
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

New Perspectives on Braided Convolutional Codes

Costello, Jr., Daniel J.; Lentmaier, Michael; Mitchell, David G. M.

Published in:
Proc. 9th International Symposium on Turbo Codes & Iterative Information Processing (ISTC)

DOI:
10.1109/ISTC.2016.7593145

2016

Link to publication

Citation for published version (APA):
Costello, Jr., D. J., Lentmaier, M., & Mitchell, D. G. M. (2016). New Perspectives on Braided Convolutional
Codes. In Proc. 9th International Symposium on Turbo Codes & Iterative Information Processing (ISTC)
https://doi.org/10.1109/ISTC.2016.7593145

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ISTC.2016.7593145
https://portal.research.lu.se/en/publications/4a07f7b3-152c-459a-8821-ecccb0d6754b
https://doi.org/10.1109/ISTC.2016.7593145

New Perspectives on Braided Convolutional Codes

Daniel J. Costello, Jr.⇤, Michael Lentmaier†, and David G. M. Mitchell‡

⇤Dept. of Electrical Engineering, University of Notre Dame, Notre Dame, USA, costello.2@nd.edu
†Dept. of Electrical and Information Technology, Lund University, Lund, Sweden, Michael.Lentmaier@eit.lth.se

‡Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, USA, dgmm@nmsu.edu

Abstract—Braided convolutional codes (BCCs) are a type of

parallel-concatenated convolutional code in which the parity

outputs of one component encoder are fed back and used as

inputs to the other component encoder at the succeeding time

unit. In this paper, we review the published results on BCCs

that have appeared in the literature over the past ten years and

present a unified view of BCCs in the context of other types of

turbo-like codes. We also include some recent results on iterative

decoding thresholds for BCCs, weight enumerators and distance

growth rates, window decoding for low latency operation, and

rate-compatible BCCs for high-rate applications.

I. INTRODUCTION

Braided codes [1] were originally introduced as a convo-
lutional counterpart of product codes [2]. Their characteristic
feature is that the parity symbols of one component encoder
are used as information symbols of the other and vice versa.
As a result, both information and parity symbols are protected
by both component codes in a symmetric fashion. In this
paper we consider as an example braided convolutional codes
(BCCs) [3], [4] of rate R = 1/3, which are defined by means
of two systematic component convolutional encoders of rate
Rcc = 2/3 and three permutors of length N . In particular,
our focus will be on blockwise BCCs, for which an encoder
diagram is shown in Fig. 1. The parity symbols created by
one encoder at time t pass a delay of one block, DN , and a
permutor before entering the other encoder at time t + 1.

Two other variations of BCCs have been considered in
[4]. Tightly BCCs are obtained if we reduce the blocksize
to N = 1 and the permutations become obsolete. This
construction is deterministic and simple but performs worse
due to the absence of permutors, which improve both the
sparseness and the strength of the codes at the cost of an
increased delay. Alternatively, we can set the blocksize to
N = 1 but replace the block permutors with convolutional
permutors that span several time instants. The strength and
sparseness of the resulting bitwise BCCs are then determined
by the maximum delay, or the overall constraint length M ,
of the convolutional permutors. Tavares et al. have introduced
a variation of BCCs called braided protograph convolutional
codes [5], [6]. Here the parity-check matrix of tightly BCCs is
used to define the protograph of an LDPC convolutional code.
Since the structure of the component encoders is maintained
in the protograph, a trellis-based iterative decoding is possible.

Blockwise BCCs have the advantage that both the encoding
and decoding can be performed in a fashion similar to turbo
codes [7], [8], for which efficient hardware implementations

P(0)
t

P(1)
t

P(2)
t

DN

DN

Encoder A

Encoder B

ut
ut

v(1)
t

v(2)
t

�t �U
t

�L
t

CU

CL

Fig. 1: Blockwise BCCs: turbo-like codes with parity feedback (R = 1/3).

already exist and can be reused. It can be seen from the
encoder diagram in Fig. 1 that BCCs are closely related to
turbo codes. If the parity feedback is removed completely, the
encoder is equivalent to parallel concatenated codes (PCCs).
On the other hand, if the parity feedback is removed from one
of the decoders only and the delay DN from the other, the
resulting encoder is equivalent to serial concatenated codes
(SCCs) with systematic encoding. This shows that BCCs
combine some features of both PCCs and SCCs.

