
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Online Horizon Selection in Receding Horizon Temporal Logic Planning

Raman, Vasumathi; Fält, Mattias; Wongpiromsarn, Tichakorn; Murray, Richard M.

Published in:
, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

DOI:
10.1109/IROS.2015.7353864

2015

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Raman, V., Fält, M., Wongpiromsarn, T., & Murray, R. M. (2015). Online Horizon Selection in Receding Horizon
Temporal Logic Planning. In , 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (pp. 3493-3499). IEEE - Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/IROS.2015.7353864

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/IROS.2015.7353864
https://portal.research.lu.se/en/publications/82159bcf-1a72-43eb-a376-bf58fc3942da
https://doi.org/10.1109/IROS.2015.7353864

Online Horizon Selection in Receding Horizon Temporal Logic Planning

Vasumathi Raman1 and Mattias Fält2 and Tichakorn Wongpiromsarn3 and Richard M. Murray1

Abstract— Temporal logics have proven effective for correct-
by-construction synthesis of controllers for a wide range of
robotic applications. Receding horizon frameworks mitigate
the computational intractability of reactive synthesis for tem-
poral logic, but have thus far been limited by pursuing a
single sequence of short horizon problems to the goal. We
propose a receding horizon algorithm for reactive synthesis
that automatically determines a path to the currently pursued
goal at runtime, responding as needed to nondeterministic
environment behavior. This is achieved by allowing each short
horizon to have multiple local goals, and determining which
local goal to pursue based on the current global goal, the
currently perceived environment and a pre-computed invariant
dependent on the global goal. We demonstrate the utility
of this additional flexibility in grant-response tasks, using
a search-and-rescue example. Moreover, we show that these
goal-dependent invariants mitigate the conservativeness of the
receding horizon approach.

I. INTRODUCTION

Temporal logics have proved an effective formalism for
specifying, verifying and synthesizing behaviors of a variety
of hybrid systems. Algorithms for temporal logic synthesis
enable automated construction of discrete supervisory con-
trollers satisfying intricate temporal sequencing properties;
these discrete controllers have been successfully used to
construct hybrid controllers for several domains including
robotics [6], [9], aircraft power systems [14] and smart
buildings [16].

Linear Temporal Logic (LTL) has been shown to be an
expressive specification language for correct-by-construction
controller synthesis for robotics. This is due in part to the
existence of efficient algorithms for the Generalized Reac-
tivity (GR(1)) fragment of LTL, based on finding a winning
strategy in a two player game between the controlled robotic
system and uncontrolled environment. However, scalability
is still a challenge, as these methods scale exponentially in
the number of variables in the domain.

Receding horizon control is a common approach to bat-
tling the curse of dimensionality in control problems, and
has proven effective not only in terms of complexity, but
also in robustness with respect to exogenous disturbances and
modeling uncertainties [13]. The approach involves iterative,

*The first author is supported by TerraSwarm, one of six centers of
STARnet, a Semiconductor Research Corporation program sponsored by
MARCO and DARPA.

1V. Raman and R. M. Murray are with the Cal-
ifornia Institute of Technology, Pasadena, CA, USA
vasu@caltech.edu,murray@cds.caltech.edu

2Mattias Fält is with Automatic Control LTH, Lund University, Box 118,
SE-221 00 Lund, Sweden faldt.mattias@gmail.com

3Tichakorn Wongpiromsarn is with the Thailand Center of Excellence
for Life Sciences, Bangkok, Thailand tichakorn@tcels.or.th

short horizon solutions, using the currently observed state
to compute a control strategy for some manageable time
horizon in the future. Only the first step of the computed
strategy is implemented, and new calculations are performed
on the next horizon, using the resulting observations.

A receding horizon framework was recently introduced to
mitigate the computational intractability of reactive synthesis
for temporal logic [20]. The authors propose a reactive
synthesis scheme for specifications with GR(1) goals, which
relies on partitioning the state space into a sequence of
short horizon problems, such that the global problem is
realizable if all the short horizon problems are realizable.
Realizability of the short horizon specifications is determined
symbolically, but controllers are only extracted as needed, i.e.
if and when the respective partitions are reached. A major
limitation of this approach is that it relies on user input to
provide a priori a pre-determined sequence of short horizon
problems for reaching the currently pursued global goal, and
does not allow this path to change during execution. This
places strong restrictions on the short horizon problems, as
described in Section II, and requires them to have a single
point of exit that is reachable in all adversarial environments.

We introduce a receding horizon framework that allows the
path over short horizon problems to change automatically
in response to the environment. As illustrated in Section
IV, this relieves the user of the burden of defining paths
over short horizons, and instead allows them to input just
the set of possible next short horizon problems for each
short horizon problem. Each short horizon problem now has
multiple exits, and the controller can choose one in response
to the environment at runtime. Our synthesis algorithm
automatically provides this reactive strategy for switching
between short horizon problems, such that the global goal
is achieved. As we show in Section IV, another highly
advantageous consequence of this approach is that it allows
the short horizon problems to be smaller in practice.

