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1. Introduction

Following problems with low frequency oscillations in the 1960’s, most power
systems have installed power system stabilisers (PSS) on generators with fast
excitation systems. These are generally tuned using local response informa-
tion for the generator [1]. Intuitively, this can only be expected to succeed
in damping the so-called ‘local modes’ where individual generators oscillate
against large parts of the system. However, in many modern systems, there is
difficulty with self-excited slow oscillations corresponding to ‘system modes’
where large groups of generators swing against each other. These problems
require a system-wide rather than single generator view. Preliminary studies
need to pin-point those PSS which can have significant effect in improving
the damping of the troublesome modes. Beginning with DeMello et al. (2],
sensitivity studies on simple models have been suggested. These models have
so far been generator oriented in that the usual impedance network reduction
is employed [3]. This report suggests a model which retains simplicity but
gives an opportunity to study the influence of other damping sources such as
loads, SVC and HVDC links. The work forms part of a larger programme
on analytical aspects of power system dynamics and security using network
oriented (or structure preserving) models [4).

The use of generator/network oriented (rather than generator oriented)
models is based on the proposition that a complete resolution of the system
mode damping problem will come with use of network information in sta-
bilisers. Typical conventional PSS use signals derived from generator power,
frequency or speed. Use of tie-line powers which connect the two swinging
areas in a mode would appear much more effective [4]. Also SVC and HVDC
links are known to have significant damping effect when fitted with stabilisers.
Issues such as these are discussed.

From the model presented here a picture of overall damping structure
can be built up (with reference to a particular damping matrix). The various
damping forces from PSS, SVC and HVDC links are related to the classifica-
tions used in mechanics.



2. Basic Multimachine Model

In this section, the basic multimachine model is derived. Later sections con-
sider the inclusion of the various supplementary damping influences. The steps
taken in deriving the model are similar to less general exercises carried out in
[5,6].

Suppose there are m generators which are interconnected by a network of
transmission lines and transformers. The network has a total of n buses. The
n — m buses without generation only have power injection from loads. Let the
generator terminal buses be numbered as ¢ = 1,...m and the load buses as
t=m+1,...n. Let §; be the rotor angle of the j:th generator with respect
to a synchronously rotating reference frame. Then w; = §; is the frequency
deviation from the synchronous frequency.

The dynamics of each generator is given by the swing equation

da:

M; d—t" + D;w; = P — Pg,; (2.1)
where M; is the inertia constant, D; the damping coefficient, Pm; the me-
chanical power input and P, is the electrical power generated. To simplify
calculation of P,;, we make a number of assumptions:

A1l. The network is assumed to be in sinusoidal steady-state with transmis-
sion lines represented by series impedances.

A2, Each generator is modelled as an internal voltage source E} behind a
transient reactance X c,b

A3. The phase angle of the internal machine voltage E; coincides with the
rotor angle §;.

A4. The powers Pp; are constant.
A5, The transmission lines are assumed to be lossless.

AG6. The loads are modelled as real and reactive power demands which are
a function of the magnitude of the bus voltage.

Assumptions A1-Ab are standard in simplified models for power system
stability analysis [3]. The generator model is often further simplified to a
constant voltage |E;| behind transient reactance [3]. The present model is
motivated by problems which are caused by the use of fast excitation systems.
These attempt to regulate the terminal voltages to set values via fast changes
in | E}|.

Assumption A4 requires that the frequency control system occupies a
different (lower in practice) bandwidth than the voltage control system. This
is not always the case, but seems to be the preferred situation.

It is also common to simplify the model by assuming the loads are im-
pedances. In general the load powers are nonlinear functions of frequency and
voltage of the load bus. The frequency dependence of loads is often neglected.
This practice will be followed here according to Assumption A6.