It follows from the delay in the parity feedback of the BCC
encoder that blocks which are encoded at consecutive time
instants are interconnected. This is illustrated in Fig. 2 by
depicting a chain of encoders that operate at different time
instants. Because of the interconnection between blocks, we
can see that BCCs inherently form a class of spatially coupled
(SC) codes.

For comparing BCCs with PCCs and SCCs it sometimes
can be useful to define an uncoupled equivalent of BCCs.
This can be achieved by removing the delay in the encoder
depicted in Fig. 1. Since the feedback now occurs without a
delay, a straightforward encoding by means of the component
encoders is no longer possible. But the code is still well-
defined by the trellis constraints that the code symbols have
to satisfy. The resulting uncoupled BCCs can be interpreted as
a tailbiting version of the original BCCs. In the same way as
we can generate a convolutional code from a block code by
means of spatial coupling, we can obtain a block code from
a convolutional code by means of tailbiting.

CU

CU

CU CU

CU CU

CL CL CL

CL CL CL

�(U,1)
t+1

�(U,2)
t+1

�(L,2)
t+1

�(L,1)
t+1�(L,1)

t�1

�(L,2)
t�1

�(U,2)
t�1

�(U,1)
t�1 �(U,1)

t

�(U,2)
t

�(L,2)
t

�(L,1)
t

�L
t

�U
t�U

t�1

�L
t�1 �L

t+1

�U
t+1

�t+1

�t+1

�t

�t

�t�1

�t�1

vU
t�1

vL
t�1

vL
t�1

vU
t�1

vU
t+1

vU
t+1

vL
t+1

vL
t+1

vL
t

vL
t

vU
t

vU
t

ut

ut

ut
ut

ut+1

ut+1
ut+1

ut+1ut�1

ut�1

ut�1
ut�1

tt � 1 t + 1

(a)

(b)

Fig. 2: Encoder chain of blockwise BCCs with inherent coupled structure.

(a)

N

N

N
N

N
2N

(a) (b) (c) (d)

vL

vU
vU vU

vL vL

vO

vI

u

u

u u
�

TU

TU
TU

TL

TL TL

TO

TI

utut�1 ut+1

vU
t+1

vL
t+1vL

t�1

vU
t�1 vU

t

vL
t

N

N

N

N

N

N

TU
TU TU

TL TL
TL

(b)

Fig. 3: Compact graph representation of (a) BCCs and (b) their uncoupled
equivalent.

II. ITERATIVE DECODING THRESHOLDS

Turbo-like codes, like LDPC codes, can be described by
means of factor graphs. Such a representation is useful for
describing the exchange of messages in an iterative belief
propagation (BP) decoder, as well as for the corresponding
density evolution analysis. Instead of a conventional factor
graph, we use a compact graph representation as introduced
by Moloudi et al. in [9]. The compact graph of a BCC and
its uncoupled equivalent is shown in Fig. 3. Each block of
symbols is represented by a variable node and each trellis by
a factor node. A permutor is indicated by a short line that
crosses an edge in the graph.

From the graphs in Fig. 3 we can see the analogy between
BCCs and SC-LDPC codes. A spatially coupled code can be
obtained by repeating the graph of an uncoupled code and
spreading some edges across m+1 neighboring blocks, where
m denotes the coupling memory. In the same way it is possible
to apply spatial coupling to PCCs and SCCs [10]. While the
original BCCs shown in Fig. 3(a) have coupling memory m =
1, a generalization to m > 1 is possible [11].

