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Abstract	16	

The	 increasing	number	of	bacterial	 genomes	 in	 combination	with	 reproducible	17	

quantitative	 proteome	 measurements	 provides	 new	 opportunities	 to	 explore	18	

how	 genetic	 differences	 modulate	 proteome	 composition	 and	 virulence.	 It	 is	19	

challenging	 to	 combine	 genome	 and	 proteome	 data	 as	 the	 underlying	 genome	20	

influences	 the	 proteome.	We	 present	 a	 strategy	 to	 facilitate	 the	 integration	 of	21	

genome	 data	 from	 several	 genetically	 similar	 bacterial	 strains	 with	 data-22	

independent	analysis	mass	spectrometry	(DIA-MS)	for	rapid	interrogation	of	the	23	

combined	 data	 sets.	 The	 strategy	 relies	 on	 the	 construction	 of	 a	 composite	24	

genome	combining	all	genetic	data	in	a	compact	format,	which	can	accommodate	25	

the	 fusion	 with	 quantitative	 peptide	 and	 protein	 information	 determined	 via	26	

DIA-MS.	 We	 demonstrate	 the	 method	 by	 combining	 data	 sets	 from	 whole	27	

genome	 sequencing,	 shotgun	 MS	 and	 DIA-MS	 from	 34	 clinical	 isolates	 of	28	

Streptococcus	pyogenes.	The	data	structure	allows	for	fast	exploration	of	the	data	29	

showing	that	undetected	proteins	are	on	average	more	amenable	to	amino	acid	30	

substitution	 than	 expressed	 proteins.	 We	 identified	 several	 significantly	31	

differentially	expressed	proteins	between	invasive	and	non-invasive	strains.	The	32	

work	underlines	how	 integration	of	whole	genome	sequencing	with	accurately	33	

quantified	proteomes	can	further	advance	the	interpretation	of	the	relationship	34	

between	genomes,	proteomes	and	virulence.	35	

Highlights	36	

• 34	 sequenced	 genomes	 and	 corresponding	 shotgun	 and	 DIA-MS	37	

measurements	38	

• Construction	of	a	composite	genome	for	fast	data	integration	39	

• Quantitative	 DIA-MS	 of	 the	 conserved	 and	 non-conserved	 peptide	 pool	40	

across	all	strains	41	



	 3	

Significance	42	

This	 paper	 outlines	 a	 novel	 strategy	 for	 combining	 genomics	 and	 quantitative	43	

DIA-MS	 proteomics	 data.	 We	 demonstrate	 a	 DIA-MS-based	 proteogenomics	44	

strategy	 for	 quantifying	 conserved	 and	 non-conserved	 peptides	 across	 clinical	45	

isolates	of	Streptococcus	pyogenes	from	non-invasive	and	invasive	infections.	We	46	

suggest	 a	 strategy	 for	 constructing	 a	 composite	 genome	 that	 is	 optimal	 for	MS	47	

data	 integration	 and	 querying.	 The	 work	 demonstrates	 how	 biological	 insight	48	

can	be	gained	from	the	integration	of	the	different	data	types.	49	

Keywords	50	

quantitative	 mass	 spectrometry,	 proteogenomics,	 data	 integration,	 DIA,	51	

Streptococcus	pyogenes	52	

Abbreviations	53	

FDR,	 false	 discovery	 rate;	 WGS,	 whole	 genome	 sequencing;	 SNP,	 single	54	

nucleotide	polymorphism;	DIA,	data-independent	analysis;	DDA,	data-dependent	55	

acquisition	56	
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Introduction	57	

In	 proteogenomics,	 mass	 spectrometry	 (MS)-based	 proteomics	 is	 used	 as	 a	58	

supplement	 to	 genomic	 data	 by	 adding	 a	 level	 of	 information	 to	 the	59	

interpretation	of	genomic	sequences1.	In	this	context,	MS	is	particularly	relevant	60	

in	 microbiology	 where	 a	 large	 number	 of	 genomes	 are	 sequenced	 regularly1.	61	

Comparative	 genomic	 analysis	 of	 microbial	 genomes	 has	 revealed	 compelling	62	

evidence	 that	 some	 pathogens	 undergo	 rapid	 genomic	 adaption	 to	 increase	63	

fitness	 in	 their	host2.	The	 influence	of	 single	nucleotide	polymorphisms	 (SNPs)	64	

on	 the	molecular	phenotype	may	be	substantial,	 leading	 to	 increased	virulence	65	

or	 the	ability	 to	 survive	and	 thereby	cause	disease3.	Other	events	 such	as	DNA	66	

methylation4	 and	 phosphorylation5	 can	modify	 how	 the	 genome	 is	 translated,	67	

leading	to	increased	virulence.	Small	genomic	changes	can	influence	survival	and	68	

virulence	 in	 several	 ways,	 for	 example	 by	 activating/inactivating	 regulatory	69	

systems	controlling	part	of	the	proteome	expression3,	disrupting	protein-protein	70	

interactions6	 or	 by	 increasing	 or	 decreasing	 the	 affinity	 between	 transcription	71	

factors	 and	 their	 target	 promoters7.	 The	 rapid	 increase	 in	 the	 number	 of	72	

genomes	 provides	 the	 opportunity	 to	 use	 matching	 genotype	 and	 strain	 to	73	

investigate	 how	 sets	 of	 SNPs	 alter	 proteome	 homeostasis.	 However,	 matching	74	

genotype	and	strain	information	in	MS-based	proteomics	presents	considerable	75	

challenges.		76	

MS-based	 proteomics	 experiments	 rely	 on	 a	 protein	 database	 to	 provide	 the	77	

ground	 truth,	 i.e.	 information	 on	 all	 the	 possible	 tryptic	 peptides	 that	 can	 be	78	

derived	 from	 a	 given	 genome.	 The	 ideal	 protein	 database	 should	 contain	 all	79	

required	 information	 while	 remaining	 as	 small	 as	 possible.	 In	 the	 case	 of	80	

proteogenomics,	 this	 problem	 becomes	 amplified	 if	 approached	 naively	 by	81	

concatenating	the	protein	database	from	each	genome	as	it	becomes	challenging	82	

to	select	a	particular	protein	if	many	similar	proteins	exist	 in	the	database8.	On	83	

the	 other	 hand,	 searching	 each	MS	 data	 file	 against	 its	 appropriate	 genome	 is	84	

standard	procedure;	the	challenge	here	is	to	combine	the	independent	searches	85	

without	 increasing	 the	 false	discovery	rate	 (FDR)	dramatically9.	The	reason	 for	86	

the	 increase	 in	FDR	 is	 that	 the	correct	proteins	are,	 to	a	 large	extent,	 the	same	87	
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across	 the	 different	 searches,	 whereas	 false	 hits	 are	 not	 and	 will	 ultimately	88	

represent	a	larger	fraction	in	the	combined	list.	Another	related	challenge	is	the	89	

mapping	of	 all	 identified	peptides	 to	 a	 set	of	orthologous	proteins.	 For	a	 given	90	

