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ABSTRACT

In this thesis several aspects related to a new generation of storage
ring light sources are discussed. Due to a reduction of electron beam
emittance, fourth generation storage rings provide synchrotron radi-
ation sources close to the diffraction limit at X-ray wavelengths. This
results in a significant increase in photon brightness that is bene-
ficial in a variety of synchrotron radiation based experiments. The
MAX IV Laboratory in Lund, Sweden, operates the first storage ring
light source of the fourth generation. Its 3 GeV storage ring has a cir-
cumference of 528 m and employs a multibend achromat lattice with
a horizontal electron beam emittance of 0.33 nm rad.

Beam size and emittance diagnostics of ultralow horizontal and
vertical emittance electron beams can be achieved by focusing syn-
chrotron radiation from dipole magnets, to form an image of the
beam. When imaging in the visible and near-visible spectral ranges,
diffraction and emission effects are dominant. The presented refined
methods, however, make it possible and even beneficial to deduce
small electron beam sizes from this radiation. Diagnostics of the lon-
gitudinal charge distribution in the bunch, based on time-resolved
measurements of synchrotron radiation, are of special interest, since
bunch lengthening with passive harmonic rf cavities is an essential
ingredient in the concept of the storage ring, extending Touschek
lifetime and mitigating the effects of intrabeam scattering.

The horizontal emittance in the MAXIV 3 GeV storage ring will
lead, after correction of coupling and minimization of vertical dis-
persion, to a very low vertical emittance, lower than what might
be requested by synchrotron radiation experimentalists. Operating
with the negative consequences of a too low emittance such as a
Touschek lifetime shorter than necessary and an increased intra-
beam scattering can, however, be avoided if the vertical emittance
is adjusted to a desired level in a controlled way. A scheme is in-
troduced that excites vertical emittance by vertical dispersion while
maintaining small source sizes for synchrotron radiation production
in the insertion devices, and restores Touschek lifetime.






POPULARVETENSKAPLIG
SAMMANFATTNING

Vi vet att laddade partiklar sinder ut elektromagnetisk stralning da
de tvingas folja en krokt bana. Denna stralning kallas synkrotron-
stralning, och upptécktes i mitten av 1900-talet. Sedan dess har den-
na typ av stralning funnit tillimpningar inom flera forskningsom-
rédden s&dsom kemi, biologi, medicin och materialvetenskap. For att
uppfylla de vixande kraven pd vissa strdlningsegenskaper, &r partike-
lacceleratorer, designade att producera synkrotronljus, under stdn-
dig utveckling. Med MAX IV Laboratoriet i Lund, Sverige, och dess
3 GeV lagringsring synkrotronljuskilla, har ett koncept som reduce-
rar elektronstralens emittans avsevart, for forsta gdngen realiserats.
En l4g emittans dr en viktig parameter, eftersom den mojliggor for
forskarna att fokusera synkrotronstralningen i hég intensitet pa ett
litet prov. Denna avhandling diskuterar flera utmaningar som upp-
trader pa acceleratorsidan nér emittansen i lagringsringen reduceras
sdsom vid MAX IV anldggningen.

Radiofrekvenskaviteter forser den lagrade elektronstralen med
energi. De harmoniska kaviteterna i MAX IV acceleratorerna har
istdllet till uppgift att stracka ut elektronklungorna i lagringsringar-
na, vilket dr ett visentligt krav fér att kunna uppfylla designparamet-
rarna. Den resulterande longitudinella formen pa elektronklungorna
detekteras med hjélp av synkrotronstralningen i ett diagnostikstral-
ror.

Synkrotronstralningen innehaller ocksa information om storlek
och emittans pd elektronstralen. For detta &ndamaél fokuseras den
synliga delen av strédlningen, med en lins i diagnostikstralroret, for
att skapa en bild av elektronstralen. Pa grund av den lilla stralstorle-
ken, star sjédlva utsdandningsprocessen och diffraktion, fér de domi-
nanta effekterna i bilden. Anda presenteras hir metoder som moj-
liggor hérledning av elektronstralens storlek och slutligen dess emit-
tans.

En mycket 1ag vertikal emittans f6r med sig nackdelar, sdsom en
okad forlust-takt avelektroner fran stralen och dven en 6kad horison-
tell emittans. Detta beror pa vixelverkningar mellan elektronerna i
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en klunga. En tillvigagéngssatt presenteras darfor som 6kar vertika-
la emittansen pa ett kontrollerat och omviandbart sétt, fér att kunna
mota kraven frén en sirskild vetenskaplig applikation med synkro-
tronljusstralning, och pé det viset undvika de forut ndmnda onédiga
nackdelarna.



POPULAR SCIENTIFIC INTRODUCTION

Charged particles are known to emit radiation when traveling on a
curved path. This radiation is called synchrotron radiation and was
discovered in a particle accelerator in the middle of the 20th century.
Since then, this radiation has found application in various research
fields in chemistry, biology, medicine and material science. To ful-
fill the growing requirements towards radiation source properties,
particle accelerators, designed as synchrotron light sources, are un-
der continuous development. With the MAX IV Laboratory in Lund,
Sweden, and its 3 GeV storage ring light source, a concept that re-
duces the electron beam emittance significantly, is employed for the
first time. A low emittance is an important parameter, since it allows
scientists to focus the synchrotron radiation at high intensities onto
small samples. It leads, however, to several challenges on the particle
accelerator side of which some are discussed in this work.

Radio frequency cavities provide energy to the circulating elec-
tron beam. The harmonic cavities in the MAX IV accelerators, how-
ever, stretch the electron packages circulating in the storage ring,
which is an essential requirement to fulfill design parameters. The
resulting longitudinal shape of the electron packages is detected
from the emitted synchrotron radiation in a diagnostic beamline.

Synchrotron radiation carries information about the transverse
size and emittance of the electron beam as well. For this purpose
the visible and near-visible part of the radiation spectrum is focused
by a lens in the diagnostic beamline, creating an image of the elec-
tron beam. Due to the small size of the beam, however, diffraction
effects from the emission process of the radiation dominate the im-
age. Methods are presented that allow the deduction of the electron
beam size, and eventually the beam emittance, from such diffraction
dominated images.

A very low vertical emittance comes with downsides such as an
increased loss rate of electrons from the beam or even an increased
horizontal emittance. This is due to interaction of electrons within
the same bunch. A scheme is presented that increases the vertical
beam emittance in a controlled and reversible way, to meet the re-



quirements of the particular scientific application of the synchrotron
radiation, and thereby avoiding the aforementioned unnecessary
drawbacks.



LLIST OF PUBLICATIONS

This thesis is based on the following papers, which will be referred to
by their Roman numerals in the text.

I Improving Touschek lifetime in ultralow-emittance lattices
through systematic application of successive closed vertical
dispersion bumps
]J. Breunlin, S. C. Leemann, and A. Andersson.

Physical Review Accelerators and Beams 19, 060701 (2016).

II Equilibrium bunch density distribution with passive
harmonic cavities in a storage ring
P E Tavares, A. Andersson, A. Hansson, and J. Breunlin.
Physical Review Special Topics — Accelerators and Beams 17,
064401 (2014).

III Methods for measuring sub-pm rad vertical emittance at
the Swiss Light Source
J. Breunlin, A. Andersson, N. Milas, A. Sad Herndndez, and
V. Schlott.
Nuclear Instruments and Methods in Physics Research A 803,
55-64 (2015).

IV Emittance diagnostics at the MAX IV 3 GeV storage ring
]. Breunlin, and A. Andersson.
In Proceedings of the 7th International Particle Accelerator
Conference, IPAC 2016, Busan, Korea. WEPOWO034, 2908-2910
(2016).






ADDITIONAL PUBLICATIONS

Other work I contributed to resulted in the following publications

1 Status of the new beam size monitor at SLS
J. Breunlin, A. Andersson, A. Sad Hernandez, M. Rohrer,
V. Schlott, A. Streun, and N. Milas.
In Proceedings of the 5th International Particle Accelerator
Conference IPAC 2014, Dresden, Germany. THPME169,
3662-3664 (2014).

2 Ultra-low vertical beam size instrumentation and emittance
determination at the Swiss Light Source
A. Sad Hernandez, M. Aiba, M. Bége, N. Milas, M. Rohrer,
V. Schlott, A. Streun, A. Andersson, and J. Breunlin.
Beam Dynamics Newsletter No. 62, 208-221. International
Commitee for Future Accelerators ICFA, Fermilab, USA (2013).

3 The new SLS beam size monitor, first results
A. Sad Hernandez, N. Milas, M. Rohrer, V. Schlott, A. Streun,
A. Andersson, and J. Breunlin.
In Proceedings of the 4th International Particle Accelerator
Conference IPAC 2013, Shanghai, China. MOPWA041, 759-761
(2013).

4 Measuring and improving the momentum acceptance and
horizontal acceptance at MAX I11
A. Hansson, A. Andersson, J. Breunlin, G. Skripka, and
E.J. Wallén.
In Proceedings of the 4th International Particle Accelerator
Conference IPAC 2013, Shanghai, China. MOPEA056, 205-207
(2013).

XIiii



Additional publications

5 Studies of the electron beam lifetime at MAX II1I

A. Hansson, A. Andersson, J. Breunlin, G. Skripka, and

E.J. Wallén.

In Proceedings of the 4th International Particle Accelerator
Conference IPAC 2013, Shanghai, China. MOPEA057, 208-210
(2013).

Commissioning experience and first results from the new
SLS beam size monitor

V. Schlott, M. Rohrer, A. Saa Herndndez, A. Streun,

A. Andersson and J. Breunlin, N. Milas,.

In Proceedings of the IBIC 2013, Oxford, UK. TUPF09, 519-521
(2013).

Design and expected performance of the new SLS beam size
monitor

N. Milas, M. Rohrer, A. Sad Herndndez, V. Schlott, A. Streun,
A. Andersson and J. Breunlin.

In Proceedings of the IBIC 2012, Tsukuba, Japan. TUCCO03,
307-309 (2012).