Table I shows the thresholds of SC-PCCs, SC-SCCs, and
BCCs, resulting from a density evolution analysis for the BEC
[9]. All component encoders have memory mcc = 2, and the
overall code rate R = 1/2 is achieved by puncturing. The
BCC Type-I ensemble is the original ensemble as introduced
in [4], but generalized to larger coupling memories. The BCC

TABLE I: Thresholds for SC-PCCs, SC-SCCs, and BCCs [9]

Ensemble Rate "BP "MAP ✏SC
m = 1 m = 3 m = 5

SC-PCC 1/2 0.4606 0.4689 0.4689 0.4689 0.4689
SC-SCC 1/2 0.3594 0.4981 0.4708 0.4975 0.4981

BCC Type-I 1/2 0.3013 0.4993 0.4932 0.4980 0.4988
BCC Type-II 1/2 0.3013 0.4993 0.4988 0.4993 0.4993

Type-II ensemble is a modified version of BCCs, introduced
in [11], in which not only the parity symbols but also the
information symbols are coupled.

These results show that, without spatial coupling, PCCs
have the best BP threshold "BP, BCCs have the best MAP
threshold "MAP, and the thresholds of SCCs lie in between. We
can conclude from this observation that optimizing component
codes for iterative decoding does not necessarily optimize the
strength of the resulting overall code. With spatial coupling
the BP thresholds ✏SC improve and, for large enough cou-
pling memory, threshold saturation to the MAP threshold is
observed, which also can be proved analytically [9]. For Type-
II BCCs, with coupling of information symbols, the thresholds
improve faster with m. Furthermore, we can see that for any
given m the coupled BP thresholds ✏SC of BCCs are superior
to PCCs or SCCs.

Without spatial coupling, it is well known that PCCs yield
good BP thresholds but poor error floors, while SCCs show
low error floors but poor BP thresholds. For this reason it is
interesting to analyze the distance properties of BCCs.

III. DISTANCE PROPERTIES

Consider the ensemble of uncoupled BCCs, defined by the
compact graph in Fig. 3(b) and a given pair of component
encoders. The finite block-length ensemble weight enumerator
function (WEF) of this ensemble has been derived in [12],
considering uniform random permutors. A lower bound on
the minimum distance of codes in the ensemble, which can
be derived from the average WEF, is shown in Fig. 4(a)
as function of the information block length N . For a given
parameter ↵ < 1, a fraction ↵ of the codes in the ensemble
must have a minimum distance that is larger or equal to this
bound. The results show that the minimum distance of BCCs
grows linearly with the block length, unlike PCCs or SCCs.
For larger values of ↵ the bound gets only slightly weaker,

Input Block Length
100 200 300 400 500 600

M
in
im

u
m

D
is
ta
n
ce

20

40

60

80

100

120

140

160

180

200

α = 0
α = 0.5
α = 0.95

Permutor Overall Constraint Length
0 200 400 600 800

F
re
e
D
is
ta
n
ce

L
ow

er
B
o
u
n
d

0

100

200

300

400

500

600

700

800

mcc = 4

mcc = 3

mcc = 2

1000

(a) (b)

Fig. 4: (a) Lower bound on the minimum distance for the uncoupled BCC
ensemble as a function of the input block length N (mcc = 2) [12], and (b)
lower bounds on the free distance of bitwise BCCs with different component
encoders [4].

which indicates that a majority of codes in the ensemble
have large minimum distance. It is also shown in [12] that
every valid code sequence of a coupled code can be mapped
into a codeword of equal or lower weight in the uncoupled
equivalent code. It follows that the free distance of BCCs is
lower bounded by the minimum distance of the uncoupled
code and thus grows linearly with the permutor size according
to the bound in Fig. 4(a).

An expurgated ensemble can be defined by excluding the
fraction 1 � ↵ of codes with lowest minimum distance. The
error floor of this expurgated ensemble can be estimated by
the truncated union bound. It is demonstrated in [12] that very
low error floors can be achieved this way for moderate block
lengths.

A lower bound on the free distance dfree was also derived
in the paper by Zhang et al. [4] for an ensemble of bitwise
BCCs, with block length N = 1 and convolutional permutors
of constraint length M . The analysis of this ensemble was
simplified by using the concept of a Markov permutor, a
statistical device first introduced in [13] to analyze the dis-
tance properties of LDPC convolutional codes. Since these
bitwise BCCs are convolutional codes, the relevant measure
of distance growth is the free distance to constraint length
ratio �free = dfree/M .

