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A Synthesis Method for Automatic Handling of Inter-patient Variability in
Closed-loop Anesthesia

Kristian Soltesz1, Klaske van Heusden2, Martin Hast1, J. Mark Ansermino3, Guy A. Dumont2
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Fig. 1: Closed-loop anesthesia system.

Abstract— This paper presents a convex-optimization-based
technique to obtain PID parameters, used to control the infusion
rate of the anesthetic drug propofol. Controller design is based
on a set of identified patient models, relating propofol infusion
to an EEG-based conciousness index. The main contribution
lies in the method automatically taking inter-patient variability
into account, i.e., it guarantees robustness (sensitivity peak)
and performance (disturbance rejection) over a set of patient
models, without the need for manual intervention.

I. INTRODUCTION

This work considers closed-loop drug delivery in anes-
thesia. More specifically, propofol is dosed intravenously,
to meet a desired conciousness level (also referred to as
depth of hypnosis, DOH). The DOH is measured using
the NeuroSense EEG monitor [1] and the hypnotic drug is
administered by a computer-controller infusion pump. The
control system is schematically depicted in Figure 1.

The main motivation for closed-loop controlled anesthesia
is to reduce over-dosing, which could otherwise result in
hemodynamic instability, and increases in both recovery
time and post-operative mortality [2]. Clinical evaluation
of several closed-loop systems has been reported [3], [4],
[5], [6], [7], [8], [9]. These studies have shown the clinical
feasibility of closed-loop anestehesia. However, for com-
mercial products, it will be hard to demonstrate the safety
of ad hoc control approaches. The main control challenge
lies in robustly handling the large inter-patient variability in
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the response to propofol [10]. In a simulation study [11], a
model predictive control approach was suggested, for which
robustness was evaluated in presence of limited inter-patient
variability.

The authors have developed a PID controller based system
that was sucessfully evaluated in a clinical study comprising
102 children [12]. Currently, it is being evaluated on adults
in a studya of 150 cases [13], and a second pediatric study is
scheduled. In order to design safe closed-loop controllers, dy-
namic models of the patients’ response to propofol are used,
see Section II. As mentioned, such models hold large inter-
patient variability, even after allometric regressions (such
as scaling by patient weight). It is therefore critical that a
closed-loop anesthesia delivery system be robust over the
encountered inter-patient variability. For the study [12], this
was achieved through robust loop shaping, evaluated over the
set of available models [10], [14]. While providing robust
controllers, the loop shaping was performed manually. Con-
sequently, the controller design is suboptimal, and retuning
of the controller is inefficient.

The novelty of this paper lies in the use of a recent
convex-optimization-based synthesis method [15], removing
the manual component from the synthesis procedure, while
guaranteeing robustness up to a user-specified level. The
method is demonstrated in two versions: one for producing a
controller which performs robustly over a set of patient mod-
els, and one which performs robustly over an unstructured
uncertainty description. The two versions of the synthesis
method are demonstrated and compared, using models iden-
tified from clinical data [10]. A controller designed using the
proposed method is scheduled for clinical evaluation.

II. PATIENT MODELS

A. PKPD Models

It is customary to model the patient’s response to propofol
using a pharmacokinetic (PK) model, dynamically relating
infusion rate u to plasma concentration Cp, in series with a
pharmacodynamic (PD) model, relating plasma concentration
to clinical effect. The PK is traditionally modeled as a
three-compartment mammillary model, i.e., a linear time
invariant (LTI) system with three states. The PD model can
be described by a first order time delay (FOTD) model,
parametrized in ke0, relating the plasma concentration Cp to
the effect site concentration Ce, and a static sigmoid output
nonlinearity, referred to as the Hill function. The latter can

aClinicalTrials.gov identifier: NCT01771263.
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(a) PKPD patient model. The rightmost block represents the Hill
function, defined through (1).

1

(8s+ 1)2
1

(15s+ 1)2
E y

EEG monitor M(s) Measurement
filter F (s)

(b) EEG monitor and filter dynamics.

Fig. 2: Plant model, consisting of patient PKPD model, in series
with EEG monitor and low-pass filter dynamics.

be written on the form

E(Ce) =
E0

1 + (Ce/EC50)γ
, (1)

where Ce is the output of the LTI model, E is the clinical
effect, and E0 the clinical effect in absence of drug. In
this paper E is scaled such that 0 ≤ E0 < 1, while
E = 1 corresponds to maximum clinical effectb. EC50 is the
solution to E(EC50) = (1 − E0)/2, i.e, the 50 % clinical
effect, and γ is known as the ”Hill parameter”. A block
diagram of the combined PKPD model is shown in Figure 2a.