From Assumption Al, there are four variables to consider at each net-
work bus, namely, the voltage magnitude |V;|, the voltage phase angle 6;,
the real power injection P; and the reactive power injection @;. Let § =



(61,82, 6m)’, || = [|ELL|BY),- ., | L)Y, 0 = [61,0s,...,60]", and |V =
[IVil],|Val, .. .,|Vn|]t. It is useful to write |V| = [|V;|¥|Vi|*], where V; denotes
generator terminal voltages and V; the load bus voltages.

In the formulation of models it is sometimes convenient to regard the
internal generator voltages E’ as corresponding to fictitious network buses in
an augmented network [5]. These are then numbered i =n+1,...,n4 m and

Vi=E!_,,i=n+1,...,n+ m. We use the notation |V,| := (|V|,|E|) and
8 :=(6,0).

From Assumptions Al, A5 all transmission lines are represented as pure
reactances. Thus in the overall augmented network all buses are conneted by
reactances. (Assumption A2 gives that each fictitious bus is attached to a
generator terminal bus through the transient reactance.) Let the bus admit-
tance matrix for the transmission network and the augmented network by YV
and Y,, respectively. Y, is obtained from Y in the form

Y 0

Y“:[o 0

]+Yd

where Y; has every row (and column) containing the terms +5(1/X &7) in the
pattern of an admittance matrix. Both Y and Y, are purely imaginary with
Y having elements Y;; = jB;;, where B;; is the susceptance between buses i
and j.

At each bus, real and reactive power is exchanged between some of the
generators, loads and/or transmission lines. At an internal generator bus, we
have real power balance given by (2.1) with

Ei| Ve
Py (5,0, |V|) e |_3|;f"—|}_1l sin(6; — 6;) (2.2)
di

The reactive power balance is given by
Qui(6,6,|V]) + Qe (| EZ], [Vil) = 0 (2.3)

where Q; is the reactive power injected at the generator internal bus and Q;
is given by
cos(8; — 6;) — ﬁ (2.4)
13 t .
Xai

E!l Vo
Qi (6,6, 1V)) = 2%
di

We make a further assumption:
AT7. (@.; is a known characteristic of the excitation system.

If we adopt the classical model where the |E.| are constant, the internal
generator buses become PV buses in the usual load flow sense. In this case,
the reactive power equation (2.3) is not needed. The terminal buses are PQ
buses. For fast excitation systems, it makes more sense to require the terminal
voltages |V,| to be constant [6]. The terminal buses are then PV buses (with
their reactive power injection to be determined).

The remaining network buses have no generation attached. The injected
powers are determined by loads and control devices.

At each network bus, the injected powers are balanced by powers entering
transmission lines. We use the augmented network view. Let Py and Qy

4



denote the total real and reactive powers leaving the i:th bus via transmission
lines. Then

n+m
Pyi(ba,|Val) = D Vil V5| Basj sin(é; — 65)
i=1

(2.5)

n+m
Qui (8, Val) = = D Vil [V5] Baij cos(8i — 6;)
i=1
For specific bus types, these compact expressions can be rewritten in terms
of §,0 and so on. For instance, at a generator terminal bus, the real power
balance is given by

Pi (6)0’ |EI|) lvl) = Pbi (6a: |Va|)

BV . = :
= —— sin(6; — ;) + > Vil V3| Bij sin(é; — 6;)
di j=1

i=1,2,...,m (2.6a)

where P; is the nett power injected into bus 7 from loads and/or control devices.
A similar expression for Q; can be easily stated. At the remaining load buses,

we have
n

P;(6,6,|E|,[V]) = Y Vil |Vj| By sin(6; — 6;) (2.6b)
7=1
i=m+1,...,n

Combining (2.1), (2.3) and power balance at terminal and load buses, it is
clear that a model can be written in the form

Pn(6a0’ |EI|) |V|) =h
Mgwg + Dgwy + Py(6,6,|E'|,|V|) = P,

Qn(6’0, |El|’ |V|) = Ql
Qg(6,0,|EI|,|V|) b Q2
where M, = diag{M;}, D, = diag{D;}, P, = [Pl,Pz,...,Pm]T, and other

terms are defined in the obvious way. P,, @, refer to bus powers for network
buses.

