LUND UNIVERSITY

ANSI C++ Committee Meeting, July 9-13, 1990

Bruck, Dag M.

1990

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Briick, D. M. (1990). ANS/ C++ Committee Meeting, July 9-13, 1990. (Technical Reports TFRT-7459).
Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/086b12f3-51ec-4482-994b-1a038f07fbc4

CODEN: LUTFD2/(TFRT-7459)/1-17/(1990)

ANSI C++ Committee Meeting
July 9-13, 1990

Dag M. Briick

Department of Automatic Control
Lund Institute of Technology
August 1990

Department of Automatic Control
Lund Institute of Technology

P.O. Box 118

S-221 00 Lund Sweden

Document name

INTERNAL REPORT

Date of issue

August 1990

Document Number

CODEN: LUTFD2/(TFRT-7459)/1-17/(1990)

Author(s)
Dag M. Briick

Supervisor

Sponsoring organisation
ABB Automation AB
Ericsson
Televerket

Title and subtitle
ANSI C++ Committee Meeting — July 9-13, 1990

Abstract

e Examples of how resumption can be abused.

o Real-time class libraries.

This report describes some of the key issues at the July 1990 meeting of X3J16, the ANSI C+-+ comittee:
e A list of possible extension proposals; issues that are likely to be propsed during the lifetime of X3J16.

e Exception handling, in particular a discussion of termination vs. resumption semantics.

Key words
C++, Standardization, ANSI, X3J16

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

ISBN

Language Number of pages
English 17

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,

S$-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

1. Summary

The extensions group has been the most active working group of X3J16. The
proposal for templates (also called parameterized types) was accepted for in-
clusion in the standard working document at the July meeting [Ellis and
Stroustrup, 1990]. A proposal for overriding of inherited class names was
discussed, and will be voted on at the November meeting. The main issue
regarding extensions was exception handling, which is discussed separately
below.

The library working group will concentrate on a few standard libraries,
in particular strings and i/o-streams. Other libraries may be considered in
the future, possibly including coroutines. The definition of standard libraries
will of course depend strongly on key language extensions, such as, exception
handling and templates.

The international working group is also quite active. The main tasks are
to solicit international participation in X3J16, and to prepare the cooperation
with the ISO C++ committee. X3J16 plans to hold one meeting (of three)
every year outside USA, mainly as a sign of good will. Since the last meeting,
Philippe Gautron, France, has joined the committee; total number of non-
americans: 2. The main technical issue is currently national character sets
[Simonsen and Stroustrup, 1990].

Jonathan Shopiro (AT&T Bell Laboratories) has replaced Margret Quinn
as project editor. One advantage is that Shopiro has considerable experience
of real-time systems. He is also interested in teaching a C++ course at the
Department of Automatic Control in June 1991.

2. Language extensions

The following list of improvements that are likely to be proposed was written
by Bjarne Stroustrup, and submitted to the members of the extension working
group of X3J16. Reproduced with permission. [Comments by Dag Briick in
brackets.]

Here is a first draft of the list of suggested “improvements.” I mark things
“urgent” if I think a decision is needed this year and “inevitable” if I think
that C++ (or its successor) definitely will have the feature in 10 years. I
don’t make finer distinctions. Nor do I think we should start “solving” these
problems. In fact, if we did that we would most likely dilute our efforts and
distract the committee as a whole to the point where both extensions and the
standardization of the core language would be endangered. I am posting the
list as a start of classification and as a suggestion for common terminology.

Parameterized types: urgent. Suggested base for discussion: My 1988
USENIX paper [Stroustrup, 1988] + ARM [Ellis and Stroustrup, 1990]. At
the suggestion of Dmitry Lenkov, I have invited Sam Haradhvala from Object
Design Inc. to present his experiences with an implementation of that scheme
at the Seattle meeting. [Very good presentation and solid user experience.
The proposal was included in the standard working document.] Difficulty:
design almost done, implementation 3 to 6 months.

Ezception handling: urgent. Suggested base for discussion: The papers
Andy Koenig and I distributed at the NJ meeting plus the implementations
and notes distributed at that meeting plus any further EH/C++ experience

1

we can lay our hands on. I think it would be nice if we could present a definite
proposal to the Silicon Valley meeting [November 1990]. Difficulty: design
almost done, implementation 3 to 6 months. [See next section for further
discussion.]