ABBREVIATIONS

BW
CCD
FBSF
FEL
FWHM
IBS
ID

IR
MBA
rf
rms
SLS
SPF
SR
SRW

bandwidth

charge-coupled device
filament beam spread function
free electron laser

full width half maximum
intrabeam scattering

insertion device

infrared

multibend achromat

radio frequency

root mean square

Swiss Light Source

Short Pulse Facility
synchrotron radiation
synchrotron radiation workshop
ultraviolet

vacuum-ultraviolet






CONTENTS

Abstract

Populirvetenskaplig sammanfattning

Popular scientific introduction

List of publications

Additional publications

Abbreviations

Introduction and motivation

1

Transverse beam dynamics
1.1  Hamiltonian for a particlein an accelerator . ... ...............
1.1.1 The symplectic transfermap . . . ....................
1.2 Lineartransfermaps..................uiiiiniiinnnnnn
1.2.1 DriftSpace . .. ....cootit i
1.2.2 Quadrupole and skew quadrupole. . .................
1.2.3 Radio frequencycavity ............... ... . ... ...
1.3 Uncoupled particledynamics . ..................ccoo.....
1.3.1 Courant-Snyder parameters . ......................
1.3.2 Action-anglevariables . .................. ... . ...
1.4  Particle distribution and projected emittance .................
1.5 Coupledmotion .. ......... ..ttt
1.5.1 Dispersion . ..........iiii
1.5.2 Vertical dispersion from skew quadrupoles ............
1.5.3 Beam size and beam divergence . ...................
1.54 Fullycoupledmotion ................ ... ........
1.6 Nonlineardynamics . ... ....... ..ottt
1.6.1 Chromaticity and sextupole magnets. . ...............
1.7 Latticeimperfections ............ ... ... i
1.7.1 Closed orbit distortions ..........................
1.7.2 Coupling .. ... .ot
1.7.3 Nonlinear latticeerrors . ... .......................

Longitudinal beam dynamics

2.1  Momentum compaction and phaseslip......................
2.2 Synchrotronmotion . ... ..........c.ouueiiuueennueennnn..
2.3 Harmonicrfcavities . .......... ... .. ... . o i

Emittance in electron storage rings
3.1  Damping by emission of synchrotron radiation ................
3.2 Dampingand dispersion. .. .............tiiiiiiiii

10
10
11
12
15
15
16
17
18
18
19
21
22
24
24
26
26
27
27

29
29
30
32



Contents

3.3 Quantumexcitation . ............ ...
3.3.1 Naturalemittance. . .. ..........ovuiiiinneennn.
3.3.2 Quantum limit emittance . ........................

4 Touscheklifetime and intrabeam scattering
4.1 Touscheklifetime . .......... ... ... ... ... ... ... ... .. ...
4.1.1 Local momentum acceptance . . ....................
4.1.2 Charge density and transverse momentum . ...........
4.2 Intrabeamscattering . ............ ... ..

5 Beam diagnostics with synchrotron radiation
5.1  Theoretical background .............. ... ... ... ... . .. ...
5.2  Synchrotronradiationimaging . ................ . ... . .....
5.2.1 Depth-of-field and filamentbeam . . . .. ..............
5.2.2 Finitebeamsize ... ......... ... ... ... ... ... .. ...
5.3  Measurementprinciples . . .. ... ... oo e
5.3.1 Horizontalbeamsize ............................
5.3.2 Verticalbeamsize. .. ......... ... ... ... ... ... ...
5.3.3 Dispersion . ........ ...
5.3.4 Imageevaluation .............. . ... ...
5.3.5 Longitudinal bunchshape ........................
5.3.6 Emittance and energyspread ......................

6 Summary and outlook
Summary and outlook
Acknowledgments
Bibliography

Comments on the papers

43
43
44
44
45

47
47
48
49
50
51
51
53
54
54
57
58

61

61

63

65

69



Contents

Papers

I Improving Touschek lifetime in ultralow-emittance lattices through
systematic application of successive closed vertical dispersion bumps

I Equilibrium bunch density distribution with passive harmonic cavi-
ties in a storage ring

I Methods for measuring sub-pm rad vertical emittance at the Swiss
Light Source

v Emittance diagnostics at the MAX IV 3 GeV storage ring

73

89

105

117






INTRODUCTION AND MOTIVATION

Towards the synchrotron storage ring

Particle accelerators have been serving scientists of various disci-
plines as research tools for almost a century. With the discovery of
the atomic nucleus and natural radioactive decay, the demand for
artificially created highly energetic particles started. Early particle
accelerators were of the electrostatic type, where a high electric po-
tential difference is used to accelerate charged particles. In 1932 the
Cockcroft-Walton accelerator achieved a potential of 800kV to ac-
celerate protons [Cockcroft and Walton, 1932] and enabled the first
induced nuclear reaction.

In a linear accelerator, an accelerating electric field can be tra-
versed only once, and the maximum available voltage (and there-
fore energy gain) is technically limited. This led to developments
of repeated acceleration, either in linear, staged accelerators (for ex-
ample [Alvarez, 1946]), or in circular accelerators such as the cy-
clotron[Lawrence and Edlefsen, 1930], where a magnetic dipole field
bends the particle trajectory like a spiral, and therefore the same (al-
ternating) voltage can be used several times for acceleration. The
achievable energy in a cyclotron type of accelerator is limited by the
magnetic field, required to bend the beam, but also by the fact that
the synchronous condition of particle motion through one half of the
cyclotron, and the time-dependent accelerating voltage, desynchro-
nize. Therefore, either special magnet designs (the sector cyclotron)
or a system that adjusts the frequency of the accelerating voltage to
match the varying revolution frequency of the particles (the synchro-
cyclotron), is required.

One further development of the circular accelerator is the syn-
chrotron, where particles follow a well-defined orbit instead of a spi-
ral. The time in which a particle is accelerated in a synchrotron is
therefore not limited by design. To maintain a constant orbit, the
magnetic field that bends the particle trajectory must be increased
synchronously with rising particle energy. It was on such an early
synchrotron by General Electric, accelerating electrons up to 70 MeV,
that synchrotron radiation (SR) was observed for the first time [Elder
et al., 1947], see Figure 1.

ol

Figure 1. Photograph of SR from
the General Electric 70 MeV
synchrotron. The arrow indicates the
bright spot between the magnets.
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Such early synchrotrons required relatively large apertures (and
therefore magnets) because the particle beam size and divergence
were large, limited only by the so-called weak focusing. A milestone
on the way to the modern synchrotron was therefore the discovery of
strong focusing by quadrupole magnets [Christofilos, 1950][Courant
et al., 1952]. A quadrupole magnet provides a magnetic field config-
uration that has a similar effect to a beam of charged particles as a
lens to a light beam, with the important difference that a quadrupole
magnet focuses in one plane, but defocuses in the other. With an ad-
equate combination of focusing and defocusing quadrupoles, how-
ever, a net focusing effect can be achieved in both planes.

Strong focusing with quadrupoles exceeds weak focusing effects
by orders of magnitude, and reduces therefore the transverse beam
dimensions, allowing for compact vacuum chambers and magnets.
Together with the longitudinal phase focusing, this paved the way for
synchrotrons in which particle beams with high energies and inten-
sities, but low emittances, circulate for hours, the so-called storage
rings.

Particle accelerators as light sources

Particle colliders, of which some are synchrotrons, are built for stud-
ies on particle interaction at high energies. In the early days, the
SR from the dipole magnets of such electron-electron or electron-
positron colliders was used parasitically for scientific purposes.
Soon, SR became a research tool in many areas, such as material sci-
ence, crystallography, chemistry, biology and medical research. The
parasitic operation marks the first generation of synchrotron light
sources, followed by a second generation with synchrotron storage
rings built exclusively for the production of radiation from bending
magnets.

Synchrotron light sources of the third generation have been de-
veloped further towards low electron beam emittance and are opti-
mized for SR production in dedicated insertion devices (IDs), mag-
netic structures inserted into straight sections of the storage ring for
the purpose of SR production at high brightness. Insertion devices
consist of a sequence of dipole magnets of opposite polarity causing
no net deflection of the electron beam. The characteristics of the SR
emitted from IDs depends largely on the ID design, which is led by
the requirements of SR experiments, rather than by the dynamics of
the stored electron beam. Research facilities operating SR sources of
the third generation exist worldwide, operating at energies around
6 GeV (for example SPring-8 in Japan, the Advanced Photon Source
(APS) in USA and ESRF in France) or at medium energies up to 3 GeV
(for example the Advanced Light Source (ALS) in USA and the Swiss
Light Source (SLS) in Switzerland).

The fourth generation of SR sources is the linear accelerator
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driven Free Electron Laser (FEL). In an FEL, radiation is generated
by short electron bunches and long undulators, allowing for an
electron-photon interaction and coherent SR production [Schm{iser
etal., 2009].

The next generation of storage ring light sources

It has been known for about two decades that the horizontal emit-
tance in a storage ring can be decreased by employing a larger num-
ber of bending magnets, each with a smaller beam deflection. The
multibend achromat (MBA) lattice [Einfeld and Plesko, 1993] [Joho
et al., 1994] [Einfeld et al., 1995] [Einfeld et al., 2014] employs mul-
tiple, relatively shallow bends and strong quadrupole magnets for
refocusing in between, to suppress dispersion and therefore lower-
ing the emittance. Matching sections towards both ends of the se-
quence of bending magnets (that is also called the arc) ensures, that
the dispersion in the straight sections, where IDs are located, is zero
(which makes the arc an achromat). The emittance in a MBA lat-
tice can easily be one order of magnitude lower than in a comparable
synchrotron light sources of the third generation with two (double-
bend achromat) or three (tipple-bend achromat) bending magnets
per achromat, justifying the naming fourth generation storage ring
light source [Hettel, 2014].

The MBA lattice, however, comes with design challenges towards
accelerator hardware and beam dynamics that needed to be solved
before constructing a storage ring of this type. Small apertures of the
vacuum system require distributed pumping, for which the inside of
the vacuum tubes is coated with a non-evaporable getter (NEG) ma-
terial [Al-Dmour et al., 2014]. Small vacuum chamber apertures, to-
gether with progresses in the field of magnet technology in terms of
magnet performance and manufacturing precision [Johansson et al.,
2014], make sufficiently high quadrupole and sextupole gradients
feasible, which are a requirement of the MBA lattice.

