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1. Introduction

Autonomy in process control systems is increasing in importance as a result
of growing complexity of industrial systems [Antsaklis et al., 1991; Astrom,
1991]. The configuration of the controllers is an important factor, although
today it is often not considered as a crucial variable when process de-
signs are updated. Control structures in industry have traditionally evolved
through years of experience. Rapid development of sensor and computer
technology has, however, given new possibilities to make major structural
changes in many process designs. This has led to an increasing need for au-
tomatic or semi-automatic control structure design tools. Finding a suitable
structure or choosing between different structures are in general difficult
problems. Even though these type of problems can be regarded as multi-
variable control problems, little of the activity in multivariable control the
last three decades has been devoted to these problems, see discussions in
[Shinskey, 1981; Skogestad and Postlethwaite, 1996].

The main contribution of this report is an algorithm for control struc-
ture design. The algorithm consists of a sequence of experiments that lead
to a structural model of the plant, which automatically suggests a control
configuration. No prior information about the process is needed. The par-
ticular setup is discussed when a SISO control loop is given and a number
of extra measurements are available. It is shown that a graph is a natu-
ral model for such a system. The graph tells the role each measurement
should play in the controller. The problem statement includes many in-
teresting industrial cases. Some of them are discussed as examples in the
report and it is shown that in these cases the algorithm leads to the same
control structure as the ones used in practice. Graph theory is used in var-
ious areas in control engineering. Directed graphs have, for example, been
used in the study of large scale systems and decentralized control problems
since the early seventies [Reinschke, 1988; éiljak, 1991]. The modeling we
study here is also related to qualitative reasoning [Bobrow, 1985; Kuipers,
1985], as we are not primarily concerned about detailed dynamical models
but more qualitative properties such as causality. Supervision of process
control systems is an example of an area where causal reasoning has been
investigated [Montmain and Gentil, 1999].

The outline of the report is as follows. The definition of a process graph
is given in Section 2 together with some other preliminaries. Section 3
presents an algorithm for identifying a process graph from some simple
step experiments. Control structure design is discussed in Section 4, where
a number of design rules based on the process graph are given. Section 5
lists some common industrial control configurations and how these are de-
tected by the algorithm in this report. Process graph modeling is closely
related to Kalman decomposition. This relation is formalized in Section 6.
Some extensions and future work are discussed in Section 7 and the con-
clusions are given in Section 8. Pseudo-code for the algorithms in Section 3
is given in an appendix.
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Figure 1 Water tank system with measured signals yi,...,%s and one control

signal u,. The objective is to control y.

2. Process Graph

Consider a multivariable control system with control signals uy,...,um,
measured signals yi,...,¥p, and reference signals ri,...,7q. Each refer-
ence signal r;, is associated to a measured signal y;. It holds that p > ¢
and the interesting case here is when there is strict inequality. The con-
trol objective is loosely defined as to keep yj as close to r, as possible
regardless of external disturbances, changing operating conditions, cross-
couplings, unmodeled dynamics etc. We are interested in how to choose a
good control configuration to solve this problem, but we will not discuss
particular choices of control parameters.

It is illustrative for our purposes to model the process as a directed
graph, where each node represents a measured signal and each edge a
dynamical connection.

DEFINITION 1—PROCESS GRAPH

A process graph G is a directed graph G = (V, E, W), where the sets V =
{ui...,um,¥1,...,¥p} and E C V x V are nodes and edges, respectively,
and the map W : E — D associates an input—output map to each edge. [

For example, for a process graph representing a linear time invariant sys-
tem, W maps each edge to a finite-dimensional transfer function. If each
edge represents a time delay, we have instead D = {exp(—sL): L > 0}.

EXAMPLE 1—WATER TANK SYSTEM

Consider the water tank system in Figure 1, which consists of five tanks
and a pump. The control objective is to keep the level y; close to the set-
point ry. The control signal u; is the input to the pump. The measurements
¥9,...,¥s are levels, while yg is a flow. If we neglect the dynamics in the
pump, time delays in pipes etc., and only consider the dynamics resulting
from Bernoulli’s equation, then the linearized dynamics between the pair of
signals corresponding to the connected tanks can be represented by first-
order transfer functions. The process graph for this model is shown in
Figure 2, where the weighting W is suppressed. O
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Figure 2 Process graph that represents the tank system in Figure 1.