Using this model, the authors were able to numerically
calculate a bound on dfree as a function of M for constraint
lengths as large as M = 1000 for R = 1/3 BCCs with
Rcc = 2/3 component encoders with memory mcc = 2, 3, and
4, i.e., for 4-state, 8-state, and 16-state component encoders,
respectively. The results are shown in Fig. 4(b), where we
note that, like the linear growth of dmin with N for uncoupled
BCCs, dfree is observed to grow linearly with M for coupled
BCCs. The resulting free distance growth rates, along with
the generator matrices of the component encoders (in octal
notation), are given in Table II. It is interesting to note that
these growth rates are approximately half of the asymptotic
growth rate �free = 1.3028 of the general ensemble of all rate
R = 1/3 convolutional codes [14]. In other words, with the

TABLE II: Free distance growth rates for rate R = 1/3 bitwise BCCs with
different component encoders [4].

Component encoder memory Generator matrix Asymptotic ratio �free

mcc = 2

✓
1 0 4/7
0 1 5/7

◆
0.6069

mcc = 3

✓
1 0 17/15
0 1 13/15

◆
0.7230

mcc = 4

✓
1 0 25/35
0 1 23/35

◆
0.7341

use of very simple component encoders and correspondingly
low-complexity decoders, BCCs are roughly half as strong
as convolutional codes with arbitrarily large encoding and
decoding complexity. This result suggests again that BCCs
will perform very well in the error floor, thus circumventing
a weakness of conventional PCCs.

IV. WINDOWED DECODING OF BCCS

Due to the convolutional structure of BCCs, both encoding
and decoding can be performed in a continuous fashion. By
means of window decoding the performance, latency, storage
and computational complexity can be made independent of the
number of blocks in the coupled sequence.

In the paper by Zhang et al. [4], a pipeline decoder archi-
tecture was proposed, for which a predefined number I of de-
coding iterations can be performed in parallel by independent
identical processors. This set of processors operates within a
window of w = I blocks, as illustrated in Fig. 5. When a new
block with time index t + w � 1 is received, it enters the first
processor at the right hand side of the decoding window. Then
each processor performs a single round of forward-backward
BCJR decoding [15] on the two component codes and passes
the results to the next processor. The leftmost block with time
index t has now completed all I iterations and thus leaves the
decoding window, which is shifted one block to the right. The
N information symbols of this decoded block are called the
target symbols.

The results of this pipeline decoder can be shown to be
equivalent to a conventional decoder that operates on the entire
sequence of blocks using a flooding schedule with I decoding
iterations. After an initial delay of I blocks, decoded blocks
are produced continuously, making such an arrangement well
suited for streaming applications. Very high decoding speeds
are feasible, since each processor performs a single iteration
only and the processors operate in parallel.

On the other hand, if a large number of iterations is required
to obtain the desired level of performance, the initial delay
becomes large, which can cause problems in delay-constrained
applications. Also, since the pipeline architecture fixes the
number of iterations, stopping rules cannot be applied to
the BCJR decoders, which are often desirable for reducing
computational complexity. Finally, it can be observed that a
flooding schedule is not well-suited for decoding SC codes,
for which other window decoding schedules turn out to be
more efficient [17], [18].

To overcome these limitations of the pipeline decoder, Zhu
et al. [16], [19] recently introduced a sliding window decoder

Channel
LLRs

Decoder 2

N target symbols at time t
Block t Block t + 1 Block t - 1+ w

Decoder 1 Decoder 2Decoder 1 Decoder 2Decoder 1 Decoder 2Decoder 1

Decoder 2 Decoder 1 Decoder 2 Decoder 1 Decoder 2 Decoder 1 Decoder 2 Decoder 1

...

...

...

...

...

...

...