Now assume an operating point (§°,6°,|E%|,|V°|) is known. Suppose
small deviations occur under the influence of small disturbances. At such an
operating point, we have wJ = 0 and (2.7), (2.8) reduce to standard load flow
equations (for the augmented network). Since these equations have transla-
tional symmetry, it is standard to refer the angles to a reference which can be
taken here as §,,(= 85,) = 0.

Small disturbance stability is studied via linearization of equations (2.7),
(2.8) about the operating point. In setting up the linearized equations, we
make use of the Jacobian J of the load flow equations. We have

(2.7)

(2.8)

f '

Pn6 Pn0 : Pne an

Pys Py P Py

_(Ju Jr2

e e || 82 [le Jn] (2.9)
Q'm‘i QnG : Qne Qn’u
LQg6 Qge de ng-'




where

0P,

a6
and so on in the obvious way. Then J?, P% etc denote these matrices evaluated
at the operating point. The components of the various submatrices in J are

easily built up using (2.5) or (2.6). From (2.6), we see that elements of Py
are given by

Pn6:

E!||V®
Jij = -—|—}'|Z.!",:!_|c05(0?_6?) ; 1<i<m,j=1

0 1 otherwisefor 1 <i<n,1<j<m

Now consider the block P,s. The corresponding elements are given by (2.6)
as

’IE:HVaDI 0 0 = 0 170 90 _ §9 .

__..;.E_.;.__.cos(Ol-—6,-)+Z|Vi||Vj|Bijcos(i— j) ,

di j=1
1<i<m,j=1

J”:{ n

> IVAIVY| Bijcos (6 - 63) s m+1<i<nj=1

Jj=1
| [V2[V] Bij cos (0? - 6;-’) ; otherwise for 1 <i<mn,1<j<n

We should note that the nonzero terms in J are closely related to the network
structure. They correspond to a physical connection between buses. The
elements of J can clearly be expressed in a more compact way using (2.5). For
instance, the submatrix Ji; which relates real power to angles is given by

n+m
3 (VO [VP] Baijcos (8% — 6%;) 5 i=3j
Jij: j=1

— V2 |Vj0|Baij cos (62,- - 52,-) o 1# ]

The linearized version of (2.7), (2.8) can now be written as

P56 4 Prg@ + Pre|E'| + Poo|[V| = P4 (2.10a)

Mgy + Dgwy + Prsb + Ppa6 + Pge| E'| + Ppy|V| = Py (2.10b)
Qnsb + Qo + Qne|E'l + Quu[VI = Q1 (2.11a)
Q956+Q990+Q93|E'| + QulV|= Q2 (2.11b)

where §,6,|E'|,|V|,wg now refer to perturbations from the operating values.
(For convenience of notation, we have not introduced new symbols for the
perturbation variables.)

We now include the effect of nonlinear loads at the network buses. From
Assumption A6, we can write

Pi=-Ni|V|+ B

2.12
Q1= —N,|V| (212)



where P; refers to other real power sources at the buses. For example, suppose
the load demand characteristics have the exponential form

Pr; = a;|Vi|™
Qi = bi|Vi|¥

Then N; = diag {a;p;|Vi|Pi~'} and N, = diag {b;q;|V;|%1}.
Substituting (2.12) into (2.10a), (2.11a) gives

e Q’;',’,iﬁf—l] [|V|] [Qna Q,.e] [|E' ] * [1;1] (2.13)

We now consider the condition:
[ rw + Nl
Qn& Qnu + N, 2

Under C1, (2.13) can be solved to yield 4,|V|. On substitution into (2.10b),
it is straightforward to check that this yields the form

C1. The matrix ] is nonsingular.

Mgy + Dgwy + K16 + K3|E'| = Py + LP, .= P} (2.14)

Note that the matrices Ky, K3, and L can be readily obtained in practice from
a linear load flow solution of the network.