High quadrupole gradients lead to considerable negative chro-
maticities, which need to be corrected to achieve a stable electron
beam. Chromaticity correction with chromatic sextupole magnets,
however, introduces nonlinearities in the dynamics of the electron
beam. Only due to a detailed understanding and precise simulation
of the nonlinear beam dynamics, countermeasures can be met and a
practical design for a fourth generation storage ring light source be-
comes feasible. MBA lattices for synchrotron light sources have been
initiated by the MAX IV Laboratory with its 7-bend achromat storage
ring at an electron energy of 3 GeV. The Sirius light source, employ-
ing a 5-bend achromat lattice, is under construction at the Brazilian
Synchrotron Light Laboratory (LNLS) [Liu et al., 2014]. Furthermore,
upgrade plans have been developed for numerous existing light
source facilities [Steier, 2014] [Biasci et al., 2014].
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In a synchrotron light source the electron beam emittance is an
important criterion, since it has significant influence on the bright-
ness of the produced radiation, that is the number of photons emit-
ted per second, per mm?, per mrad?> and per 0.1% of the band-
width of the radiation. Today’s development in the field is going
towards diffraction limited light sources in the hard X-ray regime,
which means that the electron beam emittance is negligible com-
pared to (or at least approximately equal to) the intrinsic photon
beam emittance from the ID [Kim, 1995]. Consequently, diffraction
limited operation at a wavelength of 1A requires an electron beam
emittance of 8 pmrad. In the vertical plane this is already achievable
with third generation light sources, while the horizontal emittance in
such machines is typically in the few nmrad range.

The Swiss Light Source (SLS) at the Paul Scherrer Institute is a
typical third generation light source at a medium electron energy of
2.4 GeV. Due to precise alignment and coupling reduction, the verti-
cal emittance has been decreased to the few pm rad level [Aiba et al.,
2012]. Electron beam diagnostics on beams with such low vertical
emittance is challenging, but feasible with methods of SR imaging,
as shown in [Andersson et al., 2008] and in Paper III. An introduction
to beam size measurements with visible and near-visible SR is given
in Chapter 5 of this thesis.

The MAX 1V Laboratory

Inaugurated in 2016, the MAX IV Laboratory in Lund, Sweden, is a
facility for SR based science [Tavares et al., 2014]. It hosts a fourth
generation 3 GeV storage ring that is optimized for the production of
hard X-rays at high brightness, whereas the soft X-ray and vacuum-
ultraviolet (VUV) spectral regime is covered by a 1.5GeV storage
ring light source of the third generation. A 3 GeV linear accelera-
tor [Thorin et al., 2014] serves as a full-energy injector to both storage
rings, and delivers short electron bunches to the Short Pulse Facility
(SPF) where X-ray pulses of 100 fs length are generated [Werin et al.,
2009], while upgrade plans to a FEL exist [Curbis et al., 2013].

The 3 GeV storage ring employs a MBA lattice with seven bends
per achromat, repeated in 20 cells, with a total circumference of
528 m [Leemann et al., 2009]. A horizontal emittance of 0.33 nmrad
is reached with the bare lattice (that means without any IDs), which
will decrease to 0.2 nmrad when fully equipped. As a consequence,
horizontal beam size and beam emittance measurements are chal-
lenging and require dedicated diagnostics. A diagnostic beamline,
the first of two that will be installed, constructed for imaging with ul-
traviolet to infrared SR, resolves the 25 um horizontal beam size and
reveals features of SR that have not been observed before in exper-
iment. This is presented in Paper IV and a few basic principles are
introduced in Chapter 5.
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Thermionic and 1.5 GeV ring SPF
photocathode guns

Linac Q

3 GeVring

/

Experimental hall with beamlines

MAX TV

Figure 2. Schematic layout of the MAX IV Laboratory. Drawing by Johnny
Kvistholm.

Narrow vacuum chambers, a requirement of high magnet gradi-
ents, increase the risk of collective instabilities due to interactions
with the vacuum chamber walls, which limit the maximum stored
current. To reach the design current of 500 mA, passive harmonic
radio frequency (rf) cavities are an essential ingredient of the 3 GeV
storage ring. By elongating the electron bunches with harmonic cav-
ities, the charge density is reduced. This alleviates intrabeam scat-
tering (IBS) and increases the Touschek lifetime to projected val-
ues. Both Touschek scattering and IBS are briefly introduced in
Chapter 4. Furthermore, harmonic cavities increase the incoherent
synchrotron tune spread, which enhances damping of coherent in-
stabilities. The operation mode of passive harmonic cavities and
measurements of the bunch shape affected by elongation, are pre-
sented in Paper II, whereas some of the basic principles of the longi-
tudinal particle motion in an electron storage ring are introduced in
Chapter 2.

The vertical emittance in an ultralow-emittance storage ring can
become impractically small, even for moderate emittance ratios.
Operating at a vertical emittance lower than required for SR produc-
tion, however, reduces the Touschek lifetime unnecessarily and can
increase the 6-dimensional emittance due to IBS. A scheme is there-
fore presented in Paper I that, applied after the minimization of ver-
tical dispersion and betatron coupling, increases the vertical emit-
tance in a controlled fashion. By applying pairs of skew quadrupoles,
vertical dispersion and betatron coupling bumps are opened and
closed within the arcs of the storage ring, in order to maintain good
source properties for IDs in the straight sections. The application
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of this scheme to the MAX IV 3 GeV storage ring in simulation, to-
gether with the expected Touschek lifetime gain from vertical emit-
tance increase, is presented in Paper I. Chapter 1 of this thesis gives
a brief introduction to the principles of transverse beam dynamics
with a focus on dispersion and coupling and on the definition of elec-
tronbeam and lattice parameters. The mechanisms of excitation and
damping of the electron beam by SR, eventually leading to an equi-
librium emittance, are described in Chapter 3.

This work is summarized in Chapter 6 and an outlook on possible
future developments in connection with this work is given.



CHAPTER 1

TRANSVERSE BEAM DYNAMICS

In this chapter, a brief introduction to the concepts used in the de-
scription of transverse particle motion in an accelerator is given.
Based on Hamiltonian mechanics and equations of motion, pre-
sented in the form of transfer maps, this chapter shall give an idea
of how particle dynamics is treated numerically in the simulation
code, Tracy-3 [Bengtsson], used for this work. Starting from linear
beam dynamics and dispersion, a definition of the transverse beam
dimensions, relevant for the transverse beam diagnostics presented
in Papers III and IV, is given. In the context of Paper I, a general con-
cept of coupled particle motion and aspects of nonlinear dynamics
and lattice imperfections, are briefly introduced in the end of this
chapter.

1.1 Hamiltonian for a particle in an accelerator

In general, the dynamics of a particle in an accelerator is determined
by electromagnetic fields provided by various accelerator compo-
nents (mainly magnets and rf cavities). Finding equations of motion
under consideration of such fields, and solving them, will therefore
allow to calculate the trajectory of the particle. The Hamiltonian for-
malism of mechanics [Goldstein et al., 2002] is particularly useful to
describe the dynamics in an accelerator, since it gives access to con-
served quantities in particle motion — the beam emittances.

In principle, the effect of electric and magnetic fields on a
charged particle is described by the Lorentz force

F=q(E+vxB). 1.1)

Particles in high energy accelerators (and especially in the case of
electrons), however, move with relativistic velocities. For an ade-
quate description of particle motion in an accelerator, a few concepts
of special relativity are needed. The total energy E of a particle in the
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absence of fields is, in relation to its momentum p, given by
E?=p?c*+m?c?, (1.2)
where c is the vacuum speed of light and m is the mass of the particle.
The total energy and momentum can also be formulated as
E=ymc? and p=Bymec. (1.3)
Here the relativistic 3 is related to the particle velocity as 8 = v/c
and the Lorentz factor is defined as
= ! (1.4)
Y 5 .

We then introduce the scalar potential ® and the vector poten-
tial A, that are related to the electric field £ and the magnetic flux
density B by

0A
E:—V@—E and B=V x A. (1.5)

In the presence of electromagnetic fields, Egs. 1.3 are modified to
E=ymc*+q® and p=PBymc+4gA, (1.6)

and the Hamiltonian for particle motion at relativistic velocities in
an electromagnetic field becomes

H=cy/(p—qAf +mec? +qa. (1.7)

The above equation is in principle sufficient to describe single par-
ticle dynamics in an accelerator. Finding equations of motion (and
understanding them) can, however, be simplified significantly by the
following few modifications:

The Hamiltonian in Eq. 1.7 treats time as the independent vari-
able. In practice, when considering a sequence of magnets in an ac-
celerator beamline, it is much more convenient to use a variable that
represents the distance along the particle trajectory, at which an ac-
celerator element ends or begins, instead of calculating the time at
which the particle reaches the element. This distance along the tra-
jectory is denoted with s.

The equations of motion even for simple accelerator components
are usually too complex to derive exact solutions for. Approximations
in the form of power series of the dynamical variables are therefore
required, even when using numerical algorithms. By truncating the
power series, the equations of motion can be solved to a certain or-
der. Truncating, for example, after the first order term will lead to lin-
ear approximation of particle dynamics, on which most of this chap-
ter is based. For an effective power series, the variables describing
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position and momentum of a particle should remain small through-
out particle motion in the accelerator. This can be achieved by defin-
ing the dynamical variables in relation to those of a reference parti-
cle. The momentum of the reference particle, the reference momen-
tum, is defined as Py = yy,mc and a particle with a higher momen-
tum has a positive energy deviation 6, defined as

_E 1 (1.8)

chy  Bo '

For the deviation from the reference particle position along the tra-
jectory, i.e. along s, we introduce the variable z as

s
z Bo ct. (1.9)
As accelerator beamlines usually contain dipole magnets, the ref-
erence trajectory is occasionally bent. It is therefore practical to in-
troduce a coordinate system (x, y, s), with the transverse coordinates
(x, y) defining a plane that is at all times perpendicular to s, while the
reference trajectory is bent with a curvature k = 1/p, where p is the
radius of curvature.
Applying these modifications to Eq. 1.7, the Hamiltonian is ex-
pressed as

2

Hzﬁi—(1+hx) (5+i—£) —(px—ax)z—(py—ay)z—%—(1+hx)as.
070

(1.10)

Here, x is the horizontal coordinate, a, is the component of the vec-
tor potential in x direction, multiplied by g /P, and s and a; are the
coordinate and vector potential, respectively, in the direction of the
reference trajectory. The transverse momenta p, and p, are func-
tions of the time derivatives of x and y and are normalized to the
reference momentum:

X +qA my+qA
By By

1.1.1 The symplectic transfer map

A transfer map relates the dynamical variables of a particle between
different points in an accelerator beamline. This is written as

X(s1)=M(Z(s)), (1.12)

where a 6-dimensional phase space vector X(s) = (x, px, ¥, Py z,0)
contains the dynamical variables of the particle and the transfer map
M describes the particle transport from s, to s; along the accelerator
beamline. The transfer map is built from the solutions of the equa-
tions of motion, that depend on the electromagnetic field configu-
ration along the beamline. Usually, these fields stem from standard-
ized accelerator components. A few examples of such transfer maps
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in their linear approximation are given in the next section. The trans-
fer map of a sequence of accelerator components is easily obtained
by matrix multiplication of the transfer maps of the individual com-
ponents. In a circular accelerator, the one-turn map is defined ac-
cordingly.