Overriding: inevitable.

class cowboy { virtual draw(); };

class picture { virtual draw(); };

class animated_cowboy : public picture, public cowboy {
// how do I overload and call the two distinct draw()s ?

1%

Suggested base for discussion: The renaming discussion in the ARM. Diffi-
culty: design simple, implementation a week. [The general idea was discussed
and accepted. This feature will probably be included in the working docu-
ment at the next meeting. For a detailed discussion, see Stroustrup, 1990;
O’Riordan, 1990]

Indirect classes: inevitable. In C++, objects of any class can be static,
auto, and members of other classes. In each case the object is really allocated
where it appears to be allocated. Other languages allocate all class objects on
the free store and access them through handles only. This reduces the amount
of recompilation caused by changes in object layout by insulating users. The
cost is allocation, deallocation, and access overhead and C, Fortran, etc. object
layout compatibility problems.

I expect that mechanisms for defining C++ classes or objects so that they
are implicitly placed in the free store but accessed by name rather than explicit
pointer will be proposed. I expect the key mechanism in such schemes will be
a keyword for saying ‘objects of this class will be indirect’ or ‘this object will
be indirect.” Without a ‘lever’ to distinguish indirect from ordinary classes we
would encounter efliciency problems and severe compatibility problems.

Suggested base for discussion: We don’t have one. Difficulty: design
unknown, implementation unknown.

Meta classes: inevitable. The more ambitious C++ systems are growing
warts to support

1. Dynamic linking

2. Object 1/0

3. Debugging using inspection of objects
4. Persistence

5. Calls across name spaces

Eventually, someone must design a single interface to data structures support-
ing such activities. Otherwise we will all be re-inventing this wheel.

Suggested base for discussion: We don’t have one. Difficulty: design hard,
implementation 2 months.

I consider the design “hard” because there are a multitude of uses and the
most general scheme involves a complete run-time representation of types and
access control information. An important aspect of a design will be to avoid
a meta-class facility to becomming either a way of subverting the type system
or a major constraint of the C++ implementation techniques. Once designed,
I don’t see any major implementation problems. The compilers already have

2

all the information needed and can place it in memory when we have a design
for run-time access to such information.

Virtual data. Whatever that may mean (I have seen several variants).
Multi-methods. CLOS-like function call based on two or more ob jects.
Per-object protection. In addition to the current per-class protection.
Method combination. Ala CLOS, in particular :before and :after methods.

Delegation. My attempt to define delegation for C++ failed. The issue
will re-surface. It is somewhat related to indirect classes.

Concurrency. Iexpect we will see both minimal schemes (like Dag Briick’s
proposal) and maximal schemes (roughly along the lines of Ada’s tasks).

Persistence. I expect we will see schemes specifically for persistence in
addition to meta-class schemes supporting object 1/0.

Garbage collection. I expect we will see two kinds of schemes: The conser-
vative ones that do not affect the semantics of the language (except maybe for
the calling of destructors) and the radical ones that require specific language
changes that makes it impractical to run C++ programs without a garbage
collector or a very large memory. [Edelson, 1990]

3. Overriding

Overriding (previously known as renaming) was conceived to solve a potential
problem with multiple inheritance:

class cowboy { virtual void draw(); };

class picture { virtual void draw(); };

class animated_cowboy : public picture, public cowboy {

/...

};
The question is, how do I redefine and call the two inherited draw() functions?
The problem is to call one of the derived functions with a pointer to one of the
base classes (the draw functions are virtual). This is currently not possible,
and overriding was designed to preserve virtualness.

class animated_cowboy : public picture, public cowboy {
void paint() = picture::draw;
void shoot() = cowboy::draw;

15

picture* p = new animated_cowboy;
cowboy* c¢ = new animated_cowboy;

p->draw(); // calls animated_cowboy: :paint()
c->draw(); // calls animated_cowboy: :shoot()

The manual text and the rationale for overriding will be presented at the
November 1990 meeting.

4. Exception handling

Exception handling was the issue that raised the most controversy at the Seat-
tle meeting. While the syntax proposed by Koenig and Stroustrup has been
universally accepted, the choice between termination vs. resumption semantics
is hotly debated. The different views have their origins in two mental models
of what exception handling is all about:

e “get out of here” favours termination;
o “get help from somewhere” favours resumption.