In addition to the approach in [20], which we here extend,
there have been a few other attempts at using receding
horizon control in the context of reactive synthesis from
temporal logic specifications. For example, the authors in
[8] also propose a receding horizon scheme for specifi-
cations in syntactically co-safe LTL. In [5], the authors
consider full LTL but use an automata-based approach,
involving potentially expensive computations of a finite
state abstraction of the system and a Büchi automaton for
the specification. We circumvent these expensive operations
using symbolic techniques where possible during synthesis.
The authors of [5] also restrict their attention to systems
with non-adversarial, deterministic environments, whereas

we synthesize controllers for systems that are reactive to
a (possibly adversarially) changing environment. The au-
thors in [16], [17] propose a receding horizon solution for
controller synthesis from a large class of signal temporal
logic specifications, for both deterministic and adversarial
environments. Their approach is restricted to systems whose
dynamics can be encoded as mixed integer linear constraints,
and uses mathematical programming to synthesize control
inputs. Also relevant to this work is that presented in [12],
where the authors separate feasibility from controller synthe-
sis, and use metrics on the underlying continuous space to
produce short-term strategies that can be chained together to
provide globally correct behavior. However, their approach
still requires computing the set of winning states for the
global specification, whereas we split the realizability tests
into short horizon computations.
Contributions: Our contribution is a reactive synthesis al-
gorithm based on receding horizon control that advances the
state of the art for specifications in the GR(1) fragment:

● We define short horizon problems with multiple local
goals, and choose between local goals at runtime in
response to the environment, such that the global goals
are satisfied. We claim as a key novelty this automatic
reactive switching between short horizon problems in
order to satisfy high-level requirements.

● The reactive strategy for switching between short hori-
zon problems is derived by computing a goal-dependent
invariant, which provides initial conditions on the en-
vironment for which each short horizon problem is
winning (i.e. can reach the goal).

● We demonstrate the utility of this added flexibility in
grant-response tasks, via a search-and-rescue example.

II. PRELIMINARIES

We address the problem of designing control software for a
robot operating in a potentially adversarial, a priori uncertain
environment: we will guarantee that the robot satisfies its
specification for any valid initial state and any admissible
environment.

We assume that the controlled state of the robot evolves
according to either a discrete-time, time-invariant dynamics

s(t + 1) = f(s(t), u(t)), u(t) ∈ U, ∀T ∈ N

or a continuous-time, time-invariant dynamics

ṡ(t) = f(s(t), u(t)), u(t) ∈ U, ∀T ≥ 0

where U is the set of admissible control inputs and s(t), u(t)
are the controlled state and control signal at time t.

In order to apply formal synthesis techniques to continuous
systems like the above, we require a discrete abstraction of
the problem, and a formal specification language.

A. Discrete Abstraction

When designing control software for a physical system
such as the one described above, which typically has in-
finitely many states, a common approach is to construct a
finite transition system that serves as a discrete abstraction

of the system model. This abstraction must be such that the
infinite-state system can simulate it, i.e. any discrete plan
generated on the abstraction can be implemented on the
continuous system. See, e.g., [9], [4], [10], [19], [20], [11]
for examples of how such an abstraction can be constructed
for various types of dynamical systems.

We assume the availability of such a discrete abstraction
of the physical system, and let the system state in this
abstraction be characterized by a finite number of Boolean
variables, V = S ∪ E; here S and E are disjoint sets that
represent, respectively, the set of robot variables that are
regulated by the control protocol and the set of environment
variables whose values may change arbitrarily throughout
an execution. Given V , V ⊆ 2V is the finite set of states of
the system: a state corresponds to a truth assignment to the
variables in V . Similarly, let S and E be the sets of states
of the robot and environment, respectively.

B. Linear Temporal Logic

We use Linear Temporal Logic (LTL) as the formal
specification language.

Syntax: Given a set of atomic propositions AP , Boolean
operators for negation (¬), conjunction (∧), and disjunction
(∨), and temporal operators next (#), always (2) and
eventually (2), LTL syntax is defined recursively as:

ϕ ∶∶= π ∣ ¬ϕ ∣ ϕ ∨ ϕ ∣ #ϕ ∣ 2ϕ ∣ 2ϕ.

Semantics: LTL is interpreted over infinite sequences of
truth assignments σ ∶ N → 2AP . We say that a truth
assignment σ satisfies π ∈ AP at time t (denoted (σ, t) ⊧ π)
if π ∈ σ(t), i.e. σ assigns π to True at time t. We say
(σ, t) /⊧ π if π is assigned False at time t, i.e. π /∈ σ(t).
Note that since we equate states with truth assignments in
Section II-A, we can also write ν ⊧ π or ν /⊧ π for ν ∈ V .