Introduce succ(-) and pre(-), which map subsets of V' to subsets of V, as

succ(U):={veV: (wv) € E,we U}
pre(U):={veV: (vyw) e E,we U}

They hence denote the successors and the predecessors, respectively, for a
set of nodes. Define succk() iteratively as succ®(U) = U and succk(U) =
succ(succ*~Y(U)) for £ > 1. The map pre®(.) is defined similarly. To em-
phasize the underlying graph G, we sometimes use a subscript as in succg
and preg.

A path in a process graph is a sequence {v;}* ;, v; € V and k > 1,
such that v; € succ(v;_1) for all i = 2,...,k. A process graph has a cycle, if
there exists v € V and k& > 1 such that v € succk(v). It is acyclic if there
is no cycle. A process graph has a parallel path, if there exists two non-
identical sequences {v;}%., and {w;}_;, k,£> 1, such that v; € succ(v;_1),
w; € succ(w;_1), v1 = wy, and v, = wy. A node w is reachable from v if
there exists a path from v to w. Otherwise, the node is unreachable.

Throughout this report we focus on the case with a single scalar control
loop with a few extra measurements, i.e., m = ¢ = 1 and p > 1. Then,
V = {u1,51,...,¥p}. We assume that y; is reachable from ©;. Decompose
V \ {u1, y1} into four disjoint sets

V= {uL yl} UV, UV, UV, UV,
where

V. :={v € V : v is reachable from uy, y; is reachable from v}
Ve = {v € V : v is reachable from u,, y; is unreachable from v}
Vur == {v € V : v is unreachable from u1, y; is reachable from v}

Vuu := {v € V : v is unreachable from u1, y1 is unreachable from v}.

Breaking up V like this is related to Kalman decomposition, as we will see
in Section 6.

EXAMPLE 1-—WATER TANK SYSTEM (CONT’D)

The process graph for the water tank system in Figure 2 has the paths
{u1,y4}, {u1,y2, 51}, and {ye,¥3,y1}. It has hence no cycles or parallel
paths. For example, the pairs y1, y2, and y4 are reachable from u;, while
¥5 is unreachable. The reachability structure is given by V,, = {y2}, V,yy =
{y4}, Vir = {3, 56}, and V., = {y5}. a



3. Process Graph Identification

In this section an algorithm is derived to identify a process graph through
a number of experiments. The obtained process graph is then used in the
next section to derive a control structure. We limit the class of considered
processes in order to give a transparent presentation. The process graph
identification will in general not give full information about the system, in
the sense that the true process graph is obtained. However, the intention
is that after a number of experiments, the graph should be sufficiently
accurate to suggest a suitable control structure.
The following assumptions are made:

Al V = {u].:yl’- -'7yp};
A2 D = {exp(—sL): L > 0}; and
A3 G is acyclic and has no parallel paths.

Hence, we consider process graphs with (Al) one control signal, (A2) dy-
namics given by time delays, and (A3) with no cycles or parallel paths.
Relaxations of these assumptions are discussed in Section 7, but already
here we point out that the dynamical restriction is not severe. It only em-
phasizes that the control structure algorithm relies on causality, and not
really on any true dynamical properties of the plant. The time delay of a
response can be interpreted as the settling time for a system with more
general dynamics. The considered types of plants have up to tens of mea-
surements. The described structuring may not be applicable for large scale
systems due to combinatorial reasons.

Transient response experiments are performed in order to obtain the
process graph of the system. In the report we consider step experiments,
but other excitation signals, such as pulses and sinusoids, may be prefer-
able in some cases. The experiments are done in open loop. We define a
v experiment as a step change in v € V, such that all w € pre(v) are un-
affected. The step is assumed to be induced by an actuator not modeled
by the process graph. It is hence assumed that each measurement can be
perturbed by an external variable. The perturbation may, for instance, be
caused by manually opening and closing a valve. For the tank system in
Figure 1, a yo experiment may be done by externally adding some water
to Tank 2.