Termination implies that all blocks between the ‘throw’ point and the handler
are terminated. After the handler has been executed, the program continues
with the statement following the handler. This model has already been used
in Ada, and is probably well understood.

Resumption allows the program to continue execution with the statement
following the ‘throw’ point, although the handler is located somewhere along
the call chain. In this case, the stack cannot be discarded when the exception
occurs, and the implementation is more complicated.

The lack of practical experience of exception handling makes this issue
hard to discuss. Some people that have used resumption are now strongly
against (e.g., Jim Mitchell, the implementor of Mesa), whereas users of other
systems believe resumption is necessary in highly interactive systems (e.g.,
Microsoft and 0S/2).

My view is that the resumption model is difficult to understand and im-
plement, and that it will be very error-prone in practical use. Furthermore,
most uses quoted for the need for resumption are variations of asynchronous
interrupts, an area I think is more related to concurrency than exceptions.
The protection of proprietary information has unfortunately prevented me
from obtaining a detailed description of exceptions in 0S/2, and how they
migrate to the C++ environment developed at Microsoft.

The fundamental question raised is “what should be included in a stan-
dard?” The answer may range from a minimal set of features, essentially
standardizing the current language, to a language with all sorts of potentially
useful features. One of the main reasons for standardizing resumption is that
there are “weak” arguments for not including resumption; people who do not
want to use resumption do not have to.

A completely different area of potential problems was also discussed.
Throwing an exception is similar to calling a function in the sense that a
parameter object is passed. The same parameter matching rules that are
used for function overloading should also be used for matching the handler;
the problem is that handler matching is done at run-time which makes type
checking more difficult. A type-secure system with a minimum of overhead
would force the following restrictions on what can be thrown as an exception.
The object cannot have:

Private or protected base classes;
Multiple non-virtual base classes;

A private copy constructor;

A private destructor.

I believe I can accept all of these restrictions, except the first one which I think
violates current C++ idiom. A private base class is really an implementation
detail; it is no more visible than a private member of a class. If an object with

4

a private base class could not be used as an exception, this implementation
detail would drasticly affect the “interface” of the derived class.

If private base classes were allowed, what should happen if we find a
handler for the base class before we find a handler for the derived class? In
my view, the private base class is “invisible,” so no match would occur on
the handler for the base class. There are other interesting issues as well;
for example, what should be done if the copy constructor called to pass the
exception raises an exception itself, or if the constructor for the exception
object raises an exception?

The following examples show “abuse” or “creative use” of the resumption
model for exception handling. They are in any case likely to be used effectively
in C++.

Iteration

The following example is originally by Andrew Koenig. The exception han-
dling mechanism is used to iterate over a vector of integers (note syntax for
parameterized vector type). The iterator will throw an exception for every el-
ement; actual processing is made in the matching handler. The iterator makes
a normal return when all elements have been processed.

int sum(Vector<int> v)
{
int accum = 0;
try {
iterate(v);
} catch (int i) {
accum += i;
continue;

}

return accum;

}

void iterate(Vector<int> v)

{
for (int i = 0; i < v.n; i++)
throw(v[il);
}

If C++ would support nested function, like most useful languages, this exam-
ple could be written as follows:

int sum(Vector<int> v)

{
int accum = 0;
void s(int i) { accum += i; }

iterate(v, s8);
return accum;

}

typedef void (*PF)(int);
void iterate(Vector<int> v, PF func)

{

for (int i = 0; i < v.n; i++)
(*func) (v[il);
}

The introduction of nested functions is a useful feature, although it represents
a major change to the plain C model of computation. Exceptions with re-
sumption probably requires the same run-time support as nested functions,
but the advantages are not fully exploited.

The C++4 Retriever

This example was invented by Dag Briick (after two beers). In this case, re-
sumption implements Lisp-style dynamic binding of variables. Bjarne Strous-
trup said: “this gives you Lisp functionality with Lisp efficiency and C++
syntactic ellegance.”