PKPD models (i.e., LTI state space matrices, together
with E0, EC50, γ) for 47 children, identified from clinical
data, were presented in [10] (together with corresponding
low-order models, which could be used interchangeably, but
would not be recognized by clinicians). Nyquist curves of
the linearizations of these models (from u to E in Figure 2),
around the (nominal clinical) operating point E = EC50

are shown as thin lines in Figure 3. These LTI models are
referred to as the individual models, and, for each angular
frequency ω, form the set Pall = {P1, . . . , Pn}c.

The measurement of the clinical effect E is provided
by means of the NeuroSense EEG monitor, which has LTI
dynamics well approximated by M(s) = 1/(8s+1)2 [16]. A
low-pass filter, F (s) = 1/(15s+ 1)2, is connected in series
with the EEG monitor to reduce the effect of measurement
noise. Without going into details, it should be mentioned
that F must be chosen with the expected noise spectrum and
open-loop high-frequency gain in consideration. Both M and
F assume seconds as the unit of time. The relation between
the clinical effect E and its measurement y, available for
control, is shown in Figure 2b.

bAn equivalent scaling where E = 0 and E = 100 corresponds to
maximum and no clinical effect, respectively, is often found in the literature.

cThe argument iω will frequently be dropped to increase readability.
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Fig. 3: Nyquist curve of linearized model from u to E, see Figure 2.
Thin lines correspond to the individual models P . The thick black
line is the nominal model P0, and the grey area represents the
associated uncertain model P̃ = P0 + ∆ (bottom and top, not
crucial for robust design, truncated in figure).
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Fig. 4: Individual models (small marks), uncertainty region (grey
disc) and nominal model (large mark) shown in the Nyquist plane.
The figure is a subset of Figure 3, corresponding to a single
frequency ω ∈ Ω.

B. Unstructured Uncertainty

An alternative to representing the inter-patient variability
by a set of models, is to replace P with a nominal model
P0 and an additive uncertainty description ∆, forming the
uncertain model P̃ = P0 + ∆. To this end, a frequency
grid Ω = {ω1, . . . , ωm} of sufficient span and density is
chosen. In this paper a grid of m = 1024 logarithmically
spaced frequencies, covering the phase range of interest
for robust PID tuning is used. This grid is chosen so that
maxP ∠FMP = −4.5π rad at ωm.

The uncertain model P̃ is defined at each ω ∈ Ω. A
reasonable requirement is that P0 lies in the convex hull of
P and that ∆ covers P , for each ω ∈ Ω. There are many
ways to achieve this. Due to the safety critical nature of
the application, and the synthesis method to be presented
in Section III, a conservative formulation is chosen. The
uncertainty ∆ is defined, for each ω ∈ Ω, as the Nyquist-
plane disc of smallest possible radius ρ, covering P , and P0

as its center. This can be formulated, for each ω ∈ Ω, as

minimize
P0,ρ

ρ,

subject to |P − P0| ≤ ρ,
(2)

which is a readily solvable convex program [17]. A graphical
illustration, for the case P = Pall, is given in Figure 4.
Figure 4 might give the impression that the uncertainty
description is overly conservative, and that in fact most of the
variability lies in model gain alone. However, this does not
hold true for the range of frequencies (in the third Nyquist
quadrant), which are critical for robust design. For these
frequencies, the individual models (small marks) are more
evenly spread over the uncertainty description (grey disc).



The nominal model P0 and corresponding uncertainty
discs ∆, for each ω ∈ Ω, are shown in Figure 3, as a thick
black line and a grey area, respectively.

III. CONTROLLER SYNTHESIS

A. Optimization Problems

The existing, clinically evaluated [12], control system
utilizes a PID controllerd C(s) = kp+ki/s+kds, with fixed
measurement filter according to Figure 2b. When performing
the loop shaping, performance was assessed through time-
domain simulations of disturbance attenuation over the set
of models, while robustness was maintained by limiting the
maximum sensitivity magnitude over the model set.

In this paper, the same control structure as above, is
assumed. The optimization objective is maximization of the
integral gain ki. This corresponds to minimizing the integral
of the error (IE), caused by a load step disturbance [18].
Robustness is enforced by constraining the maximum sen-
sitivity magnitude over Ω by Ms. This formulation enables
the use of the synthesis method proposed in [15].

Two cases will be considered: one where optimization
is performed over the model set P , and one where it is
performed over the uncertain model P̃ . These cases will be
referred to as the model set and uncertain-model approach.

