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Abstract

In this paper is discussed how to solve ill-posed semidefinite discrete-
time algebraic Riccati equations in a numerically efficient and stable way.
The idea is to decompose the equation into a trivial part and a reduced
order well-posed equation. The solver is evaluated on some examples, and
it is seen that it performs well.



1 Introduction

The interest in the Algebraic Riccati Equation (ARE) was revived by the theory
of Hy control. There the weighting matrix in the performance index is not
positive definite but usually indefinite. Not even the case when the weighting
maftrix is positive semidefinite, which is the case in standard Hs control, was
fully understood, and the question of how to implement good numerical solvers
for these equations when they are ill-posed is still a research area. This is despite
the fact that several algorithms have been proposed; either the algorithms are
numerically unstable for the general case, or the complexity of the algorithms
are such that they are not efficient.

The aim of the work presented here is to propose a way of circumventing the
problems todays numerical solvers have for the semidefinite case. The idea is
to reduce the problem to a well-posed one that can be solved in a numerically
stable and efficient way by well-known solvers such as the Schur-method or the
Newton-method. The proposed reduction scheme works only for Discrete-time
ARE:s (DARE):s. It is numerically stable and efficient. Similar ideas can most
likely be applied to the Continuous-time ARE (CARE).

The paper is organized as follows. In Section 2 background material on
numerical methods for solving the DARE is given. The proposed reductions
scheme is motivated. Then in Section 3 some analysis of the DARE is done,
and in Section 4 the reduction scheme is derived. In Section 5 it is numeri-
cally evaluated. Finally, in Section 6 some concluding remarks together with
suggestions for future research are given.



2 Background

In this section background material on the Riccati equation will be given, and
especially on numerical methods for solving it. The origin of the Riccati equation
goes back to Count Riccati in 1724, who studied

a(®) 2 b7 (1) + b1 (Ow0) + bolt)

It was brought into the field of control and estimation in [Kal60]. It has many
other applications. Some good survey papers are collected in [BLW91]. A recent
text book is [LR95].

First notations will be introduced. Then an application of the Riccati equa-
tion will be briefly reviewed. Furthermore different numerical methods will be
discussed. Their advantages and disadvantages will be investigated. Finally, dif-
ferent reduction methods used to extend the applicability of different numerical
solvers will be surveyed.

2.1 Notations

There are many ways of writing the discrete-time Riccati equation. In its sim-
plest form it reads

S(k+1)=ATS(k)A+ Q. — ATS(k)B [BTS(k)B + Qg]_l BT S(k)A

where A € R™" B € R™™ @, € R*"*" @Q, € R™X™ and S(k + 1) €
R”?*"™ The equation should be solved for S(k), k = 1,2, ..., and different initial
conditions S(0) may be used depending on the circumstances. The focus in this
work, however, is on the DARE. This is obtained by taking S(k + 1) = S(k) in
the above equation, i.e.

S=ATSA+Q,— ATSB(BTSB + Q,)"'BTSA

In many interesting applications of the Riccati equation, or for numerical sta-
bility, it is not possible or sensible to compute the inverses. This can be circum-
vented by considering

S ATSA+ Q- LTGL
GL BTSA
G = BTSB+Q,

1)

where L and G are new unknown variables. Notice that this L is the optimal
L in the LQ problem of Section 2.2. Usually it is desirable to look for solutions
S = ST > 0 such that A(A — BL) has absolute value less than or equal to
one. Often it is assumed that (A, B) is stabilizable. To further generalize the
equations the following replacement may be considered

GL = BTSA & GL = BTSA + QF,



This will enable applications to more general and interesting problems, e.g.
cross-terms in the LQ problems. With

Q= [Q1 Q12]
Qf, @
it holds that the DARE may be written
[1 o]TS[I 0]+[L I]TG[L I]:[A B]TS[A B]+Q
There always exist C', and D such that

Q= (c D]TJ[C D)

7= (o )

Now it is possible to further rewrite the DARE as

GO GED-(63) (N5 v

The corresponding spectral factorization reads

where

H*WNJHA) =+ LYN)]" G+ L¥(N)]
where ¥()) = (A — A)~1B, H()\) = C¥()) + D. The zeros of the pencil

PO\ = [ “Mra s ) 2)

will play an important role in the analysis. These are by the spectral factoriza-
tion related to the closed loop eigenvalues of A — BL. In the rest of the paper it
will be assumed that J = I, i.e. @ > 0. The reason is that the ill-posedness is
much easier to analyze and circumvent for this case, see Section 6 for a further
discussion.

2.2 Applications of the Riccati Equation

The DARE can be used to solve many different problems in control theory such
as the Linear Quadratic (LQ) control problem, and the Kalman filter problem.
For the purpose of this presentation we will only need the relation to the LQ
control problem.

Consider the linear time-invariant dynamic system

z(k + 1) = Az(k) + Bu(k) + v(k), z(0)=0

where z(k) € R™ is the state, u(k) € R™ is the control signal, and where
v(k) € R™ is a sequence of independent random variables with zero mean value



and unit covariance. Assume that u(k) is given by a feedback from the states
as

u(k) = —La(k)
in such a way that |A(A — BL)| < 1. Introduce the performance index

v = e { (3) o (2)))
and the optimization problem
irll,f V(L)

If there exists a solution to this problem it is given by the solution to the DARE
such that |\(A — BL)| < 1, and the infimal loss is EvTSv = trace S. The
existence of a solution is equivalent to the stabilizability of (A, B). Notice that
the performance index also can be written

V(L) = lim E {7 (k)=(k)}

where z(k) = Cx(k) + Du(k).