An important property of the equations of motion derived with
the Hamiltonian formalism, is that their solutions generate symplec-
tic transfer maps. Such transfer maps are associated with conserved
quantities, for example, the density of particles in phase space (also
known as Liouville’s theorem). Focusing a particle beam horizontally
with a quadrupole magnet will decrease its size (coordinate x), but
at the same time increase its divergence (or momentum p,), so that
the horizontal phase space volume the beam occupies, remains un-
changed. For each degree of freedom of particle motion exists there-
fore an emittance that is conserved under particle beam transport,
see also Section 1.3.11.

As will be discussed in Chapters 3 and 4, there are effects that
influence the particle density in phase space, and therefore gener-
ate emittance. To study such effects numerically, the transfer maps
used in simulation must be free of any non-symplectic elements
that might lead to unphysical growth or damping of particle mo-
tion. This is of increasing importance, the longer particles are fol-
lowed (or tracked) through an accelerator. As an example, the parti-
cle tracking studies and their results presented in Paper I, where the
path of particles is follow for many hundreds of turns in the storage
ring, are highly dependent on the symplecticity of particle transfer
applied by the numerical code Tracy-3 [Bengtsson]. One crucial and
non-trivial ingredient of such codes is therefore the representation of
transfer maps that, while originating from truncated Hamiltonians
and therefore representing particle motion to a certain order in the
dynamical variables, are still symplectic [Forest and Ruth, 1990][Berg
etal., 1994].

1.2 Linear transfer maps

In afew cases, alinear transfer map that is relatively simple and sym-
plectic, can be derived. Of special interest is the representation of
the skew quadrupole and its numerical treatment, since the coupling
from this accelerator element plays an important role in Paper 1.

1.2.1 Drift space

The absence of electromagnetic fields in a region of space is referred
to as a drift space. An example of drift space are long straight sec-

IThe assumption here is that the motions in each of the degrees of freedom are in-
dependent. In fully-coupled motion only the overall 6-dimensional emittance is pre-
served.
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tions in storage ring light sources which are field-free as long as no
insertion devise is installed. Solving the Hamiltonian (Eq. 1.10) to
first oder, with both vector potential and scalar potential zero, the
resulting equations of motion can be expressed in terms of the linear
transfer map for a drift space as

1 L 0 0 O 0
0O 1 0 0 O 0
0O 01 L O 0
Rysiee = 0O 0 01 O 0 , (1.13)
_L_
0O 0 0 0 1 B
0O 0 0 0 O 1

where L is the length of the drift space. A particle with a certain posi-

tion in phase space is described by the six-dimensional phase space

vector before the drift
x
Px
y
by
z
o

and will be translated to a new position in phase space X, after prop-
agating along the drift. This is expressed as

(1.14)

=1
S
Il

X1 = Rarife Xo.- (1.15)

1.2.2 Quadrupole and skew quadrupole

Quadrupole magnets generate strong focusing by applying a trans-
verse kick to particles that grows linearly with the particle coordinate
(i.e. deviation from the reference trajectory). The magnetic field in a
quadrupole, scaled by gq/P,, is given by

b=(k, y,k; x,0), (1.16)

and is illustrated in Figure 3. The transfer map for a distance L a par-
ticle travels through in a quadrupole field becomes

cos(wl) okl 0 0 0 0
—wsin(wL) cos(wlL) 0 0 0 0
R 0 0 cosh(wL) el o g
quad = 0 0 wsinh(wL) cosh(wL) 0 0
L
0 0 0 0 1 72
0 0 0 0 0 1
(1.17)
Here w = +/k; and k; is the normalized quadrupole gradient
lziaﬂzim‘, (1.18)
Py ox Py oy

Figure 3. Schematic of the
transverse magnetic fields in an
upright quadrupole magnet.

11
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Byocy

B, x x

Figure 4. Schematic of the
transverse magnetic fields in a skew
quadrupole magnet.
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i.e. normalized to the particle momentum. The transfer matrix, ap-
plied to an initial set of phase space coordinates, reads

%, = RyuaaXo- (1.19)

A skew quadrupole magnet provides the normalized magnetic
fields
b=(—k"x,k"y,0), (1.20)

where kis) is the normalized skew quadrupole gradient given by

(o _ 499y q0B

== = . 1.21
! PO 3y PO ox ( )

This element has a generally different effect on particle motion
than the upright quadrupole magnet introduced above: in a skew
quadrupole field (see Figure 4), any horizontal deviation from the ref-
erence trajectory will result in a vertical deflection, and vice-versa.
An accelerator with a skew quadrupole component will therefore
show interdependent particle motion in the transverse planes. The
skew quadrupole is therefore one example of an accelerator element
that generates so-called betatron coupling, see Section 1.5.4.  The
representation of a skew quadrupole is obtained from the ordinary
or upright quadrupole transfer map, rotated by 45°. Rotating in the
(x, y)-plane by an angle 6 around the reference trajectory is achieved
by applying the rotation matrix

cos@ 0 sin @ 0 00
0 cos@ 0 sin@ 0 0
—sin @ 0 cos@ 0 0 0
Rro/(0) = 0 —sinf 0 cos@ 0 0 (1.22)
0 0 0 0 1 0
0 0 0 0 0 1
Then the transfer map of a pure skew quadrupole is
T T
qu = Ryt (_Z) unadRrot (Z) . (1.23)

It is equivalent to rotating the phase space of the beam, propagat-
ing the beam through an upright quadrupole and rotating the phase
space back.

1.2.3 Radio frequency cavity

In a rf cavity resonator particle motion is influenced by oscillat-
ing electromagnetic fields. In accelerating rf cavities, electric fields
along the particle trajectory influence the longitudinal phase space
of the particles, affecting the longitudinal particle density (or bunch
shape), and replenish the energy of particles that is lost, for example
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to SR. The role of rf cavities in longitudinal particle motion is intro-
duced in Chapter 2 and the details of the rf cavity-beam interaction
in the MAX IV 3 GeV storage ring are presented in Paper II.

In a simplified case of a cylindrical rf cavity oscillating in the
TMy19 mode the electric field components can be written in polar
coordinates as

E, =0, (1.24)
Ep=0, (1.25)
E; = EyJy(kr) sin(wt + ¢y), (1.26)

where Ej is the field amplitude, J; is a zeroth-order Bessel function
and w = kc. In a cylindrical cavity the relation between the cavity
radius a and wave number k is given by

P
k=2
a

(1.27)

where P,; ~ 2.405 is the first root of the Bessel function J,. In order to
satisfy Maxwell’'s equations, a magnetic field with the following com-
ponents must also exist:

B, =0, (1.28)
By = %]1(16 r) cos(wt + @g), (1.29)
B, =0, (1.30)

where J is a first order Bessel function. For efficient acceleration,
the time a particle takes to cross the cavity should not be longer than
half the oscillation period of the fields, otherwise the particle would
experience deceleration. This restricts the cavity length L depending
on the particle velocity B, c as follows:
L r 1.31

Boc o (51
From these field components a vector potential is found and a
Hamiltonian is constructed. Solving the equations of motion for this
case results in a linear transfer map, relating a phase space vector
before cavity passage X, to a vector after the passage X;, in the form

%= Ry + Mg (1.32)
with
CL sy 0 0 0 0
—wis ¢l 0 0 0 0
0 0 C| S| 0 0
Ri¢= 0 0 —a)isl cl 0 0 (1.33)
0 0 0 0 C” ﬁSH

13
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and

S O O

Figg = 0 , (1.34)
(1—cos(w) L)) 2520

Berie) sin(w) L) 252

where the transverse parameters are given by

c; =cos(w L), (1.35)
sin(w; L
s = g, (1.36)
W)
acos
w, =k —%, (1.37)
27

while the longitudinal parameters are

¢ =cos(w L), (1.38)
B sin(w L)
S|| = T”, (139)
on — k | acosg, (1.40)
! BoTo T ’ .
and finally v
a=9% (1.41)
Pyc

Here P, is the reference momentum and Vj is the cavity voltage am-
plitude, experienced by the particles, and is in our case calculated
as

W=ETL, (1.42)

with the transit time factor T, that takes the varying electric field dur-
ing the passage of a particle through the rf cavity into account. It is

defined as
2Py . (kL
T= sin| — |. (1.43)
k2L2 2B
The part of the transfer map R,; in Eq. 1.33 shows, that not only a
simple acceleration (or deceleration) in terms of a AE is provided by
an rf cavity. Instead even the transverse planes are affected, as a con-
sequence of the magnetic field (Eq. 1.29). In the longitudinal dimen-
sion 1, the part of the transfer map that is independent of particle
coordinates in phase space, leads to a change in energy deviation Ao
that is given by

Vo kL
As~ I Gin g, (1.44)

Pyc w
to compensate energy loss. The longitudinal components of R¢, on
the other hand, are an essential ingredient for bound longitudinal

motion in a synchrotron, as discussed in Section 2.2.
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1.3 Uncoupled particle dynamics

In this section particle motion is treated as independent in each of
the three degrees of freedom. Although an ideal picture, many funda-
mental principles present in real accelerators can be approximated
and understood in this simplified way. With a suitable parametriza-
tion, particle dynamics is described in terms of parameters that vary
while particles pass along the beamline on one hand, and constants
of motion on the other hand.

