8]. The system under consideration consists of a
nominal linear, time-invariant, and stable operator G in a positive feedback
interconnection with a causal and bounded perturbation A. The idea is to find
descriptions of A in terms of bounded and Hermitian valued matrix function
II that define valid IQCs in the sense that

/°° /Z’J\(JW) ]*H /:f/\\(]w) ]dw>0
o [ EG)5) e “ 77

for all square integrable inputs y to A. The matrix function II is called mul-
tiplier.

The IQC methodology gives a unified approach for multiplier based stabil-
ity analysis that has several advantages compared to the classical framework in
for example [2], [7], [10], [11], and [12]. It should be noted that the term multi-
plier is used in a somewhat different meaning in the classical papers where it is
used to denote a device that is used to multiply the operators in the feedback
loop in order to make them look passive or contractive. The multiplier II in the
IQC approach can be thought of as a way to collect the classical multipliers
in a structure that is flexible for defining integral quadratic constraints.

Some of the most distinguished advantages with the IQC methodology are
the following

e Noncausal multipliers are easy to use since there is no need for factor-
ization conditions.

o It is easy to combine multipliers that describe a certain operator. This
follows because convex combinations of multipliers that define valid IQCs
for a certain operator still gives a valid IQC for this operator.

e There is generally no need to consider the multipliers in terms of loop
transformations.

The cost for this increased flexibility is the need for a stronger but still very
reasonable well-posedness assumption on the system.
The Popov multipliers considered in this paper are of the form

. 0 —jwA

o) = | E
JwA 0
where A is a real symmetric matrix. These multipliers are used to define con-
straints in terms of the integral
o0
/ vTAydt,
0

where v = A(y) and where it is assumed that both y and v are square inte-
grable. It is thus necessary that the output signal from the nominal plant is
differentiable.

We will derive a stability result along the lines of [6] and [8] by assuming
that the nominal plant is strictly proper. This is a reasonable assumption since



the Popov multipliers are typically used to describe static nonlinearities, un-
certain parameters and slowly time-varying parameters. The strict properness
of the plant assures that there is no algebraic loop in the system for these
three examples.

The Popov multiplier is defined by a small number of parameters. This is
advantageous in stability analysis of large complex systems, since such multi-
pliers are computationally cheap to determine. One consequence of this paper
is that the recent results on stability for systems with parametric uncertainty
in [4] and [1] can be extended into the IQC framework.

Notation and Preliminaries

M* Hermitian conjugation of a matrix.
| -] The Euclidean norm |z| = vVzTz.
o(M The largest singular value of a real or complex matrix M.
g g
RLZX"™ The space consisting of proper real rational matrix functions with
no poles on the imaginary axis. If H € RL*™ then H*(s) =
H(-s)T.

RHZ*™  The subspace of RL™*X™ consisting of functions with no poles in
the closed right half plane.

Py The projection operator defined by Pru(t) = u(t) when t < T
and Pru(t) =0 whent > T.

L7*[0,00) The Lebesgue space of R™ valued signals with norm defined by

Jul/? = / fu(t) Pz,

L7*(—o00, 00) is defined similarly as L3*[0, o).

L7:[0,00) The vector space of functions f satisfying the condition Prf €
L0, 00) for all T > 0.

6 The unit step function defined as 6(t) =1 for t > 0 and () = 0
for t < 0.

An operator H : LT;[0,00) — L7:[0, 00) is said to be causal if PrHPr = PrH
for all T' > 0. This means that the output value at a certain time instant does
not depend on future values of the input.

A causal operator H on LJ:[0, 00) is bounded if H(0) = 0 and if the gain
defined as

| Hu]
Tl (1)

|H| = sup
L7*[0,00)3u#£0

is finite. Note that the gain is defined in terms of functions in L}*[0, c0) and
not the corresponding extended space. However, the definition in (1) implies
boundedness on L7%[0, 00), since ||PrHul|| < ||H|| - || Pru|| for all w € L7[0, 00)
and all T > 0. It can be shown that || H|| is the smallest such bound, see [10].

Linear time invariant convolution operators with transfer function H €
RH7*™ are causal and bounded on L3.[0,00). A bounded convolution oper-
ator with transfer function H € RLT*™ defines a (possibly non-causal) map
of Ly[0, 00) into Ly(—o0, 00).