2.3 Numerical Methods for Riccati Equations

Many methods for solving the ARE have been proposed in the literature, [AL84].
It is not within the scope of this presentation to survey all of them. Some
of them are only applicable to special cases of the ARE, and many do not
have satisfactory numerical behavior. The most promising ones are the Schur
methods and Newton’s methods. These will be discussed in more detail below.

2.3.1 The Schur Methods

These methods have their roots in the classical eigenvector approach for solv-
ing Riccati equations going back to [vE98]. Some early references in control
literature are [MF63, Pot66, Vau70, Mar72]. However, the use of eigenvectors
to form the solution of the Riccati equation is not attractive from a numerical
point of view, since it essentially boils down to computing the Jordan form. A
numerically stable algorithm was first obtained after it had been shown that
Schur vectors could be used, {Lau79]. The Schur-decomposition goes back to
[Sch09].
The idea is the following. Introduce the Symplectic matrix

A= (A+P9 BTG —BapETAT)
__A—TQ1 AT
Then, [MW31], there exists an orthogonal similarity transformation U such that

T = UT AU is block-upper-triangular with maximum block-size of two; this is
called the real Schur form. Moreover T' can be partioned such that

_(Tu le}
e [ 0 Ty



where the spectrum of T}; has absolute value less than one and the spectrum
of T3 has absolute value larger than one; this is called the ordered real Schur
form. If then U is partioned conformably as

Ui U12]
U= [
Usi Uz

it holds that S = ST = U U;! > 0 solves the DARE with A(A— BL) = A\(T11)
having absolute value less than one, see [Lau79]. For the so called ordered QR-
algorithm it holds that the complexity for obtaining the ordered real Schur form
decomposition is about 75n3 floating point operations, where n is the number
of rows and columns in A.

One drawbacks with the ordered Schur-form method for solving Riccati equa-
tions presented above is that is assumes that A and @9 are invertible. This
drawback can be overcome by considering instead of the standard eigenvalue
problem associated with the regular pencil AI — A, the generalized eigenvalue
problem associated with the pencil

0 “M+A B
Pg(A) = | I+ AT @1 Q2
/\BT Q{‘2 Q?

[vD81a, ENF82]. Notice how easily the ()1 term has been incorporated. As is
the case with the classical way of solving the DARE, by means of a standard
eigenvalue problem, there are different canonical forms also for the generalized
eigenvalue problem, Corresponding to the Jordan form is the Kronecker form,
[Kro90]. Computing the Kronecker form is, however, just as unstable from a
numerical point of view as computing the Jordan form, [GvL89]. Corresponding
to the Schur form and the real Schur form are the generalized Schur form,
[MS73], and the generalized real Schur form, [Ste72], respectively. The ordered
version of the latter one is of interest in this context, [vD81a]. Notice that it is
not always possible to just apply the ordered version of the real QZ algorithm as
presented in [vD81a] to compute the ordered version of the generalized real Schur
form. This is because of the fact that Pg()\) may be irregular, i.e. det Pg()) = 0.
When this happens the solution to the DARE is often discontinuous with respect
to parameter variations.

Example 1 Consider the LG control problem with
c(k+1) = 2(k)/2+ bu(k) + v(k)

and
— T 2
V= klgl;oE {z(k)?}

Then the solution to the DARE is given by

S:{ 4/3, ifb=0

1, otherwise



Example 2 Consider the L) control problem with

a(k+1) = [8 g] o (k) + [(1) (1’] w(k) +v(k)

and
V= lim E {[ez1(k) + z2(k)]* + us(k)?}

Then the solution to the DARE is given by
2
g = [c c ]
[ 8929

{ 245, ife=0
822 =

4, otherwise

where

In the first example the input is redundant for b = 0 and rank B < m. In the
second example u; is dynamically redundant together with z; for ¢ = 0. There
are other perturbations of (A, B, C, D) for which the solutions S are continuous,
[SS95].

The way to overcome this problem is to make reductions either on the pencil
Pg()), or directly on the DARE before applying the ordered version of the real
QZ algorithm. This will be surveyed in more detail in Section 2.4. Notice that
the reductions made in [vD81a], before computing the eigenvalues, only remove
the infinite eigenvalues and not the arbitrary ones.

A more sever drawback, irrespective of whether standard eigenvalue or gen-
eralized eigenvalue problems are considered for solving the DARE, is that the
ordering of the the eigenvalues becomes difficult when there are eigenvalues close
to the unit circle. This is usually referred to as the closed loop system A — BL
being poorly damped, and it was noted already in [Lau79] in an example. Later
on it has been extensively studied, see e.g. [Arn83, Bye83, AL84]. It can be
related to the invertibility of the Lyapunov operator associated with the DARE,
[GL90]. When this happens the solution of the DARE is often continuous but
not differentiable with respect to differentiable parameter variations.