The process graph identification is divided into three algorithms. The
initial information about the process graph G is assumed to be Gy =
(V, Ey,-) with Ey = {(u1,y1)}. Hence, we only know the set of measure-
ments and that there is a dynamic connection between u; and yy. The
result of Algorithm i is given by the process graph G;. The response times
T,(k) € Rt U {oo} from a step experiment in v € V are collected in the
set T, = {T,(k)},_;. The notation T, (w) is sometimes also used for the
response time of w € V.,

The algorithms are presented in pseudo-code in Appendix. Here we il-
lustrate them through flow charts. For simplicity, the flow charts do not
describe how the weighting W is obtained from the response time measure-
ments T},. Algorithm 1 consists of a u; experiment, i.e., an open-loop step
response in the control signal. Algorithm 2 consists of y;, € V,, UV, ex-
periments, i.e., step experiments in all signals corresponding to the nodes
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Figure 3 Flow chart illustrating Algorithm 1.

in V,, UV,,, obtained from Algorithm 1. Algorithm 3 finally consists of
yi € Vypr UV, experiments.

Algorithm 1 is illustrated by the simple flow chart in Figure 3. The
algorithm connects each node that has a finite response time to a single
path originating in u;. The algorithm leads to the process graph Gi =
(V, Eq, W) with Ey = {(succk._l(ul), succk(ul)) }Zzl for somen € {2,...,p}.
It holds that y; = succt(u;) for some £ € {2,...,p}.

Algorithm 2 splits the graph consisting of a single path obtained from
Algorithm 1 into a tree. As is shown in Figure 4, the algorithm has a loop,
which steps through each node in the path and performs experiments. If
y1 is not affected by the experiment, the node is removed from the path
between u1 and y1. The result Gy of Algorithm 2 is a tree with root u;. All
nodes in the connected part of G are reachable from u1, but y; may only
be reachable from some of them.

Algorithm 3 connects V,, to V,. U V,, and results in the final estimate
Gs of the true process graph G. The flow chart in Figure 5 presents the
algorithm. The notation C is used for the connected component of the graph
and U C V,,.UV,, for the remaining nodes. If a v € U experiment results
in a response in y1, then the resulting graph with a single path from v to
y1 is sorted and hooked on to the existing graph. Otherwise v belongs to
Vuu and should not be connected.

We illustrate Algorithms 1-3 on the water tank system. The weightings
are not given in order to simplify the presentation.

EXAMPLE 1—WATER TANK SYSTEM (CONT’D)

Consider the water tank system again and assume that the only informa-
tion available is given by the graph Gy, which is shown as the top left
process graph in Figure 6. Algorithm 1 gives the process graph G in the
top right graph in the figure, under the assumption that the response in y4
is faster than the response in yg. Note that G is not a subgraph of the true
graph G in Figure 2. Based on G4, Algorithm 2 suggests a y4 experiment
followed by a yo experiment. The step perturbation in y4 gives the process
graph in the bottom left diagram in Figure 6. The yy experiment does not
change the configuration. Algorithm 3 suggests experiments in ys, y5, and
v6. The bottom right graph shows the result after the first two experiments
and Figure 7 shows the final result G3. Note that in this particular exam-
ple, the algorithms converged to the true process graph. O
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Figure 4 Flow chart illustrating Algorithm 2.

The main contribution of Algorithms 1-3 is to partition V into the subsets
Virs Viu, Vur, and V. The uy experiment in Algorithm 1 gives the nodes
that belong to V,,UV,,. From this experiment it is, however, in general not
possible to decide if y; is reachable or not from the nodes in V,,. UV,,. This
is done by the y; € V,,.UV,, experiments in Algorithm 2. All measurements
in V,,.UV,, are perturbed and it is thus simple to separate the nodes in V,,
from the nodes in V,.. The nodes that were not reachable from u; belong to
V,rUVy, and are perturbed in Algorithm 3. The y; € V,,.UV,, experiments
tell if y; is reachable from these nodes or not, i.e., if a particular node
belongs to V. or V,,. Note that the process graph resulting from the
algorithms in general differs from G. However, the decompositions of G3
and G into sets V., V,y, Vy., and V,, are identical. In the next section we
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Figure 5 Flow chart illustrating Algorithm 3.

will see that the decomposition is crucial for the control structure design.