Let H = H* € RL7*™ and u € LJ*[0, 00), then the quadratic form (-, -) is
defined by

[o0)

(u, Hu) = /Ooo w(t)T (Hu)(t)dt = / t(jw) H (jw)u(jw)dw,

— o0

where Hu denotes the convolution A % u between u and the impulse response h
corresponding to H. Furthermore, % denotes the Fourier transform of u, which
we define as

A~ 1 2 —jwt
U(jw) = o /_oo u(t)e 7" dt.

We will finally make some remarks on absolute continuity, see [9]. Absolute
continuity of a function ¢ : Rt — R™ implies that the time derivative  := %m
exists and is finite almost everywhere. Furthermore, an absolutely continuous
function z is the indefinite integral of its derivative, i.e. the relation z(t) =
zo + f(f ¢(7)dr holds for all ¢t > 0. From now on it assumed that z is absolutely
continuous when make assumptions on the derivative .

The next lemma will be used frequently in the paper.
LeMMaA 1
If a function satisfies ¢, 2 € L3*[0,00), then x is bounded and z(t) — 0 as

t — oo.

Proof: The lemma is well known. A proof is given in Appendix 1 for com-
pleteness. O

2. Stability Analysis Based on I1QCs

We will consider stability of the system

¢ = Az + Bu, (0) = g, (2)
y=_Ce,
u=Ay) +9,

where it is assumed that A € R™" B ¢ R™™, C € R™*™ and that A
is Hurwitz. It is further assumed that g € L3.[0,00) and that A is a causal
and bounded operator on L7*[0,00). The system in (2) can equivalently be
represented as the feedback system in Figure 1, where the operator G(s) =
C(sI — A)~!B € RHTX™ is assumed to be initially at rest, and where f(t) =
CeAtz,0(t) represents the response of the initial condition.

The idea behind the IQC approach for stabilitity analysis is to find de-
scriptions of the operator A in terms of multipliers that define valid IQCs. We
will consider IQCs defined by combinations of bounded and Hermitian valued
multipliers with Popov multipliers.



Figure 1 Block diagram representation of the system in (2). Here f corresponds
to the response of the initial condition and G(s) = C(sI — A)™'B.

DEFINITION 1
Let IT; = IT} € RL2™*2™ and let I, be the Popov multiplier

0 —ij]

Tz(jw) = [ij 0

where A = AT € R™*™, We say that A satisfies the IQC defined by II =
IT; + II, if there exists a positive constant 7y such that

el D+ CL R

/oo [g(jw)]*nl(jw) [ﬂ(ju’)] +/0°° 20T Agdt > —|yol?,

~o0 LU(jw) v(jw)

for all y, y,v € L3*[0, 00) such that v = A(y). Here § and v denotes the Fourier
transforms of y and v respectively. We used the notation yo = Cy. O

REMARK 1

Differentiablity is only necessary for the components of the vector y that cor-
responds to nonzero colons of A. The condition § € L7*[0,00) is thus not
necessary if Il = 0.

We will next give some examples of the use of Popov multipliers for describ-
ing nonlinearities, uncertain parameters and slowly time-varying parameters.
The first example is adapted from [2] and [11].

ExamPLE 1
Let ¢ : R — R be a measurable function satisfying ©(0) = 0 and a sector
condition az? < p(z)z < Bz?, where —0o < a < 8 < co. Then ¢ satisfies the

IQC defined by the Popov multiplier
. 0 —jwA
M(jw) = [ g ] )

JwA 0

where XA € R. This follows since

Yo

plo)do = ~2x [ plo)do 2 ~1laol,
0

T w(T)
22 lim / e(y)ydt = 22 lim /
T—co Jg Tooo Yo



for all y,9 € L}'[0,00), where we use v = |A| max(|e|,|3]). The third equality
follows since Lemma 1 implies that y(T') — 0 as T — oo. O

The next two examples are used to indicate that the A parameter of the
Popov multiplier need not be a diagonal matrix.

ExXAMPLE 2
Let A = 61, where § is a constant but uncertain real-valued parameter with
§ € [~1,1]. Then A satisfies the IQC defined by the Popov multiplier

. 0 —jwA
M(jw) = [ . ] ,
JwA 0
where A = AT € R™*™_ This follows since
/ §2yT Aydt = / 6(y" Ay)'dt = lim § [yTAy]; = —8yT Ayo > —7lwol?,
0 0 —o0

for any y,§ € LT[0, 00) if we use v = (A)? . This Popov multiplier combined
with well known multipliers for uncertain parameters was used in [4] to obtain
a computationally inexpensive criterion for stability analysis of systems with
uncertain parameters. O