Example 3 Consider the LQ control problem with

ok +1) = (o 1) e+ () u)+o00)

and
V= lim E {Pa?(k) +u?(k)}
—+00

Then for small values of ¢ the solution to the DARE is given by

=("27 o)
- c ct2\/2



Hence the solution is not differentiable for ¢ = 0, and the infimal cost for the
L@ problem is zero. Moreover

dy = (c 01/2\/5]

So A — BL has dll its eigenvalues on the unit circle for ¢ = 0, and it is only
possible to come arbitrarily close to the infimum using stabilizing control.

Ways to overcome this numerical problem have been proposed. The idea is to
make transformations on the matrix A which respect its Symplectic structure,
[Bye86, BGM86). This has been extended to the generalized eigenvalue approach
in [Meh88, BGBM92]. However, these structure preserving algorithms have a
complexity of order n* when the general case is considered, [CG87]; the ordered
QZ algorithm only has a complexity of order n3.

There are also numerical problems with the Schur methods related to bad
scaling of the problem. This has been reported in [AL84, PCK87, PCK88].
The reason for these problems is to be found in the formula S = U21U1_11. If
Uy, 1s ill-conditioned with respect to inversion or if the elements of Uy or U
are small, S will be inaccurate; Uj; is for example singular if (4, B) is not
stabilizable, [AL84]. Ways to overcome this problem have been proposed in
[KLW89, GKL92]. The idea is to multiply the matrices @1, Q12, @2, and S
with a suitable constant.

To summarize it should be stressed that the scaling problem is not an in-
herent problem to the DARE itself but to the Schur method if not properly
implemented. The former two problems, however, are inherent to the DARE
itself, since they may cause non-continuity or non-differentiability of the solu-
tion.

2.3.2 Newton’s Method

This method is an iterative methods yielding a sequence of S; converging to
the solution S of the ARE. In continuous time the method is due to Kleinman,
[Kle68] and in discrete time the method is due to Hewer, [Hew71]. The recursion
reads

1T I
S, = (A—BL,-)TSi(A-—BLi)+[_L,] Q[_L,]
GiLz'+1 = BTS;'A'*'Q?Z
Gi = BTSiB+Q

At each iteration step a Lyapunov equation and a linear system of equations
have to be solved. There are several disadvantages with Newton’s methods.
The first one is that an initial stabilizing Lo has to be found. This is usually
computationally expensive. The second disadvantage is that the global conver-
gence rate may be very slow. However, if the method is applied to an initial Lg



which is obtained from a Schur method, the convergence is often quadratic. To
use an initial Ly from a Schur method is sometimes sensible, since this might
give a good improvement of a solution obtained from a badly scaled Schur so-
lution, [AL84, GL90, KLW90]. Hence with this two-step solution procedure
the Schur method does not have to be be implemented with rescaling. Also
Newton’s methods can successfully be used when solving many DARE:s with
slightly perturbed parameters.

Newton’s method also has problems corresponding to “arbitrary eigenvalues”
of the closed loop system. Then there is no unique L;y1, and a stabilizing one
has to bee chosen among all the possible solutions. When there are poorly
damped eigenvalues of the closed loop system, Newton’s methods also have
problems, [AL84, GL90, KLW90]. This is related to the fact that the Lyapunov
equation then has no unique solution. Then the method does not converge to
the desirable solution when implemented in finite precision.

2.3.3 Summary

The Schur methods and Newton’s methods all have problems when there are
arbitrary eigenvalues or eigenvalues on the unit circle of the closed loop sys-
tem. The solution to the DARE is then usually not continuous or not differ-
entiable with respect to parameter variations, respectively. Hence it can be
argued that these problems are inherent to the DARE itself and not to the spe-
cific method used for solving it, i.e. the DARE is ill-posed, The well-posedness
or ill-posedness of an equation is related to the conditioning of the equation. A
lot of work has been done on the conditioning on the ARE. A general reference
on conditioning in systems and control is [PLvD93]. There the condition num-
ber of a solution to an equation is defined, and the equation is said to be well
conditioned if the condition number is small and badly conditioned if it is large.
Also the equation is said to be well-posed if the condition number is finite, and
otherwise it is said to be ill-posed. Depending on what norms are used several
different condition numbers can be obtained, and the literature i1s vast, see e.g.
[PCK87, KPC90, KLW90, GL90, Gha95].

2.4 Reduction Schemes

Many different reduction schemes have been proposed for the Riccati equation.
Several of them apply also to the time-varying equations, including time varying
systems, and not only to the ARE. They typically reduce parts of the equation
which can be trivially computed. Early references are [Bucb9, Dey64, BJ65,
Hen68, MB68, Buc67, KG68, Sil69]. The modern reduction methods fall into
two different categories: invariant direction methods and unobservable subspace
methods, both of which will be surveyed below.



2.4.1 Invariant Direction Methods

In the early references to reduction methods the reductions of the Riccati equa-
tion are obtained by differentiation or differencing of the measurement signal in
the Kalman filter problem associated with the Riccati equation until white noise
components appear in this signal. More reductions can be done in the discrete
time case as compared to the continuous time case. This was shown for the
SISO case with @2 = 0 in [BRS70] using the concept of invariant directions. An
invariant direction is a vector z such that S(k)z is constant for k > n for some
constant n. It can be shown that this part of the Riccati equation can be solved
without iterating the equation for k > n. These results were then generalized in
[Rap72, GK73, CA77b, CAT7a] to the general MIMO case using concepts such
as constant, predictable and degenerate directions. Notice that constant and
invariant directions are just different names for the same type of directions. A
predictable direction is a vector & such that S(k)z is zero for k > n for some
constant n. Degenerate directions is a common name for constant and pre-
dictable directions. In continuous time the predictable and constant directions
coincide and are equal to the number of process derivatives that do not contain
white noise. In discrete time the situation is more complicated, [GK73]. The
final word about using invariant directions for reducing Riccati equatons can be
found in [CA77a]. There also indefinite weighting matrices are considered.