4. Control Structure Design

From the process graph it is possible to draw conclusions about a suitable
control configuration. We discuss next how feedforward and cascade control
structures can be found in the process graph.

The process graph in Figure 8 is a feedforward prototype. Here V,, =
{y2} and V,, = V,, = V,,, = &. The measured variable yy affects the
controlled variable y;. The signal y; may be a measurable disturbance or
a variable that is related to a disturbance. The feedforward of the signal



®
®
®
®

:

U1

D

Figure 6 Process graph identification for the water tank system. The top left
graph is the initial graph Gg. The top right is G; resulting from Algorithm 1,
under the assumption that the response in y, is faster than the response in y,.
The bottom left graph is G, after Algorithm 2, which included experiments in y4
and y,. The process graph for the tank system after y3 and y; experiments is
bottom right. The final process graph G3 is shown in Figure 7.
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Figure 7 The process graph Gy for the tank system after the final experiment,
which is a ys experiment. In this example, the proposed algorithms give a process
graph Gy that is equal to the true graph G.
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may improve the attenuation of this particular disturbance in the control
loop. A closed-loop system with feedforward is illustrated in Figure 8. The
block C; represents the SISO feedback controller, while the feedforward
filter is denoted Cs.

A process graph prototype for cascade control is shown in Figure 9. Here
Vi = {y2} and V,,, = V,,, = V,, = &. In this case the measured signal ys is
responding to control actions faster than y;. Therefore, it may be suitable
to introduce an inner control loop based on tight control of ys. Cascade
control improves the performance considerably if there is an unmeasurable
disturbance entering the system prior to ys and the y; response is much
slower than the y; response. A cascade control loop is shown in Figure 9.
The controller in the inner loop is denoted Cs and the controller in the outer
loop Cj. The objective is to regulate y;. In many cases in practice, Cs is a
proportional controller. If there is only one node in the path between ©1 and
y1 that is used in feedback, cascade control is the commonly used term for
the control structure. When there are two or more measurements fed back
to the controller, we simply say feedback control. This case corresponds to
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Figure 8 Prototype process graph suggesting feedforward control, together with
a feedforward control structure.
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Figure 9 Prototype process graph suggesting cascade (feedback) control, together
with a cascade control structure.

a control law based on (partial) state feedback.

By generalizing the conclusions from the previous three-node prototype
graphs, we get the following control structure design rules based on the
partition V = {u1,y1} UV, UV, UV, UV,

e Measurements in V. may be used for feedback (cascade) control;
e Measurements in V,, may be used for feedforward control; and
¢ Measurements in V,,, and V,, should not be used for control of y;.

There exist exceptions from these design rules. For example, there are
cases when a measurement in V,, is useful for feedback; for example,
a sensor may have individual states from which y; is unreachable, but
still these states reflect unmeasurable states in the process, which are
useful for control of y;. Another example when the rules should not be
strictly followed is if there are redundant measurements or measurements
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Figure 10 Existing control structure for the water tank system.

related by fast dynamics; then it might be sufficient to use only one of
them. Further practical considerations are discussed in Section 7.

EXAMPLE 1—WATER TANK SYSTEM (CONT'D)

Assume that the present control structure for the water tank problem is
as given in Figure 10. The question is if the control performance can be
enhanced by using the measurements ys, .. ., ¥6. The process graph identifi-
cation in Section 3 gave the process in Figure 7 and V,, = {y2}, Vru = {y4},
Vur = {3, ¥6}, and V, = {y5}. Following the control structure design rule,
we have that yo may be used for feedback control, while y3 and yg may be
used for feedforward control. The other measurements should be neglected.
This control structure is natural. The feedback control may be particular
useful if there are (unmodeled) disturbances entering Tank 2. If yg is the
only disturbance entering Tank 3 and if an accurate model of that tank
is available, it is sufficient to feedforward only ye¢. There are other cases
when it is preferable to feedforward ys instead. O

5. Industrial Examples

In this section we illustrate the control structure design on three control
problems that are common in process industry.