Function g() asks for a variable binding in some stack frame by throwing
a pointer. The handler in £() binds the pointer to the local variable x (note
reference parameter), and resumes execution.

void £()
{
int x = 2;
try {
gQ);
} catch (int*& p) {
P = &x;
continue;
}
}
void g()
{
int* p = 0;
throw(p);
*p = 3; // Assign to ‘x’ im £().
}

Any number of intermediate functions can be called between £() and g().

Coroutines
The following program is even more non-obvious than it seems:

void £()
{
try {
g0
} catch (e2) { // This is the handler we want, or...
}
}

void g()

try {
hQ);

f()’s try block -§

(=]

Handlers for < g()’s try block g,
exception e2 h()'s try block .S
B

g()'s handler for e1 2

(=)

Figure 1. Typical stack frames when executing resumable handler.

} catch (e1) {

throw(e2);
}
}
void h()
{
try {
throw(el); // This stack frame is still around,
} catch (e2) { // but is it visible?
}
}

It is unclear what is the interpretation of this program. Figure 1 shows a
typical stack layout when executing the handler in g(). There are two possible
interpretations of what should happen when the handler in g() throws e2:

1. A handler for e2 is located on the stack. In this case the closest matching
handler is found in h().
2. Function g() was called by £(), so the handler is located in £(). In this

case some mechanism is needed to by-pass certain parts of the stack, or
the runtime system must use a cactus stack for exception handling.

If the first interpretation (based on the actual layout of frames) is chosen, we
have in fact implemented coroutines with the exception handling mechanism.

5. Concurrency

The Department of Automatic Control has established an informal coopera-
tion with Microtec Research Inc. and The Software Components Group; both
companies are located in Santa Clara, CA. The purpose is to develop a real-
time kernel in C++, to be used on VME-bus systems. Automatic Control will
develop the class library, and MRI and SCG will provide development systems
and support. The class library will have the following features:

e Concurrent processes

Semaphores, events

Monitors

o Message passing

Ada-like rendez-vous (?)

Multiple scheduling algorithms (?)

o Signal processor classes (?)

Items marked (?) are likely to cause trouble, and will only be implemented as
time permits. The class library will be used to control laboratory processes
and an industrial robot. The project will be evaluated after one year.

There is also an increasing interest in X3J16 for concurrency, primarily
in the form of coroutines. Several people have expressed interest in our work
with MRI and SCG, and the library working group will consider a proposal for
a coroutine class library, possibly to be included as one of the C++ standard
libraries.

It is hopefully possible to design a coroutine class library that makes very
few assumptions about its environment. This library could be used either for
coroutine programming in a sequential system, or as the basis for a “hard” real-
time system (which would require a more sophisticated implementation).

6. References

EpeLsoN, Daniel R. (1990): “Dynamic Storage Reclamation in C++,”
UCSC-CRL-90-19, Board of Studies in Computer and Information Sciences,
University of California at Santa Cruz, Santa Cruz, CA 95064.

ELL1s, MARGRET and BJARNE STROUSTRUP (1990): The Annotated C++
Reference Manual, Addison-Wesley.

HARADHVALA, SAM (1990): “Implementation of Parametrized Types,” Object
Design Inc., Burlington, MA, Slides presented 10 July 1990 at X3J16.

O’RIORDAN, MARTIN (1990): “Position Paper on Renaming for C++,”
Microsoft Corporation, Redmond, WA, USA.

SiMONSEN, KELD and BJARNE STROUSTRUP (1990): “A European Represen-
tation for ISO C,”.

STROUSTRUP, BIARNE (1988): “Parametrized Types for C++,” Proceedings
USENIX C-++ Conference, Denver, Colorado.

STROUSTRUP, BJARNE (1990): “A Proposal for Generalization of Overriding,”
AT&T Bell Laboratories, Murray Hill, NJ 07974, ANSI document number
X3J16/90-0046.

Appendix

This appendix contains copies of the slides Sam Haradhvala used for presenting
Object Design’s implementation of templates (parameterized types). This
implementation will probably be part of the next AT&T compiler.