EXAMPLE 3

Let A = §(t)I, where § is a slowly time-varying parameter with 6(t) €
[-1,1], Vt > 0. If we assume that § is differentiable with derivative bounded
as $6(t) € [-b,b], V¢ > 0, then A satisfies the IQC defined by the multiplier
II = Iy + II,, where

bA 0

0 ——ij]
0 0 ’

I (jw) = [ joh 0

:| ) Hz(](.d) = |:
and where A = AT > 0. This follows since integration by parts gives

/ 26yT Aydt + / byTAydt:tlim 67 Ay]; + / (b — 6)yT Aydt
0 0 —Leo) 0
> —6(0)yd Ayo > —7(A)?|yol?,

for any y,y € L3*[0, 00). This multiplier can be used in combination with other
multipliers for slowly time-varying parameters. O

We will next formulate the assumptions needed for our main stability re-
sult. We first define well-posedness and stability for the system in (2).

DEFINITION 2

The system in (2) is well-posed if for any initial condition o and for any input
g € LT[0, 00) there exists a unique solution (z,v) € L3,[0,00) X LF}[0, 00),
where z is an absolutely continuous function. Furthermore, the map from g to

(z,v) should be causal. d



DEFINITION 3
The system in (2) is stable if it is well-posed and if there exist constants ¢ > 0
and p > 0 such that

T T
] (9l? + |uf?)dt < plzol? + ¢ / g2,
0 0

for all T > 0 and for arbitrary zo € R™ and g € L}[0, c0). O
We will make the following assumption on the system in (2).
AssumMmPTION 1

We assume that there is a continuous parametrization A, T € [0,1] of the
operator A and a corresponding parametrized system

¢ = Az + Bu, z(0)= o, (3)
y=Crz,
u= A'r(y) +9,

such that
1. A, is a causal and bounded operator on L}}[0, co) for all 7 € [0,1].
2. A=A

3. For some k > 0 we have that

1Az () = Ar (W] < &lm2 — 7l - Iyl

for all y € Ly[0, 00).

4. For any 7 € [0,1], A, satisfies the IQC defined by the multiplier II =
II; + IIy, where II; = II} € RLZ™*2™ and II, is a Popov multiplier.

5. For any T € [0, 1], the system in (3) is well-posed.

6. The system in (3) is is stable when 7 = 0.
O

Next follows the main result of this paper. The theorem gives conditions for
the parametrized system in (3) to be stable for all 7 € [0,1]. This in particular
implies that the system in (2) is stable.

THEOREM 1
The system in (3) is stable for all 7 € [0, 1] if Assumption 1 holds and if there
exists € > 0 such that

[G(J'w)

< —el, Vw>0,
I

|| (i) + o [ 77
where G(s) = C(sI — A)'B.

Proof: The proof is given in Appendix 2. O

REMARK 2
The parametrization of A in Assumption 1 can often be taken as A, = TA.



REMARK 3

It follows from the proof that we could allow the operator G to have a direct
term, i.e. G(s) = C(sI — A)"'B + D € RH™X™, under the condition that
AD = 0, where A is the parameter in the Popov multiplier II,.

REMARK 4

We do not use the assumed boundedness of A and A, in the proof. It is possible
to use Theorem 1 also when we have systems with unbounded A. However
one needs to be careful and in general we need to make modifications in the
assumptions to apply the results for unbounded operators. An example is when
A is not bounded in the sense that A(0) # 0 due to non-zero initial conditions
of A. In this case we can still use Theorem 1 given that the modifications
below holds. Only small and obvious changes of the proof is needed to show
this.

1. Let the continuity property in Assumption 1 be: For some £ > 0 and
B > 0 we have that

A7, () = Ar ()l < K72 — 7| - I3l + B,

for all y € L3*[0, c0). The constant § can be used to bound the influence
due to a non-zero initial condition in A.

2. Generally, we need to allow a constraint on the form

(D)= (R BI R 2 -emm

for all y, 3, v € LT[0, c0) in Definition 1, where the function ¢ : R?™ —
R* could be a constant. We used the notation vg = v(0) and yo = y(0) =
Cfl:o.

3. Let the first term of the right-hand side of the inequality in Definition 3
be a function p : R x R™ — R7T with the arguments vg and z,. Note
that p will depend on the constant 3.

Generally for a diagonal perturbation A = diag(A;,Ay), where A, is un-
bounded, we use the parametrization A, = diag(A1,,Az). The third condi-
tion in Assumption 1 is then satisfied if the parametrization of A; satisfies
this continuity condition. The sixth condition in Assumption 1 is particularly
easy to verify if Ayq is linear.