EXAMPLE 2—CONTROL OF A HEAT EXCHANGER

The top diagram in Figure 11 shows a process diagram for control of a
heat exchanger. The control objective is to control the temperature on the
secondary side (y1) using the inlet valve on the primary side (u1). There
are often two additional measurement signals available: the flow on the
primary side (y2) and the flow on the secondary side (y3). Following the
algorithms in Section 3, it is easy to see that from open-loop steps exper-
iments in w1, y2, and ys3, the resulting process graph is as given by the
middle graph in Figure 11. For example, a change in u; results in a re-
sponse in yg, but not in y3. The process graph suggests that the flow on
the primary side should be used in feedback (cascade) and the flow on the
secondary side in feedforward. The configuration is shown in the bottom

10
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Figure 11 Control of a heat exchanger. Top diagram shows the original control
loop, the middle shows the process graph, and the bottom diagram shows the mod-
ified control structure.

diagram in the figure. This is the control configuration often used in prac-
tice for control of a heat exchanger. O

ExamMpPLE 3—CONCENTRATION CONTROL

Figure 12 shows a process diagram for a concentration control loop. The
control objective is to control the concentration of the blend (y1) using
the control valve on one of the two tubes (u1). There is one additional
measurement signal, the concentration of the media in the other tube (y2).
Process graph identification gives the middle graph in the figure. A change
in u1 will not result in any response in yg, but a change in yg will result
in a response in y;. The design rules suggest that yo should be used in
a feedforward connection, as shown in Figure 12. This is, of course, the
natural configuration for this control problem. ]

EXAMPLE 4—DRUM LEVEL CONTROL
Figure 13 gives a process diagram for level control of a drum boiler. The
control objective is to control the level in the drum (y;) using the feed-water

11
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Figure 12 Concentration control. Top diagram shows the original control loop,
the middle shows the process graph, and the bottom diagram shows the modified
control structure.

valve (u1). There are two additional measurement signals, the feed-water
flow (y2) and the steam flow from the drum (y3). The process graph is
the same as for the heat exchanger problem, as illustrated by the middle
diagram in Figure 13. A change in u; results in responses in y; and yg, but
not in y3. This together with experiments in y2 and ys gives the process
graph in the figure. The control structure design rules give that the feed-
water flow yg should be used in feedback (cascade) and the steam flow ys3
should be used in feedforward, as given by the bottom diagram in Figure 13
showing one of the standard configurations for drum level control. O

6. Kalman Decomposition

Finding the process graph of a system is closely related to Kalman de-
composition. We illustrate this by considering a particular class of process
graphs. Consider a process graph G = (V,E, W) with V = {u1,y1,...,5p}
and no cycles or parallel paths. Let W{(e;) be a stable strictly proper first-
order transfer function for all e; € E. The process graph then models a
linear time-invariant system and can thus be represented in state-space

12



Figure 18 Drum level control. Top diagram shows the original control loop, the
middle shows the process graph, and the bottom diagram shows the modified con-
trol structure.

form. Consider the following Kalman decomposition of the state-space rep-
resentation

Ain 0 Az O B,

n_ Az Ags Azz Agy i Bs “
0 0 Ag 0 0 (1)
0 0 Ay Ay 0

y1=[01 0 C; O]x,

where

13



and x., represents the controllable and observable states, x5 the control-
lable but unobservable states etc. [Kailath, 1980]. Since W (e) are first-order
transfer functions, each edge can straightforwardly be associated to a state
x;, which may be either controllable or uncontrollable and either observable
or unobservable. It is easy to check the following four statements relating
the process graph to the Kalman decomposition (1):

e v € V,,. if and only if there exist edges (v,w), (w,v) € E such that
their associated states are controllable and observable;

e v € V,, if and only if there exists an edge (w,v) € E such that the
associated state is controllable and unobservable;

e v € V,, if and only if there exists an edge (v,w) € E such that the
associated state is uncontrollable and observable; and

e v € V,, if and only if there exists an edge (v,w) € E or (w,v) € E
such that the associated state is uncontrollable and unobservable, or
there exist no nodes (v,w), (w,v) € E.

It is possible to generalize the notion to incorporate other weightings W.