2 - 06/9/L 8neas 9llex L -- 06/9/L 8luEas 9tlex

warlpe @wavs

750

£Q41Q ww _,,.if,,_?@

W\unm\ >/C(3\WKMV (m.s\ﬂa)\.m _)Suz f

Y (vryvav) MOQ

apoo mau [je Bunesulad o uol
ale Aayl ‘wayl Inoyym aAll Lue) ld 1} .wmeQEQ_QE_

Aumn jessusb jo sem jey) ainyes) sbenbuel
|[njesn Ajjeal B oq 0} N0 pauln} os|y

‘sojebaibbe
21015100fqO Hoddns o} ‘Ajremul

&ld Aum

¥ - 06/9/, 2Me8S 9Llex

*sse(o aje|ldwal e SL (IULH00)
sse|o ayeldwe]

{~"}

()dBq::¢1»00) PLOA (L sseldy aie|dus)
-oye|dwe} uolounj Jequaiy

aje|dwa) ssejo 8yl sI 00}

: 00) SSB|D ¢l Sse|dy @le|dusl
-olejdwsal sse|D

€ -- 06/9/2 8lnees 9ilex

seje|dwa) uolouny Jaquaw }nejep
OpILIBAO O} SuolouUN4 Jagusiy ouloadsg

sele|dwal uonoun Jaqus|y
seleldwal sse|n
uoneluswa|duwi

oyl Aq peuoddns ate sainjes) Buimojio) ay]

"SOSSB|O JO uoijezualsweled
8y} o} sejejal Y se Ayjoey 14 syl
Jo losgns sy} suoddns uonejusws|dwi ayj

ABojouiwia]

losqng abenbue] |14 aylL

9 -- 06/9/L 9INeaS gLlex

t[43d--]s, udniad
t(, MO JjJapup %2015,)J404d8
(()A1dwa) 4t }
()dod::¢l>¥oe38% |
¢l sselay aje|dwal

‘waylL ® = [++43d]s
' (\MO[JJd3AO ¥2P1G,)J0du4d
(O)Lwng) 4t}
(wajL ®L)ysnd::i¢ly>yIeiS pLOA
¢l sseldy oaje|dwal

{ts [azLs] a13(28p }
()4923G~::¢I>99R1S ¢L Sseldy 2aiejdudl

‘0 = J1d
t [zs = azls] 4L M8u = S }
(zs 2uLl)¥oe3S:¢L>Y3els
¢l sse|dy aie|duajy

G -- 06/9/. @meas 9llex

~

{+ (1-)3ixs
t(bsuw',s%, '448p3s) Jaurady }
(bsw ,Jeyd 3SUOI)U0UJID PLOA
{t8zLs == u3d uunias}
1suod ()[Lny 3ut
{0 == 42d uuniau}
1suod ()A3duwa 3ul

w

t()do3 %1
+()dod %)
‘(wa1L ®i)ysnd pLoA

t()yoe3g~
t(zs jui)yoess
ratignd

¢S xxl
r43d qul
189ZLS qulL
}¥oe1S sseid ¢L sse|dy aze|dud

ajejdwa] uonoung J1Bquay

alejdwa] sse|p :9jdwexy

8 -- 06/9/L emeas 9ilex

-uonejidwos jo seseyd

sisAjeue oljueWaS pue xeluAs sy} usamiaq
90BJI9UI UBS[O B SBY Jey} pus juol) ++) Aue
o} a|qeidepe aq pjnoys Absjeuls [eieusb ay]

*q] 8y} woJy uonelausb apoo pue sishjeue
|[ensn oy} N0 S8IUBD Uyl Yyolym ‘juond

Aq pesn abenbueT ajeipswlisiu] 8y} JO SWIs)
ui selpoq pue sasse[o ajeldws) Buijelsusb
pue ‘saje|dws] Bujurejuiew jo solueydsw ay}
ylum spesp Aurew } -ejqissod se aAlsnjul
-uou Sse 8q 0} sal} uoljejusws|dul]1d ayl

‘Juold 0°¢
1%V uodn paseq s| uonejusws|dwi ayl

L - 06/9/2 smees 9llex

I
()dod::i¢julyyoeigy 3ul
()dod::¢julyyoe1s 4oy dod atj)Loads //

MAIAIBAQ uollejuswajdwy]

uoiloung
laquiapy oi1o0adg:ajdwexg

0L -- 06/9/L 8Meas 9Llex

‘uolliulyep
oye|dwal ay} yum paleloosse si jey}
931} XeluAs e sl sisAjeue syl jo }nsal ayl

