

A Convergence Proof for Relay Feedback Systems

Johansson, Karl Henrik; Rantzer, Anders

1997

Document Version: Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA): Johansson, K. H., & Rantzer, A. (1997). *A Convergence Proof for Relay Feedback Systems*. (Technical Reports TFRT-7555). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors: 2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

ISSN 0280-5316 ISRN LUTFD2/TFRT--7555--SE

A Convergence Proof for Relay Feedback Systems

Karl Henrik Johansson Anders Rantzer

Department of Automatic Control Lund Institute of Technology January 1997

Department of Automatic Control Lund Institute of Technology Box 118 S-221 00 Lund Sweden		Document name INTERNAL REPORT	
		Date of issue January 1997	
		Document Number ISRN LUTFD2/TFRT75	555SE
Author(s) Karl Henrik Johansson and Anders Rantzer		Supervisor	
		Sponsoring organisation Swedish Research Council under contract 95-759	for Engineering Science
Title and subtitle A convergence proof for relay feedback systems			
Abstract			
Lemmas 1 and 2 in Johansson et al. (1997) are proved.			
Key words Nonlinear control systems, Relay feedback			
Classification system and/or index terms (if any)			
Supplementary bibliographical information			
ISSN and key title USBN 0280-5316			ISBN
Language	Number of pages	Recipient's notes	
English Security classification	4		

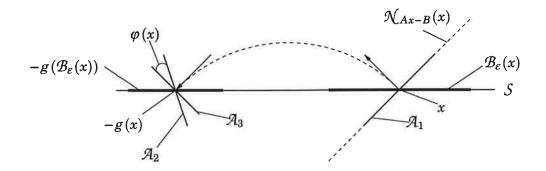


Figure 1 Illustration of area contraction in the proof of Lemma 1.

Lemmas 1 and 2 stated in Johansson *et al.* (1997) (and below) are proved in this report. These proofs complete the proof of Theorem 2 in Johansson *et al.* (1997) on trajectory convergence for relay feedback systems. Recall the paper for notations.

LEMMA 1

Assume A is stable and CB = 0. Then, g is area contractive in every invariant compact subset of

$$\mathcal{U} := \{ x \in \mathcal{S}_+ : B^T A x \le 0 \}$$

Proof: Consider the switch plane intersection x in a compact invariant set $X \subset U$ and denote the surrounding ball

$$\mathcal{B}_{\varepsilon}(x) := \{ z \in \mathcal{X} : |z - x| \le \varepsilon \}$$

Let $\Phi_{-}(t,\mathcal{B})$ be the set \mathcal{B} after time t following the dynamics $\dot{x} = Ax - B$. The trajectories intersecting $\mathcal{B}_{\varepsilon}(x)$ pass through a hyperplane $\mathcal{N}_{v}(x) := \{z : v^{T}(z-x) = 0\}$. In particular, define

$$H_{-}(x, \mathcal{B}_{\varepsilon}(x)) := \{ \mathcal{N}_{Ax-B}(x) \cap \Phi_{-}(t, \mathcal{B}_{\varepsilon}(x)), t \in \mathbb{R} \}_{x}$$

see Figure 1. The notation $\{\cdot\}_x$ means that the set should be restricted to the connected component including x. Hence, ε small implies that t in the set above belongs to a small interval around zero. Introduce the projection matrix $P_v := I - vv^T/(v^Tv)$. Then,

$$\mathcal{A}(H_{-}(x,\mathcal{B}_{\varepsilon}(x))) = \mathcal{A}(P_{Ax-B}\mathcal{B}_{\varepsilon}(x))(1+O(\varepsilon))$$

Furthermore,

$$\mathcal{A}_{1} := \mathcal{A}(P_{Ax-B}\mathcal{B}_{\varepsilon}(x)) = \mathcal{A}(\mathcal{B}_{\varepsilon}(x))\cos\theta(x)$$

$$\mathcal{A}(P_{Ax+B}\mathcal{B}_{\varepsilon}(x)) = \mathcal{A}(\mathcal{B}_{\varepsilon}(x))\cos\alpha(x)$$
(1)

and

$$\frac{\cos\theta(x)}{\cos\alpha(x)} = \frac{|Ax + B|}{|Ax - B|}$$

where $\theta(x)$ is the angle of refraction and $\alpha(x)$ the angle of incidence for a trajectory passing through S_+ at x. Then, $\cos \theta(x)/\cos \alpha(x) < 1$ for all $x \in \mathcal{U}$ since

$$\frac{\cos^{2}\theta(x)}{\cos^{2}\alpha(x)} = \frac{x^{T}A^{T}Ax + B^{T}B + 2B^{T}Ax}{x^{T}A^{T}Ax + B^{T}B - 2B^{T}Ax} < 1$$