EXAMPLE 1—WATER TANK SYSTEM (CONT’D)

For the water tank process graph, we saw that V,. = {y2}, Viu = {y4},
Vur = {¥3, v}, and V,,, = {y5}. The state-space representation for the pro-
cess graph with first-order transfer functions as weightings can easily be
derived on the form (1), where x., = (xL,,%2,)7 corresponds to the edges

co?¥Co
(u1,y2) and (yg,y1), x5 corresponds to (u1,y4), and xz, = (xd,, 22 )T to
(v6,vs) and (y3,y1). No edge corresponds to an uncontrollable and unob-
servable state xz5.

Note that the state-space system is not equal to the one obtained by
deriving the equations for the physical system. For example, ys5 is obviously
an uncontrollable and unobservable state, but this is not revealed by the
process graph since no edge is associated to ys. This comes from that the
process graph does only model the dynamics between measurements. From
the process graph we cannot judge that the measurement ys does not come
from a static signal. O

Computational aspects are not discussed in this report. It is, however, in-
teresting to notice the relation between the structuring of the plant and
Kalman decomposition, because this relation suggests that powerful algo-
rithms from subspace identification [Van Overschee and De Moor, 1996]
could be used to obtain the process graph. Note, however, that the ap-
proach we have taken so far is to limit the computational efforts and build
a framework that is just enough in order to capture the essentials to achieve
a sufficiently good control structure.

7. Extensions

The methodology described in this report can be improved in a number of

ways. Some of these extensions are presented here and include ongoing
work.

14



Two Control Loops

The structuring problem becomes more involved as the number of con-
trolled signals increases. In this report, we assumed the set of nodes V =
{u1,¥1,...,yp} and that there is only one controlled variable y;. Ongoing
work includes extending the algorithm to two controlled variables y; and
yo and the set V = {uy,us, y1,...,¥p}. Even if there are no interaction be-
tween the control loops, the problem does not reduce to two separate design
problems. The reason for this is that the new measurements may be dy-
namically linked to both control signals. Introducing a new measurement
in one control loop may therefore give undesired interaction, although the
original control loops were not coupled. Considering two control signals
gives, however, the possibility to choose a multivariable feedback control
structure, instead of just choosing between feedforward or scalar feedback
control. The simplest extension to the method discussed in this report is
to say that if there is interaction then decoupling should be used. A de-
sign rule for choosing decoupling in the spirit of previous sections is the
following: if y1 is reachable from ug and y; is reachable from u1, then de-
coupling is suggested. Under the assumption that the decoupling is perfect,
the control structuring algorithm can be applied on the decoupled process.
Note, however, that even if there are no interaction between the decoupled
control loops #1—y; and iia—y3, there may still be interaction between the
other measurements. Hence, adding feedforward and feedback control of
these may introduce coupling between the two control loops. This coupling
must not be neglected when choosing control structure.

Cycles and Parallel Paths

Throughout the report we have assumed that the process graph has no
cycles or parallel paths. These assumptions are sometimes violated. Par-
ticularly cycles are natural in feedback systems: although the u1—y1 loop is
assumed to be open, there might be other local loops that give cycles in the
process graph. The assumptions on cycles and parallel paths can be made
less restrictive by some careful considerations. Consider, for example, the
upper process graph in Figure 14. If such a local cycle is found through
(a modified version of) the identification, a meta node ys3 should be in-
troduced. In the reasoning about the process graph, this meta node then
plays a similar role as a regular node. The interpretation is that ys and y3
cannot be used independently in the control structure. If there are more
loops involved in the cycle, all these should be replaced by a single meta
node. Note that there are several new things to be considered about meta
nodes, for example, to choose a measurement among the nodes defining
the meta node. Meta nodes can be defined also for a process graph with a
parallel path, as the one in the bottom graph in Figure 14.

Gain Scheduling

The control structure design algorithm suggests that measurements should
be used for either feedforward or feedback. Another common use of exter-
nal signals in industrial control systems is in gain scheduling, i.e., to let
controller parameters depend on a measurement. A measurement should
be used for gain scheduling if the dynamics of the process depends on it, in
contrast to feedback and feedforward signals which affect the process out-
put directly. This makes it harder to detect gain scheduling measurements.
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Figure 14 A process graph with a cycle and a process graph with a parallel

path. Meta nodes are introduced to remove the cycle and the parallel path. For
both graph the y; and y; nodes form the meta node.