seweu 9|gqeleA
punoqun se pelesJ] ale sjewlio} uolssaidx3

‘gsled sy Jo 8sIn0d ay} Buunp ssweu
jopadAl se pejeas) aie sjewlo} ,0dA} adAj,

‘aseyd

siy} Buunp sweu swes 8yl yum sjeqoib Aue
mopeys sjuswnbie sjejdws] 8yl 90IN0S
By} Ul PeIdIUNOOUd UBYM So8l] XejuAs

se paule}al pue pasied ale suoliuysp
ole|dwa) Joquidw uoloun} pue ssejn

sisAjeuy Xxejuls

6 -- 06/9// dMedS 9LlEX

‘ale|dwa} uolouny

lequiaw 1o SSE|o 8y} jo uonluyep jo juiod
8y} 1e palsixa jey} luswuoliAue a8yl 8q isnw
‘sisAjeue OlJUBWAS 8y} 10} JUBWUOIIAUS By]

"1xe} Bujusalsiul

Aq peleledas aq 0} A8Yi| SI SSE|D

aye|dwal ay} Jo asn ay} |eleusb ul aouls
‘uoniuljep erejdwal ayy Joj sisAjeue xejuhs
ayl mojjo} Ajgleipawwll jou Aew Jsquew 1o
sse[o ale|dwa} 8y} jo SisAjeue oluBWSS 8Y|

‘sjuswnbie ,adA}
adA), punoqun sapnjoul ey} 8doos e ul auop
8q 1snw sajejdwsl uolouny Jeqwaw S\Ml pue

a1ejdwal ssejo ayl Jo sisAjeue xejuAs ayJ

:sadA)
pazuslaweled Bulidwoo usym saousisjiip
Ayriomalou jo 8|dnoo e ale alay]

(sjutod jualjes) 1d Buijidwod

21 - 06/9/L omees gilex Li -- 06/9/2 elness 9tlex

‘aq UBD <JUI>Zo 8l0jeq pazAjeue

ag 1snw <jui>1o ‘sisAjeue oljueWSS 'SSEJO 8y}
sy} sexjorold <ui>go ybnoyie ‘snyl uo Buisseoosd onuBWSS [BNSN U} WO
‘uonjiulyep

¢IUL>ZD sje|dwa) 8y} jo awil 8yy 1B palsixs

1l SB JUBWUOIIAUS SWEU 8y} ysljqels3,
{}¢L>19 70 sselo (L sseldy sjedud) "sjuswnbie slejdwael |BWIO) 8yl pulg

t {:A |} T2 sseyd ¢l ssejdy sjeldual ‘991 xejuhs peaes syl jo Adoo e ejeisULY)

:sdajs Buimoljoy ay)
SOAJOAUL 1] "uone(idwod 8y} Jo 8sInod a8y}
Buunp pealsjunoous si ssejo siejdwa] mau
B JaAsuaym paleiliul si sisAjeue onuewag

‘pezAeue aq jsnw uodn spusadap uin} ul i
1ey; sesse|o ejejdwey ayi ‘uonoun; ajejdwal
10 ‘sse|o sjejdwa} B UO N0 palled 8q Ued
sisfjeue onuewsas alojaq leyl sjqissod si

sasse|)
sisjeuy onuewsag Huipeose) alejdwa] Jo sisAjleuy oljuewag

vL - 06/9/. onees gilex

‘pauljep SuonouNy Jaquiew sy} pesu
1Y) sosse|o ajejdwsel 8y} [|e saweu eyl ol
oyloeds e ul papnpoul Ajuo st ajy 0", 8yl

‘ojejdwe) sselo e 0} palinbal s
SS900B JoASUSYM papn[oul aJe sajl U, 8yl

‘uoIsnjoul 1o} 8|geHNs 1Byl se|y 0",
ul seje|dwal uolouny JIsquiew eyl suleqg

‘[lensn se papnjou] a.e
1ey se|iy 4, Ui elejdwa) ssejo syl auyeq

"9jl} 82IN0S

++0) 19yjo Aue oy Apoexe paurelurew buleq
suoniuipep peazusleweled Bulurejuod sajly
901n0s 8y} yum ‘uoijedwos jo spowl ++9
[ensn ay} smojjo} [spow uoje|idwod 8y