In (2.14), we have maintained |E’| as an independent input. Thus, it has
the general character of a PV bus and equation (2.11b) is not used. Some-
times, we also need |V| as a controlled variable. Then equation (2.11a) is also
redundant. The condition of interest is then:

C2. The matrix P, is nonsingular.

The elements of P,s were given above. From equations (2.10), we obtain
Mgy + Dgwg + Pys6 + P, |E'| + Py, |V| = Py (2.15)
where )
P*5 = Pys — PPy Prs
Pk = P, — PPy Pue
P;v = Pgv — gGPne Pry
P} =P, — PyPP

(2.16)

The use of the notation Ki, K in (2.14) is consistent with earlier discussion
based on reduced network models [2].

There are special cases of interest which simplify the models (2.14) and
(2.15). One which we use later is suggested by [7]. Suppose system reduction
has been used and each M; represents several generators in parallel. Then
a reasonable approximation is to ignore the X, relative to other reactances.
Further, each bus in the reduced system may have both generation and load
attached. Then we have § = 8 and |E’'| = |V|. Model (2.15) can be simplified
with

;6 = Lg§ P, g*e = Pge
Py, =0 Py =P,



We henceforth refer to this case as the aggregation system model.

Of course, it may happen that some |E;| and some |V;| are controlled by
stabilisers. Then clearly parts of (2.11) and (2.10a) are to be solved. For
simplicity, we will only give details here for the cases given above.

A further case of interest is where we allow for load frequency dependence.
This has influence on the overall damping matrix. Then (2.12) are written

P =-MN|V|-D P

1 1|V w1 + P (2.17)

Ql B —Nlel . quUJl

where Dy, Dy, are diagonal matrices corresponding to frequency dependence

in real, reactive loads respectively. Each element of these matrices is taken

to be nonzero. We suppose that load buses are not voltage controlled for
simplicity. Substituting (2.17) into (2.10a), (2.11a) gives

P ]
+
s

(2.18)

[Dlp an+N1] [wl] _ [P‘n6 Pn9 Pne]
Dlp an+N2 'V| - Qn6 Qnﬂ Qne

]
6]
| E|

The relevant solvability condition is:

. Dl Pn-u + N1
C3. The matrix N
[ qu Qnu + N2

Under C3, (2.18) can be solved to give wy,|V|. We then have from (2.10)

] is nonsingular.

Dyyf + PLgb + Pigh + Pl B'| = Ly Py 1= P
Mgig + Dgwg + Pgsb + Pgg + Py |E'| = Py + LyP, := Py

e

(2.19)

where P, other starred matrices, Ly and L, are all derived from solving
(2.18) and substitution. Clearly, 8 is now a part of the system state.

If we need |V| as independent variables, then set Ny = 0, Na = 0in (2.17);
only the frequency dependent component of the loads is relevant. Then we
have in place of (2.19)

Diph + Prs8 + Pagl + Pre| E'| + Po|V| = Py

. (2.20)
Mgy + Dgwg + Pgsb + Pygbl + P§e|Ell + Pg|V| = Py

Typically, these equations would accommodate some network buses as con-
trolled and others uncontrolled (regular load buses).



3. Simple Stabiliser Models

In this section, we look at the inclusion of contributions of damping provided
by stabilisers into the models of Section 2.

3.1 AVR Power System Stabiliser

Suppose that a power system stabiliser (PSS) is fitted to each generator AVR.
These come in a variety of forms which use different input signals. The main
ones are rotor speed, terminal frequency and electrical power. Irrespective
of what signal is used, the following assumption is reasonable in simplified
studies [2]:

A8. With proper compensation of the excitation/voltage regulation loop,
stabiliser action can be approximated by gains

| E;
;= 3.1
g @; (3.1)
The matrix version of (3.1) is
|E'| = Guy (3.2)

where G = diag{g;}.