Fig. 5: Continuous decoding of BCCs via pipeline decoding (w = I) [4] or sliding window decoding [16].

architecture for BCCs, analogous to the sliding window decod-
ing methods that have been employed to decode SC LDPC
codes [20], [21], [22]. Briefly, the sliding window decoder
concept allows low-latency operation with negligible perfor-
mance loss, the use of stopping rules to limit computational
complexity, and the ability to traverse the decoding window in
both a forward and backward direction, resulting in improved
performance compared to pipeline decoding. Like with the
pipeline decoder, in decoding the block received at time t, the
window contains the blocks received at times t, t + 1, . . . , t +
w � 1, as shown in Fig. 5. The essential difference is that
now the window size w is chosen independently of I and
the decoders within the window instead perform more than a
single iteration according to some schedule before the window
moves forward. Different uniform and non-uniform decoding
schedules for SC-LDPC codes have been investigated in [18].

Broadly speaking, a decoding schedule for BCCs consists
of doing I1 turbo, or vertical, iterations on the block at time t,
during which messages on the N information bits in that block
are passed between the two component decoders at time t,
then passing the resulting messages on the parity bits forward
and doing I1 vertical iterations on the block at time t + 1,
and continuing until I1 vertical iterations are performed on
the most recently received block at time t + w � 1.1 This
process is then repeated in the backward direction, with soft
LLRs on parity bits being passed back through the 2w BCJR
decoders in the window, until the block at time unit t is reached
again. This round trip of decoding is referred to as a horizontal
iteration. After some number I2 of horizontal iterations, the
N target symbols are decoded, a new block is received, and
the window shifts forward to the next position, where the set
of target symbols for the block at time t + 1 will be decoded.

Various decoding schedules have been proposed in [19]. It
turns out that the most computationally efficient schedules per-
form a small number of vertical iterations, usually I1 = 1, and
a larger number of horizontal iterations, typically 5  I2  20.
Also, schedules that include some horizontal iterations that
don’t span the entire window, but instead are concentrated
on the blocks closest to the target symbol block, are found

1For simplicity we assume the same number of vertical iterations are
performed per block, but more complex schedules can also consider varying
the number of vertical iterations performed on each block.

Decoding latency (bits) ×10
4

0 2 4 6 8 10 12

R
eq
u
ir
ed

E
b
/N

0
(d
B
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N = 8000, w = 2, 3, 4, 5
N = 3000, w = 2, 3, 4, 5, 6, 7
N = 1000, w = 2, 3, 4, 6, 8, 10, 14
N = 500, w = 2, 3, 4, 5, 6, 8, 10, 12, 14
N = 100, w = 4, 6, 8, 10, 12, 14, 16, 24, 50

Fig. 6: Required Eb/N0 to achieve a BER of 10�5 for rate R = 1/3 BCCs
with window decoding as a function of decoding latency [19].

to result in the best performance/complexity tradeoffs, where
computational complexity is measured in terms of the total
number of turbo (vertical) iterations required to decode a set
of target symbols. Stopping rules, analogous to the kind of
stopping rules used in standard turbo decoding, have been
shown to result in further reductions in complexity with almost
no loss in performance [19].

In Fig. 6, we plot the signal-to-noise ratio (SNR), measured
in terms of Eb/N0, needed to achieve a bit-error rate (BER)
of 10�5 on the binary-input additive white Gaussian noise
(BIAWGN) channel for rate R = 1/3 coupled blockwise
BCCs with iterative sliding window BCJR decoding as a
function of decoding latency.2 The decoding latency is given
by

⌧ = 3Nw, (1)

which represents the total number of symbols (information
and parity) occupying the window at any given time. Results

2The results presented here were obtained by simulating frames of 50
blocks, each containing N information bits, with one added block for frame
termination. Thus there is a slight rate loss associated with the BCC results.
However, termination is not necessary, and essentially the same results can
be obtained running the decoder in a continuous fashion.

are given for a wide range of block sizes, from very short
(N = 100) to quite long (N = 8000). From the figure, we see
that the performance improves with block size, as we would
expect. We also see that, particularly for large block sizes, the
window size w does not need to be large in order to achieve
the best performance. For example, for N = 8000, w = 3
is sufficient, since the performance improves only slightly for
larger w. For short blocks, however, larger window sizes are
needed, since the base turbo code is weak. In this case, more
blocks must be included in the decoding window to achieve the
best performance. For example, for N = 100, the performance
continues to improve with w up until about w = 14.