COROLLARY 1
If g € L'[0,00) and if the conditions of Theorem 1 hold, then z(t) — 0 as
t — oo.

Proof: The conditions of the corollary imply that the system is stable. Since
g € L7*[0,00) and A is Hurwitz we conclude that #,2 € L3'[0,00). Lemma 1
gives the desired result. O

REMARK 5

It would be more useful to verify exponential convergence to zero of the state
vector ¢ than just assymptotic convergence with no guaranteed rate of decay
as in Corollary 1. If for example g = 0, then the conditions in Theorem 1
imply exponential convergence if the operator A is memoryless and bounded.
This follows from a result in [6].



3. The Stability Analysis in Practice

We will here shortly discuss how the stability analysis can be performed in
practice. The first step is to find an IQC description of the operator A in
terms of multipliers. If A satisfies the IQC defined by IL;, for i = 1,...,n,
then A also satisfies the IQC defined by the multiplier IT = > o;II;, where
a; > 0fori=1,...,n We can in this way obtain a description of A in terms
of a convex cone ITp of multipliers. The stability analysis now involves a search
for a suitable multiplier in IIao such that the last condition in Theorem 1 is
satisfied.
We will finally continue Example 2 with some important remarks.

EXAMPLE 4—EXAMPLE 2 CONT’'D

Consider the case when A = §I, where § is an uncertain parameter with
§ € [-1,1]. Then we can combine the Popov description in Example 2 with
the IQC that can be obtained from [3]. We get

X (iw) Y(jw)* - jwA

MU= vy tjwh  -X(w)

where X (jw) = X(jw)* > 0, Y(jw) = ~Y (jw)* for all w € R and A = AT.
The first step in the stability analysis could now be to search for a A and
constant matrices X = XT > 0 and Y = =Y 7 such that the last condition in
Theorem 1 is satisfied. If this is not possible then use more general X and Y.
This example can be generalized to include diagonal structures of uncertain
parameters as in [4] or to more general parametric unceartainty as in [1].

4. Conclusions

We showed how Popov multipliers can be used in the IQC methodology for
stability analysis.
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Appendix 1: Proof of Lemma 1
The boundedness is trivial since
le(t)|? = |20l + /t 26T wdr < |zo|® + 2||2|| - ||2||, V¢ > 0.
0
We will next prove convergence to zero. Assume that this is not the case. Then
there exists ¢ > 0 and a sequence {¢;}$2, such that, t; — oo as ¢ — oo and

|z(t;)] > 2¢ for all <. We will show that this contradicts the condition that
z € LT[0, 00). Let I; = [t; — 6,t; + &], where § < €?/||2]|?. Then

< Vi <e, Vtel.

l2(t) — 2(t;)| = ‘/tit:i:('r)dr
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Figure 2 Block diagram for illustration of the proof of Theorem 1: If the upper
loop is stable when it is disconnected from the lower branch, then also the total
system is stable if |72 — 71| is small enough.

Hence, |z(t)| > €, Vt € I;. It is no restriction to assume that the intervals I;
are disjoint. This implies that ||z|| = oo, since

oo:lz't'zd'r> /m’rzd'rzn%.sz,
/0|<)| >3 [l

and the right hand side tends to infinity as n — oo.

Appendix 2: Proof of Theorem 1

The following inequalities will be used in the proof

(@,9) < |yl - ll=ll, (4)
llz + 91 < 2(/l=1* + llyll*), (5)

for arbitrary z,y € LT*[0, 00). We will also use that

Vm‘|'yS\/E+\/_7 (6)

for arbitrary z,y > 0.

The idea for the proof is to use a similar homotopy argument as that in [6].
Consider the system in Figure 2. We will show that if the upper loop is stable
when it is disconnected from the lower branch, then also the whole system is
stable if |73 — 71| is small enough. Iterative use of this from 7 =0up to7 =1
in small steps of equal size will finish the proof.

Part 1: Assume that the system

y=Gu+f, [(t)=Ce'0(t)ao, (7)
u=v+g, v=A2.(y)



is stable for some 7 € [0, 1]. Then for any zo € R™ and g € LT[0, 00) we have
y,v € L3[0, 00) and we will show that there exist constants ¢o > 0 and po > 0,
which both are independent of 7, such that y is bounded as

191l < pol@ol + collgll- (8)

To prove that (8) holds, we notice that g,v € LI*[0,00) implies that also
y € L7*[0,00). Will use that the Fourier transform of the time derivative of
Gu, where G(s) = C(sI — A)"'B €¢ RHZ*™, is jwG(jw)v(jw). Using this
together with the relation y = Gv + Gg + f, we obtain

(CHEIED =[] m[F) e [ orase

+2Re/ U(jw) " AjwG(jw)g(jw)dw.