Introduce

$$\mathcal{A}_2 := \mathcal{A}(\Phi_-(h(x), H_-(x, \mathcal{B}_{\varepsilon}(x)))) \qquad \mathcal{A}_3 := \mathcal{A}(H_-(-g(x), -g(\mathcal{B}_{\varepsilon}(x))))$$

and let φ be the angle between the surfaces defined by \mathcal{A}_2 and \mathcal{A}_3 as in Figure 1, so that $\mathcal{A}_2 \geq \mathcal{A}_2 \cos \varphi(x) = \mathcal{A}_3(1 + O(\varepsilon))$. Then, for $\varepsilon > 0$ sufficiently small

$$\begin{split} \mathcal{A}_2 &= \mathcal{A}(H_-(x,\mathcal{B}_{\varepsilon}(x))) \det e^{Ah(x)} \leq \mathcal{A}(H_-(x,\mathcal{B}_{\varepsilon}(x))) \\ &= \mathcal{A}(P_{Ax-B}\mathcal{B}_{\varepsilon}(x))(1+O(\varepsilon)) \end{split}$$

where $|\det \exp(Ah(x))| < 1$ since A is a Hurwitz matrix. Hence,

$$\mathcal{A}(P_{Ag(x)+B}g(\mathcal{B}_{\varepsilon}(x))) = \mathcal{A}(P_{A(-g(x))-B}(-g(\mathcal{B}_{\varepsilon}(x)))) = \mathcal{A}_{3}(1+O(\varepsilon))$$

$$\leq \mathcal{A}(P_{Ax-B}\mathcal{B}_{\varepsilon}(x))(1+O(\varepsilon))$$
(2)

Since X is an invariant compact subset of \mathcal{U} , there exists $\kappa \in (0,1)$ such that $\cos \theta(x)/\cos \alpha(x) < \kappa$ for all $x \in \mathcal{X}$. Hence, from (1) and (2) we have that there exists $\bar{\rho} \in (0,1)$ independent of x and $\varepsilon_x > 0$ depending on x so that

$$\mathcal{A}(P_{Ag(x)+B}g(\mathcal{B}_{\varepsilon}(x))) \leq \bar{\rho}\mathcal{A}(P_{Ax+B}\mathcal{B}_{\varepsilon}(x)), \text{ for all } x \in \mathcal{X}, \varepsilon < \varepsilon_x$$

For k mappings thus

$$\mathcal{A}(g^k(\mathcal{B}_{\varepsilon}(x)))\cos\theta(g^k(x)) = \mathcal{A}(P_{Ag^k(x)+B}g^k(\mathcal{B}_{\varepsilon}(x))) \leq \bar{\rho}^k \mathcal{A}(P_{Ax+B}\mathcal{B}_{\varepsilon}(x))$$

which gives that there exists $\bar{c} > 0$ such that

$$\mathcal{A}(g^k(\mathcal{B}_{\varepsilon}(x))) \leq \bar{c}\bar{\rho}^k$$

The proof is completed by noting that it is possible to select a finite number of these discs $\mathcal{B}_{\varepsilon}$ to cover any compact set.

The following three lemmas are used in the proof of Lemma 1. It is assumed that A, B, C satisfy

$$C(sI-A)^{-1}B = \frac{K}{(s+\lambda_1)(s+\lambda_2)(s+\lambda_3)}, \qquad K > 0, \quad \lambda_3 > \lambda_2 > \lambda_1 > 0$$

and without restriction $A = -\operatorname{diag}\{\lambda_1, \lambda_2, \lambda_3\}$. We use the notation $\phi_-(t, x)$ for the trajectory of $\dot{x} = Ax - B$ at time t starting in x at time t = 0.

LEMMA 3

$$B^T Ag(x) < 0$$
, for all $x \in S_+$

Proof: We show that for all t > 0,

$$\phi_{-}(t,x_0) \not\in \left\{x: Cx > 0, CAPx < 0, B^TAPx < 0\right\} =: \mathcal{W}$$

where the projection matrix $P:=P_{C^T}=I-C^TC/(CC^T)$. The set \mathcal{W} is hence an \mathbb{R}^2 cone in \mathbb{R}^3 . Notice that $\{x\in\mathcal{S}:B^TAx<0,CAx<0\}$ is a subset of \mathcal{W} . Cauchy-Schwartz' inequality on C^T and AC^T gives

$$CC^T \cdot CA^2C^T > (CAC^T)^2$$

and on $(-A)^{1/2}C^T$ and $(-A)^{-1/2}C^T$ gives

$$CAC^T \cdot CA^{-1}C^T > (CC^T)^2$$

Thus, $CAPAC^T>0$ and $CAPA^{-1}C^T<0$. There exist $\tau_i,\sigma_i\in\mathbb{R},\ i=1,2,3,$ such that