ortholog	 there	may	 be	 peptides	 that	 are	 completely	 conserved	whereas	 other	91	

peptides	 may	 differ	 in	 one	 or	 more	 amino	 acids.	 The	 challenge	 in	 mapping	92	

identified	 peptides	 to	 a	 set	 of	 orthologs	 introduces	 problems	 with	 accurate	93	

protein	 quantification	 if	 non-conserved	 peptide	 species	 are	 included	 for	94	

quantification.	 In	 theory,	 the	 conserved	 peptide	 sequences	 can	 be	 used	 to	95	

reference	 peptides	 necessary	 for	 protein	 quantification	 whereas	 the	 non-96	

conserved	peptides	provide	an	opportunity	to	relatively	quantify	the	presence	of	97	

a	certain	protein	species	in	a	complex	mixture.	98	

In	 contrast	 to	 shotgun	MS	 and	 traditional	 database	 searches,	 DIA-MS	 provides	99	

new	 opportunities	 to	 use	 the	 differential	 degree	 of	 peptide	 conservation	 to	100	

further	explore	the	rapid	increase	in	sequenced	genomes.	DIA-MS	was	originally	101	

developed	 to	 expand	 the	detectable	dynamic	 range	and	does	not	use	 real-time	102	

ion	selection-based	precursor	scans10.	This	can	be	accomplished	by	interrogating	103	

predetermined	 m/z	 ranges	 by	 either	 fragmenting	 all	 ions	 entering	 the	 mass	104	

spectrometer11-14	 or	 by	 dividing	 the	 full	m/z	 range	 into	 fixed	 smaller	 isolation	105	

windows15-18.	 Several	 of	 the	 developed	DIA	methods	 differ	 in	 how	 subsequent	106	

data	analysis	is	performed10.	In	2012,	Gillet	et	al	showed	that	the	identification	of	107	

peptides	 from	 DIA	 experiments	 can	 be	 accomplished	 via	 spectral	 libraries	108	

constructed	 from	previously	acquired	shotgun	MS17,	nowadays	 implemented	 in	109	

search	algorithms19.	 In	general,	 the	DIA	methods	are	associated	with	 increased	110	

signal-to-noise	 ratios,	 increased	 sensitivity	 and	 increased	 specificity	 based	 on	111	

peptide	fragmentation15,	and	have	shown	improved	reproducibility	compared	to	112	

a	 data-dependent	 acquisition	 (DDA)	 counterpart20,21.	 Importantly	 for	113	

proteogenomic	 strategies,	 the	 spectral	 libraries	 can	 easily	 include	 all	 observed	114	

SNPs	 in	 a	 given	 strain	 and	 thereby	 remove	 the	 problem	 with	 large	 FASTA	115	

databases	 or	 difficulties	 with	 controlling	 FDR	 resulting	 from	 concatenating	116	

several	 individual	 searches,	 provided	 that	 the	 peptides	 are	 represented	 in	 the	117	

spectral	 library.	 Spectral	 libraries	 can	 be	 constructed	 based	 on	 the	 level	 of	118	

peptide	 conservation	 and	 this	 enables	 quantitative	 analysis	 of	 both	 conserved	119	

and	non-conserved	peptides,	which	can	be	used	to	determine	protein	abundance	120	
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or	for	quantitative	monitoring	of	specific	SNPs	across	several	strains.	In	the	work	121	

presented	 here	 we	 aimed	 at	 providing	 a	 general	 quantitative	 proteogenomics	122	

strategy	 for	exploring	the	consequences	of	genome	adaptation	at	 the	proteome	123	

level	using	 the	 important	Gram-positive	bacterium	Streptococcus	pyogenes	 as	 a	124	

model	system.		125	

S.	pyogenes	is	one	of	the	most	common	and	important	human	pathogens22,23	and	126	

is	responsible	 for	mild	diseases	such	as	pharyngitis,	erysipelas	and	impetigo	as	127	

well	 as	 severe	 diseases	 such	 as	 streptococcal	 toxic	 shock	 syndrome	 and	128	

necrotizing	 fasciitis24.	 Annually,	 S.	 pyogenes	 causes	 over	 616	 million	 cases	 of	129	

pharyngitis	 and	 111	 million	 cases	 of	 impetigo24.	 It	 encodes	 many	 well-130	

characterized	 virulence	 factors,	 including	 surface-bound	M	 protein	 and	M-like	131	

proteins,	 hyaluronic	 acid	 capsules,	 adhesins,	 surface-bound	 collagen-like	132	

proteins,	 superantigenic	 exotoxins,	 and	 numerous	 secreted	 and	 extracellular	133	

proteins25.	Antigenic	differences	in	the	hypervariable	region	of	the	M	protein	are	134	

the	basis	for	the	Lancefield	serological	classification	of	S.	pyogenes	with	over	200	135	

identified	serotypes	to	date26.	Strains	of	certain	serotypes	are	epidemiologically	136	

associated	with	particular	clinical	 syndromes	where	serotype	M1	and	M3	have	137	

frequently,	but	not	exclusively,	been	isolated	from	patients	with	severe	invasive	138	

disorders	 and	 infections	 with	 these	 serotypes	 are	 associated	 with	 increased	139	

mortality27.	 The	 extent	 to	 which	 genomic	 adaptation	 observed	 in	 invasive	 S.	140	

pyogenes	 strains	 results	 in	 altered	 proteome	 composition	 and	 increased	141	

virulence	remains	unclear.		142	

In	 this	 study,	 we	 collected	 34	 clinical	 strains	 of	 S.	 pyogenes	 serotype	 M1,	143	

sequenced	all	the	genomes	and	then	analysed	full	proteome	digests	of	all	strains	144	

with	 DDA-MS	 and	 DIA-MS.	 We	 generated	 a	 so-called	 composite	 genome	 that	145	

contains	 all	 the	 genetic	 information	 of	 the	 strains	 and	 derived	 all	 potential	146	

tryptic	 peptides	 containing	 between	7	 and	50	 amino	 acids	 that	 this	 composite	147	

genome	 could	 theoretically	 encode.	 We	 constructed	 a	 spectral	 library	 by	148	

searching	the	shotgun	MS	data	against	the	peptide	database.	The	spectral	library	149	

was	then	used	to	analyse	the	DIA-MS	data	to	generate	a	quantitative	expression	150	

matrix.	 We	 constructed	 a	 data	 structure	 that	 allowed	 us	 to	 analyse	 the	 three	151	

different	 data	 sets	 in	 light	 of	 each	 other,	 highlighting	 the	 relevance	 of	 several	152	

known	and	putative	virulence	factors.	The	proposed	workflow	can	be	extended	153	
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to	other	bacterial	 species,	demonstrating	how	DIA-MS	can	 further	 facilitate	 the	154	

interpretation	of	proteome	changes	based	on	genomic	information.	155	
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Methods	156	