1) Model Set Approach: Let K = FMC denote the series
connection of controller, low-pass filter and EEG monitor
dynamics, see Figure 2b. Optimizing over the set of models,
the constraints are given by

‖S‖∞ = ‖1/(1 + PkK)‖∞ ≤Ms, ,∀Pk ∈ P. (3)

The optimization problem can be formalized as

maximize
kp,ki,kd

ki,

subject to
∀ω∈Ω,Pk∈P

1/Ms − |Lk + 1| ≤ 0,
(4)

where Lk = PkK is the open-loop transfer function. The
problem (4) has #(Ω)#(P ) inequality constraints, where #
denotes element count.

2) Uncertain-Model Approach: In the uncertain-model
approach, as formulated in [15], (3) is slightly modified: S
is exchanged for S̃ = 1/(1 + P̃K), eliminating the need to
add individual constraints for each Pk ∈ P . The counterpart
of (4) becomes

maximize
kp,ki,kd

ki,

subject to
∀ω∈Ω

1/Ms + |K|ρ− |L0 + 1| ≤ 0,
(5)

where L0 = P0K is the nominal open-loop transfer. The
number of inequality constraints is #(Ω). This is a decrease
by a factor #(P ), compared with the model set approach.

dThe ideal parallel form parametrization is used in favor of the more
common standard form C(s) = K(1 + 1/Tis + Tds), due to its linearity
in the controller parameters.
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Fig. 5: Illustration of constraint linearization (for the uncertain-
model case), used in the convex-concave procedure. The grey half
plane corresponds to the convex relaxation through linearization.
Note that the constraint shown in the figure is not active, since
there is a distance between the half plane and L0.

B. The Convex-Concave Procedure

The constraints of both (4) and (5), correspond to circular
disc in the Nyquist plane, which the open-loop transfer
function(s) must avoid. In the model set approach, each open-
loop Nyquist curve Lk must maintain a distance 1/Ms to
−1. In the uncertain-model approach, the nominal open-loop
transfer function L0 must maintain a distance 1/Ms + |K|ρ
to −1, where the second term is in place to ensure robustness
over P̃ , rather than only P0.

There is no efficient way to directly solve (4) or (5),
as neither are convex programs (due to their constraints).
A conservative approach, presented in [19], is to perform
a convex relaxation. Each (non-convex) circle constraint is
linearized, i.e., replaced by a half planee. This corresponds
to exchanging |L+ 1|, where L = Lk in (4) and L = L0 in
(5) for

<
(

(L+ 1)∗

|L+ 1|
(L+ 1)

)
, (6)

where < denotes the real part and ∗ is the conjugate operator.
The convex relaxation honors constraints, since each cir-

cle is entirely contained in its corresponding half plane.
However, the method is conservative for the same reason.
This conservatism can be reduced by using the convex-
concave procedure [20], which consists in iterating between
performing the linearization (6) of (4) or (5) and solving the
relaxed problem. (The solution of the last iteration is used
to compute L for the next iteration.). It was demonstrated in
[15] that the class of PID synthesis problems considered in
this paper can be efficiently solved using the convex-concave
procedure.

The procedure can be initialized with the zero controller
[kp ki kd] = [0 0 0], since it fulfils the constraints for any
asymptotically stable plant.

While there are no guarantees of reaching the true opti-
mum, the convex-concave procedure monotonically increases

eNote that each ω ∈ Ω generates an individual half plane, see Figure 5.



the objective in its iterations, while honoring constraints. This
makes it safe (in terms of robustness constraints), while the
added iteration step makes it perform at least as well (in
terms of objective) as a controller resulting from [19].

IV. DESIGN CASE STUDY

A. Background

The aforementioned control system has undergone a clin-
ical trial on 102 children in the age group 6–17 years
[12]. The controller tuning was slightly modified during this
trial, based on the 47 patient models Pall, reported in [10],
to arrive at the final PID parameter vector [kp ki kd] =
[1.1 0.0061 66], see [14]f. The above numeric values assume
negative feedback in continuous time, u [µg/kg/min] (infused
drug mass per patient weight per unit time), time scaled in
seconds, and that E is scaled as described in Section II-A.
(The actual control system is sampled at 5 s, but we will
utilize continuous time to facilitate readability.)

A second scheduled trial comprises children with an
(inclusive) upper age limit of 10 years. For this trial, a
controller tuning, based on the subset P of the 47 available
models, originating from children in the target age group,
was requested. The new tuning was obtained using the
proposed (automatic) method, in favor of (manual) loop
shaping.