2.4.2 Unobservable Subspace Methods

The idea here is that the solution to the LQ problem associated with the DARE
for SISO systems can be obtained by taking the feedback matrix L such that
the closed loop system (C'— DL, A— BL) is maximally unobservable. This idea
goes back to [Kuc72], and in [PS73] it is generalized to minimum phase MIMO
systems. There the so called structure algorithm of [SP71] is used to compute a
preliminary feedback such that (C'— DL, A — BL) is maximally unobservable,
then a reduced order DARE for which S > 0 is solved, and the results are
combined to yield the solution to the full order DARE. Notice that this reduced
order DARE has the same property as the reduced order DARE obtained from
an invariant direction method, [CATT7a], i.e. its solution is positive definite.

2.4.3 Summary

Notice that the reduction methods surveyed above are not numerically stable,
since they rely on nonorthogonal transformations, [Cle93]. Furthermore they
remove more than is necessary in order to obtain a well-posed reduced order
DARE. Also many of the methods do not consider the general case. This mo-
tivates the need for the new reduction scheme proposed in this paper.

2.5 Summary

In this section the well-known Schur methods and Newton’s method for solving
Riccati equations have been reviewed. Also different reduction methods for

10



Riccati equations have been surveyed. It has been made plausible that there is
still need for more research in order to implement good numerical solvers.

11



3 Preliminaries

In this section some preliminary results on existence and uniqueness of the
solution to the DARE will be given. It will be defined when the solution is well-
posed, and this will be related to the differentiability of the solution. The aim is
to obtain sufficient conditions for well-posedness that motivates the reductions
described in the next section.

3.1 Some Definitions

The Discrete-Time Algebraic Riccati Equation (DARE) is given by (1) with
J=1,1ie.

[I o]T [S 0] [I 0] N [A B]T [5 0] [A B] )
L I 0 G L 1)~ \C D 0 I C D

The known variables are A € R*"*", B € R**™, (' € RP*" and D € RP*™;
the unknown variables are S € R"** L € R™*X? and G € R™*™, Notice that

G is a trivial function of S, and hence it will often be said that (S, L) are the
unknown variables., Associated to the DARE is the linear time-invariant system

z(k+ 1) = Az(k) + Bu(k)
z(k) = Cz(k) + Du(k)

which is abbreviated (A, B, C, D). The first system equation is also abbreviated
(A, B). Of interest is also the pencil P(\) defined in (2).

Definition 1 The system (A, B) is said to be stabilizable if there exist L such
that |A\(A — BL)| < 1.

Definition 2 The system (A, B, C, D) is said to be left invertible if the normal
column rank of P()) is full, i.e. maxyecrankP(A) =m 4+ n.

Definition 3 The system (A, B, C, D) is said to have no zeros on the unit circle
if rank|x)=1 P(X) = maxyecrank P(}).

The following definition of condition number is taken from [PLvD93] and is
under the assumption that limes and supremum can be taken in reversed order
equivalent to the norm of the Fréchet derivative, [GKL92].

Definition 4 The condition number of the solution S to the DARE is defined

as
k[S(X)] = lim  sup 4 (S(X), S(1*))
6—>0d2(xyxt):(5 )

where X = (A, B,C, D), X* = (A*, B*,C*, D*), and where d; are the metric
functions induced by e.q. the l; vector norm. The DARE is said to be ill-posed
if K[S(X)] is infinite, and it is said to be well-posed if & [S(X)] is finite. When
& [S(X)] s large the DARE is said to be ill-conditioned, and when r [S(X)] is
small it is said to be well-conditioned.

12



3.2 Existence and Uniqueness

The existence and uniqueness of the DARE has been described in many different
references. One of the more general ones is [HK95], which is based on writing
the Popov equation associated to the DARE in its Smith-form. Here another
approach will be taken which is based on the Kleinman-iteration.

Theorem 1 Assume that (A, B) is stabilizable and that (A, B, C, D) is left in-
vertible. Then there ts always a real solution (S,L) to the DARE such that

= ST > 0 and with |\(A — BL)| < 1. It also holds that G > 0, and that both
S and L are unique. Furthermore |[\(A — BL)| < 1, if and only if (A, B, C, D)
has no zeros on the unit circle.

Proof: See Appendix. g

Theorem 2 Assume that (A, B) is stabilizable. Then there is always a real
solution (S, L) to the DARE such that S = ST > 0 and with |\(A — BL)| < 1.
It also holds that G > 0, and that S is unique. However, L is not unique.
Furthermore |A(A — BL)| < 1, if and only if (A, B, C, D) has no zeros on the
unit circle.

Proof: See the next section. O

3.3 Well-Posedness
Now sufficient conditions for the DARE to be well-posed will be derived.

Lemma 1 Assume that (A, B) is stabilizable and that (A, B,C, D) is left in-
vertible and has no zeros on the unil circle. Then the real symmetric positive
semidefinite solution S to the DARE such that |\(A— BL)| < 1 is differentiable
at (A, B, C, D).