Isolates	157	

Emm1	 GAS	 were	 isolated	 between	 April	 and	 May	 2012	 at	 the	 accredited	158	

diagnostic	laboratories	of	clinical	microbiology,	Division	of	Laboratory	Medicine,	159	

Lund,	Sweden.	Isolates	from	sterile	sites	were	sent	to	the	laboratories	as	part	of	160	

routine	health	care	whereas	isolates	from	throat	swabs	were	collected	as	a	part	161	

of	 a	 surveillance	 programme	 from	 selected	 geographically	 scattered	 primary	162	

care	 units	 in	 southern	 Sweden.	 Isolates	 were	 characterized	 as	 group	 A	163	

streptococci	through	agglutination	and	were	typed	through	PCR	and	sequencing	164	

essentially	as	described28.	The	modified	primers	emm	 for	5´-GCT	TAG	AAA	ATT	165	

AAA	 AAM	 MGG-3´28	 and	 CDC-R	 5´-GCA	 AGT	 TCT	 TCA	 GCT	 TGT-3´	166	

(http://www.cdc.gov/streplab/protocol-emm-type.html)	were	used.	Emm	types	167	

were	 assigned	 through	 the	 type-specific	 database	 at	168	

http://www2a.cdc.gov/ncidod/biotech/strepblast.asp.	 In	 total,	 34	 S.	 pyogenes	169	

M1	strains	were	subdivided	into	strains	responsible	for	non-invasive	conditions,	170	

in	 this	 case	 tonsillitis	 (n=18),	 and	 invasive	 conditions	 such	 as	 necrotizing	171	

fasciitis,	toxic	shock	syndrome	and/or	endomyometritis	(n=16).		172	

Whole	genome	sequencing	173	

Genomic	 DNA	 was	 extracted	 from	 the	 Streptococcus	 pyogenes	 isolates	 using	 a	174	

silica-membrane	spin	column	kit	 (Macherey-Nagel).	 In	brief,	overnight	cultures	175	

(3.5	mL)	were	harvested	by	centrifugation	at	3500	x	g,	resuspended	in	ice-cold	176	

70%	ethanol	and	incubated	at	-20	°C	for	20	minutes.	The	cell	wall	was	digested	177	

by	resuspending	the	bacteria	in	25	mM	Tris-HCl,	2	mM	EDTA,	1%	(v/v)	Triton	X-178	

100	 containing	 20	 mg/mL	 lysozyme	 and	 250	 units/mL	 mutanolysin	 (both	179	

enzymes	 from	 Sigma-Aldrich)	 followed	 by	 incubation	 at	 37	 °C	 for	 2	 hours.	180	

Genomic	DNA	was	released	from	the	bacteria	by	resuspending	the	bacteria	in	a	181	

buffer	containing	SDS	and	20	mg/mL	proteinase	K	and	overnight	 incubation	at	182	

56	 °C.	 Subsequent	 DNA	 purification	 was	 performed	 according	 to	 the	183	

manufacturer’s	 protocol	 for	 the	 silica-membrane	 spin	 column	 kit.	 Preheated	184	

elution	 buffer	 (70	 °C,	 5	mM	Tris-HCl,	 pH	 8.5)	was	 applied	 to	 the	 spin	 column	185	
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followed	 by	 incubation	 of	 the	 spin	 column	 at	 70	 °C	 for	 10	 minutes	 prior	 to	186	

elution	of	the	DNA.	The	quantity	and	quality	of	the	extracted	genomic	DNA	were	187	

assessed	 using	 agarose	 gel	 electrophoresis,	 a	microvolume	 spectrophotometer	188	

(Thermo	 Scientific)	 and	 a	 fluorescence-based	 quantification	 kit	 (Life	189	

Technologies).	 The	 purified	 genomic	 DNA	 was	 sent	 to	 GATC	 (Germany)	 for	190	

genomic	library	construction	and	sequencing	on	a	HiSeq	2000	(Illumina)	with	50	191	

bp	single	reads.	192	

Whole	genome	assembly	and	annotation	193	

Several	assemblers	were	tried,	and	based	on	comparisons	using	Quast29,	Abyss	194	

1.3.7	was	 chosen	with	 a	 kmer	 size	 of	 3930.	 This	 gave	 a	 good	 balance	 of	 a	 low	195	

number	 of	 misassemblies	 compared	 to	 the	 reference	 genome	 of	 strain	196	

MGAS5005	together	with	a	high	continuity	of	the	genome	assemblies.	Annotation	197	

was	performed	using	Prokka	1.10	with	the	rfam	option31.	198	

Sample	preparation	for	mass	spectrometry	199	

The	 clinically	 isolated	S.	pyogenes	 strains	were	 grown	overnight	 on	blood	 agar	200	

plates	 (37	 °C,	 5%	 CO2),	 after	 which	 single	 colonies	 were	 grown	 to	 mid-201	

exponential	 phase	 in	 Todd-Hewitt	 broth	 (30	 g/l)	 (Difco	 Laboratories)	202	

supplemented	 with	 yeast	 extract	 (6	 g/l)	 (Difco	 Laboratories).	 The	 cells	 were	203	

harvested	 by	 centrifugation	 and	 resuspended	 in	 50	mM	Tris-HCl	 and	 150	mM	204	

NaCl	(Medicago)	wash	buffer,	pH	7.6,	to	a	final	concentration	of	2	x	109	CFU/mL.	205	

After	several	washes	the	bacterial	pellets	were	spun	down	and	dissolved	in	ice-206	

cold	LC-grade	water	and	heat-inactivated	by	incubation	on	a	heat	block	for	5	min	207	

at	 80	 °C.	 The	 cells	 were	 transferred	 to	 lysing	 matrix	 tubes	 (Nordic	 Biolabs)	208	

containing	90	mg	of	0.1	mm	silica	beads	and	homogenized	using	a	cell	disruptor	209	

(Beadbeater,	FastPrep	96,	MP	Biomedicals).	The	cell	debris	was	removed	and	the	210	

supernatants	 were	 denaturated	 in	 10	 M	 urea	 (Sigma-Aldrich)	 and	 50	 mM	211	

ammonium	bicarbonate	(ABC)	(Fluka	Analytical),	followed	by	incubation	with	1	212	

µg	trypsin	(Sequencing	Grade	Modified	Trypsin,	Porcine,	Promega,	Madison,	WI,	213	

USA)	for	30	min	at	37	°C	for	protein	digestion.	The	samples	were	reduced	using	214	

500	mM	Tris(2-carboxyethyl)phosphine	(TCEP)	(Sigma-Aldrich)	for	60	minutes	215	

at	37	°C,	and	alkylated	with	500	mM	2-Iodoacetamide	(IAA)	(AppliChem)	for	30	216	
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min	at	 room	temperature	 in	 the	dark.	The	samples	were	diluted	 in	250	µl	100	217	

mM	 ABC	 and	 further	 digested	 with	 1	 µg	 trypsin	 (Sequencing	 Grade	 Modified	218	