1.3.1 Courant-Snyder parameters

Assuming an accelerator beamline that is represented by a symplec-
tic transfer map R, this transfer map satisfies the symplectic condi-
tion

R"SR=8, (1.45)

where S is the antisymmetric matrix defined as

01 0 0 0 0
-1 0 0 0 0 0
00 0 1 0 0

=0 0 -1 0 0 o (146
00 0 0 0 1
00 0 0 -1 0

In the absence of coupling, the motion in the horizontal plane is de-
scribed by R,, which is a 2 x 2 block diagonal sub-matrix of the trans-
fer matrix R. R, is also symplectic and it can be expressed as

R,=Lcosu,+SA,sinu,, (1.47)

with the matrices

1 0 0 1
L= (0 1) and S, = (_1 0), (1.48)
the symmetric matrix A, and the phase advance u,. When express-
ing A, as
Yr Qx
A, = , (1.49)
=i %)

we find the horizontal Courant-Snyder parameters a.,B, and
yy [Courant and Snyder, 1958] or alternatively Twiss parame-
ters [Twiss and Frank, 1949] that obey the relation

Biy:—a:=1. (1.50)

In a periodic accelerator structure such as a synchrotron the
Courant-Snyder parameters have defined values that oscillate with
the same periodicity as the magnetic lattice and that depend only

15



1.3.2 Action-angle variables

Px

VETT|_slope=v./a
VoA

, slope=—0(x/ Bx

Figure 5. Phase space ellipse in the
horizontal degree of freedom with a
shape defined by the Courant-Snyder
parameters. The shape of the phase
space ellipse varies along the
accelerator beamline.
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on the lattice. Especially the beta functions, the parameters 3, and
B, as a function of s, play an important roll in beam diagnostics,
presented in Papers III and Paper IV, since they have direct influ-
ence on the beam size (Section 1.5.3). The importance of the beta
functions to characterize an accelerator lattice is also emphasized
by Section III A of Paper I, where they serve as a simple measure to
quantify and minimize deviations of particle dynamic, caused by the
application of the presented dispersion bump scheme.

1.3.2 Action-angle variables

While the Courant-Snyder parameters vary along the accelerator
beam line, they define, together with the phase space coordinates,
the action variable ], (here given in the horizontal plane), that is in-
variant under particle motion, and is defined as

1
]xzé(yxx2+2axxpx+ﬁxp§). (1.51)

Equation 1.51 describes an ellipse in phase space with a shape
determined by the Courant-Snyder parameters and an area equal to
2m],, see Figure 5. While a particle propagates through an accelera-
tor beamline, it will only occupy points in phase space (x, p,) that lie
on this ellipse. The position of the particle in phase space can there-
fore, together with J,, be defined by the angle variable ®, which, in
the horizontal plane, is

tan®, =—ﬁx&—ax. (1.52)
X

The phase space coordinate x, expressed in action-angle vari-

ables, is
x=1+/2B,], cos®, (1.53)

With the rate of change of the action variable along the beamline

;1 (1.54)
ds Py ’
and the relation
a, = L dp. (1.55)
T2 ds’ ’

the phase space coordinate p, becomes

NEET
Py =— B (sin®, +a, cosd,). (1.56)

Equation 1.53 allows a simple interpretation of the beta function:
a particle that is not on the reference trajectory will perform oscilla-
tions around the reference trajectory with an amplitude, that is de-
termined by the constant action variable, and the value of the local
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beta function B,(s). These oscillations in the transverse plane are
called betatron oscillations.

With the rate of change of the action in Eq. 1.54 the phase advance
in an accelerator lattice between two points, s and s;, can be written
as

N
1
@ (s) L ﬂx(g)ds. (1.57)
In periodic circular accelerator lattices, the phase advance is equal in
each cell and the phase advance for a full turn devided by 27 is called
the betatron tune. In the MAX IV 3 GeV storage ring, the betatron
tunes are v, =42.2 and v, =16.28. This means that each particle that
is not on the reference trajectory performs 42.2 horizontal and 16.28
vertical betatron oscillations during each turn.

1.4 Particle distribution and projected emittance

The motion of any particle follows Egs. 1.53 and 1.56 with its own
initial phase space coordinates. These equations can therefore be
used to express the distribution of many particles within an ensem-
ble. Calculating the mean value of x? over all particles,

<x2>:2ﬂx<]x COSZ(I)x) :ﬁxex (1.58)
we defined the horizontal emittance as
<]x> =€y (1.59)

under the assumption that all particles are uniformly distributed,
and therefore
(x)=0. (1.60)

Similarly, involving the distribution of the divergence p,, we find
(xp.) =—a.e and (pg)=7x€, (1.61)

and express the horizontal emittance an ensemble of particles occu-
pies in the horizontal phase space as

€ =1/(x2)(p2)—(xpy)2. (1.62)

Equation 1.62 is also referred to as the horizontal projected emit-
tance [Franchi et al.,, 2011] to emphasize, that this definition of
emittance is based on the laboratory frame of the accelerator. Its
derivation as an emittance in terms of a conserved quantity de-
pends on the absence of off-diagonal elements in the transfer map in
Eq. 1.45. The emittance, projected to the laboratory frame, is there-
fore only conserved in the absence of betatron coupling. In a fully-
coupled accelerator lattice there are still three conserved emittances,
that are defined, however, in the eigenframe of the particle motion

17
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(Section 1.5.4), which in general, does not coincide with the labora-
tory frame. In Paper I, where betatron coupling is deliberately intro-
duced, distinguishing between projected emittance and eigenemit-
tance becomes mandatory, see Figure 9 of Paper 1. In the context of
this paper, the projected emittance is relevant to describe the parti-
cle distribution in the IDs, devices that are aligned with respect to the
laboratory frame.

1.5 Coupled motion

In strictly uncoupled particle motion, all three degrees of freedom
of particle motion are independent of each other. Accelerator ele-
ments fulfilling this requirement are for example the drift space and
the upright quadrupole, introduced in Section 1.2, since their trans-
fer maps are indeed block diagonal. Different off-diagonal elements,
appearing in the transfer matrix, for example in the transfer map of
a skew quadrupole, are associated with different coupling effects of
which some examples are given in this section.

1.5.1 Dispersion

A common type of coupling in a synchrotron is dispersion. It de-
scribes the dependence of the transverse trajectory of a particle on
its energy deviation. Dispersion may be present in both transverse
planes and is in general a function of s. The source of dispersion in a
synchrotron are bending magnets. In a dipole the trajectory is bent
with a curvature h that is given by

B
45 _ Do

h=-—1B=-2,
P " Bp

(1.63)

with the electric charge of the particle g, the reference momentum
By and the dipole field B,. The term Bp is referred to as the beam
rigidity and is in case of the MAX IV 3 GeV storage ring approximately
10 Tm. The transfer map of a dipole magnet without field gradient
and with no focusing effect on the beam is given by

COS(I’ZL) sin(th) 0 0 0 l—f:}(l)sE]hL]
—hsin(hL) cos(hL) 0 0 0 %
R— 0 0 1 L O 0
B 0 0 01 0 0 0
_ sin(hL) _1—cos(hL) 0 0 1 L _ hL-—sin(hL)
Bo hBo ﬂgTé hﬁé
0 0 0 0 O 1

(1.64)
for a dipole magnet of length L, curvature i and bending radius
p =1/h. Note that this transfer map is valid for a dipole magnet that
bends the beam in the horizontal plane. It is most common in stor-
age rings to use horizontal bending magnets exclusively, although



Transverse beam dynamics

vertical bends may occur for example in transfer lines between pre-
accelerators and the storage ring. A purely horizontal bending mag-
net couples only the horizontal and longitudinal plane while the ver-
tical plane is equivalent to a drift space (cf. 1.2.1). In the horizontal
plane two additional terms, R;g and R,g, appear that make the hor-
izontal coordinates x and p, dependent on momentum deviation.
Expressed as a power series:

xX(8,)= x5 =0 +1:0, +1P65 +..., (1.65)

Pe8p)= Pals ot Mpx8p +10 55+ (1.66)

where the momentum deviation of a particle with momentum P is

defined as p
=——1. (1.67)

o
p PO

Then 1), is the first-order or linear horizontal dispersion, n®® is the
second-order dispersion and so on. Equation 1.65 provides the the-
oretical basis for dispersion measurements with a diagnostic beam-
line, presented in Paper III and discussed in Section 5.3.3. The dis-
persion in a storage ring has the same periodicity as the magnetic lat-
tice, as is shown in Figure 1 of Paper I for one achromat of the MAX IV
3GeVring.

1.5.2 Vertical dispersion from skew quadrupoles

Although vertical bends may be absent in a storage ring, the verti-
cal dispersion is not necessarily zero. This section gives a brief in-
troduction of the principle of dispersion coupling from (mainly) the
horizontal into the vertical plane by skew quadrupoles. Being an un-
desired consequence of lattice imperfections (Section 1.7.2) or inten-
tionally designed as for the scheme presented in Paper I, the mech-
anism can be understood as follows.

Assume a particle that is vertically deflected at a location s, in a
storage ring. Consequently, this particle will perform betatron os-
cillations on a closed orbit which includes the deflection Ap, at s,.
The particle’s path is also referred to as a closed orbit in presence of
a single steering error, and is described by the expression

Apy vV ﬂy(s)ﬁy(so)

2sin(n Vy)

y(s)= cos((py,o(s)—nvy), (1.68)

with the vertical betatron tune v, and the vertical phase advance
¢,,0(s) between s and 5. Assuming that the vertical deflection is the
result of a horizontal offset x at location s, in a skew quadrupole of
normalized gradient k and effective length [, it is given by

Ap,(so) = x(s0) k1. (1.69)

19
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The relation between transverse coordinate and (linear) dispersion
in the horizontal and vertical plane (Eq. 1.65) is

x(s)=1n.(s)6, and y(s)=n,(s) 0, (1.70)

for a relative momentum deviation 6, respectively. Combining the
above expressions, the vertical dispersion function, created by a sin-
gle skew quadrupole that couples horizontal dispersion into the ver-
tical plane, can be expressed as

«(80) k1
n,(s)= m,/ﬁy(s)ﬁy(so) cos((py,o(s)—nvy). (1.71)

- 2sin(myy)

Thus, Eq. 1.71 describes in a closed expression, how horizon-
tal dispersion is coupled into the vertical plane by a single skew
quadrupole.