Substituting (3.2) into model (2.14) gives

My + Db + K16 = Py (3.3)
where DD 4D
= (3.4)
D, = K,G
The structure of D, for the single stabiliser on k;:th generator is
D1,
D2k1
0 0
-Dmkl

i.e. each stabiliser provides a nonzero column in D.
For stabilisers based on electrical power, a more complete version of (3.2)
has been proposed [7] as

|E'| = Gywy + Gaig (3.5)

Clearly, this effectively modifies both the damping matrix as in (3.4) and the
inertia matrix as

M =M, + M,

3.6
M, = Ksz ( )



3.2 HVDC Links

Reference [4] presents a simple model for a HVDC link in stability analysis.
The effect of this is to provide a controllable influence at P,. Suppose each of
the n. links is given a reference direction for power flow.
We write
P, =T,P, (3.7)

where P, is an n.-vector of dc link controller outputs and T is an n X n,
connectivity matrix whose elements are given by

0, link j not incident on bus i

—1, link j leaves bus ¢
ti; =
+1, link j enters bus ¢

There are 41 elements in each column; only one nonzero element exists per
row in the normal situation where links have no common buses.
For simplified analysis, we make the following assumption about the links.

A9. The link stabiliser action can be approximated as a gain
Pie; = i (6; - ;) (3.8)

Thus if §; > éj, the link stabiliser transports a power increment towards the
lower frequency part of the system. More elaborate models are considered in
[8]. From (3.8), it follows that

P = —G3T{w, (3.9)

where G3 is a diagonal n. x n. matrix of the gains. Combining (3.7) and (3.9)
gives

P, = —T\G3T! (3.10)

Assuming load damping satisfying condition C3, we substitute (3.10) into
model (2.19). This gives

(Dip + LyT1G3TE) 6 4 Prs6 + Py + P |E'| = 0

. 3.11
L2T1G3T1t0 + Mgtbg + Dgwg + P;55 -+ P;39 + P;¢|E’| = Py ( )

Again we have a generalized linear system model [9]. If it is nonsingular, it
can be transformed to normal form.

The models where @ is not part of the state do not readily accommodate
the HVDC model. One exception is the aggregation system model [7] where
¢ = wy. Then from (2.15) and (3.10) it follows that

Mywg + (Dy + T1G3T1t) wg + Pysb + (Pge + N1) |E'| =0 (3.12)

The structure of the contribution to the damping matrix from one stabiliser
connecting buses ¢ and j is

1 ( gij —yij>
J \ —9ij gii
Other elements are zero.

10



3.3 Static VAR Compensators (SVC)

We consider the SVC in damping mode and make a simplifying assumption.
The stabiliser is typically a similar device to that used for a generator PSS.
For instance, it may sense the power flow in a line incident on the bus which
it supports.

A11. The SVC stabiliser action on bus ¢ can be approximated as a gain
[Vi| = gi5(6; — 6;) (3.13)

where j denotes some other bus.

Following similar steps to the HVDC damping description, we get
|V| = G4TE6 (3.14)

where G4 is a diagonal matrix of gains and T a connectivity matrix. We
can clearly substitute (3.14) into model (2.20) to obtain the total model for
damping studies.

3.4 Tie-line Stabilisers

The conventional generator stabilisers as described in Section 3.1 rely on lo-
cal frequency information only. In [4], it is suggested that a more effective
damping contribution for low frequency system modes would be obtained if
frequency difference information was the input signal. This could be derived
from measurement of a tie-line power and clearly gives some similarity to SVC
stabilisers. Equation (3.14) is replaced by

|E'| = GsTi0 (3.15)

This method of stabilisation needs development at the detailed level, but
it would be interesting to explore its potential at the simplified level.

The common facility in the HVDC, SVC and tie-line stabilisers is the
ability to sense relative frequency between two separate areas of the system.
If these areas are swinging against each other in a slow and system wide mode,
we can expect a substantial contribution to damping in a well-tuned stabilizer.

3.5 The Total Damping Matrix

Using similar steps to those in Sections 3.1-3.4, the separate damping source

models can be combined with the basic system (2.10), (2.11) to produce a rela-

tively simple model for damping studies. The details are given in Appendix A.