Trypsin,	 Porcine,	 Promega)	 overnight.	 The	 trypsin	 was	 inactivated	 by	 adding	219	

formic	 acid	 (FA)	 until	 the	 pH	was	 2–3.	 In	 accordance	with	 the	manufacturer’s	220	

instructions,	 C18	 columns	 (Vydac	 UltraMicro	 Spin™	 Silica	 C18	 300Å	 Columns,	221	

#SUM	SS18V,	The	Nest	Group,	Inc.,	Southborough,	MA,	USA)	were	used	to	clean	222	

up,	 desalt	 and	 concentrate	 the	 peptides	 in	 the	 samples.	 The	 solvents	 were	223	

removed	in	a	SpeedVac	and	the	peptides	were	resuspended	in	50	µl	buffer	A	(2%	224	

acetonitrile,	0.2%	FA	in	LC-H20).	225	

LC-MS/MS	analysis	226	

All	 peptide	 measurements	 were	 acquired	 on	 a	 Q	 Exactive	 Plus	 mass	227	

spectrometer	 (Thermo	 Scientific)	 coupled	 to	 an	 EASY-nLC	 1000	 ultra-high	228	

pressure	 liquid	 chromatography	 system	 (Thermo	 Scientific).	 Peptides	 were	229	

trapped	on	an	Acclaim	PepMap®	100	pre-column	(Thermo	Scientific,	C18,	3	µm,	230	

100	 Å;	 ID	 75	 µm	 x	 2	 cm)	 and	 separated	 with	 a	 PepMap®	 RSLC	 EASY-Spray	231	

column	(Thermo	Scientific;	C18	2	µm,	100	Å;	ID	75	µm	x	25	cm;	heated	to	45˚	C),	232	

using	 intelligent	 flow	 control	 for	 column	 equilibration	 and	 sample	 load	 at	 800	233	

bars.	 A	 linear	 gradient	 of	 between	 5%	 and	 35%	 acetonitrile	 in	 aqueous	 0.1%	234	

formic	acid	was	run	for	120	min	at	a	flow	rate	of	300	nl/min.		235	

For	shotgun	MS,	one	full	scan	(resolution	70,000	@	200	m/z;	mass	range	400–236	

1600	m/z)	was	followed	by	15	MS/MS	scans	(resolution	17,500	@	200	m/z)	of	237	

the	most	abundant	 ion	signals	 (TOP15).	Precursor	 ions	were	 fragmented	using	238	

HCD	 at	 a	 normalized	 collision	 energy	 of	 30.	 Charge	 state	 screening	was	 set	 to	239	

reject	unassigned	or	singly	charged	ions.	The	dynamic	exclusion	time	was	set	to	240	

15	s	and	limited	to	300	entries.	AGC	was	set	to	1e6	for	both	MS	and	MS/MS	with	241	

ion	 accumulation	 times	 of	 100	 ms	 (MS)	 and	 60	 ms	 (MS/MS).	 The	 intensity	242	

threshold	for	precursor	ion	selection	was	1.7e4.	243	

For	data-independent	SWATH-like	analysis,	a	full	MS	scan	(resolution	70,000	@	244	

200	m/z;	mass	range	400–1200	m/z)	was	followed	by	32	MS/MS	fragmentation	245	

scans	 (resolution	 35,000	 @	 200	 m/z)	 using	 an	 isolation	 window	 of	 26	 m/z	246	

(including	 1	 m/z	 overlap	 between	 windows).	 The	 precursor	 ions	 within	 each	247	

isolation	 window	 were	 fragmented	 using	 high-energy	 collision-induced	248	
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dissociation	 (HCD)	 at	 a	 normalized	 collision	 energy	 of	 30.	 The	 automatic	 gain	249	

control	 (AGC)	 was	 set	 to	 1e6	 for	 both	 MS	 and	 MS/MS	 with	 ion	 accumulation	250	

times	of	100	ms	(MS)	and	120	ms	(MS/MS).		251	

All	samples	injected	contained	a	peptide	standard	for	retention	time	calibration.	252	

The	 obtained	 raw	 files	 were	 converted	 to	 mzXML	 using	 the	 software	 tool	253	

ProteoWizard32.		254	

	Database	searching	and	bioinformatics	255	

The	shotgun	MS	data	was	searched	as	described	by	Quandt	et	al33.	 In	short,	we	256	

used	X!	 Tandem34	 and	MyriMatch35	with	 a	 precursor	 ion	mass	 tolerance	 of	 30	257	

ppm	and	a	fragment	ion	mass	tolerance	of	10	ppm	allowing	no	miscleavages.	The	258	

search	 results	were	 statistically	 validated	using	Peptide	Prophet9.	 The	 spectral	259	

library	was	created36	and	the	resulting	TraML	file	was	used	to	analyse	the	DIA-260	

MS	 data	 as	 described	 by	 Röst	 et	 al19.	 Both	 WGS	 and	 MS	 data	 were	 stored	 in	261	

openBIS37	and	processing	related	to	MS	was	carried	out	using	iPortal38.	The	DIA-262	

MS	data	was	 statistically	evaluated	using	pyProphet39.	All	data	 integration	was	263	

carried	 out	 under	 the	 DDB	 framework40,41,	 using	 non-normalized	 analytical	264	

tables42.	265	
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Results	and	discussion	266	

Workflow	overview	267	

The	integration	of	several	highly	similar,	but	not	identical	genomes	can	result	in	268	

complex	 data	 structures	 due	 to	 SNPs,	 insertions	 and	 deletions.	 This	 prohibits	269	

accurate	 fusion	 of	 peptide	 and	 protein	 information	 and	 results	 in	 long	 query	270	

times.	At	the	same	time,	quantifying	proteomes	relying	on	a	diversified	peptide	271	

pool	is	not	straightforward.	To	address	these	open	computational	challenges,	we	272	

constructed	an	analysis	workflow	based	on	DIA-MS	for	improved	integration	of	273	

whole	 genome	 sequencing	 (WGS)	 and	DIA-MS	 data	 as	 shown	 in	 Figure	 1.	 The	274	

workflow	contains	 seven	distinct	 steps	 in	which	 four	of	 the	 steps	 in	particular	275	

are	highlighted	 –	C)	 generation	of	 a	 composite	 genome;	D)	 search	 the	 shotgun	276	

data	against	the	composite	genome;	E)	construction	of	a	spectral	library;	and	F)	277	

generation	 of	 a	 quantitative	 peptide	 expression	 matrix	 –	 to	 detect	 consistent	278	

differences	 in	 trends	 in	 expressed	 and	 non-expressed	 proteins	 and	 regulated	279	

proteins	between	non-invasive	and	invasive	strains.	280	

	281	
Figure	1.	Schematic	overview	of	the	outlined	strategy	A)	Genetically	distinct	clinical	isolates,	282	
represented	by	coloured	spheres,	were	B)	digitized	using	genome	sequencing,	 shotgun	MS	and	283	
DIA-MS.	C)	The	individual	genomes	were	assembled	and	aligned	to	create	a	composite	genome,	284	
which	was	D)	used	to	infer	peptides	from	the	shotgun	MS	data.	E)	A	TraML	spectral	 library	file	285	
was	 created	 and	 F)	 the	 TraML	 file	 was	 then	 used	 to	 quantify	 peptides	 in	 all	 DIA-MS	 maps	286	
producing	 a	 nearly	 complete	 expression	 matrix.	 G)	 Peptides	 were	 mapped	 back	 to	 groups	 of	287	
orthologous	proteins	and	integrated	with	the	composite	genome	data.	288	