— 00

Hence, the IQC constraint corresponding to the multiplier II = II; + II, gives

o< (2] [5)+ (2] Lar 62D
(o] emema [ ) vame (7] [

Gg+ f Gg+f ® I
-I-<[ 0 ],Hl[ 0 ]>+2/0 vo Afdt

-|—2Re/ (jw) AJjwG(jw)g(jw)dw

- 00

< — é|ol[* + 2 (ealo| + callgll) [Jvll + csleol® + callgl*.

The first term in the last inequality follows from the frequency inequality in
the theorem statement. The other terms follows by use of (4) and (5). If we
let ||IIy;|| = sup,, o(IL;(jw)) for ¢ = 1,2, 3 denote the norms for the blocks of

the matrix operator

II14 1-[12]

-
My, s

then the constants can be taken as

e1 = ([[Mua]| - [| G + [[Mx2][) y1 + 72,

¢z = |l - |Gl + 1Tz - |G| + [ Ajw G|,
ca = 2| T ||v1,

ca = 2||G|| - ||y ]l.

The constants 7 and <y, defined as

712:/ F(Cett)dt,
0

v: = / 7(AC Aet)?dt
0

10



are bounds on ||f|| and ||Af||, respectively. After some work with use of (6)
we obtain the bound

o]l < a1lzol + az2llgll, (9)
where
a :l 1+ \/2c2+s(c + v8(C)?)
1 6 1 1 3 ]
1
Qg = E <Cg + 1)26% + 664) y

Hence, using (9) we get
9]l =IIG(v + g) + fII < polzol + collgll,
where pg = ||G||la; + 71 and ¢o = ||G||(az + 1). This is the bound in (8).

Part 2: Assume now that the system in (7) is stable when 7 = 71, and consider
the case when 7 = 75. The system equations can be written as

y=Gu+tf,
u=Arn(y) + (Ar, — Ar )(y) +9.

v

v

The well posedness assumption implies that for arbitrary o € R™ and g €
L3.[0, c0) there exists a solution y,v € L7}[0,00). Let yr = Pry, gr = Pry,
and define g; = (A,, — Ay, )(yr) + gr. It follows from the assumption on the
parametrization of A that g; € LJ*[0, 00). If we let f and g; be input signals
to the system in (7) when 7 = 7, then we get the system equations (where
the loop signals are denoted y;, u; and vq)

= Gul + f:
ur = Aq, (1) + (A, — Ap)(yr) + 97
N’ ~ ~ 4
v1 g1

We notice that the causality assumption implies that yr = Pry;. Further-
more, the assumed stability of the system in (7) when 7 = 7y implies that
¥1,v1 = Ar (1) € L0, 00). We obtain from (8) and the assumption on the
parametrization of A that

lyr|l = | Pry:ll <||ly1ll < polzol + col[(Ar, — Ary )(yT) + 97|
<polzo| + cok|T2 — 71| - ||lyr|| + collgrl-

Let |73 — 71| < 1/cok, then we get

lyz|| < Pol@ol + Collgr, (10)

where pg = po/(1 — cok|T2 — 71|) and ¢ = ¢o/(1 — cok|T2 — T1|) are positive.

11



A similar bound on ur = Pru can be obtained as follows. By causality we
have ur = Pru; = Pr(vi + (Ar, — Ar)(yr)) + g7 Hence

Jur|| <[|vi]| + &lme = 71| - [lyz]| + |97l
<ailzo| + @sllgil| + &l — 71| - |lyz [l + [lg7|
<(a1 + (1 + az)klmy — m1[po) - [zo| +
(1 + az)(1 + &lm — 71[c0) - [|gl], (11)

where the second inequality follows from (9) with g replaced by g; and the
last inequality follows by use of (10).

The bounds in (10) and (11) hold for any T > 0, which implies that the
system in (7) is stable when 7 = 7 + A7, if AT < 1/(cok). Iterative application
of this conclusion from 7 = 0, where the system is assumed to be stable, up
to 7 = 1 in steps AT < 1/(cok) shows that the system in (7) is stable for all
T €[0,1].
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