€1 -- 06/9/2 8Weas 9ilex

‘ewbeld e m_> papn|oxa
8Q UBO SUOIUIEP UOIIOUN} JO UOIBIBUSY)

‘uoliejidwod sy

Buunp paissjunoous sem ajejdwal uonouny
ayl JlI ‘uoniuysp uoloun} sy} sejeleusb
sAeme 1o)1dwoo sy} ‘yoeoidde ino u

‘'suonluljep asay} ajelaush
0} a1aym pue usym Buipiosp sl ued piey sy

"'sesse|o aje|dwe) 40} pasn asoyl se sdals
Puissaooid awes ayl S8A|0AUl suoloun)
leaquew aje|dwas} jo sisAjeue OljUBWASS

|opoy uonejidwod

suoljound Jaquay

ajejdwa] }o sisAleuy o1lueWLS

91 -- 06/9/. emees gilex

sadf) pezusjsweied a|burwiun O} MOY puBiSIapuUN S0P 1abBnqap Jno Ajsteunuo) ‘Sd

(¢ siy3g— uiniad

({

Pp o= 1T 3dTHoRISGTT J3d ¢ Syl

0 ((2zs07 =

(—773d 428386 T9Z4S ¢- SuI0T) R((. 1TZT3dTN9RISL) 403Z4s)
W4T (v 3UE))) (e 3UL) = 1TZ 3ATTHORISSTTS (- SIUA0TT

YO ((1~z3d™yoe1g 10ndls) j0azis

) WM (1 TZTTIETH0RAS 39M43S) = SEYI0T) |] SIUI0T) 44)
DTS vy

1 os|YI0 s Tz 3dTy9R1S 39n41s Ja3sibau

(

2SO SIUI0TT) 442 3dTTH9RISGTTTI0T, L7 3dT 49R1S 10Nnd1s
H

Do TgTTIdTTNoRISG T Ska L2 3dTTIRIS)

tyTz3dTTyoR3gG T 43d Uy

Py TZT1d T NoRISSTT Bz S- U}

[= 2T == V"2 3d7y2R1S JOBZ)S L} (T2 3dT y9e1S 1IN43sS

t y—z1dTy9elS] Ul JapadAl

Gl - 06/9/2 8mess gllex

‘Juswa|dwi o0} Ases se Jou sdeytad ‘UoisiAuB
0] Ases ale sawayds paleoilsiydos alopy

‘pPaIsIUNOoUS

sl uonuep Apoq aui jun palejep

s| sislewesed ,adA} adAy, ,1084400Ul,

J0 asn a8y} wol} Bunnsal sebessaw Jolig

"18sn 8yl uo Ajjoaldip suoiouny
laqwaw Buiulyep 10} Ayjgisuodsal seoe(d

'S|00} [euollippe
Aue aiinbal 10 ‘Juswuouiaua juswdojarsp
ay} Jo suswalinbal |eloads ou sayew 1}

"90In0s ++9) Buljidwoo pue Bulurejurew jo
sAem |ensn ay} ojul ||om sy} 1 ‘eidwis si

8po92 9 peojelaudr) :ajdwexd

SU09 pue so.id

gl -- 06/9/L omess 9Llex L1 - 06/9/L 8uess 91lex

! PS ¢alqnopyyoels JapadAy
! LS luLyyIRIS JopadAl

«2"IRIS, Bpn|ouLs
«U'Y3e1S, epnouig

seipoq 8y} p|oy o} i jounsip e sjeubissq

! 8{gnOpTLOTYIRES <3 [GNOPYYIRTS
! uITI0TY9RYS <JuLyyoRlS

»4'33e1S, epnioulg

saui] 005 ~ o1 1ebbngap ‘Y :sjo0L w4 OBIS,
apnjoul Aldwis sapi} o° ++0 Jejnbay

saul] 00G~ (018 ‘1ox9|
‘Jewwelb) suoneollpow juoso IS %OBlS 10} sale|dwsay
uoliounj Jaqwaw 8yl ssulsp 9'3oelg

soul] 00LL~ :samnn Buikdoo 88l
HOElS, elejdwe) ssejo ayl saulsep y'oeis

seul] 00LE~ :Buisseooid sjejdwa]

i)oelS 1d JO 9asn
soi}siie}ls uoljejusawljaul] 10} uoneziuebio a4 :o9jdwexy