Generation	of	a	composite	genome	289	

A	particularly	relevant	feature	when	combining	quantitative	proteome	data	with	290	

genome	 data	 is	 information	 regarding	 the	 conserved	 and	 non-conserved	291	

peptides	 for	 a	 given	 open	 reading	 frame	 (ORF)	 used	 to	 assess	 protein	292	

quantification.	 Other,	 related	 information	 is	 the	 total	 number	 of	 silent	 and	293	
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expressed	SNPs	for	that	given	ORF	and	whether	the	ORF	is	preceded	by	strain-294	

specific	 changes	 in	 the	 intragenic	 region,	 which	 may	 influence	 the	 abundance	295	

level	 of	 that	 protein.	 To	 integrate	 all	 genetic	 information	 from	 the	 34	 genome	296	

sequences,	we	 constructed	 a	 composite	 genome	 as	 follows:	 the	 Illumina	 reads	297	

from	the	34	strains	were	assembled	 into	contigs	(see	Figure	2	 for	a	summary).	298	

The	 number	 of	 reads	 per	 strain	 varied	 from	 6,513,248	 to	 50,054,680	with	 an	299	

average	of	30,124,134	and	resulted	in	273	contigs	on	average	(number	of	contigs	300	

range:	 161–2632).	 We	 included	 the	 two	 poorly	 assembled	 genomes	 (g14	 and	301	

g26)	since	the	number	of	identified	peptides	from	these	genomes	was	similar	to	302	

the	others	 (7442	and	6835	peptides	respectively,	 ranking	11	and	30	of	34,	 the	303	

range	 is	6213-8288,	median	7174).	This	 indicates	 that	 the	assemblies	over	 the	304	

expressed	ORFs	were	of	similar	quality	to	other	genome	assemblies	despite	the	305	

high	number	of	contigs.	We	choose	NC_002737.1,	a	complete	S.	pyogenes	genome	306	

of	serotype	M1,	as	reference	and	we	refer	to	it	as	M1ref	 in	the	text	below43.	The	307	

contigs	were	ordered	according	to	M1ref	using	Abacas44	and	we	used	Mugsy45	to	308	

align	 the	 ordered	 contigs	 onto	 the	 M1ref.	 The	 alignment	 was	 used	 to	 build	 a	309	

composite	genome	that	contains	all	the	genetic	information	from	all	strains	(Fig.	310	

2),	stored	 in	a	denormalized	analytical	 table	 for	 fast	querying42.	The	consensus	311	

genome	was	1,994,567	BP,	only	slightly	larger	than	the	average	1.8	MB	member	312	

genomes,	 indicating	 a	 high	 degree	 of	 genomic	 similarity	 between	 the	 strains.	313	

Importantly,	 a	 consensus	 sequence	 was	 generated	 by	 a	 majority	 vote	 with	314	

random	 selection	 in	 cases	 of	 equal	 counts.	 We	 estimated	 the	 sequence	315	

conservation	 identically	 to	 Crooks	 et	 al46.	 The	 resulting	 composite	 genome	 is	316	

displayed	in	Figure	2b	using	CGView47.	The	composite	genome	is	represented	as	317	

the	black	 line	 in	 the	middle,	and	tracks	on	the	 inside	represent	 features	on	the	318	

reverse	strand	and	tracks	on	the	outside	features	on	the	direct	strand.	Closest	to	319	

the	 genome	 are	 the	 open	 reading	 frames	 (red	 and	 blue)	 followed	 by	 a	 track	320	

indicating	all	detected	SNPs	(purple	and	navy).	The	third	track	shows	SNPs	that	321	

lead	to	an	amino	acid	substitution	(fuchsia	and	lime).	The	zoom-in	panel	on	the	322	

left	shows	the	genomics	region	between	1953500	and	1953900	where	the	ORF	323	

coding	 for	hasA	 is	 located	 (Fig.	 1A).	hasA	 has	 been	 implicated	 in	 the	 virulence	324	

mechanisms	 previously	 and	 its	 primary	 function	 is	 in	 the	 biosynthesis	 of	 the	325	

capsule48.		326	
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Two	 additional	 tracks	 are	 shown	 on	 the	 global	 CGView	 panel	 to	 the	 right	 in	327	

Figure	 2:	 the	 outermost	 track	 in	 orange	 represents	 conservedness	 and	 higher	328	

bars	means	less	conserved.	The	track	in	green	and	lime	represents	the	number	of	329	

genomes	that	parts	of	the	consensus	genome	are	missing.	The	composite	genome	330	

displays	 five	 larger	regions	of	 lower	genome	conservation	(Fig.	2).	The	regions	331	

with	 a	 high	 degree	 of	 genome	 conservation	 are	 covered	 by	 all	 34	 member	332	

genomes	 and	 referred	 to	 as	 the	 core	 genome,	 corresponding	 to	 85.6%	 of	 the	333	

composite	 genome.	 In	 total,	 667	 (0.039%)	 SNPs	 were	 detected	 in	 the	 core	334	

genome,	whereas	only	8.5%	of	the	composite	genome	was	exclusively	present	in	335	

a	single	member	genome.	The	SNP	rate	was	almost	22	times	higher	in	the	5.9%	336	

of	the	composite	genome	that	was	outside	the	core	but	present	in	more	than	one	337	

genome.	 In	 these	 regions,	 998	 (0.85%)	 SNPs	 were	 detected	 in	 117,119	 base	338	

pairs,	as	can	be	visually	detected	in	two	high-density	regions	of	SNPs	in	Figure	2.	339	

These	 two	regions	are	associated	with	 two	of	 the	regions	with	a	 lower	 level	of	340	

genome	 conservation.	 Importantly,	 the	 composite	 genome	 data	 structure	 can	341	

allow	 faster	 and	 better	 integration	 with	 quantitative	 MS	 data,	 providing	342	

improved	accessibility	 for	the	relationship	between	expressed	proteins	and	the	343	

underlying	genetic	information.		344	

The	 composite	 genome	 further	 supports	 the	 exploration	 of	 how	 the	 observed	345	

genomic	 alters	 the	 proteome	 homeostasis	 by	 providing	 an	 improved	 data	346	

structure	for	annotating	the	genome	with	both	identified	peptides	and	putative	347	

proteins	found	by	Prokka31.	This	allowed	us	to	separate	the	SNPs	that	are	found	348	

within	an	ORF	from	SNPs	found	elsewhere.	The	ones	found	within	an	ORF	were	349	

further	 divided	 into	 synonymous	 and	 non-synonymous.	 Figure	 2	 shows	 that	350	