A very concise model arises in the special case of the aggregation model.
Using superposition (2.14) gives

Mwg 4+ Dwy, + K16 =0 (3.16)

where
M= Mg + Ksz (317&)
D = Dy + Ki (G1 + G4T} + GsT3) + T1GsTy (3.17b)

11



The overall damping matrix consists of three terms: inherent generator damp-
ing, voltage control stabiliser damping (PSS, SVC, tie-line) and HVDC sta-
biliser damping. This model clearly highlights the role of system network
structure on mode damping.

One interesting question concerns the degrees of freedom in (3.17b) to
introduce damping on all system modes.

12



4. Stability Analysis

The models derived above are simple enough to explore stability analysis be-
yond conventional eigenvalue calculations. We aim to state general algebraic
conditions which reveal the qualitative role of the various aspects of the system
in preserving stability. For simple structure preserving models, such results
have been explored in [6,10]. In this section, we merely review the possibilities
of applying this analysis to our models.

4.1 Normal Form Models

From Appendix A, we see that the models naturally come out in the form of
a generalised linear system

E& = Az + Bu (4.1)

with ¢ = (6,8,w,). However, in all but unusual cases, E is nonsingular and
the model can be reduced to the usual normal form, i.e. where E = I. To
illustrate, (3.16) can be written as

&= Az (4.2a)

where ¢ = (§,w,) and

0 I
A= [ ] (4.2b)
_M-'K; -M-'D

4,2 Connection to Classical Mechanics

Model (3.16) is the subject of much discussion in the mechanics literature
[11]. There M is accepted as symmetric while various cases, where D, K; may
or may not be symmetric, are studied. Here, of course, M is asymmetric if
Gy #£ 0.

Consider the symmetric and skew symmetric parts of D, K;. We note
that K is symmetric if the real load powers are assumed voltage independent
[6].

In terms of mechanics terminology, we have:

voltage dependence in loads contributes circulatory forces;

2. HVDC links contribute only symmetric damping and so pure dissipative
forces;

3. all stabilisers on generators and SVCs also contribute anti-symmetric
damping and so gyroscopic forces.

13



4.3 Stability Results

Again we restrict attention to the simple model of the form (3.16). Stability
results for asymmetric D, K; cases make use of the following concept.

DEFINITION 4.1
A real matrix A is symmetrisable if it is made symmetric upon multiplication
by a real, symmetric, positive definite matrix 5. O

Symmetrisable matrices are characterised by real eigenvalues and a full set
of eigenvectors. Symmetric matrices are trivially symmetrisable with S = I.

We note that translational symmetery in angle variables for the load flow
equations makes any equilibrium point of the dynamic models a point in a
one-dimensional manifold of equilibria. It only makes sense to study stability
of the entire manifold [12] unless a reduced set of state variables is chosen [13].

There are many results available which require the system to be closely
related to a symmetric system. For instance, if M~'D and M~'K; have a
common symmetrising matrix, simple results can be stated [10]. Such condi-
tions are unlikely to be satisfied for our more general models.

One result is available which does not require similarity to a symmetric
system. Model (3.16) is equivalent to

b+ M™Dé+ MK 6§=0 (4.3)
Using the symmetrising matrix § for M1 K; gives
SE+(C+GYo+SM™'K1§=0 (4.4)

where C and G are the symmetric and skew-symmetric parts of SM ™! D (cor-
responding to the dissipative and gyroscopic forces of system (4.4) respec-
tively).

Assume that K has positive real eigenvalues except for precisely one zero
eigenvalue corresponding to the translational symmetry. Then the following
result can be adapted from [10].

THEOREM 4.1
If C > 0 and the m? X m matrix

C
C (SM~'K;)
C(SM~1Ky)™

has rank m, then the equilibrium manifold is asymptotically stable. O

This condition ensures that the damping is distributed appropriately on
all modes.