The semantics of an LTL formula is defined recursively
according to the following rules

● (σ, t) ⊧ ¬ϕ iff (σ, t) /⊧ ϕ
● (σ, t) ⊧ ϕ ∧ ψ iff (σ, t) ⊧ ϕ and (σ, t) ⊧ ψ
● (σ, t) ⊧ ϕ ∨ ψ iff (σ, t) ⊧ ¬(¬ϕ ∧ ¬ψ)
● (σ, t) ⊧ #ϕ iff (σ, t + 1) ⊧ ϕ
● (σ, t) ⊧ 2ϕ iff ∃t′ ≥ t s.t (σ, t′) ⊧ ϕ
● (σ, t) ⊧ 2ϕ iff (σ, t) ⊧ ¬ 2(¬ϕ)
We omit the definition of the until operator, but the reader

is referred to [3] for the full syntax and semantics of LTL.
When interpreted over a discrete-time finite abstraction of

the system, LTL provides an expressive language for speci-
fying properties typically studied in the robotics and hybrid
systems control domains, including safety and stability, as
well as useful generalizations; see e.g. [20] for a discussion
of the types of such properties expressible in LTL.

C. Reactive Synthesis

An LTL formula ϕ over V is realizable if there exists a
finite state strategy that, for every finite sequence of truth
assignments to E, provides an assignment to S such that
every resulting infinite sequence of truth assignments to V
satisfies ϕ. Such a strategy exists if and only if there is a

deterministic finite state automaton that encodes it [15], and
the synthesis problem is to find such a finite state automaton
when one exists.

Definition 1. A finite state automaton is a tuple A =
(V, V0, δ) where

● V0 ⊆ V is a set of initial states.
● δ ∶ V × E → V is the transition relation.

An automaton is deterministic if, for every v ∈ V and
every e ∈ E , ∣δ(v, e)∣ = 1. Unless mentioned explicitly,
all automata considered in this work are deterministic. Let
δ(v) = {δ(v, e) ∣ e ∈ E} denote the set of possible successor
states of state v.

Definition 2. Given an LTL formula ϕ, deterministic au-
tomaton Aϕ = (V, V0, δ) realizes ϕ if ∀σ = v0v1v2... ∈ Vω
such that v0 ∈ V0 and vi+1 ∈ δ(vi), σ ⊧ ϕ.

D. Generalized Reactivity(1)

Reactive synthesis for a general LTL specification is
2EXPTIME complete [15], but the authors of [2] present a
tractable algorithm for the Generalized Reactivity(1) (GR(1))
fragment, which admits specifications of the form

⎛
⎝
ψinit ∧ 2ψe ∧ ⋀

i∈If
2 2ψf,i

⎞
⎠
⇒

⎛
⎝
2ψs ∧ ⋀

i∈Ig
2 2ψg,i

⎞
⎠
,

(1)
where

1) ψinit, ψf,i and ψg,i are Boolean formulas over vari-
ables in V : 2 2ψf,i and 2 2ψg,i constitute fairness
assumptions on the environment and goal conditions for
the system, respectively;

2) ψe is a Boolean formula over variables V and expres-
sions of the form #ψte where ψte is a Boolean formula
over variables in E, and describes assumptions on the
environment transitions; and

3) ψs is a Boolean formula over variables in V and
expressions of the form #ψts where ψts is a Boolean
formula over variables in V , and describes constraints
on the controlled transitions.

We call the left hand side of this expression the assump-
tions, and the right side the guarantees.

Problem 1 (Reactive Control Protocol Synthesis). Given a
system V and specification ϕ of the form (1), synthesize a
control protocol that generates a sequence of control signals
u[0], u[1], ... ∈ Uω to the plant to ensure that starting from
any initial condition, ϕ is satisfied for any sequence of
environment states.

III. RECEDING HORIZON SYNTHESIS

The main barrier to applying off-the-shelf reactive syn-
thesis algorithms such as the one in [2] to solve Problem
1 is the curse of dimensionality. In the worst case, the
resulting finite state machine contains all possible states of
the system – this scales exponentially in the number of

system variables, making the direct application of reactive
synthesis impractical for even moderately-sized problems.

The usual framing of the reactive synthesis problem re-
quires planning for all possible environment behaviors. How-
ever, we observe in many applications that plans are local,
in the sense that it is not necessary to plan with respect to
environment behaviors that do not affect the current portion
of the plan. By incorporating new information about the
environment at runtime, strategy extraction can be delayed
until it is needed. Inspired by receding horizon control, the
authors in [20] presented a strategy for reducing computation
by solving a sequence of smaller problems, each with a
specific initial condition. Then, at runtime, the automaton
is extracted for the currently-observed initial condition, and
implemented before switching to the next small problem.

A major shortcoming of this approach is the need for
the sequence of small problems to be pre-determined, and
moreover for each of these smaller problems to be realizable
in any admissible environment. This also restricts the path
to the global goal to a single path through smaller problems,
reducing robustness to vagaries of the environment. In this
section, we present an approach that enables this path to
change in a reactive fashion. This has two consequences:

1) reactive switching between short horizon problems en-
ables these problems themselves to be smaller, since
each problem can deal with a smaller set of possible
environments, and

2) goal-dependent invariants are less conservative than a
single global invariant, without loss of soundness.

A. Online Selection of Short Horizons

Denote the index set of goals as Ig = {1, . . . , n} for
some natural number n, and define a corresponding ordered
set (1, . . . , n), which represents the sequence in which the
progress properties ψg,1, . . . , ψg,n will be satisfied.