Proof: Formal implicit derivation with respect to (A, B, C, D) gives

S+ILTGL+ITGL+ILTGL = ATSA+ ATSA+ ATSA

+ CTc+CTC (4)

GL+GL = BTSA+BTSA+BTSA
+ DTc+D'C (5)

G = BTSB+BTSB+BTSB
+ DTD+ D™D (6)

Substitution of (5) and (6) into (4) gives

S

(A— BL)TS(A — BL)
(A— BL)TS(A— BL) + (A~ BL)TS(A — BL)
(C = DL)TS(C — DL) + (C — DL)TS(C — DL)

13



Now, A — BL is stable by assumption and the equation for S is a Lyapunov-
equation. Hence it follows that S is unique. By (6) it follows that G is unique.
Further, since G > 0, it follows by (5) that L is unique as well. Hence S is
differentiable at (A, B, C, D) by the implicit function theorem. a

Theorem 3 Assume that (A, B) is stabilizable and that (A, B,C, D) is left in-
vertible and has no zeros on the unit circle. Then the DARE s well-posed.

Proof: Assume that the DARE is not well-posed. Then & [S(X)] = co. This
implies that there exist a ) such that

oo = lim - sup dy (S(X), S(X¥ +1))) — Lm dy (S(X),S(X +nY))
620 py.d, (X, X +7Y) =6 ) =0 dy (X, X +nY)

which proves that S is not differentiable at (A4, B, C, D). This is by by Lemma 1
a contradiction. O

3.4 Summary

In this section the existence and uniqueness of the solution of the DARE has
been investigated. Also sufficient conditions for when the DARE is well-posed
have been given. It will be seen in the next section that any DARE can be
reduced to a well-posed one in a numerically sound way.

14



4 Reduction Scheme

In this section it will be shown how to reduce the DARE to a well-posed equa-
tion. The reductions are performed on the associated linear time invariant sys-
tem (A, B,C, D), and they have very intuitive signal interpretations connected
to the LQ-problem. The transformations performed are very similar to the ones
described in [CSS93].

4.1 Statically Redundant Input Signals

Make an SVD transformation on [ IB; ] such that
7 (B (X 0]
() v="{s o

(¢ 5)=(5 5 a)=(52) (s v)

¢ D) \Cc Dy 0)  \C D 0V

where [ gl ] has full column rank. In these new coordinates the DARE reads
1

EDGEN-63) 6 D(ED)
L I 0 G L 1)~ \Cc D 0 I C D
where L = VL and G = VT GV. Some calculations show that with
7 1:31 AL G1 (“?_12]
L= [Lz]’ G= [G% G
this DARE is equivalent to
(L9 (2L N-163) (5 O(ER
Ly I 0 & Ly 1) \C Dy 0 I C Dy
and Gy =0, G132 = 0, and L, arbitrary.
Now rename all variables so that the above reduced DARE reads

GGG D=5) 616G

4.2 Decoupling of Direct Term

and let

Make an SVD transformation on D such that

— 20]
UDV_[O 0

and let

4 3)-

541;1562 (1 0][AB][I 0}
= _[OUT C D 0V



The DARE is now equivalent to
G GOEN-(63)6NED)
L 1 0 G L I) \C D 0 I cC D
where L = VL and G = VIGV. Now let L; be a solution to

=Cy

b‘z

and define .

1= (%)

(2 3)=(53) (% 1)-
¢ D) \C D -L I)
where A = A — BL. The DARE is now equivalent to
G CAGN-102) G N(E?D)
L I 0 G L I C D 0 I c
where [, = L — L. Rename all variables so that the above DARE reads

D GEaEN=(65) EDED)

and

A
g
c

-l

where
A B A B B
[c D]: 0 £ 0
Co 0 0

with Bj full collumn rank, and % invertible. Notice that the computation of
L1 is numerically stable in the sense that it is possible to choose the condition
number of ¥ by selection of the tolerance in the SVD computation.

4.3 Reduction to Left Invertability

Apply the numerically stable algorithm of van Dooren in [vD81b] to compute
the supremal (A, B)-controllability subspace in the kernel of C3. This trans-
formation can be written

o Ay 0 Az By
[A 32] | At Ax Ass By 323]
- 0 0 Az B32
0 0 Co

B [T 0]T[A :C
= lo I @ 0 —Is

S
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for unitary T and V,, Ly partioned as

, = [1:121 Loy 0]
L1 Lsz 0

and where Bsy has full collumn rank. It holds with

0 0 0
E:[£]=[@21 Los 0]; V=[é ‘972]
2 L1 Lz 0

(el

that

(A 0 Az Buy Biz 0
A1 Az Azs Bai B2 Bas
] = 0 0 A3 B31 Bsz 0
0 0 0 % 0 0
. 0 0 C O 0 0

_ (T O]T[A B] T 0]

- 0 I ¢ D -L Vv

where (Az, Bas) is the supremal (A, Bs)-controllability subspace in the kernel
of Cy. The DARE now reads

FOE UG ENES
L I 0 G L 1)~ \C D 0o r1)\C D
where VL = LT — L, G = VTGV, and § = TT ST. Partition L as

i 1:)1 @11 1:112 I:/13
L=|Ls| =|Loan Lz Los

L3 L3y L3y Lss

Qi h N
willvs]