4.4 Sensitivity Studies

As stated earlier the primary purpose of the simplified models is as a basis for
preliminary investigation of stabiliser placement to improve damping of low
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frequency oscillatory modes. The basic ideas are well established [2,14]: study
eigenvalues and eigenvectors for the simplified models as stabiliser gains are
changed. A sophisticated way to achieve this is via perturbation formulae for
eigenvalues of matrices [15].

Suppose A is a matrix dependent on parameters u € IRF. Then from [16],
we have

on  vFEh
Ops v

where

A;  is the i:th eigenvalue of A
u; is the eigenvector of A associated with A;
v; is the eigenvector of A’ associated with A}

Superscripts * and H denote conjugate and Hermitian transpose operators
respectively.

Once the model is in normal form with stabiliser gains shown explicitly as
parameters, (4.5) can be used to calculate sensitivities. We look for stabilisers
which increase damping on troublesome modes.

For example, consider model (3.16) expressed as (4.2). When G3 = 0, it
is easy to see that A is linear in all gain parameters. For PSS, we can write

4 0 I 0 0 0 0]
“ -7k, -mip, )T lo —MK ) Lo 6
It follows that oA 5 0
o - [0 _Mg_lKg] (4.6)

where K] is the matrix obtained by nulling all of K except the j:th column.
Similarly, we can derive formulae for other stabiliser types. Note that in
writing down (4.5) only the frequency half of the eigenvectors are needed.

The formula (4.6) for gains G, is a little more complicated, since they
enter A through M1, The details are given in Appendix B.

Note that the sensitivity matrix defined by (4.5) is defined at an operating
point. Thus it is only valid for small gain changes. For large changes K; and
K, need updating in principle as the operating point changes. It is observed
in practice that one base case is often adequate for gain changes over the range
of interest [2].
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5. Conclusions

This report has given simplified power system models for study of the effect
of all stabiliser types on damping. The use of the models will involve some
established ideas in eigenvalue sensitivity analysis. A major study on the
NORDEL system will be reported in a subsequent report.

The models presented here probably represent the crudest level of general-
ity which would be used in practice. Without going to complete linear models
typically used in commercial software, we may wish to use slightly more sophis-
ticated models. For instance, inclusion of the negative damping contributions
from AVRs requires a multimachine Heffron-Phillips model {17,18]. Inclusion
of time-constants in stabiliser models is very easy.

16



6. References

[1] E. V. Larsen and D.A. Swann (1981): “Applying power system
stabilisers, Part I: General concepts,” IEEE Trans. Power Apparatus
and Systems, PAS-100, No 6, 3017-3024.

[2] F. P. deMello, P. J. Nolan, T. F. Laskowski and J. M. Undrill (1980):
“Coordinated application of stabilisers in multimachine power systems,”
IEEE Trans. Power Apparatus and Systems, PAS-99, No 3, 8§92-901.

[3] P. M. Anderson and A. A. Fouad (1977): Power System Control and
Stability, The Iowa State University Press, Ames, Iowa.

[4] D. J. Hill (1986): “Status report on project Power System Stabilisation
TFRT-3183, Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden,”.

[6] A. R. Bergen and D. J. Hill (1981): “A structure preserving model for
power system stability analysis,” IEEE Trans. Power Apparatus and
Systems, PAS-100, No 1, 25-35.

(6] F. F. Wu and C-C. Liu (1986): “Characterization of power system small
disturbance stability with models incorporating voltage variation,” IEEE
Trans. Circuits and Systems, CAS-33, No 4, 406-417.

[7] T. Lysfjord et al. (1982): “Férbattrad dampning av effektpendlingar
i nordelnitet genom optimering av instéllbara reglerparametrar for
damptillsatser,” Technical report.

[8] K. R. Padiyar, M. A. Pai and C. Radhakrishna (1981): “A versatile
system model for the dynamic stability analysis of power systems
including HVDC links,” IEEE Trans. Power Apparatus and Systems,
PAS-100, No 4, 1871-1879.