For each i ∈ Ig , suppose there exists a collection of subsets
Ci = {Wi

0, . . . ,Wi
p} such that Wi

j ⊆ V for all j ∈ {0, . . . , p}1,
and a Boolean formula Φi over variables in V , such that
(a) Wi

0 ∪Wi
1 ∪ . . . ∪Wi

p = V ,
(b) ψinit ⇒ Φ1 is a tautology, i.e., any state ν ∈ V that

satisfies ψinit also satisfies Φ1,
(c) ψg,i is satisfied for any ν ∈ Wi

0, i.e., once the system
reaches any state in Wi

0, it accomplishes the goal corre-
sponding to ψg,i,

(d) ((ν ∈ Wi
0) ∧ Φi) ⇒ Φ(i+1) mod n is a tautology, and

(e) Pi ∶= (Ci,⪯ψg,i) is a partially ordered set defined such
that Wi

0 ≺ψg,i Wi
j ,∀j /= 0.

For each i ∈ Ig , we define a short-horizon mapping F i ∶
Ci → 2C

i

such that Wi
k ≺ψg,i Wi

j for all Wi
k ∈ F i(Wi

j) such
that j /= 0. Informally, every Wi

k ∈ F i(Wi
j) is closer to the

goal ψg,i than Wi
j for j > 0.

Formally, with the above definitions of Φi, Wi
0, . . . ,Wi

p

and F i, we define a short-horizon specification Ψi
j associated

with Wi
j for each i ∈ Ig and j ∈ {0, . . . , p} as

1For the simplicity of the presentation, we assume that there is a common
p for all i ∈ Ig . In general, p depends on i.

Ψi
j ≜ ((ν ∈ Wi

j) ∧ Φi ∧ 2ψe ∧ ⋀k∈If 2 2ψf,k)
⇒ (2ψs ∧ 2⋁Wi

k
∈Fi(Wi

j)(ν ∈ W
i
k) ∧ 2Φi) ,

(2)
where ν denotes the state of the system and ψe, ψf,k and
ψs are defined as in (1). We call Φi the invariant associated
with goal i ∈ Ig .

We assume that each Ψi
j is realizable. An automaton

Aij realizing Ψi
j provides a strategy for going from a state

ν ∈ Wi
j to a state ν′ ∈ Wi

k for some Wi
k ∈ F i(Wi

j) while
satisfying the safety requirements 2ψs and maintaining the
invariant Φi associated with goal i ∈ Ig .

Remark 1. It is possible to further reduce the size of short
horizon problems by eliminating locally redundant variables
and subformulas, as in [7].
Receding Horizon Strategy: For each i ∈ Ig and j ∈
{0, . . . , p}, construct an automaton Aij realizing Ψi

j . Let ν
denote the current state of the system. The receding horizon
strategy is described in Algorithm 1.

Algorithm 1: Receding horizon strategy

1 i := 1;
2 while 1 do
3 I ∶= {̃i ∈ {1, . . . , n} ∣ ν ∈ W ĩ

0};
4 while I = Ig do
5 Make a transition according to automaton Ai0;
6 I ∶= {̃i ∈ {1, . . . , n} ∣ ν ∈ W ĩ

0};

7 while i ∈ I do
8 i ∶= (i + 1) mod n;

9 Find the index j such that ν ∈ Wi
j ;

10 while ν /∈ Wi
0 do

11 K ∶= {k ∈ {0, . . . , p} ∣ ν ∈ Wi
k, Wi

k ∈ F i(Wi
j)};

12 while K = ∅ do
13 Make a transition according to automaton Aij ;
14 K ∶= {k ∈ {0, . . . , p} ∣ ν ∈ Wi

k, Wi
k ∈ F i(Wi

j)};

15 j ∶= k for some k ∈K;

Algorithm 1 ensures that the goals corresponding to
ψg,1, . . . , ψg,n are accomplished in the predefined order.
Once the goal corresponding to ψg,n is reached the process
repeats, ensuring that for each i ∈ Ig , a state satisfying ψg,i
is visited infinitely often in the execution. Here i represents
the index of the goal that the system is currently trying to
reach, and j represents the index of automaton Aij that the
system is currently executing.

We now explain Algorithm 1 in more detail.
● Line 3 updates I to be the set of indices of goals

satisfied by the current state ν. Note that some states
may satisfy multiple goals.

● Lines 4–8 consider the case where the system reaches
the current goal (i ∈ I). If all the goals are satisfied
by the current state (I = Ig), we execute automaton Ai0

until the system reaches a state that does not satisfy
some goal (Line 4-6). Then, Line 7-8 updates i to the
index of the next goal for the system to reach.

● Line 9 updates the index j of automaton Aij that the
system is currently executing. Since for any i ∈ Ig , the
union ofWi

0, . . . ,Wi
p is the set V of all the states, given

any ν ∈ V , there exist j ∈ {0, . . . , p} such that ν ∈ Wi
j .