Let us then introduce a second skew quadrupole of equal normal-
ized gradient and equal length at a location s,, where 3, (so) = 5, (s1)
and 1),(sy) = n,(s;) 2. In linear approximation the vertical dispersion
function is expressed as the sum of two contributions, each given by
Eq.1.71:

X kil
0 (s)= 22K B ) [cos(9yo(s)— 7, )+ cos (@, ()= v, )],

- 2sin(ny))

(1.72)
where ¢, ,(s) is the phase advance between s and s;. The term in
square brackets is a sum of two cosine functions that can be rewritten
as

ZCos(w—nw) Cos(w

). (1.73)

Assuming further that the vertical phase advance between the two
skew quadrupoles is equal to 7, then, according to Eq. 1.57, |¢, ,(s)—
¢@y0(s)] = for s < 5 or s; < s. In that case, the second term
in Eq. 1.73 vanishes, and therefore also the vertical dispersion de-
scribed by Eq. 1.72. When evaluating the phase advance in between
the skew quadrupoles, that means for s, < s < s, however, the phase
advances are related by ¢, o(s)+ ¢,1(s) = 7 and Eq. 1.73 becomes

2sin(mv, ) sin(g,,0(s)). (1.74)

Thus, the described configuration of two skew quadrupoles gen-
erates an ideal closed vertical dispersion bump with finite vertical
dispersion between the skew quadrupoles and zero vertical disper-
sion elsewhere in the ring. Although not in an ideal manner, since
with a phase advance of 0.932 = between the two skew quadrupoles
(in each of the 20 cells around the storage ring), Case 1, presented in

2Due to the symmetry in most storage ring lattices such a location usually exists.
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Paper I, generates dispersion bumps that are still sufficiently closed
in the long straights. An example where the phase advance condi-
tion is strictly fulfilled, and a non-zero vertical dispersion is created
by two equal skew quadrupoles across one straight section of the
MAXTV 3 GeV storage ring, is shown in Figure 6.

001 N« —— 4 01
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Figure 6. Example of a closed vertical dispersion bump, opened and closed
by two skew quadrupoles at lattice symmetry points, separated by a phase
advance of . Note the different scaling for the horizontal dispersion on the
right axis of the plot.

1.5.3 Beam size and beam divergence

Combining the betatronic contribution to the beam size from
Eq. 1.58 with the (linear) dispersive contribution from Eq. 1.65, one
obtains, under the assumption a of Gaussian particle distribution in
phase space, the horizontal rms beam size as

Oy=1/Prex+0502. (1.75)

Similarly, for the vertical beam size we find

0'y=1/ﬂy€y+0'§-1’]§,. (1.76)

With Egs. 1.75 and 1.76 it is possible to deduce the emittances from
the measured beam sizes, if the beta functions, the dispersions and
the energy spread are known, see Chapter 5. The beam divergences

are given by
oy, = ,/yxex—i—a%n%x (1.77)
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and

apyz,/yy6y+0§n§y. (1.78)

1.5.4 Fully coupled motion

For the most general case, allowing any coupling between all three
degrees of freedom, a concept of fully coupled motion [Wolski,
2006][Wolski, 2014] is briefly introduced here. In the context of
Paper I a general treatment of coupling is required considering be-
tatron coupling caused by skew quadrupoles and is accounted for
in the applied numerical simulation code Tracy-3. The aim of such
a general approach is to express particle motion with reference to a
new set of generalized Courant-Snyder parameters in an alternative
coordinate system.

The definition of the second order moments of the particle dis-
tribution in one degree of freedom (the horizontal plane) is given by
Egs. 1.58 and 1.61. A general approach to k degrees of freedom is
then

= BY & (1.79)
k

where in our case k =1, II and III are three degrees of freedom, and
¥;; = (x; x;) are the second order moments describing the beam dis-
tribution. The action in one dimension, in this case in the horizontal
dimension as in Eq. 1.51, can be expressed as

27, =(x p,) 7| P _O‘X)s(x), 1.80
Jo=(xpo) (_ax 2 )s(o, (1.80)

where S is the antisymmetric matrix defined in Eq. 1.46. This would
then, generalized to k dimensions, be given by

2], =x%TSTB*s % (1.81)

with the 6-dimensional phase space vector X as defined in Eq. 1.14.
The matrix B¥, containing the Courant-Snyder parameters, trans-
forms like

B¥(s1)= R(s1, %)B (s0)R(s1, %), (1.82)

where R = R(S;,S) is a transfer map. For the symplectic matrix R
with distinct eigenvalues, a normalizing matrix N can be found so
that

NRN=R(uy), (1.83)
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where R(u,) is a rotation matrix with three angles uy, uy and uy; and
is defined as

cosy; sinyy 0 0 0 0
—siny; cosy; 0 0 0 0
- 0 0 cosuy  Sinug 0 0
Ripu) = 0 0  —sinuy cosyy 0 0
0 0 0 0 siny;  CoSs Uy
0 0 0 0 —sinuy  Cos Uy
(1.84)

The normalizing matrix N isitself symplectic and transforms a phase
space vector in the laboratory frame X into the eigenframe, generat-
ing a new set of dynamical variables and a new phase space vector
2, defined by

8
I
I
2
=l

(1.85)

Expressed in normalized phase space coordinates, the action vari-
ables J, and angle variables @, are

1 P,
]k:E(X]§+PkZ) and tan(I)k=—X—k, (1.86)

k
with
Vv 2J; cosd,
—+/ 2 J; sin®;
S, V2 cos®Py
X = ) . (1.87)
—+/2J; sin®y;
v/ 2 )i cos Py
—+/ 2] Sin®yy

The motion in these normal modesis independent in each plane

k, since a phase space vector 2 transforms with the block diagonal

transfer map R(u;) as a particle moves along the accelerator beam-
line as follows:

X (s1)=R(up)Z (s0)- (1.88)

Each degree of freedom is then associated with a constant eigenemit-
tance or normal mode emittance, in our case &, & and &, defined
as (cf. Eq. 1.59)

& = (Uk)- (1.89)

The eigenframe of the beam is relevant for mechanisms in the
bunch itself, such as damping and excitation and the equilibrium
emittance, discussed in Chapter 3. Only in the case of vanishing cou-
pling will the projected emittance in the laboratory frame be iden-
tical to the eigenemittance, since in that case the off-diagonal el-
ements in the laboratory frame transfer map become zero and the
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laboratory frame action-angle variables and dynamical variables are
eigenmodes as they are. This can occur locally in a storage ring, as
shown in Figure 9 of Paper I, where coupling in the vertical plane is
minimized in the long straights of the MAX IV 3 GeV ring. As a con-
sequence, the projected vertical emittance approaches the value of
the constant normal mode II emittance.

The amount of coupling in storage ring is in many cases low
enough to allow for an approximate identification of the normal
modes with the dimensions x, y and z in the laboratory frame. The
second statistical moment of the laboratory frame vertical coordi-
nate y, for example, is according to Eq. 1.79 given by

()= PG+ Piy6u + Py (1.90)

This is an exact expression for any kind of coupling among the three
planes. In case of weak coupling, however, the eigenmode II can be
associated with the laboratory y-plane. Then ﬁ313 describes the (be-
tatron) coupling of the eigenmode I, associated with horizontal mo-
tion, into the y-plane while 8} represents the coupling to the lon-
gitudinal plane. If betatron coupling and coupling between the ver-
tical and longitudinal plane are small (8;, ~ 0 and f;)' ~ 0) we can
conclude

LA (1.91)

1.6 Nonlinear dynamics

In the previous sections particle dynamics has been treated under
the assumption of linear approximations to the equations of mo-
tion. There are, however, nonlinear effects present which especially
in MBA lattices are not negligible. Influencing and correcting nonlin-
ear particle dynamics requires magnetic multipoles of higher, orders
such as sextupole magnets and octupole magnets.

1.6.1 Chromaticity and sextupole magnets

Thelinear transfer map for a quadrupole, derived in Section 1.2.2, as-
sumes a focusing effect that is independent of the energy deviation
o0 of the particle. There is, however, a variation of focusing strength
with particle energy called chromaticity that is defined in the hori-
zontal plane as

_Pdvx
~an,

1
. :_E}Sﬁx(hko+k1)ds (1.92)

where v, is the horizontal tune and k; is the normalized quadrupole
gradient as defined in Eq. 1.18. In the horizontal plane there is a con-
tribution from dipole magnets depending on h, the curvature of the
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reference trajectory, and on the normalized dipole field strength k;,
defined as

q
ko= —B8,. 1.93
0 PO y ( )
In the vertical plane the chromaticity yields
dv, 1
5y:PO_dPO 2_7_[ ﬂyklds, (194)

with v, being the vertical tune.

Since a particle with positive energy deviation will experience less
deflection by the magnetic fields of quadrupole magnets, it will be
less focused than the reference particle, see Figure 7. The betatron
tune is therefore reduced for particles with positive energy devia-
tion. Thus, a storage ring with linear magnetic elements only, will
have negative natural chromaticities in the horizontal and the ver-
tical plane that scale linearly with the quadrupole gradients. High
negative natural chromaticities are therefore typical in MBA lattices,
where strong quadrupole gradients are employed. Large variations
in betatron tunes with energy must be avoided, since particles with
tunes close to integer and half-integer values are sensitive to steer-
ing errors from lattice imperfections. Controlling the chromaticity is
therefore an essential ingredient also for the MAX IV 3 GeV storage
ring [Leemann et al., 2009].

The sextupole magnet provides a field configuration that allows
for chromaticity correction without major effects on the linear op-
tics. Its field components, scaled to the particle momentum, are

b,=kyxy, (1.95)
1

b, = Ek2 (x*—y?), (1.96)

b, =0, (1.97)

and the normalized sextupole strength k, is

. q 32By
TP ox?

2 (1.98)

Including the effect of sextupole magnets into Eqs. 1.92 and 1.94,
the chromaticities can be expressed by

1
&, :_Ejéﬁx(hk(ﬁkl —nyky)ds (1.99)

and
1
&= 0 jﬁ B,k —n . ky) ds, (1.100)

where 1), is the horizontal dispersion. It is therefore possible to influ-
ence the chromaticities with sextupoles placed in dispersive sections

quadrupole  sextupole

>0 ]

8<0 |

Figure 7. Chromatic effect of a
quadrupole magnet (dashed lines)
and its correction by a sextupole
magnet (solid lines). Drawing
inspired by [Wiedemann, 2007].