Experiments that show that the process dynamics vary depending on the
measurement could be followed by marking the node as a possible gain
scheduling node. This require a modification of the definition of a process

graph.

Initial Information

No prior information about the plant dynamics is assumed for the pro-
cess graph identification. In practice, of course, some information about
the dynamical coupling in the process and about disturbances and other
uncertainties are available. This can (and should) be incorporated in the
algorithm.

Knowledge about where in the process graph non-measurable distur-
bances enter is important for choosing measurements for feedback. A gen-
eral principle for reducing the number of measurements is that if there
are no dynamics or no disturbances entering the system between two mea-
surements, then one of them can be neglected. One should try to find a
measurement as close to the disturbance as possible; either outside the
u1—y1 path and then use it for feedforward, or in the u1—y; path and after
the point where the disturbance enters and then use it for feedback.

Initial information about the process graph may come from process di-
agrams, process operator experiences, or earlier experiments. From these
data an initial process graph can be drawn and the number of experiments
in the process identification can be reduced. One special case is when there
is a single new measurement available. It is then desirable to have auto-
matic methods to find out if the signal is useful for feedforward or feedback
control.

8. Conclusions

A control structure design algorithm was presented in this report. No prior
information about the plant was required, but a process graph model was
obtained through a number of simple step experiments. Most of the pre-
sentation was focused on a SIMO process, where one output represents the
primary variable to control and the other outputs are candidates to possi-
bly be included in the control structure. The process graph illustrates the
causal relations in the process. This might be a pedagogical instrument to
present control structures for process operators.
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In the generic algorithm presented here, experiments are done for all
nodes in the graph except for the controlled process output. The algorithm
can easily be modified in order to limit the number of performed experi-
ments. Note that if experiments are done for all nodes in the process graph,
then it is better to evaluate the data altogether, instead of after each ex-
periment.

An application of the control structure algorithm is in plant monitoring,
where the ideas developed here can be used to online bring attention to
unnecessary deterioration of plant performance caused by structural prob-
lems. For example, possible reduction of disturbances through feedforward
may be found this way.

Ongoing work includes a few of the algorithm extensions discussed in
Section 7. Implementations on industrial process control systems will be
presented in future reports.
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Appendix

Algorithms 1-3, described in flow charts in Section 3, are presented in
pseudo-code next.

ALGORITHM 1
Initial data: Go = (V, Eo,-), V = {u1,¥1,-- ., ¥p}, P > 1, Eo = {(u1,51)}

E1 = Eo
W=V
Perform uy experiment
Measure Ty,
w = argmin,ew {Ty,(v)}
while T, (w) < oo do
E; = E1 U (v,w)
Wl(v’w) = Tul(w) — Ty, (U)

W:i=W\v
vi=w
w = argminyew {Ty, (v)}
end
Result: G1 = (V, El, Wl) ]
ALGORITHM 2
Initial data: Gy = (V, E1, W)
Ez = E1
W2 = W1
i=1

v := succg, (41)
while v # y; do
Perform v experiment
Measure T},
if Ty(y1) = oo then
Ep = Ey \ (v, succg, (v)) U (preg, (v), suceg, (v))
Ws(preg, (v), suecg, (v)) := Wi(preg, (v),v) + W (v, suceg, (v))

end
I:=i+ 1
v = succg, (u1)
end
Result: Gz = (V, Ez, Wz) O
ALGORITHM 3
Initial data: G = (V, Eg, Wg)
Ez = El
W2 = W1
C={veV:3weV,(vw) € E3 or (w,v) € E3}
U:=V\C

while U # & do
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Pickave U
Perform v experiment

Measure Ty,
ﬁ Tu(yl) <o thﬂ
W=V
w i= axgmingew {To())
U=U
vi=v
while 5 € U do
E; .= E3U (i?,w)
Wy = T, (w) — T, (0)
U:=U\w
W=W \w
vi=w
w := arg mingew { Ty (W)}
end
end
U:=U\v
end

Result: G = (V, E3, W3)
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