● In Lines 10–15, the system works through the partial
order ({Wi

0, . . . ,Wi
p},⪯ψg,i) associated with the current

goal until it reaches the current goal (ν ∈ Wi
0). Lines 11–

15 are where the system executes the current automaton
Aij until it reaches a state ν′ ∈ Wi

k for some Wi
k ∈

F i(Wi
j). Note that Wi

k ≺ψg,i W i
j , so ν′ is a state

that is “closer” to the current goal per the partial order
({Wi

0, . . . ,Wi
p},⪯ψg,i). Once ν′ ∈ Wi

k is reached, the
system starts executing automaton Aik. This process is
repeated until the current goal is reached.

Theorem 1. Suppose Ψi
j is realizable for each i ∈ Ig , j ∈

{0, . . . , p}. Then the receding horizon strategy ensures that
the system is correct with respect to the specification (1), i.e.,
any execution of the system satisfies equation (1).

The proof appears in the technical report available at [18].

Remark 2. It is possible to relax the requirement that a
sequence (1, . . . , n) of goals is pre-defined. For example,
we can define a set FG ⊆ Ig of indices of possible first
goals (rather than having to start with goal 1 as described
earlier). In addition, for each goal i ∈ Ig , we can define a
set NGi of possible next goals (rather than having (i + 1)
mod n as the only possible next goal). In place of condition
(b) above, we then require that ψinit ⇒ Φj is a tautology for
all j ∈ FG. Furthermore, condition (d) is modified to ensure
that when the current goal is reached, the invariant associated
with every possible next goal is satisfied, i.e., ((ν ∈ Wi

0) ∧
Φi) ⇒ Φj is a tautology for all i ∈ Ig and j ∈ NGi. At
runtime, the first goal out of all the possible choices in FG
and the next goal out of all the possible choices in NGi can
be picked using an arbitrary heuristic. A sufficient condition
to ensure that all goals are reached infinitely often is that
each goal is visited within one cycle (in any arbitrary order).

B. Implementation

In order to apply the approach described in Section III-
A, we require as input for every progress property ψg,i the
collection Ci, partial order ≺ψg,i and short-horizon mapping
F i. We then synthesize a collection of automata Aij and use
Algorithm 1 to switch between them during execution.

Note that the invariant Φi can be computed using the
counterexample-driven method described in [20], which is
sound but not complete; a complete method remains an open
question. We now describe a method of constructing F i
given a collection Ci, and discuss in detail the continuous
execution paradigm, including ramifications of the environ-
ment assumptions being violated while executing some Aij .

For each goal index i ∈ Ig , we first construct a graph
Gi = (V,E) with V = Ci. For each Wi

j and each W ⊆ Ci,

we determine realizability of the specification in (2) with
F(Wi

j) = W; we can do this in an efficient manner by not
considering W for which we have already considered W ′ ⊆
W , since the latter represents a strictly weaker specification.
If this specification is realizable, we add to E the edge
(Wi

j ,Wi
k) for each Wi

k ∈ W . We define Wi
k ≺ψg,i Wi

j if
there is a shorter path to Wi

0 in G from Wi
j than from Wi

k.
Finally, we set

F(Wi
j) = {Wi

k ∈ Ci s.t (Wi
j ,Wi

k) ∈ E and Wi
k ≺ψg,i Wi

j}.

If F(Wi
j) = ∅ for someWi

j ∈ G, we recompute the invariant
Φi. Otherwise, after processing all goal indices, we can apply
the approach in Section III-A using the constructed F .

Remark 3. For many practical applications, it is also pos-
sible to automatically construct Ci; e.g., in an autonomous
driving scenario, each Wi

j can be a short road segment.
It remains to define an execution engine for implementing

a transition in automaton Aij in Line 13 (or Ai0 in Line 5) of
Algorithm 1. The continuous execution should simulate the
discrete transition, as defined formally in, e.g. [1]. Examples
of computing such a control signal from the discrete plan
can be found in, e.g., [20], [4], [10]. The execution engine
maintains the current discrete state ν ∈ V and the next
discrete state ν′ ∈ V on the selected transition. At each
time step, it receives the currently observed (continuous)
system state s — note that this state should correspond to the
abstract state ν. It determines a control signal that ensures
that the continuous execution of the system according to the
dynamics in Section II eventually reaches a continuous state
corresponding to ν′, while remaining exclusively in states
that correspond to {ν, ν′}. Since the continuous controller
simulates the abstract plan, it follows from Theorem 1 that
the continuous execution is guaranteed to preserve correct-
ness of the system.

Note that for each short-horizon problem specified by a
formula of the form (2), the corresponding automaton Aij
is guaranteed to satisfy the guarantee part if and only if
the environment and initial condition respect the assumption
part. If one of these assumptions is violated, the specification
in (2) is trivially satisfied. However, when we identify that
an assumption has been violated, we can sometimes modify
the solution to deal with the new assumptions.

We first remove Wi
j from the graph G and check that

F(Wi
k) ≠ ∅ for all remaining Wi

k ∈ Ci. If so, we can still
use the synthesized automata Aik for k ≠ j, as long as the
initial condition in the global specification, ψinit does not
include states in Wi

j . This is in contrast to the approach in
[20], which appeals to a higher-level planner to return a new
sequence of short horizons problems when the environment
assumptions are violated. We do not always have to re-
compute F if one of the short horizon problems fails, since
we may have other paths to the goal via other realizable short
horizon problems. This results in fewer calls to the higher-
level planner that generates F . Note that if we have already
passed the very first state of the global execution, we can still
safely remove Wi

j even if it is part of the initial condition

ψinit. However, if any states in Wi
j satisfy ψinit, we cannot

directly reuse the solution for subsequent executions since
we have to be able to start execution from Wi

j ; in this case,
we need to start afresh with a new partition of the states Ci.