B. Controller Synthesis

Out of the 47 models in Pall, 20 were in the 6–10 (limits
included)years age group. One outlierg was removed, and the
set P of the 19 remaining models was used for synthesis.

For the design example, we will ensure robustness by
Ms = 1.80. For readers with a background in industrial con-
trol, this may seem like a large value. However, conservatism
has been added at several stages along the design process:

• The patient models are inherently conservative, by pur-
poseful over-estimation of their time delay [10].

• Ms = 1.80 corresponds to worst case (and not e.g.
mean) robustness over the uncertain model P̃ .

• The uncertainty model ∆ was conservatively chosen,
see Section IV-B.2 and Figure 6.

For the same model set, the maximum sensitivity modulus
obtained with the previously evaluated controller was Ms =
1.84.

In all examples to follow, solving convex programs was
done using CVXh. Execution times refer to ones obtained
using a normal desktop computer.

fIn [14], controller parameters were reported in parallel form:
[K Ti Td] = [−6.6m/100 180 60], assuming plant gain scaled by a
factor −1/100 · 60 min/h/(10 mg/ml) ·m, where m [kg] is the mass of
the patient.

gModel number 27 reported in [10] was removed. Occlusion of the
propofol delivery line was registered during induction, and the resulting
model had a very long estimated time delay.

hCVX: a Matlab-based convex modeling framework, www.cvxr.com.
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Fig. 6: Nyquist curve of the open-loop transfer with the resulting
controllers. Model set approach: individual Lk = PkK1 (thin
black), uncertain-model approach: nominal L0 = P0K1 (thick
black), individual Lk = PkK2 (dark grey), and uncertain L̃ = P̃K2

(light grey). The dark grey disc needs to be avoided to fulfill the
robustness constraint.

1) Model Set Approach: The solution of (4) took
19.5 s,and yielded the controller K1 = FMC1, where C1

has parameter values [kp ki kd] = [1.4 0.0074 88]. The
corresponding open-loop Nyquist curves for Lk = PkK1

are shown as thin black lines in Figure 6. The distribution
of ‖S‖∞ over P is shown (light grey) in Figure 7.

2) Uncertain-Model Approach: The uncertain model P̃
was computed from P , by solving #(Ω) = 1024 instances
of (5). Each instance had #(P ) = 19 inequality constraints.
The computation to obtain P̃ took 58 s. The actual design,
i.e. solving the convex relaxation of (5) with #(Ω) = 1024
inequality constraints took 3.4 s.

The resulting controller K2 = FMC2 has C2

parametrized by [kp ki kd] = [1.3 0.0056 73]. The resulting
nominal open-loop Nyquist curve L0 = P0K2 (thick black),
its uncertain counterpart L̃ = P̃K2 (light grey), and the
individual open loops Lk = PkK2 (dark grey) are shown
in Figure 6.

As indicated by Figure 6, the uncertainty characterization
introduces conservatism. While the design was carried out
with the constraint Ms = 1.80, the resulting worst case
over P was ‖S‖∞ = 1.68 (with corresponding mean value
‖S‖∞ = 1.34). The distribution of ‖S‖∞ over P is shown
(dark grey) in Figure 7.

A Bode plot comparison between the final tuning used in
the [12], [14] (dashed black) and the new designs K1 (solid
black) and K2 (grey), is shown in Figure 8.

C. Simulation Results

The resulting controllers were evaluated on the 19 individ-
ual nonlinear models (see Section IV-B). Figure 9 shows how
the controllers transition the simulated patients from their
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Fig. 8: Bode plots for K1 (black) and K2 (grey). The dashed black
line correspond to the final tuning from [14]. (The unit for ω is
rad/s.)

respective awake states E = E0, to the setpoint E = 0.5.
This transition is termed induction of anesthesia and the pro-
tocol (superimposed bolus) used for the simulations shown
in Figure 9 is described in [12]. Black lines correspond to the
model set design K1, grey lines correspond to the uncertain
model design K2.

The maintenance phase begins upon induction of anesthe-
sia. During this phase, it is the role of the controller to keep
E steady, in the presence of disturbances. The most notable
disturbance is caused by surgical stimulation. It decreases E,
and is typically modeled as as an additive output disturbance
acting on the output of the PKPD model.

An output disturbance step of magnitude ∆E = −0.1
was issued at t = 0 s, with simulations initiated at the
equilibrium corresponding to E = 0.5. As is customary in
many control contexts, we assume that the disturbance step
response gives a fair assessment of the system’s disturbance
attenuation ability.

