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Figure 1 Illustration of area contraction in the proof of Lemma 1.

Lemmas 1 and 2 stated in Johansson et al. (1997) (and below) are proved
in this report. These proofs complete the proof of Theorem 2 in Johansson
et al. (1997) on trajectory convergence for relay feedback systems. Recall
the paper for notations.

LEMMA 1
Assume A is stable and CB = 0. Then, g is area contractive in every
invariant compact subset of

U:={xeS,: BTAx < 0}

Proof: Consider the switch plane intersection x in a compact invariant
set X c U and denote the surrounding ball

Be(x):={ze€eX:|z-x| < €}

Let ®_(¢, B) be the set B after time ¢ following the dynamics x = Ax — B.
The trajectories intersecting B, (x) pass through a hyperplane No(x) :=
{z :vT(z — x) = 0}. In particular, define

H_(x, B (%)) := {Nar-p(x) N P_(t, Be(x)),t € R},

see Figure 1. The notation {-}, means that the set should be restricted to
the connected component including x. Hence, € small implies that ¢ in the
set above belongs to a small interval around zero. Introduce the projection
matrix P, := I —vvT /(vTv). Then,

A(H-(x, B¢ (x))) = A(Pax-BBe(x)) (1 + O(¢))
Furthermore,

Ay = A(Pas_pBs (%)) = A(Be(x)) cos 6(x)

A(PpysBe(x)) = A(Be(x)) cos ax(x) (1)

and
cos6(x) |Ax + B|

cosa(x)  |Ax — B
where 6(x) is the angle of refraction and «(x) the angle of incidence for

a trajectory passing through S, at x. Then, cos 8(x)/cosea(x) < 1 for all
x € U since

cos?0(x) xTATAx + BTB + 2BT Ax

= 1
cosZa(x)  xTATAx + BTB —2BTAx




Introduce
Ay 1= A(P_(h(x), H-(x,Be(x))))  As:= A(H-(-8(x), ~8(B:(x))))

and let ¢ be the angle between the surfaces defined by Az and A3 as
in Figure 1, so that Ay > Agcos¢(x) = A3(l + O(¢g)). Then, for € > 0
sufficiently small
Ay = A(H_(x, B (x))) deteA*®) < A(H_(x, Bc(x)))
= A(Pax-BBe(x))(1 + O(£))

where | detexp(Ah(x))| < 1 since A is a Hurwitz matrix. Hence,

A(Pag(x)+BE(Be(x))) = A(Pa(-g(x))-B(—8(Be(%)))) = A3(1 + O(¢))

< AP arpBe(x)) (1 + O(E)) )

Since X is an invariant compact subset of U, there exists ¥ € (0,1) such
that cos 8(x)/ cosa(x) < « for all x € X. Hence, from (1) and (2) we have
that there exists p € (0,1) independent of x and &, > 0 depending on x so
that

A(Pag(x)+BE (Be(x))) < pA(Pax+pBe(x)), forallx eX,e < &
For £ mappings thus
A(g*(Be())) cos 8(g*(x)) = A(Ppgh(z)+ 58" (Be(x))) < P*A(ParsBBe (%))
which gives that there exists ¢ > 0 such that

A(g"(B: (%)) < ep*

The proof is completed by noting that it is possible to select a finite number
of these discs B; to cover any compact set. g

The following three lemmas are used in the proof of Lemma 1. It is assumed
that A, B, C satisfy

K

GG+ e a)y 7% A0

C(sI-A)'B =

and without restriction A = — diag{41, A2, A3}. We use the notation ¢_(¢, x)
for the trajectory of x = Ax — B at time ¢ starting in x at time ¢ = 0.

LEMMA 3
BTAg(x) <0, forallx e,

Proof: We show that for all ¢ > 0,

¢_(t,x0) £ {x:Cx > 0,CAPx < 0,BTAPx < 0} =: W
where the projection matrix P := Por = I = CTC/(CCT). The set W is
hence an IR? cone in IR, Notice that {x € §: BTAx < 0,CAx < O} is a
subset of 7. Cauchy-Schwartz’ inequality on CT and ACT gives

ccT.cA%cT > (cACT)?



and on (—A)Y2CT and (—A)~Y2CT gives
CACT.cA1CT > (ccT)?

Thus, CAPACT > 0 and CAPA1CT < 0. There exist 7;,0; € R, i =
1,2, 3, such that

CAPA = 7,C + 13CAP + 73BT AP (3)
BTAPA = 0,C + 02CAP + 63BTAP (4)

hold and 73,01 > 0 and 73,02 < 0. This follows from multiplying (3) from
right by CT and B and (4) by CT and A~1C7T:

0 < CAPACT = 7,cCT

0 < CA%B = 73BTAB

0 < CA%B = g1CCT

0 = 01CA™1CT + 6,CAPAICT

The existence of 7; implies that for all x,

Cx >0
CAPx =0 = CAPx > CAPAx >0
BTAPx <0

and the existence of o; implies that for all x,

Cx>0
CAPx <0 = BTAPx > BTAPAx >0
BTAPx =0

It thus holds that no trajectories enter W through neither the hyperplane
{x: CAPx = 0} nor {x: BTAPx = 0}. O

The following lemma follows from Anosov (1959) and is stated without
proof. Notice that for states close to the origin, {A, B, C} is approximately
equal to a triple integrator. In Section 5 in Johansson et al (1997), it
was shown that the origin is unstable for a triple integrator under relay
feedback.

LEMMA 4

There exists € > 0 such that if |x| < £ with x € §,, then |g(x)| > €. d
Next, we prove that there exist no arbitrarily fast relay switches in the
region {x € S, : BTAx < 0, |x| > €}.

LEMMA 5
There exists § > 0 such that

CAg?%(x) >6, forallx e,



Proof: Consider a point gy € S such that CAgy = 0 and CA%gy > 0,
and thus BTAgg < 0. Then, for —gg it holds that

2
Co-(t.~g0) = —5 CA%0 + O(¢)

so that C¢_(—tg,—go) < O for ¢y > 0 sufficiently small. For a fixed such
to, we have C¢_(—to,~g(2)) < 0 and h(z) < ?o for z € S, with |g(z) — go|
sufficiently small. Hence, h(z) = 0 and BTAz » -BTAgy > 0 as |g(2) -
go| = 0. In particular, there is a disc D c § around go such that BTAz >0
if g(z) € D. Moreover, for all € > 0 and R > ¢, it is possible to cover the
line
{x €S:CAx =0,BTAx < 0,¢ < |x| < R}

with a finite number of such discs Dy, & = 1,...,N. From Lemma 4 we
know that there exists £ > 0 so that |g(x)| > &. Now assume that there
exists a k such that g%(x) € D;. Then, BTAg(x) > 0. Lemma 3 says,
however, that this cannot be true. We have a contradiction and the proof
is complete. a

The proof of Lemma 2 now follows.

LEMMA 2
For A,B,C as in

K
—_ -1 —
C(sI-A)™B (s+/11)(s+/12)(s+2,3)’ K>0 A3>A2>211>0
)
there exist £, R > 0 such that
gh(x) e{x S, :BTAx < 0,CAx > ¢,|x| <R} =: V (6)

for all x € S, and & > 2.

Proof: The existence of R follows from that A is stable. The existence of
€ is an immediate consequence of Lemmas 3 and 5. O
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