25



1.7 Lattice imperfections

26

of the storage ring. The principle can be understood as follows: in
areas of positive horizontal dispersion particles with positive energy
deviation have a non-zero horizontal coordinate. A sextupole with
positive strength k, > 0 will then supply focusing and therefore add
a positive contribution to the horizontal chromaticity (see Figure 7).

A sextuple magnet will always affect the chromaticity in both
planes, however, the effect depends on the beta functions. It is there-
fore possible to correct the chromaticities in both planes to desired
values (usually slightly above zero) by a pair of sextupoles (or sex-
tupole families). This conceptis applied to the MAXIV 3 GeV storage
ring to correct the linear chromaticitiesto £, =1and &, = 1.

The scheme presented in Paper I alters the linear optics as well as
the nonlinear optics of the storage ring, and a correction by sextupole
magnets is required to return to design parameters. This is discussed
in Section III E of Paper I showing Figure 15 with the variation of the
betatron tunes as a function of momentum deviation. The consid-
erable deviation from linear behavior implies that higher orders of
chromaticity are present and non-negligible.

Negative side effects of sextupole magnets are their influence on
particle motion in phase space. While in linear dynamics particles
follow an ellipse in phase space, defined by the Courant-Snyder pa-
rameters (Section 1.3.1), traces in phase space become deformed
when nonlinear elements are employed. As a consequence not all
coordinates in phase space can be associated with stable betatron
motion. Instead, stable motion is only possible within a limited area
in phase space, which leads to a finite dynamic aperturein the trans-
verse coordinates. Study and correction of nonlinear dynamics is
therefore essential to fulfill critical design parameters. The injec-
tion efficiency of a storage ring, for example, depends on the dy-
namic aperture at the injection point and it is therefore discussed in
Section III E of Paper I.

1.7 Lattice imperfections

The theoretical treatment of particle dynamics has so far assumed
an ideal storage ring, consisting of perfect accelerator components
and magnets. A real storage ring, however, is built from magnets that
deviate from design in terms of field strength and higher-order field
contributions. Furthermore, the installation of a long sequence of
accelerator components will inevitably introduce alignment errors
of magnets.

1.7.1 Closed orbit distortions

In anideal storage ring lattice a particle with initial phase space coor-
dinates (0,0,0,0,0,0) will circulate on the reference trajectory, leading
through the (field-free) center of quadrupole and sextupole magnets.
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A steering error, for example from a field strength error in a dipole
magnet or a misplaced quadrupole magnet, results in a closed orbit
that deviates from the reference trajectory (cf. Eq. 1.68). The closed
orbit fulfills thereby the requirement of having a periodicity equal to
one turn in the storage ring. The purpose of orbit correction, as ap-
plied in the work presented in Paper 1, is to correct the closed orbit
towards the reference trajectory by employing dedicated horizontal
and vertical corrector magnets.

1.7.2 Coupling

The alignment error of a quadrupole magnet will in general also in-
clude a rotation of the magnet around the particle trajectory. As
discussed in Section 1.2.2, such a rotation is a representation of
a skew quadrupole component that couples the transverse planes
and generates vertical dispersion through a mechanism discussed
in Section 1.5.2. Coupling is the dominant contribution to the ver-
tical emittance in a flat machine (i.e. without vertical bends), and
excites vertical emittance both by vertical dispersion and betatron
coupling. In contrast to the scheme of well-controlled successive
closed vertical dispersion bumps presented in Paper I, however, skew
quadrupole components from lattice imperfections cause irregular
vertical dispersion and betatron coupling, that are not confined to
the arcs and therefore affect ID source properties. An example is
given in Figures 6 and 7 of Paper I where the vertical dispersion,
originating from lattice imperfections, is compared to that result-
ing from closed dispersion bumps. It is therefore beneficial in terms
of ID source properties to minimize any undesired coupling and re-
gain Touschek lifetime up to a desired level by applying a systematic
scheme for vertical emittance adjustment.

1.7.3 Nonlinear lattice errors

Field strength errors in quadrupoles or undesired quadrupole com-
ponents affect beam focusing locally, leading to a variation in the
amplitude of betatron oscillations, the so-called beta beating. The
beam optics in the MAX IV 3 GeV storage ring is based on a careful
balance of sextupole and octupole magnet strengths. This balance
can be disturbed by beta beating and/or higher-order field errors, re-
sulting in, for example, a reduced dynamic aperture. In Section III F
of Paper I particle dynamics is therefore also studied under the influ-
ence of random lattice errors that resemble expected deviations of a
real accelerator lattice from its ideal counterpart.
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CHAPTER 2,

LONGITUDINAL BEAM DYNAMICS

Longitudinal beam dynamics describes particle motion in the (z,6)-
plane, z being collinear with the particle trajectory. While in both
transverse planes it is mostly the strong focusing from quadrupole
magnets that determines the linear dynamics by betatron oscilla-
tions, the mechanism oflongitudinal motion is different and is there-
fore treated in a separate chapter.

2.1 Momentum compaction and phase slip

Due to dispersion the path length in a magnetic dipole field depends
on the particle momentum. In presence of dispersion in the hori-
zontal plane, the path length dC along the reference trajectory ds is
given by

dc=(p+x) dGz(p—i—x)%, (2.1)

where p is the bending radius of the reference trajectory. Along a
beamline oflength C;, the relative change in path length with respect
to momentum deviation for particles with zero momentum devia-
tion is called the (first order) momentum compaction factor, and is

defined as o
1 dC 1 0
= —J &ds, (2.2)
0

aczad—ép

5,=0 o p

where 1, is the horizontal dispersion. In a storage ring the first syn-
chrotron radiation integral is defined as

I = jg O g 2.3)
yol

and is integrated around the circumference of the storage ring.
Contributions to the integral originate from sections where the beam
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Figure 8. Phase relation for particle
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is bent (p < oo) while the dispersion is non-zero. The momentum
compaction factor in a storage ring then becomes

b 2.4)
a.=—. .
c CO
Higher-order momentum compaction factors are defined by
C 14,5, +d?52 +d95 2.5
—=l+acop+a o, +ai o, +.... (2.5)

Go

As a general consequence of different path lengths at different
momentum deviations, the time for one revolution in the storage
ring will also depend on the momentum deviation. This can be ex-
pressed in terms of the phase slip factor, defined as

1 dr

T a8 5
-

(2.6)

where T is the time of flight for a particle along the beamline and 7,
is the time of flight of the reference particle. For a particle with zero
momentum deviation the phase slip factor becomes

Np=0c——. (2.7)

The momentum compaction factor in a storage ring is typically
positive as a consequence of longer paths through the bending mag-
nets at increased momentum. In the MAX IV 3 GeV storage ring we
find @, ~ 3.07-107* [MAX IV Facility, 2010] and y ~ 6000. This re-
sults in a positive phase slip factor (typical for electron synchrotrons)
which means that a particle with a positive energy deviation has a
longer revolution period than the reference revolution period T;.

2.2 Synchrotron motion

Longitudinal motion of particles in a synchrotron, the synchrotron
motion, is an interplay of phase slip and the interaction of particles
with the fields in rf cavities (Section 1.2.3). The motion in a storage
ring with a single 1f system is discussed in this section, while the ef-
fect of harmonic cavities on particle motion is briefly introduced in
Section 2.3.

A particle with positive momentum deviation (6, > 0) in a stor-
age ring with positive phase slip factor (1, > 0) will, after one turn in
the synchrotron, arrive with a delay with respect to the reference par-
ticle. The rf cavity phase for acceleration is therefore chosen to pro-
vide a higher cavity voltage for particles arriving later than the refer-
ence particle and a lower voltage for particles arriving earlier (accel-
erating on the 'falling slope’, see Figure 8). If the cavity voltage is sup-
plied with such a phase dependence, an oscillation of the off-energy
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particles around the reference particle is possible. This concept is
also called phase focusing and ensures that bound motion exists for
particles with non-zero momentum deviation 6.

The equation of motion in the longitudinal plane is

A’z qVg
dsz  c¢BC,

Uy
PepyCy’

n,sin ((prf— wfz ) +n (2.8)
and the first term on the right hand side describes the effect of a
change in energy deviation from a rf cavity (Eq. 1.44), providing an
accelerating voltage with amplitude Vj;, frequency w,; and phase ¢,;.
The second term accounts for the effect of an energy loss U, of a par-
ticle (mainly due to synchrotron radiation, see Section 3.1). If the rf
phase is set so that the cavity provides an energy change that com-
pensates the energy loss in one turn, then ¢ s = ¢; and we call ¢, the
synchronous phase, which is given by

(2.9)

The reference particle has 6 =0 by definition and does not oscillate,
but is accelerated at the synchronous phase. Off-energy particles,
however, oscillate about the synchronous phase, which is described
by

d’z Vi @
L2 _ k22 with k2=—9
ds2 “ “ cPh cC,

and stable motion is found for particles fulfilling

NpCOS P, (2.10)

qVignpcosg, <0. (2.11)
For positive n),,, and assuming that the accelerating voltage is defined

in a way that g Vi > 0, we find the range of stable motion for the ref-
erence (synchronous) particle in a single-rf system as

VI
S <9<, 2.12)

The number of synchrotron oscillations per turn in the storage
ring is called the synchrotron tune, and is given by the expression

k.G, 1 Ve oG,
=20 _ 9% Ot 0npcos¢5. (2.13)

v e
° 2 Zn\J ch

Compared to the betatron oscillation, and even compared to the rev-
olution period, the synchrotron motion is slow with a typical tune of
the order 1-1073. Figure 6 of Paper II, as an example, shows the range
of synchrotron tunes in the MAX IV 3 GeVring.

The amplitude of synchrotron oscillations particles can perform
without being lost is limited, since in practice the amplitude of the
accelerating voltage V;; is finite. The maximum value of momentum
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deviation a particle can have without being lost is called the rfaccep-
tance of the storage ring and is given by

2v, \/
t R 2.14
rf A mpl ¢s an ¢s ( )
where h is the harmonic number, defined as
h= ﬂ, (2.15)
Wo

and w is the revolution frequency. The harmonic number is equal
to the number of rf buckets in the storage ring in which bunches of
particles can be accelerated. For the MAX IV 3 GeV ring with fif =
wy/27 ~ 100 MHz and C, ~ 528 m follows, that i1 = 176 rf buckets
are available.