Then it holds that

B 5'1 0 5_'13 R l:;l [:111 0 -@13
S = 0 0 0 f; L=|Le|=|Lar 0 Log
S, 0 S Ly L3y L3z L33
B G1 Gi2 0
G = G12 G2 0
0 0 0
and E3 arbitrary but such that A — Bzgf,;;z is stable, is a solution with
N 51 Sis ] o [ L1 Lis ] N [ Gi1 G2 ]
S= [ z 5 ; L=17% - i G= 1 A =
ST, S5 Lgy  Las GT, G

satisfying the reduced DARE

(£ D75 &G N=(63) (59 (& 3)



where _
A i
] _| 0 As Bsi Bs
I U % 0
0 Cas 0 0
Rename all variables so that the above DARE reads

(9 (el D=5) (59 (E5)

Ay Az By By
[A B] 0 As Ba1 Bas

with

¢ D)™ ]lo o ® 0
0 Cos 0 0

It now remains to show that this system is left invertible, i.e. P(X) has full
normal collumn rank. This follows by similar arguments as in [Kai80], pp 543—
546, by noting that X is invertible. It is now also clear that Theorem 2 has been
proven.

4.4 Removal of Finite Zeros
It holds that all the finite zeros of P()) are given by the eigenvalues of A;. It

turns out that some of them also give zero contribution to S, and that is the
topic of this subsection. Let U be a unitary transformation on A4; such that
Ar A ]

A1U:U[0 e

where A has all its eigenvalues inside or on the unit circle, and where A has
all its eigenvalues strictly outside the unit circle. Such a transformation can be

obtained in a numerically stable way from the real ordered QR-algorithm. Now
define

1 A2 Ais B Bz

Ay Azz By By
0 Az Bsy Bs
0 0 b)) 0

0 Cos O 0

(e ) (50

thm
T
| NE——
Il
ST oo oo

where

The DARE is now equivalent to
(29 (&) N=(¢3) (39 5)
L I 0 G L I)  \C D 0 I cC D
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where L = LU, and S = UTSU. It holds that

_ (0 0 0 _ o
S = 0 _52 SL23 ] H L= [ 0 Lg L3 )
0 5L, S,

1s a solution with

5= (3 ¥)s 1= (5 L)

satisfying the reduced DARE

GG GEN-(23)6NE)
L I 0 G L 1)~ \C D 0 I C D
where _
o A
[4 B]__ 0 As Bs Bs
C D)} o0
0 Cs 0 0
Rename all variables so that the above DARE reads

EDGeED=5) 69

Ay Aip B Bp

A B . 0 Ay By1 Bog
[C D] - 0 0 % 0
0 Cys O 0

where all the finite zeros of P()A) are given by the eigenvalues of A;, and where
the eigenvalues of A; are strictly outside the unit circle. Hence by Theorem 3
it holds that this reduced DARE is well-posed in the sense of Definition 4.
The algorithm described so far provides a more stable way of making the
reductions described in [PS73, CA77a]. It also generalizes [PS73] to the cases

o
Qe
wiliv
N’

with

when [ g ] does not have full column rank and when P(A) is non-minimum-

phase. Notice that it is unnecessary to remove the strictly stable modes of Ay
in order to get a well-posed DARE. However, it is easier from a numerical point
of view,

4.5 Numerical Stability

What numerical properties does the reduction scheme have? Unfortunately it
is not possible to claim the the transformations performed on

p(O):[é g]
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are backward stable. This is due to the computation of the feedback gains
in sections 4.2 and 4.3. However, these computations can be given desirable
condition number by choosing the tolerance in the computation of the SVD
decompositions yielding the left hand sides of the linear systems of equations to
be solved to obtain the feedback gains. Moreover the feedback gain in Section
4.3 does not have to be computed in case there are no zeros on the unit circle.
This is because of the fact that only the input signals, not the states have to be
removed in order to obtain left invertability, [vD81b].

What solution to the DARE is obtained by performing the above reductions?
Losely speaking they yield the largest solution in the following sense. With a
certain accuracy the above reduction algorithm tries to remove as many input
signals as possible. This implies for the associated LQ control problem that
there is less freedom in computing the infimal value of traceS. Hence traceS is
maximized. However, it is not possible to say that this maximization is done
over some reasonable set close to P(0), such as e.g.

{P(0) - 11P(0) = P(O)I| < €}

since most likely slight perturbations within this set would make traceS slightly
larger. However, due to the differentiability of the reduced DARE this solution
would not be significantly larger. Hence it is fair to say that the reduction
scheme approximately finds the solution that maximizes traceS for a problem
close to (A, B,C, D). This is a very tractable choice from the point of view of
the application to LQ control, since the largest solution corresponds to lower
feedback gain, i.e. use of less energy in the control signal.

4.6 Summary

In this section it has been shown how to reduce the DARE to a well-posed
one. These reductions involved removing statically redundant input signals, a
supremal controllability subspace, and finite zeros inside or on the unit circle.
Also Theorem 2 has been proven. It has been argued that the reduction scheme
1s numerically sound.
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5 Evaluation

In this section the reduction scheme of the previous section will be evaluated.
It has been implemented in Matlab, [Mat92]. To compute the supremal (4, B)
controllability subspace in the kernel of C' Algorithms 1-3 of [vD81b] have been
implemented, and to compute the invariant subspaces to remove the stable
finite zeros the fortran LAPACK routine DGEESX, see [ABB192], has been
interfaced to Matlab using cmex, [Mat93]. To solve the reduced DARE the Schur
method using the generalized eigenvalue approach described in Section 2 has
been implemented in Matlab using the routine gzorder by Cleve Moler to solve
and order the generalized eigenvalue problem. Unfortunately this routine only
computes and orders the complex Schur-form and not the real one. However,
it has not been possible to find any implementation of the real one, and it is
not within the scope of this work to implement such an algorithm. Benchmark
problems for the DARE have been proposed in [BL96]. However, these problems
do not address ill-posedness, and cannot be used for evaluating the reduction
scheme proposed in this paper.