SNPs	that	lead	to	amino	acid	substitution	are	rare	compared	to	the	total	number	351	

of	 observed	 SNPs.	 As	 previously	 demonstrated,	 invasive	 strains	 tend	 to	352	

accumulate	 specific	 SNPs	 of	 relevance	 for	 invasive	 disease3.	 This	 system	353	

represents	 a	 suitable	 model	 system	 for	 establishing	 the	 DIA-MS-based	354	

proteogenomic	strategy	described	next.	355	
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.356	

	357	
Figure	 2.	 Genome	 assembly	 and	 analysis.	 A)	 A	 zoom	 in	 of	 the	 hasA	 loci	 located	 in	 the	358	
composite	 genome	 region	1,953,500–1,953,900.	hasA	 has	 two	non-synonymous	 SNPs.	 There	 is	359	
also	 one	 SNP	 in	 the	 intergenic	 region	 preceding	 hasA.	 B)	 The	 genomes	 were	 assembled	360	
individually	and	the	quality	of	each	assembly	was	assessed	as	displayed	by	the	spider	plot	in	the	361	
centre.	The	number	of	reads	for	each	genome	is	displayed	in	yellow	and	the	number	of	contigs	is	362	
displayed	 in	 grey.	 One	 strain	 has	 a	 significantly	 lower	 number	 of	 reads	 and	 was	 difficult	 to	363	
assemble	 leading	 to	 2632	 contigs.	 Another	 genome	 had	 an	 average	 number	 of	 reads	 but	 still	364	
resulted	in	a	poor	assembly	with	834	contigs.	A	composite	genome	was	constructed	by	globally	365	
aligning	the	genomes.	Each	position	in	the	meta-genome	is	represented	in	the	CGView	with	the	366	
following	 tracks,	 from	 the	 inside	 out:	 fuchsia,	 non-synonymous	 SNPs;	 purple,	 SNPs;	 red,	367	
annotated	genes	all	on	the	reverse	strand.	Blue,	annotated	genes	on	the	direct	strand;	navy,	SNPs;	368	
lime	non-synonymous	SNPs.	Green	and	 light	green	 is	 the	1-density	where	a	 thicker	 line	means	369	
fewer	 genomes	 are	 aligned	 at	 this	 position.	 Darker	 green	 indicates	 that	 the	 M1ref	 genome	 is	370	
present.	The	orange	track	indicates	1-conservedness.	A	thicker	line	means	less	conserved.	371	
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Generation	of	a	spectral	library	for	DIA-MS	analysis	372	

One	important	step	of	the	proposed	quantitative	proteogenomics	strategy	is	the	373	

construction	of	a	spectral	library	that	contains	all	detectable	peptides	including	374	

peptide	 sequences	 conserved	 across	 all	 strains	 as	 well	 as	 the	 non-conserved	375	

peptides.	 Here,	 we	 constructed	 the	 peptide	 spectral	 library	 by	 translating	 all	376	

members	 of	 the	 composite	 genome	 in	 six	 frames	 and	 selecting	 all	 fully	 tryptic	377	

peptides	between	7	and	50	amino	acids	in	length	resulting	in	a	total	of	223,952	378	

unique	 peptide	 sequences49.	 These	 unique	 peptide	 sequences	 were	 used	 to	379	

search	the	34	strains	grown	in	duplicate	resulting	in	68	shotgun	MS	experiments	380	

using	X!	tandem34,	Myrimatch35	and	peptideProphet9	on	a	previously	published	381	

portal33.	 The	 search	 results	 were	 used	 to	 construct	 a	 spectral	 library	 in	 the	382	

TraML	format	as	previously	described50	(Fig.	1c–d).	In	total,	this	effort	generated	383	

a	spectral	library	for	S.	pyogenes	containing	14,633	precursors	corresponding	to	384	

11,552	unique	peptide	sequences	at	1%	peptide-level	FDR,	representing	5.1%	of	385	

the	 total	 223,952	 unique	 peptide	 sequences	 that	 can	 be	 potentially	 produced	386	

from	all	the	34	genomes.	The	relatively	low	coverage	is	not	surprising	since	the	387	

vast	majority	 of	 the	 putative	 peptides	 are	 never	 expressed.	 For	 example,	 only	388	

one	out	of	six	reading	frames	is	actually	used	for	any	stretch	of	DNA.	Of	course,	389	

intergenic	DNA	and	proteins	not	expressed	under	the	tested	condition	cannot	be	390	

detected	either	for	obvious	reasons.	391	

Generation	of	a	quantitative	expression	matrix	392	

One	 of	 the	 biological	 replicates	 from	 the	 34	 SWATH-like	MS	DIA-MS	 data	 sets	393	

was	 analysed	 with	 OpenSWATH19	 using	 the	 spectral	 library	 as	 the	 source	 of	394	

precursors	 to	 consider.	The	 resulting	 expression	matrix	 contained	quantitative	395	

values	 for	 6880	 peptides	 over	 the	 34	 genomes.	 Figure	 1e	 shows	 a	 schematic	396	

overview	of	how	the	expression	matrix	was	produced.	We	generated	profiles	for	397	

all	223,952	unique	peptide	sequences	derived	from	the	composite	genome	based	398	

on	their	presence	or	absence	in	the	34	member	genomes,	resulting	in	a	total	of	399	

680	 profiles.	 Out	 of	 the	 680	 profiles,	 37	 were	 associated	 with	 at	 least	 one	400	

detected	peptide	as	shown	in	the	heat	map	in	Figure	3.	The	histogram	to	the	left	401	

shows	the	number	of	peptides	associated	with	each	profile;	the	bar	graph	to	the	402	

right	 displays	 the	 fraction	 of	 the	 identified	 peptides	 for	 the	 profile.	 The	 vast	403	
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majority	of	the	peptides	are	conserved	across	all	strains.	However,	only	four	per	404	

cent	of	these	peptides	were	identified.	The	most	abundant	profiles	were	followed	405	

by	a	decreasing	number	of	peptides	associated	with	the	remaining	profiles.	The	406	

heat	map	 (Fig.	 3)	 reveals	 that	 the	 two	 genomes	with	 high	 numbers	 of	 contigs	407	

(Fig.	 2b)	 make	 a	 considerable	 contribution	 to	 the	 expression	 matrix.	 The	408	

columns	in	the	heat	map	are	ordered	so	that	the	invasive	strains	are	to	the	left	409	

and	 the	 non-invasive	 ones	 to	 the	 right.	 No	 obvious	 trends	 of	 peptides	 that	410	

distinguish	the	two	groups	can	be	observed,	indicating	that	detection	of	a	coding	411	