V. PUNCTURING OF BCCS

In recent years, several varieties of braided codes have be-
come popular choices for optical communication applications,
which require high code rates and low error floors. The braided
BCH codes proposed in [23] and the staircase codes introduced
in [24], [25] are two examples that employ the concept of
braided block codes. Because of their turbo-like structure,
BCCs do not lend themselves naturally to high rates. Using
puncturing of low rate BCCs up to higher rates to obtain a
set of rate-compatible BCCs has recently been shown to yield
surprisingly good results, however [16], [19]. Here we briefly
review some of those results.

Considering the rate R = 1/3 coupled blockwise BCC with
N = 8000 as the mother code, periodic puncturing patterns
can be applied to the parity sequences to produce code rates
of R = 1/2 and R = 2/3. Simulation results on the BIAWGN
channel are shown in Fig. 7, where the BER performance of
the rate-compatible BCCs with window decoding is compared
both to the Shannon limit and the finite-length bound of
Polyanskiy et al. [26]. The window size was w = 3, the
decoding schedule used I1 = 1 and I2 = 20, and the decoding
latencies for rates 1/3, 1/2, and 2/3 were 72, 000, 48, 000, and
36, 000, respectively. At a BER of 10�5, the rate 1/3, 1/2, and
2/3 rate-compatible codes perform about 0.56dB, 0.58dB, and
0.62dB away from the Shannon limit, respectively, and they
show no visible sign of an error floor down to a BER of 10�8.
We also see that, at a BER of 10�8, the rate-compatible codes
are less than 0.5dB away from the finite-length bound.

In Fig. 8, we compare the performance of a BCC, a
turbo code, and a SC LDPC code, all with the same rate
R = 1/2 and decoding latency ⌧ = 48, 000.3 The BCC code
was obtained by puncturing the rate R = 1/3 BCC mother
code with 4-state, Rcc = 2/3 component codes, the turbo
code was obtained by puncturing the rate R = 1/3 turbo
code with 8-state, Rcc = 1/2 component codes used in the
CDMA 2000 standard and a randomly chosen permutor, and
the SC LDPC code was randomly constructed based on a
(3, 6)-regular protograph [27]. We observe that, for the same
decoding latency ⌧ = 48, 000 bits, the coupled blockwise BCC
outperforms the SC LDPC code by about 0.3dB at a BER of

3Since each of the code simulations was performed by terminating long
frames, the actual rate in each case was slightly less than 1/2.

Eb/N0 (dB)
-1 -0.5 0 0.5 1 1.5 2

B
E
R

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R = 1/3 SBC code
R = 1/2 SBC code
R = 2/3 SBC code

Fig. 7: Window decoding BER performance of rate-compatible BCCs with
obtained by periodic puncturing [19]. Also shown for comparison are the
corresponding finite length bounds (dashed lines) [26] and the Shannon limit
(solid lines).

Eb/N0 (dB)
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

B
E
R

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R = 0.495 SBC code
R = 0.499 Turbo code
R = 0.49 LDPC convolutional code

Fig. 8: BER performance of a BCC, a turbo code, and a SC LDPC code, all
with the same rate R and decoding latency [19].

10�6. Moreover, the BCC code outperforms the turbo code
by about 0.1dB and, unlike the turbo code, displays no visible
error floor. These results show that BCCs are very competitive
with other types of capacity-approaching codes even when
puncturing must be applied to achieve higher rates.

Even higher rates can be achieved by starting with a higher
rate BCC mother code [19]. For example, a rate R = 1/2
coupled blockwise BCC with two identical rate Rcc = 3/4
component encoders can be constructed by dividing each
information block of length 2N into two sub-blocks. The
sub-blocks of length N comprise two of the three inputs
to each component encoder, with the delayed and permuted
parity output from the other component encoder being the third
input. In this case, periodic puncturing of the parity sequences
produces a rate-compatible set of BCCs with rates R = 1/2,
2/3, and 3/4.

Finally, we note that the absence of any visible error floor
for the BCCs is consistent with the fact that the free distance
of coupled BCCs grows linearly with constraint length and
that coupled BCCs have relatively large free distance growth
rates, as shown in Section III. The existence of an error floor
for the turbo code, on the other hand, is due to the fact that
the minimum distance of turbo codes only grows sub-linearly
with block length.