In Section 5.1 Examples 1-2 will be revisited, and in Section 5.2 Example 3
will be revisited. In Section 5.3 an application examples of LQ control will be
investigated, and in Section 5.4 some concluding remarks will be given.

5.1 Non Left Invertability

For Example 1 both the standard routine, i.e. the Schur form method of Sec-
tion 2 without any reductions, and the reduction routine give the same correct
answer, i.e. S = 1.3333. For Example 2 the two routines give different answers.
The standard routine results in S = co whereas the reduction routine gives the
answer

g = [0 0 ]
L0 4.23606797749979

which is the correct answer with at least 14 decimals. The reduced system is

given by
(4 %) - [ 01 ]
¢ D 1 0
from which it is seen that one control signal and one state has been removed.

5.2 Zeros on the Unit Circle

For Example 3 the two routines also give different answers. The standard routine
results in

g = [0.00000000099804 0.00000831479363] % 103
— 10.00000831482721 0.13180676188135

whereas the reduction routine gives the correct answer S = 0.
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5.3 Linear Quadratic Control

Here an application example concerning level control of a tank with two pumps
as actuators will be investigated. It is assumed that the pumps have dynamics.
The continuous time transfer functions relating the voltages u; and uy applied
to the pumps to the flows ¢; and ¢ going into the tank are given by

1
@1 (S) - ST]_ + 1U1(S)
1

g2(8) = ST2+1U2(S)

where 77 = 1 and T3 = 0.1 are the time constants of the pumps. The level z in
the tank is then given by

£(9) = * [a3(6) + 02(9)]

Sampling these equations with zero order hold and sample interval 0.02 and
introducing a state space description results in

0.9802 0 0 0.0198 0
w(k+1) = 0 08187 0 |aek)+| 0 01813 | u(k)
0.0198 0.0181 1.0000 0.0002 0.0019
k) = (00 l]a:(k)

The solution to the DARE is for the standard routine

0.00000000000000 0.00000000000000 0.00000000000000
S = [0.00000000000000 0.00000000000000 0.00000000000000]
0.00000000000000 0.00000000000000 1.00000000000014
I = [ 0.12053532522949  0.068897850605681  7.12712277493106 ] < 103
- —0.00221337867926 0.00236977171475 —0.22207812340223

with closed loop eigenvalues

0.00001404447402

[ —1.01741070514381 ]
—0.00000000000000

The solution to the DARE is for the reduction routine

0 0O
S = [0 0 0]
0 01
L = [0.65311429051678 0.15334235086238 0.55997718084119] « 102
- 0.03644108214024 0.08051155999052 5.27941799275496
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with closed loop eigenvalues

—0.00000000178825

[ —0.95375050187009 ]
0.00000000178825

So not only does the standard routine give the wrong S as solution but it also
provides an L which is not stabilizing.

5.4 Summary

In this section.the new. reduction routine has been evaluated.an compared to.a
standard solver. It has been shown that the reduction routine is always giving
as good results as the standard routine, and in most cases it performs better.
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6 Conclusions

In this paper has been discussed how to solve ill-posed semidefinite DARE:s
in a numerically sound way. Different methods proposed in the literature have
been surveyed. It was found that none of the existing methods are satisfactory.
Either they do not address the problem in its full generality, or they are too
inefficient.

A method that transforms the DARE into a trivial part and a reduced order
well-posed DARE has been developed. It has been argued that the reduction
scheme is numerically sound. It has been implemented in Matlab, and it has in
several examples been shown that the new scheme is very promising.

Future Research

So far only the semidefinite case has been addressed. Many applications of the
DARE are indefinite, such as e.g. Ho,-control. Hence it would be of great inter-
est to extend the results to that case. Unfortunately the DARE is not invariant
under output-injection, the dual of state-feedback, so it is not possible to make
dual reductions to get right invertability, which by the spectral factorization
would have guaranteed uniqueness of the solution, a key part of the derivations
in this paper. Thus it is not clear if it is possible to make reductions only on
(A, B,C, D) in order to obtain a well-posed reduce order DARE, or if J also
has to be taken into consideration for the indefinite case.
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7 Appendix

Here Theorem 1 will be proven. To this end the following lemmas are needed.

Lemma 2 Assume S > 0 satisfies S = ATSA+Q,Q > 0. Then @ # 0, only
if A has an eigenvalue |\| < 1.