$$CAPA = \tau_1 C + \tau_2 CAP + \tau_3 B^T AP \tag{3}$$

$$B^T A P A = \sigma_1 C + \sigma_2 C A P + \sigma_3 B^T A P \tag{4}$$

hold and $\tau_1, \sigma_1 > 0$ and $\tau_3, \sigma_2 < 0$. This follows from multiplying (3) from right by C^T and B and (4) by C^T and $A^{-1}C^T$:

$$0 < CAPAC^{T} = \tau_{1}CC^{T}$$

$$0 < CA^{2}B = \tau_{3}B^{T}AB$$

$$0 < CA^{2}B = \sigma_{1}CC^{T}$$

$$0 = \sigma_{1}CA^{-1}C^{T} + \sigma_{2}CAPA^{-1}C^{T}$$

The existence of τ_i implies that for all x,

$$\begin{cases} Cx > 0 \\ CAPx = 0 \Rightarrow CAP\dot{x} \ge CAPAx > 0 \\ B^{T}APx < 0 \end{cases}$$

and the existence of σ_i implies that for all x,

$$\begin{cases} Cx > 0 \\ CAPx < 0 \Rightarrow B^{T}AP\dot{x} > B^{T}APAx > 0 \\ B^{T}APx = 0 \end{cases}$$

It thus holds that no trajectories enter W through neither the hyperplane $\{x: CAPx = 0\}$ nor $\{x: B^TAPx = 0\}$.

The following lemma follows from Anosov (1959) and is stated without proof. Notice that for states close to the origin, $\{A, B, C\}$ is approximately equal to a triple integrator. In Section 5 in Johansson *et al.* (1997), it was shown that the origin is unstable for a triple integrator under relay feedback.

LEMMA 4

There exists $\varepsilon > 0$ such that if $|x| < \varepsilon$ with $x \in S_+$, then $|g(x)| > \varepsilon$.

Next, we prove that there exist no arbitrarily fast relay switches in the region $\{x \in \mathcal{S}_+ : B^T Ax < 0, |x| > \varepsilon\}$.

LEMMA 5

There exists $\delta > 0$ such that

$$CAg^2(x) > \delta$$
, for all $x \in S_+$

Proof: Consider a point $g_0 \in \mathcal{S}$ such that $CAg_0 = 0$ and $CA^2g_0 > 0$, and thus $B^TAg_0 < 0$. Then, for $-g_0$ it holds that

$$C\phi_{-}(t,-g_0) = -\frac{t^2}{2}CA^2g_0 + O(t^3)$$

so that $C\phi_{-}(-t_0,-g_0)<0$ for $t_0>0$ sufficiently small. For a fixed such t_0 , we have $C\phi_{-}(-t_0,-g(z))<0$ and $h(z)< t_0$ for $z\in \mathcal{S}_+$ with $|g(z)-g_0|$ sufficiently small. Hence, $h(z)\to 0$ and $B^TAz\to -B^TAg_0>0$ as $|g(z)-g_0|\to 0$. In particular, there is a disc $\mathcal{D}\subset\mathcal{S}$ around g_0 such that $B^TAz>0$ if $g(z)\in\mathcal{D}$. Moreover, for all $\varepsilon>0$ and $R>\varepsilon$, it is possible to cover the line

$$\{x \in \mathcal{S} : CAx = 0, B^TAx < 0, \varepsilon \le |x| \le R\}$$

with a finite number of such discs \mathcal{D}_k , $k=1,\ldots,N$. From Lemma 4 we know that there exists $\varepsilon>0$ so that $|g(x)|>\varepsilon$. Now assume that there exists a k such that $g^2(x)\in\mathcal{D}_k$. Then, $B^TAg(x)>0$. Lemma 3 says, however, that this cannot be true. We have a contradiction and the proof is complete.

The proof of Lemma 2 now follows.

LEMMA 2 For A, B, C as in

$$C(sI - A)^{-1}B = \frac{K}{(s + \lambda_1)(s + \lambda_2)(s + \lambda_3)}, \qquad K > 0, \quad \lambda_3 > \lambda_2 > \lambda_1 > 0$$
 (5)

there exist $\varepsilon, R > 0$ such that

$$g^{k}(x) \in \{x \in \mathcal{S}_{+} : B^{T}Ax \le 0, CAx > \varepsilon, |x| \le R\} =: \mathcal{V}$$
 (6)

for all $x \in S_+$ and $k \ge 2$.

Proof: The existence of R follows from that A is stable. The existence of ε is an immediate consequence of Lemmas 3 and 5.

Anosov, D. V. (1959): "Stability of the equilibrium positions in relay systems." Automation and Remote Control, 20, pp. 135-149.

JOHANSSON, K. H., A. RANTZER, and K. J. ÅSTRÖM. (1997): "Analysis of relay feedback systems." Submitted for publication.