SNP	has	 a	 low	 correlation	with	 virulence.	 In	 contrast,	 the	 quantitative	 peptide	412	

data	is	more	discriminative	(Fig.	4),	showing	that	there	are	two	main	groups	of	413	

bacteria;	one	of	these	groups	is	divided	into	two	sub-groups	and	the	other	main	414	

group	is	divided	into	four	sub-groups	for	a	total	of	six	sub-groups.	Non-invasive	415	

bacteria	 make	 up	 three	 of	 these	 sub-groups	 up	 to	 100%	 and	 only	 invasive	416	

bacteria	make	up	two	groups.	The	last	group	contains	one	non-invasive	bacterial	417	

isolate	 among	 the	 five	 invasive	 isolates.	 We	 used	 pvclust,	 an	 algorithm	 using	418	

multiscale	 bootstrap	 resampling	 (n=1000,	 default	 clustering	 method=average,	419	

default	 distance	 measure=correlation)	 to	 assess	 significance	 of	 a	 hierarchical	420	

clustering,	to	indicate	clusters	with	an	approximate	unbiased	p-value	of	0.01	as	421	

indicated	by	the	asterisks	in	Figure	4.	As	these	strains	are	grown	under	identical	422	

conditions,	the	observation	that,	on	average,	invasive	strains	are	more	similar	to	423	

each	other	than	non-invasive	strains	indicates	that	the	underlying	genomes	are	424	

driving	 these	differences.	On	 the	other	hand,	 the	 classification	of	 the	 strains	 is	425	

not	perfectly	 subdivided	 into	 the	 two	groups.	These	 results	 show	 that	 in	 some	426	

cases	proteome	expression	patterns	 for	some	 invasive	strains	are	more	similar	427	

to	non-invasive	strains	than	other	invasive	stains.	The	absence	of	a	clear	trend	in	428	

the	 heat	 map	 in	 Figure	 3a	 indicates	 that	 it	 is	 not	 sufficient	 to	 measure	 the	429	

abundance	level	of	the	non-synonymous	SNPs	to	make	assessments	on	whether	430	

or	not	a	strain	is	invasive.	Genetic	differences	outside	the	coding	regions,	like	for	431	

example	in	promoter	regions,	can	influence	protein	abundance	level,	which	may	432	

explain	why	the	abundance	levels	can	improve	strain	classification.		433	
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	434	
Figure	 3.	 Peptide-centric	 view	 of	 the	 coding	 potential	 of	 the	 genomes.	 All	 peptides	were	435	
mapped	 to	 the	 composite	 genome	 and	 the	 individual	 genomes.	 Six	 hundred	 and	 eighty	436	
conservation	profiles	were	constructed	from	this	data	by	mapping	peptides	to	genomes	and	the	437	
37	profiles	with	at	least	one	detected	peptide	are	shown.	Each	row	corresponds	to	a	profile,	and	438	
presence	of	the	peptide	in	the	given	genome	is	indicated	by	a	red	box,	absence	by	black.	The	total	439	
number	of	peptides	for	each	profile	is	shown	in	the	blue	histogram	to	the	left	and	the	number	of	440	
displayed	 in	 yellow	 (log	 scale);	 the	 fraction	 of	 peptides	 in	 each	 profile	 that	 was	 detected	 is	441	
displayed	in	the	bar	graph	to	the	right,	calculated	by	dividing	the	total	number	of	peptides	by	the	442	
number	 of	 observed	 ones.	 The	 histogram	 at	 the	 top	 indicates	 the	 number	 of	 contigs	 for	 the	443	
genome	 in	 question.	 The	 top	 histogram	 is	 organized	 according	 to	 virulence	 where	 red	 text	444	
indicates	invasive	and	blue	text	non-invasive.	445	



	 19	

	446	
Figure	4.	Quantitative	peptide	expression	matrix.	Construction	of	a	relative	abundance	matrix	447	
using	DIA-MS.	The	DIA-MS	data	was	processed	 through	OpenSWATH	using	 the	TraML	spectral	448	
library.	 A	 heat	 map	 and	 unsupervised	 hierarchical	 clustering	 of	 strains	 and	 peptides	 were	449	
simultaneously	created	using	the	pvclust	algorithm	from	the	R	package	pvclust.	The	peptides	are	450	
coloured	according	to	 intensity	with	darker	colours	 indicating	a	higher	 level	of	expression.	The	451	
asterisks	 at	 the	 top	 of	 the	 dendrogram	 indicate	 statistical	 significance.	 The	 coloured	 spheres	452	
indicate	if	the	strain	was	invasive	(red)	or	non-invasive	(green).	453	

Small	 but	 consistent	 differences	 in	 SNP	 frequencies	 in	 expressed	 and	non-454	

expressed	proteins	455	

A	 total	 of	 1665	 SNPs	 were	 detected	 among	 the	 34	 genomes	 and	 the	 M1ref	456	

genome.	These	can	be	divided	up	into	three	groups:	non-synonymous	SNPs	that	457	

cause	amino	acid	substitutions,	synonymous	SNPs	in	the	coding	regions	that	do	458	

not	cause	amino	acid	substitutions	and	SNPs	in	the	intergenic	regions.	Proteins	459	

that	are	not	expressed	might	on	average	be	more	amenable	 to	SNPs	since	 they	460	

presumably	 would	 not	 cause	 deleterious	 phenotypes	 if	 mutated.	 This	461	
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presumption	 is	 supported	 as	 seen	 in	 Figure	 5.	 Both	 the	 number	 of	 non-462	

synonymous	SNPs	and	synonymous	SNPs	 in	 the	coding	regions	are	statistically	463	

more	common	 in	 the	proteins	 that	were	not	quantified	(Fig.	5a–b).	 In	contrast,	464	

there	 is	no	difference	 in	 the	number	of	SNPs	 in	 the	promoter	 regions	between	465	

quantified	and	unquantified	proteins	(Fig.	5c).	The	three	types	of	mutations	are	466	

represented	 in	 Figure	 5d	 as	 follows:	 red/pink	 lines	 are	 the	 number	 of	 non-467	

synonymous	SNPs	 in	quantified	versus	unquantified	proteins.	The	proteins	are	468	

ordered	in	a	descending	order	in	respect	to	the	number	of	mutations.	There	are	469	

more	 unquantified	 proteins	 with	 a	 higher	 number	 of	 SNPs	 as	 the	 pink	 line	 is	470	

above	the	red.	The	same	holds	true	for	synonymous	SNPs	(green/lime	lines)	and	471	

SNPs	 in	 the	 intergenic	 regions	 (blue/cyan	 lines).	 These	 results	 partly	 explain	472	

why	 relatively	 few	 of	 the	 total	 of	 223,952	 unique	 peptide	 sequences	 were	473	

quantified.	 While	 speculative,	 one	 possible	 explanation	 is	 that	 unquantified	474	

proteins	reflect	the	background	mutation	rates	as	fewer	of	these	mutations	will	475	

have	a	negative	 impact	on	the	fitness	of	the	 individual	strain.	Mutation	rates	 in	476	

highly	expressed	constituent	proteins	are	more	 likely	to	have	an	 impact	on	the	477	

fitness.	The	logical	extension	of	this	is	that	proteins	that	are	both	expressed	and	478	

affected	by	mutations	are	more	likely	to	be	involved	in	increasing	the	fitness	of	479	

the	 individual.	 These	 proteins	 are	 likely	 candidates	 to	 hold	 the	 key	 in	 what	480	

differs	between	an	 individual	 that	 is	 fit	 in	a	hostile	environment	and	ones	 that	481	

were	never	exposed	to	this	environment.		482	
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	483	
	484	