IV. EXAMPLE

We demonstrate our framework using an example moti-
vated by search-and-rescue missions.

Example 1. Consider the workspace depicted in Figure 1,
where the floor plan is divided into 16 rooms. A subject,
who needs to be rescued, can exist in any room. The robot’s
task is to patrol the rooms for subjects, i.e. to “rescue” any
subjects by going to the corresponding room.

Note that the robot can globally sense, e.g., a radio signal
indicating a person needing to be rescued. We also make
the assumption that when the robot enters the room, it
automatically rescues the subject.

Let Ri,j ∈ S be a Boolean variable that is true if the
robot is in the room at the intersection of row i and column
j. Similarly, Si,j ∈ E is true if the subject is in the
corresponding room. The specification can now be expressed
as follows:

● Always eventually rescue every subject: 2 2 gi,j =
2 2(Si,j ⇒ Ri,j).

● Assume that the subject, once seen, will not disappear
until it is rescued (2(Si,j ∧¬Ri,j) ⇒ #Si,j)), and will
disappear when rescued (2 ((Ri,j ∧ Si,j) ⇒ #¬Si,j)).

● Assume that there is only one subject at a time:
∀i, j, k, l ∈ [1,4], (k, l) ≠ (i, j), 2(Si,j ⇒ ¬Sk,l)

● A finer discretization of each room, splitting the rooms
into several sub-locations and introducing additional
dynamics, would make the motivation for a receding
horizon approach more apparent. However, this has
been omitted here for a simplified presentation, and we
assume that the robot (directly) moves from a room to
any adjacent room: 2 (Ri,j ⇒ #N(Ri,j)) , where

N(Ri,j) = ⋁
(k,l)∈{(i,j),(i±1,j),(i,j±1)}∩[1,4]2

Rk,l.

● We allow for the possibility that the robot will not be
able to transition between two rooms, possibly because
of the presence of obstacles in the originating room. We
denote the transition between two adjacent rooms being
blocked by B(i,j),(k,l) ∈ S:

2 (B(i,j),(k,l) ⇒ ¬((Ri,j ∧#Rk,l) ∨ (Rk,l ∧#Ri,j))) ,

where Rk,l ∈ N(Ri,j),Ri,j ≠ Rk,l. We allow at
most one transition between two adjacent rooms to be
blocked:

⋀
i,j,k,l,i′,j′,k′,l′∈[1,4],
(i,j,k,l)≠(i′,j′,k′l′)

2(B(i,j),(k,l) ⇒ ¬B(i′,j′).(k′,l′)),

and assume that the blocked transitions will not change
while an already-detected subject has not yet been

rescued:

2 (⋁
i,j∈[1,4]

(Si,j⋀¬Ri,j)) ⇒

(⋀
i′,j′,k′,l′∈[1,4],
(k′,l′)≠(i′,j′)

(B(i′,j′),(k′,l′) ↔ #B(i′,j′),(k′,l′))).

● Finally, we require that a subject is always rescued
within a maximum of 6 steps after it appears (2(T <
6)), where the time T is counted as:

2((⋀i,j∈[1,4](Ri,j ∨ ¬Si,j) ⇒ (#T = 0)),
2(⋁i,j∈[1,4](Si,j ∧ ¬Ri,j) ⇒ (#T = (T + 1)).

Note that although we have limited our presentation so
far to Boolean variable domains, finite integer domains
such as that of T are straightforward to implement using
a binary encoding, with a number of Boolean variables
logarithmic in the size of the domain.

The specifications can be summarized as

ϕes = ⋀
i,j∈[1,4]

2(Si,j⋀¬Ri,j) ⇒ #Si,j)

⋀
i,j∈[1,4]

2(Ri,j⋀Si,j) ⇒ #¬Si,j

⋀ 2((⋀i,j∈[1,4](Ri,j ∨ ¬Si,j)
⇒ (#T = 0)),

⋀ 2(⋁i,j∈[1,4](Si,j⋀¬Ri,j)
⇒ (#T = (T + 1))),

⋀
i,j,k,l∈[1,4],
i′,j′,k′,l′∈[1,4]
(i,j)≠(i′,j′),
(k,l)≠(k′l′)

2(B(i,j),(k,l) ⇒ ¬B(i′,j′),(k′,l′))

⋀
i′,j′,k′,l′∈[1,4],
(k′,l′)≠(i′,j′)

2 ((⋁
i,j∈[1,4]

(Si,j⋀¬Ri,j))

⇒ (B(i′,j′),(k′,l′) ↔ #B(i′,j′),(k′,l′)))
⋀

i,j,k,l∈[1,4],
(k,l)≠(i,j)