VI. CONCLUDING REMARKS

In this paper, we presented a broad overview of the class
of braided convolutional codes and summarized some recent
advances in the field. Classical BCCs were viewed as a type of
spatially coupled code, and an uncoupled (block code) version
of BCCs, with no memory connecting successive blocks, was
introduced. The iterative decoding thresholds of BCCs were
then compared to those of conventional parallel and serially
concatenated convolutional codes and their SC counterparts,
offering insight into the relationship between BCCs and turbo
codes. A finite-length distance analysis of both uncoupled
and coupled BCCs demonstrated linear growth of minimum
(free) distance with block (constraint) length. Further, the free
distance growth rates were shown to compare favorably to the
asymptotic bounds for the entire class of convolutional codes,
thus promising good error floor performance.

Next, pipeline decoding of BCCs was reviewed, and a
recently proposed window decoding method was described
that allows low latency operation. Then puncturing was shown
to result in robustly good performance for BCCs in both the
waterfall and error floor regions of the BER curve for rates
as high as 3/4. Finally, comparisons were made between
BCCs, turbo codes, and spatially coupled LDPC codes that
demonstrate the excellent performance of BCCs for latency-
constrained applications.

ACKNOWLEDGMENT

The authors would like to thank B. Bai, A. Graell i Amat,
S. Moloudi, W. Zhang, M. Zhu, and K. Sh. Zigangirov for
their contributions to the work presented in this paper.

REFERENCES

[1] A. J. Felström, D. Truhachev, M. Lentmaier, and K. Sh. Zigangirov,
“Braided block codes,” IEEE Transactions on Information Theory,
vol. 55, no. 6, pp. 2640–2658, June 2009.

[2] P. Elias, “Error free coding,” IRE Transactions on Information Theory,
vol. 4, no. 4, pp. 29–37, Sept. 1954.

[3] W. Zhang, M. Lentmaier, D. J. Costello, Jr., and K. Zigangirov, “Braided
convolutional codes,” in Proc. IEEE International Symposium on Infor-
mation Theory, Adelaide, Australia, 2005, pp. 592–596.

[4] W. Zhang, M. Lentmaier, K. Sh. Zigangirov, and D. J. Costello, Jr.,
“Braided convolutional codes: A new class of turbo-like codes,” IEEE
Transactions on Information Theory, vol. 56, no. 1, pp. 316–331, Jan.
2010.

[5] M. B. S. Tavares, M. Lentmaier, K. Sh. Zigangirov, and G. P. Fettweis,
“LDPC convolutional codes based on braided convolutional codes,” in
Proc. IEEE International Symposium on Information Theory, Toronto,
Canada, July 2008.

[6] M. B. S. Tavares, M. Lentmaier, G. P. Fettweis, and K. Sh. Zigangirov,
“Asymptotic distance and convergence analysis of braided protograph
convolutional codes,” in Proc. Forty-sixth Annual Allerton Conference
on Communication, Control and Computing, Monticello, IL, Sept. 2008.

[7] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: turbo-codes,” in Proc. IEEE In-
ternational Conference on Communications, Geneva, Switzerland, May
1993.

[8] C. Berrou and A. Glavieux, “Near optimum error correcting coding and
decoding: turbo codes,” IEEE Transactions on Communications, vol. 44,
no. 10, pp. 1261–1271, 1996.

[9] S. Moloudi, M. Lentmaier, and A. Graell i Amat, “Spatially coupled
turbo-like codes,” submitted to the IEEE Transactions on Information
Theory, 2015. [Online]. Available: http://arxiv.org/abs/1604.07315

[10] ——, “Spatially coupled turbo codes,” in International Symposium on
Turbo Codes and Iterative Information Processing, Bremen, Germany,
Aug. 2014, pp. 82–86.

[11] M. Lentmaier, S. Moloudi, and A. Graell i Amat, “Braided convolutional
codes - a class of spatially coupled turbo-like codes,” in International
Conference on Signal Processing and Communications, Bangalore,
India, July 2014, pp. 1–5.