Figure	 5.	 Small	 but	 consistent	 differences	 between	 detected	 and	 undetected	 ORFs.	 Box	485	
plots	 of	 number	 of	 A)	 non-synonymous	 SNPs	 per	ORF	 length,	 B)	 SNPs	 per	ORF	 length,	 and	 C)	486	
SNPs	 in	 the	 intergenic	 region	 normalized	 for	 length.	 Proteins	 with	 quantified	 peptides	 have	487	
significantly	 fewer	 SNPs	 than	 non-quantified	 proteins.	 D)	 Three	 pairs	 of	 lines;	 the	 red	488	
(quantified)/pink	(unquantified)	lines	are	the	non-synonymous	SNPs	per	ORF	length,	the	green	489	
(quantified)/light-green	 (unquantified)	 lines	 are	 for	 synonymous	 SNPs	 and	 the	 blue	490	
(quantified)/cyan	 (unquantified)	 lines	 are	 the	 number	 of	 SNPs	 in	 the	 preceding	 intergenic	491	
region.	492	

The	 composite	 genome	 data	 structure	 allows	 for	 fast	 exploration	 of	 the	 data,	493	

especially	an	explorative	interrogation	of	the	relationship	between	differentially	494	

expressed	proteins	and	the	SNPs	that	affect	the	amino	acid	composition	and/or	495	

abundance.	 We	 performed	 statistical	 analysis	 of	 the	 significant	 clusters	 from	496	

Figure	 4	 to	 find	 discriminatory	 proteins.	 Figure	 6	 displays	 40	 proteins	 with	497	

significantly	 changed	 abundance	 levels	 in	 the	 significant	 cluster	 containing	 the	498	

invasive	 strains	 (adjusted	 p-value	 <0.001).	 In	 total,	 33	 of	 these	 proteins	 were	499	
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significantly	 increased	 and	 are	 significantly	 enriched	 for	 the	 protein	 functions	500	

arginine	 deiminase	 pathway,	 streptococcus	 pyogenes	 virulome	 and	 sucrose	501	

metabolism.	A	subset	of	these	was	also	affected	by	SNPs	in	the	coding	region	or	502	

in	the	preceding	intergenic	region	or	both	as	indicated	by	the	coloured	dots	(Fig.	503	

6).	 Some	 of	 the	 proteins	 with	 statistically	 increased	 protein	 abundance	 levels	504	

impact	 the	 virulence	 grade	 or	 the	 general	 fitness,	 as	 shown	 previously51.	 It	 is	505	

plausible	 that	 proteins	 that	 are	 both	 differentially	 expressed	 and	 affected	 by	506	

mutations	are	of	significance	for	the	virulence	grade	of	the	pathogen.	The	most	507	

prominent	example	is	hasA,	which	is	also	highlighted	in	Figure	2.	hasA	is	a	known	508	

virulence	 factor	 and	 its	 gene	 has	 two	 SNPs,	 both	 of	 which	 cause	 amino	 acid	509	

substitutions.	 There	 is	 also	 an	 SNP	 in	 the	 preceding	 intergenic	 region.	hasA	 is	510	

significantly	 induced	 several	 fold	 (p-value	 <	 1x10-10)	 among	 these	 invasive	511	

strains	 compared	 to	 all	 the	 non-invasive	 strains.	 The	 SNP	 data	 and	 protein	512	

expression	differences	observed	between	non-invasive	and	invasive	strains	may	513	

indicate	 that	 these	 proteins	 have	 a	 role	 in	 the	 development	 of	 severe	 invasive	514	

disease,	and	represent	interesting	targets	for	additional	future	experiments.		515	

	516	
	517	
Figure	6.	The	cluster	with	invasive	strains	was	evaluated	using	a	Hochberg-adjusted	two-sample	518	
Welch	 t-test	 as	 implemented	 in	 the	 R-package	 multi-test.	 Proteins	 regulated	 at	 least	 two-fold	519	
with	 an	adjusted	p-value	 cutoff	 of	 at	 least	0.001	are	 	 listed	 to	 the	 right	 and	 the	 corresponding	520	
protein	names	are	marked	in	the	volcano	plot.	521	
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Conclusion	522	

In	 this	 work	 we	 present	 a	 generic	 data	 strategy	 for	 integrating	 genome	 and	523	

proteome	data.	The	strategy	relies	on	the	construction	of	a	composite	genome	to	524	

integrate	peptide	and	protein	information.	The	composite	genome	provides	the	525	

basis	 for	the	construction	of	a	spectral	 library	based	on	shotgun	MS	analysis	of	526	

the	 strains	 followed	 by	 DIA-MS.	 The	 spectral	 library	 is	 subsequently	 used	 to	527	

monitor	the	expression	of	peptides	that	could	be	quantified	from	the	DIA	maps	528	

using	 the	 spectral	 library.	 The	 work	 demonstrates	 how	 DIA	 can	 accomplish	529	

quantification	of	both	conserved	and	non-conserved	peptides	and	that	DIA-MS	is	530	

a	promising	technology	for	proteogenomics	research.	We	applied	the	strategy	to	531	

shed	 light	 on	 the	 comparatively	 few	 genetic	 differences	 that	 can	 be	 identified	532	

between	non-invasive	and	invasive	S.	pyogenes	strains.	Several	factors	influence	533	

the	 fitness	 of	 a	 pathogen	 inside	 the	host	 and	 to	help	 to	 avoid	detection	by	 the	534	

host	immune	defence	system.	Evasion	of	the	immune	system	may	depend	on	the	535	

types	and	amounts	of	proteins	exposed	outside	 the	cell	wall	and	 the	affinity	of	536	

these	 proteins	 to	 host	molecules.	 Some	 interactions	 are	 beneficial	 for	 survival,	537	

such	as	the	ability	to	bind	blood	plasma	proteins	to	cover	potential	epitopes	and	538	

others.	Proteins	 that	are	expressed	at	detectable	 levels	have	 fewer	SNPs	 in	 the	539	

coding	region	than	ones	that	are	not	expressed	or	are	expressed	below	the	limit	540	

of	 detection.	 This	 study	 revealed	 several	 proteins	 that	 are	 both	 affected	 by	541	

mutations	 and	 differentially	 expressed	 between	 invasive	 and	 non-invasive	542	

strains.	There	are	many	aspects	of	this	data	set	that	remain	unexplored	and	we	543	

are	 confident	 that	 more	 insights	 into	 the	 interaction	 between	 pathogens	 and	544	

their	hosts	can	be	extracted	 from	this	data	set	and	 future	proteogenomics	data	545	

sets.	546	
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