2(Si,j ⇒ ¬Sk,l)

ϕss = ⋀
i,j∈[1,4]

2 (Ri,j ⇒ #N(Ri,j))

⋀
i,j∈[1,4]

2(B(i,j),(k,l) ⇒

¬((Ri,j⋀#Rk,l) ∨ (Rk,l⋀#Ri,j)))
⋀

i,j,k,l∈[1,4],
(k,l)≠(i,j)

2(Ri,j ⇒ ¬Rk,l)

⋀ 2(T < 6),

ϕsp = ⋀
i,j∈[1,4]

2 2(Si,j ⇒ Ri,j),

which together with the initial condition

ϕinit = (¬ ⋁
i,j∈[1,4]

Si,j) ∧ (T = 0),

defines the full specification as ψ = (ϕinit∧ϕes) ⇒ (ϕss∧ϕsp).

R1,1

R2,2R2,1

R3,1 R3,2 R3,3

R4,1 R4,2 R4,3 R4,4

R3,4

R2,3 R2,4

R1,2 R1,3 R1,4

Fig. 1. Illustration of the mapping F used in solving the example. Each
arrow from Ri,j to Rk,l represents that Wk,l ∈ F(Wi,j). The different
colors indicate the ordering ≺ψg1,1

.

We now demonstrate the applicability of our framework
on this problem. We focus on the case where we want to
fulfill g1,1, and the subject is in the corresponding room, i.e.
S1,1 is true. We define the sets C1 = {W1,1,W1,2,W2,1...}
as:

● W1,1 = {ν ∈ V ∣ ν ⊧ R1,1 ∨ ¬S1,1}
● Wi,j = {ν ∈ V ∣ ν ⊧ Ri,j ∧ S1,1}, for (i, j) ≠ (1,1).
We then define F ∶ W → 2W (illustrated in Figure 1) as

follows, with mappings for j > i defined symmetrically:
● F(W1,1) = W1,1

● F(W2,1) = F(W2,2) = W1,1

● F(W3,1) = F(W3,2) = {W2,1,W2,2}
● F(W3,3) = W2,2

● F(W4,1) = F(W4,2) = {W3,1,W3,2}
● F(W4,3)={W3,2,W3,1}
● F(W4,4) = W3,3

Finally, define Wi,j ≺ψ1,1 Wk,l ⇔ max(i, j) < max(k, l).
It is now possible to systematically find a sufficient invari-

ant. We start at the goal W1,1 and iterate backwards though
the mappings, finding sufficient conditions for reachability
for each of the sets Wi,j .

● For the last set W1,1, we need ΦW1,1 = (T < 6) to
satisfy all conditions.

● To ensure that we can reach W1,1 with ΦW1,1 from
W2,1, we need an additional condition: ΦW2,1 = (T <
5 ∧ ¬B(2,1),(1,1)) ∨ (T < 3).

● From W2,2, we can reach W1,1 with ΦW1,1 if ΦW2,2 =
(T < 4)

● For W3,1, we have two options: either go to W2,1 with
ΦW2,1 or to W2,1 with ΦW2,2 . This is achievable if
ΦW3,1 = (T < 2) ∨ (T < 4 ∧ ¬B(3,1),(2,1)).

By continuing this iteration, we compute the invariant

Φg1,1 = ⋀
i,j

((ν ∈ Wi,j) ⇒ ΦWi,j),

which guarantees realizability of the short horizon prob-
lems as well as ϕinit ⇒ Φg1,1 . The same idea can be used for
the other goals gi,j to show realizability for the full problem.
It should be noted that the robot is allowed to move when
setting T = 0, which has the consequence that it is possible
to reach a target two rooms away at T = 1. This sometimes is
important for achieving the task within the time bound of 6

1 2 3 4

4

3

2

1

Fig. 2. Example of resulting path with and without blocking. Dashed
black lines indicates edges between relevant parts of the mapping. Red
zigzag indicates that the blue solution is blocked, necessitating the purple
solution. The shaded green area (rows 3-4, cols 2-3), shows a sufficient
planning horizon for the starting point in cell (4,3) using the proposed
approach, whereas the yellow area represents the original partition without
the flexibility afforded by online horizon selection.

in this example. We could restrict motion when resetting the
timer if we wanted to be more conservative in this respect.

Figure 2 depicts a path resulting from applying our ap-
proach to the above problem, for two different environments:
one in which the face between cells (1,1) and (2,1) is
blocked, and one in which is is not: the choice between the
two paths is automatic.

A key advantage of using the framework in Section III is
that we can keep the sets in C1 relatively small compared to
the full problem size (compare the green and yellow shaded
areas in Fig. 2). The final high-level path taken through short
horizon problems is chosen online, and can therefore depend
on the current state of the environment. If we restricted
∣F(Wi,j)∣ = 1 as in [20], we would be required to group all
rooms at a comparable distance from the goal in the same set
Wi,j to allow for different paths to the goal. In Figure 2, this
corresponds to all rooms with the same shade of grey being
part of the same short horizon. Doing so enlarges the the
short horizon problems and fails to fully exploit the benefits
of the receding horizon framework. This effect is magnified
when the number of rooms is very large, and when the
robot motion planning problem within a room is non-trivial.
Using the approach we have presented, we can divide the
set of rooms into smaller subsets, and choose a subsequent
short horizon based on the observed environment. Figure 2
demonstrates this advantage: the short-horizon problems are
all of size 4 rooms or smaller, where previously the largest
problem was of size 7.