[12] S. Moloudi, M. Lentmaier, and A. Graell i Amat, “Finite length weight
enumerator analysis of braided convolutional codes,” in Proc. Interna-
tional Symposium on Information Theory and Its Applications, Monterey,
CA, Oct. 2016.

[13] K. Engdahl, M. Lentmaier, and K. S. Zigangirov, “On the theory of
low-density convolutional codes,” in Proceedings of the Symposium on
Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes,
Honolulu, Hawaii, June 1999, pp. 77–86.

[14] D. J. Costello, Jr., “Free distance bounds for convolutional codes,” IEEE
Transactions on Information Theory, vol. 20, no. 3, pp. 356–365, May
1974.

[15] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,” IEEE Transactions on
Information Theory, vol. 20, no. 2, pp. 284–287, Mar. 1974.

[16] M. Zhu, D. G. M. Mitchell, M. Lentmaier, D. J. Costello, and B. Bai,
“Window decoding of braided convolutional codes,” in Proc. IEEE
Information Theory Workshop, Jeju Island, Korea, Oct. 2015.

[17] M. Lentmaier, M. M. Prenda, and G. Fettweis, “Efficient message
passing scheduling for terminated LDPC convolutional codes,” in Proc.
IEEE International Symposium on Information Theory, St. Petersburg,
Russia, Aug. 2011, pp. 1826–1830.

[18] N. ul Hassan, A. E. Pusane, M. Lentmaier, G. P. Fettweis, and D. J.
Costello, Jr., “Non-uniform windowed decoding schedules for spatially
coupled codes,” in Proc. IEEE Global Communications Conference,
Atlanta, GA, Dec. 2013, pp. 1862–1867.

[19] M. Zhu, D. G. M. Mitchell, M. Lentmaier, D. J. Costello, and B. Bai,
“Braided convolutional codes with low-latency sliding window decod-
ing,” submitted to the IEEE Transactions on Communications, 2016.

[20] M. Lentmaier, A. Sridharan, K. Sh. Zigangirov, and D. J. Costello, Jr.,
“Terminated LDPC convolutional codes with thresholds close to capac-
ity,” in Proc. IEEE International Symposium on Information Theory,
Adelaide, Australia, Sept. 2005.

[21] M. Lentmaier, A. Sridharan, D. J. Costello, Jr., and K. Sh. Zigangirov,
“Iterative decoding threshold analysis for LDPC convolutional codes,”
IEEE Transactions on Information Theory, vol. 56, no. 10, pp. 5274–
5289, Oct. 2010.

[22] A. R. Iyengar, M. Papaleo, P. H. Siegel, J. K. Wolf, A. Vanelli-
Coralli, and G. E. Corazza, “Windowed decoding of protograph-based
LDPC convolutional codes over erasure channels,” IEEE Transactions
on Information Theory, vol. 58, no. 4, pp. 2303–2320, Apr. 2012.

[23] Y.-Y. Jian, H. D. Pfister, K. R. Narayanan, R. Rao, and R. Mazahreh,
“Iterative hard-decision decoding of braided BCH codes for high-speed
optical communication,” in IEEE Global Communications Conference,
Atlanta, GA, Dec. 2013, pp. 2376–2381.

[24] B. Smith, A. Farhood, A. Hunt, F. Kschischang, and J. Lodge, “Stair-
case codes: FEC for 100 Gb/s otn,” IEEE/OSA Journal of Lightwave
Technology, vol. 30, no. 1, pp. 110–117, 2012.

[25] L. Zhang and F. Kschischang, “Staircase codes with 6% to 33%
overhead,” IEEE/OSA Journal of Lightwave Technology, vol. 32, no. 10,
pp. 1999–2002, 2014.

[26] Y. Polyanskiy, H. Poor, and S. Verdu, “Channel coding rate in the finite
blocklength regime,” IEEE Transactions on Information Theory, vol. 56,
no. 5, pp. 2307–2359, May 2010.

[27] D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, Jr., “Spatially
coupled LDPC codes constructed from protographs,” IEEE Transactions
on Information Theory, vol. 61, no. 9, pp. 4866–4889, Sep. 2015.