Proof: Assume first that A has a complete set of eigenvectors. There is then
for @ # 0 an eigenvector z with z*@Qz > 0, and z*Sz = |\|?z*Sz + z*Qz
then requires |A| < 1. For defective A the proof is extended using generalized
eigenvectors. O

Lemma 3 For any real symmetric solution S > 0 and any corresponding A —
BL introduceT' = (T_ To Ty ] with (A—BL)T =TJ, J = diag(J-, Jg, J4)
and |A(J2)| > 1, |A(Jo)| =1, [M(J4)| < 1. Then
(C-pI) (T- To) =0, S(T- T) =0
Proof: The proof follows from Lemma 2 using stabilizability and
T7ST = JTTTSTJ + TT(C — DLY)T (C — DL)T
O

Lemma 4 The system (A, B,C, D) is left invertible if and only if the normal
column rank of H(X) = C(AM — A)~'B + D is full, i.e. maxyecrankH (\) = m.

Proof: The proof follows from the following identity:

o= (7 ) (o 7)

where ¥(X) = (Al — A)~!B, and the fact that there exist A such that rank(A] —
A) = n. O

7.1 Proof of Theorem 1

A straight-forward proof, cf. [Kuc91], can be made using the Kleinman recursion

A; = A-BL;, C;=C-DIL; (7)
S; = ATS;A+CFc; (8)
Gi = DTD+BTS:B (9)
GiLiyy = DTC+BTSA (10)

for i = 0,1,...with initial value Ly such that Ap is stable. It will first be shown
that the sequence of L; is well defined, and then the question about convergence
will be investigated. Assume that A; is stable. Then there exists a unique S; > 0
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that solves (8), since it is a Lyapunov-equation, and there exists an L;;; that

solves (10), since
[ ] [ i ] [ ] -
C D 0 I ¢ D

If it can be concluded that A;;q is stable, it thus follows by induction that A;
is stable for all # > 0. Assume that A;;1 is not stable. Then there exist A and
¢ such that |A] > 1 and A; ;12 = 2. Now use A; = (L — Liy1)T Gi(Li — Li1)
in (7-10) to obtain

Si = AT 1 SiAip1 + CH 1 Cigr + A (11)
and

(1= AP)e*Siz = 2*CL  Cirz + &* Aje

From |A| > 1 and S; > 0 follows that £*A;z = 0. Thus L;z = L;y 12 provided

G > 0, and hence the contradiction that X is also an eigenvalue of A;. To show
that G; > 0, rewrite (7-10) and (11) as

[ I O]T[&—Ai 0][ I 0]
Liy1 I 0 Gi) \Lip I

(4 BY" (S5 0y(A B

= (¢ ») (v 1) (¢ o) 12)
Let ¥(X) = (A~ A)~!B, and let H()A) = C¥(A)+ D. Notice that AU(\)+B =
—A¥(A). Thus by multiplying (12) by [ T ] from the right and its adjoint

1
from the left the following equality is obtained

H*(NHA) + T (MNA;T(N) = [T+ Lit1 TN Gi[l + Liy1 ¥ (V)] (13)

Now by Lemma 4 the left invertability of (A, B, C, D) implies that rank H () =
m for some A, which by (13) and A; > 0 implies that &; > 0. Thus it is proven
that the sequence of L; is well defined and A; is stable for all ¢ > 0.

It will now be shown that the sequence S; converges to some limit S. Further
manipulations show that the following Lyapunov-equation holds

Si— Siv1 = AL (Si = Sig1)Aig1 + A (14)

Since A;41 is stable and since A; > 0 it follows that S; —S;41 > 0. Thus it holds
that 0 < S;41 < S;, which implies that S; — 5 > 0. The equation (9) implies
that G; = G = DT D+BT SB, and there exists L such that GL = DTC+BTSA,

since
[A B]T[S 0][A B]>0
¢ D 0 I ¢ D)=
Further A7, (S; — Siy1)Ai41 — 0 and A; — 0, since both matrices are positive

semidefinite. Thus it is proven that the limit S solves the DARE. Similarly to
(13) it also holds that

H O HN) = [+ LYW G + L¥(N)] (15)
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Now by Lemma 4 the left invertability of (A, B, C, D) implies that G > 0, and
hence L is a unique solution. The sequence L; therefore converges to L, and
since the eigenvalues of A; are inside the unit circle, it follows that in the limit
the eigenvalues of A. = A — BL are inside or on the unit circle.

Now the right-hand side of (15) looses rank on the unit circle when A is a
closed loop eigenvalue on the unit circle, since G > 0 and

(75 ) = (N T D) 6

Similarly the left-hand side looses rank on the unit circle when P()) does, since

o= (7 i) (6 7T)

It can here be assumed that A is stable, since an initial stabilizing feedback

I 0 .
Ly I ] from the right

and its transpose from the left. It is thus proven that L is stabilizing if and
only if rankjy=1 P(A) = n 4+ m. To show the uniqueness of S consider two
solutions S7 and S, with corresponding closed loop matrices A; = A— BL; and
Ag = A — BL,. Then it holds that

Lo just corresponds to multiplying the DARE by [

AT (S — S2)A1 =851 — Sq

Let Ty = [Tho, T14] and T1 = [Tyo, T2+] be spectrum-splitting transformations
with

ATy = T diag(Jio, J14)
ATy = T, diag(Jzo, J24)

where J;4 and Joy are the blocks with eigenvalues inside the unit circle. It then
holds that for & — oo

(S1—S)Thy = (A7)*(S1 = S2) T4ty = 0
TL (S — S2) = (JE)FTE(S1 — Sa) A% = 0

Furthermore Sle =0 and SQTZ() =0 by Lemma 3, SO Sl = Sz.
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