V. DISCUSSION

We have presented a reactive synthesis framework based
on receding horizon control, reducing the synthesis problem
over a large domain into a set of much smaller problems.
We significantly improve the robustness of the approach,
such that instead of providing a single path to each goal,
the user can provide a set of possibilities, and our algorithm
will automatically determine a feasible path at runtime. We
illustrated the power of our approach with an example, and
discussed how our method allows the short horizon problems

to be smaller in practice than previous attempts at receding
horizon control for temporal logic.

REFERENCES

[1] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete
abstractions of hybrid systems. Proceedings of the IEEE, 88(7):971–
984, 2000.

[2] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar.
Synthesis of reactive(1) designs. J. Comput. Syst. Sci., 78(3):911–938,
2012.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT
Press, 1999.

[4] D. C. Conner, H. Kress-Gazit, H. Choset, A. A. Rizzi, and G. J.
Pappas. Valet parking without a valet. In 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, October 29 - November
2, 2007, San Diego, California, USA, pages 572–577, 2007.

[5] X. C. Ding, M. Lazar, and C. Belta. LTL receding horizon control for
finite deterministic systems. Automatica, 50(2):399–408, 2014.

[6] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas. Temporal
logic motion planning for dynamic robots. Automatica, 45(2):343 –
352, 2009.

[7] M. Fält, V. Raman, and R. M. Murray. Variable elimination for scalable
receding horizon temporal logic. In American Control Conference,
ACC 2015, Chicago, IL, USA, July 1-3, 2015, 2015.

[8] E. A. Gol and M. Lazar. Temporal logic model predictive control
for discrete-time systems. In Proceedings of the 16th International
Conference on Hybrid Systems: Computation and Control, HSCC
2013, April 8-11, 2013, Philadelphia, PA, USA, pages 343–352, 2013.

[9] M. Kloetzer and C. Belta. A fully automated framework for control of
linear systems from temporal logic specifications. IEEE Transaction
on Automatic Control, 53(1):287–297, 2008.

[10] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Where’s waldo?
sensor-based temporal logic motion planning. In 2007 IEEE Inter-
national Conference on Robotics and Automation, 10-14 April 2007,
Roma, Italy, pages 3116–3121, 2007.

[11] J. Liu and N. Ozay. Abstraction, discretization, and robustness in
temporal logic control of dynamical systems. In 17th International
Conference on Hybrid Systems: Computation and Control (part of CPS
Week), HSCC’14, Berlin, Germany, April 15-17, 2014, pages 293–302,
2014.

[12] S. C. Livingston and R. M. Murray. Just-in-time synthesis for reactive
motion planning with temporal logic. In 2013 IEEE International
Conference on Robotics and Automation, Karlsruhe, Germany, May
6-10, 2013, pages 5048–5053, 2013.

[13] R. M. Murray, J. Hauser, A. Jadbabaie, M. B. Milam, N. Petit, W. B.
Dunbar, and R. Franz. Online control customization via optimization-
based control. In In Software-Enabled Control: Information Technol-
ogy for Dynamical Systems, pages 149–174. Wiley-Interscience, 2002.

[14] P. Nuzzo, H. Xu, N. Ozay, J. B. Finn, A. L. Sangiovanni-Vincentelli,
R. M. Murray, A. Donzé, and S. A. Seshia. A contract-based
methodology for aircraft electric power system design. IEEE Access,
2:1–25, 2014.

[15] A. Pnueli and R. Rosner. On the synthesis of a reactive module.
In Conference Record of the Sixteenth Annual ACM Symposium on
Principles of Programming Languages, Austin, Texas, USA, January
11-13, 1989, pages 179–190, 1989.

[16] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. L. Sangiovanni-
Vincentelli, and S. A. Seshia. Model predictive control with signal
temporal logic specifications. In 53rd IEEE Conference on Decision
and Control, CDC 2014, Los Angeles, CA, USA, December 15-17,
2014, pages 81–87, 2014.

[17] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia.
Reactive synthesis from signal temporal logic specifications. In
Proceedings of the 18th International Conference on Hybrid Systems:
Computation and Control, HSCC’15, Seattle, WA, USA, April 14-16,
2015, pages 239–248, 2015.

[18] V. Raman, M. Fält, T. Wongpiromsarn, and R. M. Murray. Online hori-
zon selection in receding horizon temporal logic planning. Technical
report, California Institute of Technology, 2015. Full version: http:
//resolver.caltech.edu/CaltechCDSTR:2015.001.

[19] P. Tabuada and G. J. Pappas. Linear time logic control of discrete-
time linear systems. IEEE Trans. Automat. Contr., 51(12):1862–1877,
2006.

[20] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon
temporal logic planning. IEEE Trans. Automat. Contr., 57(11):2817–
2830, 2012.