[9] G. C. Verghese, B. C. Lévy and T. Kailath (1981): “A generalised
state-space for singular systems,” IEEE Trans. Automatic Control,
AC-26, No 4, 811-831.

[10] H. G. Kwatny, L. Y. Bahar and A. K. Pasrija (1985): “Energy-like
Liapunov functions for power system stability analysis,” IEEE Trans.
Circuits and Systems, CAS-32, 1140-1149.

[11] K. Hiiseyin (1978): Vibrations and Stability of Multiple Parameter
Systems, Sijthoff and Noordhoff.

(12] J. P. LaSalle (1976): The Stability of Dynamical Systems, Siam.

(13) D. J. Hill, “On the equilibria of power systems with nonlinear loads,”
to appear, IEEE Trans. Circuits and Systems.

[14] H. Rudnick, F. M. Hughes and A. Brameller (1983): “Steady state
instability: Simplified studies in multimachine power systems,” IEEE
Trans. Power Apparatus and Systems, PAS-102, No 12, 3859-3867.

[156] P.J. Nolan, N. K. Sinha and R. T. H. Alden (1976): “Eigenvalue
sensitivities of power systems including network and shaft dynamics,”
IEEE Trans. Power Apparatus and Systems, PAS-95, No 4, 1318-1324.

17



[16] D. K. Fadeev and V. N. Fadeeva (1963): Computational Methods of
Linear Algebra, W. H. Freeman and Co.

[17] C. D. Vournas and R.J. Fleming (1978): “Generalisation of the
Heffron-Phillips Model of a synchronous generator,” IEEE PES Summer
Meeting, Los Angeles.

(18] T. S. Bhatti and D.J. Hill (1987): “A muitimachine Heffron-Phillips

model for power systems with frequency and voltage dependent
loads, Part I: General case,” Technical Report EE8739, University of

Newcastle, Australia.

18



Appendix A

For a general model incorporating all damping soruces we start with (2.20)

.D!::vﬁ'l +Pm§6+ P’n9€+ PnelEll + Pnﬂ|V| = Pl

Al
My, + Dywy + Posh + Pl + Pyl E'| 4 PulV] = P2 V)

where |V| is the vector of controlled bus voltages (* superscripts have been
dropped).

We now superimpose the effect of the damping sources. From (3.5) and
(3.15) the generator stabilisers give

|E'| = Giwy + Gawy + G5 T30 (A.2)
From (3.10), the HVDC links give

P, = —TyGsTt6 (A.3)

From (3.14), the SVCs give _
V| = GaT%6 (A4)

Substituting (A.2) to (A.4) into (A.1) gives

D10 + Ppsb + P = 0

. (A.5)
Md)g + Dzwg + D38 + P966 + ngo = Py
where .
Dl = Dlp + TIG.'ST{ + PneGBTat + anG4T2
M:=M,+ P,.G
s ¥ Tocr2 (A.6)
Dy =Dy + PgeG1
D3 = ngG4T2t
With 2 = (0,6, wg) and u = P;, (A.5) is of the form
Ei = Az + Bu (A.7)
where
(D; 0 O —Py —FPns O
E=\|Ds 0 M A= | —Pgg —-Pys Do
L0 I 0 0 0 I
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Appendix B

Suppose that matrices X,Y depend on parameter acIR. Then

5] 8y o0X
EE(XY)=X5¢;+6_QY (B.1)
We can write I i i K
(D) (20) 2

where M, D are given by (3.17). Consider gain parameter g;;. From (B.2)

0 0
0A 0 I
- oM~ J [ ] (B.3)
392,- 0 - 6g2,' K]_ D

Now apply (B.1) again to MM ! = I to get

aM’_l - __M—l 6M M_l
0g2; 092
As in the derivation of (4.6)
oM ;
= K2
8925 2
So )
- i = M_lKgM_l
892

Substituting into (B.3) gives

0A [ 0 0 ]
892; \M-'KiM-'K, M-KiM-'D
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