The outcome of these simulations are shown in Figure 10,
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Fig. 9: Simulated induction of anesthesia, from E = E0 to E =
0.5. Black and grey lines correspond to the model set and uncertain
model designs K1 and K2, respectively.

with line colors according to Figure 9. Although the control
signals shown in Figure 9b and Figure 10b do not saturate,
it is advisable to use an integrator anti-windup scheme in a
clinical implementation, as was done in e.g. [14].

V. DISCUSSION

This paper proposes the use of the convex-concave proce-
dure to obtain parameters for PID controllers, to be used
in closed-loop controlled anesthesia. Feasibility has been
demonstrated through a simulation case study, and a clinical
trial of a controller obtained using the proposed method is
currently scheduled.

The proposed method has several advantages over the
manual loop shaping strategy used previously in [14]. It is en-
tirely automatic, honors user-specified robustness constraints
and maximizes an objective directly linked to disturbance
attenuation performance.

Two versions of the synthesis method were proposed: the
model set approach of Section IV-B.1, and the uncertain
model approach of Section IV-B.2. Key differences between
these approaches are briefly discussed below.

The uncertain model approach, with unstructured uncer-
tainty computes by solving (2), adds conservatism, as can
be seen by comparing the thin black lines and light grey
area in Figure 6. The amount of conservatism added at a
specific frequency is determined by the spread in frequency
response of the design model set P , as illustrated in Figure 4.
A related aspect, seen in Figure 3, is that model uncertainty is
large for small ω (near the steady state), but small throughout
the phase range critical for robust design. This is a direct
consequence of the experimental conditions under which data
for identification of P was collected [10].
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Fig. 10: Simulated disturbance rejection during maintenance of
anesthesia. Black and grey lines correspond to the model set and
uncertain model designs K1 and K2, respectively.

We have seen that the computation of controller parame-
ters is fast (time scale of seconds), while it is more expensive
(time scale of minutes) to compute the uncertain model
P̃ . It can, however, be noted that P̃ only needs to be
computed once, upon which it can be used to solve several
instances of the synthesis problem (to balance the trade-
off between robustness and performance). Furthermore, the
uncertain model approach results in constant time synthesis,
regardless of the number of models used to generate the
uncertain model P̃ .

Which approach to choose depends on whether the extra
conservatism introduced by the uncertain model P̃ is desired,
in combination with the number of elements of Ω and P .
For the relatively small design example, with #(P ) = 19,
presented in this paper, the time difference is not a critical
design factor. However, scenarios where P consists of a
large number of models, for which several designs are to be
evaluated, would benefit from the uncertain model approach.

There is a close similarity between the controller presented
in [14] and the herein proposed designs K1 and K2. This
similarity is seen both in the frequency response shown
Figure 8 and in the simulation outcomes shown in Figure 9
and Figure 10. It indicates that the controller used in [12]
is close to optimal, in the sense considered in this paper. It
also indicates that the methods proposed in this paper can
be used to obtain clinically feasible controllers.

Finally, it can be noted that the constraint level Ms can
be used to shift the trade-off between robustness and perfor-
mance. That is, faster disturbance attenuation is possible, but
it comes at the cost of decreased robustness to inter-patient
variability.

REFERENCES

[1] T. Zikov, S. Bibian, D. G., H. M., and C. Ries, “Quantifying cortical
activity during general anesthesia using wavelet analysis,” IEEE Trans.
Biomed. Eng., vol. 53, no. 4, pp. 617–632, 2006.

[2] J. Rinehart and C. Canales, “Closed-loop pharmacology in anesthesia
and critical care: Benefits and limitations,” International Anesthesiol-
ogy Clinics, vol. 53, no. 3, pp. 91–101, 2015.

[3] G. D. Puri, P. J. Mathew, I. Biswas, A. Dutta, J. Sood, S. Gombar,
S. Palta, M. Tsering, P. L. Gautam, A. Jayant, M. D. Morup, et al.,
“A multicenter evaluation of a closed-loop anesthesia delivery system:
A randomized controlled trial.” Anesthesia and analgesia, 2015.

[4] N. Liu, T. Chazot, S. Hamada, A. Landai, N. Biochut, C. Dussaussoy,
B. Trillat, L. Beyond, E. Samain, D. I. Sessler, and M. Dischler,
“Closedloop coadministration of propofol and remifentanil guided
by bispectral index: A randomized multicenter study,” Anesthesia &
Analgesia, vol. 112, no. 3, pp. 546–557, 2011.

[5] N. Liu, T. Chazot, A. Genty, A. Landais, A. Restoux, K. McGee, P.-A.
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