Since in a single rf system the rf voltage provides a restoring force
on particles that is approximately linear around the synchronous
phase, the Gaussian energy distribution of width o4 of a bunch
of particles leads to a longitudinal charge distribution that is also
Gaussian. The standard deviation of this longitudinal distribution
is the rms bunch length and is given by

a.c
27 f;

where a. is the momentum compaction and f; = v, /T is the syn-
chrotron frequency.

o,= O, (2.16)

2.3 Harmonic rf cavities

To generate a variability in longitudinal bunch shape, and mainly to
provide bunch lengthening, a harmonic rf system is integrated into
both MAX 1V storage rings, which is operated at the third harmonic,
i.e. at a frequency fharmonic = 3fit- A reduced charge density in the
bunches relaxes the heat load from beam-induced fields on vacuum
components and reduces Touschek scattering (Section 4.1) and in-
trabeam scattering (Section 4.2) [Tavares et al., 2014].

Of equal importance as the bunch lengthening is the damping
effect on the electron beam provided by the harmonic cavities in the
MAXTV concept. As shown in Figure 6 of Paper II, harmonic cavities
increase the spread of the incoherent synchrotron tune. Electrons
oscillate therefore within a broader band of synchrotron frequencies,
which suppresses coherent longitudinal particle motion which oth-
erwise could limit the maximum stored current [Nielsen and Sessler,
1959]. The damping effect associated with this mechanism is re-
ferred to as Landau damping, a term originating from a similar effect
in plasmas [Landau, 1946]. Both contributions of harmonic cavities,
lengthening and damping, are essential in the MAX IV storage rings
to reach design parameters [MAX IV Facility, 2010].
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The accelerating voltage seen by the electron beam is given by the
sum of the voltages of all cavities in the synchrotron. This assump-
tion can be made since the motion in the longitudinal plane is slow
compared to the revolution frequency. Although more than one cav-
ity of each type is installed in the MAX IV 3 GeV storage ring (six main
cavities, three harmonic cavities) to reach sufficiently high voltages,
the individual voltages of each cavity type may be summed and con-
sidered as a single voltage Vr experienced by the beam, that is

VT(<p)=Vrfsin(ga+<p5)+erfsin(ngo+n¢h). (2.17)

Here the parameters k and ¢, define amplitude and phase in the
harmonic cavity that is operated at the n-th harmonic of the main rf.
An example with n = 3 is given in Figure 9.

The harmonic rf cavities in the MAX IV storage rings are passive
cavities. Unlike the main rf cavities they are not powered by an ex-
ternal transmitter but by the stored beam itself. In a passive cavity,
energy is transfered from the particle beam to the cavity, a process
in which the beam is decelerated. The power loss to the harmonic
cavities U, in addition to the power loss to radiation U, is the total
power loss that is given by

Up = Uy + U (2.18)

The additional power loss and the altered total voltage seen by the
electron beam affects the synchronous phase and the longitudinal
particle distribution in the bunch. Bunch lengthening is achieved by
reducing the slope of the total rf voltage and the flat potential condi-
tion, as a special case, is reached if the first two derivatives of the rf
voltage vanish around the synchronous phase [Hofmann and Myers,
1980] [Byrd and Georgsson, 2001].

A general derivation of the particle distribution in the bunch is
shown in Section II of Paper II. A complication in the theoretical
treatment of an rf system involving passive harmonic cavities is given
by the fact that the voltage in such a cavity depends not only on cav-
ity properties (shunt impedance and tuning) but also on properties
of the electron beam. Mathematically, the excitation of fields in the
cavity by the electron beam is expressed in a form factoras a function
of the charge distribution in the bunch and is a measure of the bunch
spectrum at the harmonic frequency 7 f;;. Thus, a dependency of the
harmonic cavity voltage on the bunch shape is established while the
bunch shape itself is given by the total 1f voltage. This interdepen-
dence is not solved analytically but requires an iterative approach,
leading to a result that fulfills scalar self-consistency (Section II A of
Paper II).

Since the form factor defined in Eq. 17 of Paper II is a scalar,
it does not account for a dephasing between the harmonic cavity
and the charge distribution. This dephasing does, however, affect
the excitation of fields in the passive harmonic cavity. The scalar

synchronous particle

~e

total voltage
+ main rf voltage
= = = 3rd harmonic

/2 I 3m/2 2
¢

Figure 9. Radio frequency voltage
from main cavity and harmonic
cavity. The reduced slope of the total
voltage around the synchronous
phase lengthens the particle
distribution.
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self-consistency is therefore completed by a form factor phase in
Section II B of Paper II, leading to full self-consistency and allow-
ing the theoretical treatment of asymmetric bunch shapes. In the
regime of harmonic cavity operation (high shunt impedance, large
detuning) applied in the MAX IV 3 GeV ring, the fully self-consistent
approach is mandatory for a correct description of longitudinal dy-
namics.



CHAPTER 3

EMITTANCE IN ELECTRON STORAGE RINGS

While emittances have been introduced and defined already in
Sections 1.4 and 1.5.4, these definitions do not reveal the sources of
emittance, i.e. the mechanisms that let particles occupy a certain
phase space volume. The brief discussion in this chapter is focused
on electron storage rings where the emission of SR by the stored elec-
trons is the key ingredient to excitation as well as damping of particle
motion.

Charged particles traveling at relativistic velocities that experi-
ence acceleration will emit SR. The total radiated power is described
by Lienard’s Formula [Jackson, 1999]

q° . .

P = ranc 08 = (B> BY), (3.1)
where 3 = ¥/c is the time derivative of the particle velocity divided
by the speed oflight, 7, is the Lorentz factor and ¢, is the vacuum per-
mittivity. Ultra-relativistic particles experience high rates of acceler-
ation in deflecting magnetic fields, rather than in rf cavities, since
magnetic fields, changing the direction of particle motion lead to
substantially larger 3 than the electric fields in rf cavities.

Synchrotron radiation in storage rings can be treated as incoher-
ent since each electron in the bunch emits spontaneously. The radi-
ation intensity therefore scales linearly with the number of electrons
in the bunch. This is a good approximation as long as the bunch di-
mension is larger than the radiation wavelength, and describes both
radiation from bending magnets and from IDs in a storage ring light
source. The SR itself has interesting characteristics and is of great
value for electron beam diagnostics, as discussed in Chapter 5.

3.1 Damping by emission of synchrotron radiation

The damping effect of SR can be explained even if the emission of
SR is treated as a classical phenomenon, that means neglecting the
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fact that it is actually emitted in discrete quanta of electromagnetic
radiation, the photons. Furthermore it can be neglected that the ra-
diation is emitted into a finite opening angle scaling like 1/y around
the velocity vector v of the particle (1/y ~ 0.17 mrad in case of MAX IV
3 GeV storage ring). In this simplified picture, SR is emitted strictly in
the direction of the particle velocity. A particle undergoing betatron
oscillations can, unlike a particle following the reference trajectory,
have a velocity (or momentum) component in the transverse plane.
The momentum change from the emission of SR in the direction of
particle velocity happens therefore in the transverse and the longi-
tudinal plane with equal proportions. Considering that the longitu-
dinal momentum is continuously recovered to nominal by rf cavity
fields, which act only in the longitudinal direction, we can express
the vertical momentum of a particle after emission as

N dap
Py1 ™ Py (1—70), 3.2)
where p,, is the vertical momentum before emission (scaled by the
reference momentum P,) and dP is the total momentum change.
Using the definition for the action (cf. Eq. 1.51, but this time in the
vertical plane), we find a change in vertical action by

dP
d]y:—(ayypy—i—ﬂypj)?o, (3.3)

which according to Egs. 1.61 and Eq. 1.50 can be related to a change
in vertical projected emittance given by

dap

deyz(d]y):—ey?. (3.4)
0

Related to a particle in a storage ring with a revolution period Ty, the
change of vertical emittance in time can be written as

de, Us

_ A —

dt ~ ET

€, (3.5)

where U is the energy loss to SR per turn and E, = Pyc/f is the ref-
erence energy. The development of the vertical emittance over time
is therefore an exponential damping with damping time 7 ,:

E
e,(t)=€,(0)e™"/* with ryzzﬁ"?;). (3.6)
0

An expression for the energy loss to SR per turn U, can be derived
from Lienard’s formula (Eq. 3.1), providing the power radiated by a
relativistic particle on a circular trajectory with bending radius p:

b 4% BoTs

= . 3.7
" 6me, p2 8.7
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This can be rewritten in the form
C,c BAE* 2
_Gehh e -

= _, 3.8
2n p2 T 3eg(mc2) (3-8)

T

Integrating the radiation power over one revolution in the ring yields
the energy loss to SR for one particle in one turn as

ds G5 4] 1
or
Gy n3pa
U= By Lo (3.10)
where the second radiation intregral is defined as
1
L =j€ Eds. 3.11)

Evaluating the second radiation integral is in principle straight
forward. In a typical storage ring, however, the dipole field often
varies along the bending magnets (magnet fringe fields or soft-end
dipoles in case of the MAX IV 3 GeV storage ring matching magnets,
see Figure 2 of Paper IV), which complicates integration. For the bare
lattice (no insertion devices, only bending magnets contribute to I,)
of the MAX 1V storage ring, the reference energy is E, = 3 GeV and the
energy loss per turn per electron is U, = 363.8 keV, or 0.12%o0 of the
reference energy. This leads to a damping time 7, ~ 29 ms. Insertion
devices increase energy loss and therefore provide additional radia-
tion damping.

3.2 Damping and dispersion

In the approach shown in Section 3.1, dispersion is not taken into
account. While in the vertical plane the dispersion might be negligi-
ble in many lattices, this is not the case in the horizontal plane due to
dispersion from bending magnets. The horizontal action in presence
of horizontal dispersion can be expressed as

1
J. = 5 (ro %% +2a, 2P, + B D) (3.12)

where X and p, are defined with respect to the off-momentum closed
orbit:

X=x-1,06, (3.13)
Px =Px—1px0p. (3.14)
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After the emission of SR the horizontal coordinate and momentum
are

X~ X+ b (3.15)
X1 R X+T1)y PO .
_ _ dP dap
Px1 ~ Py 1—?0 +npx?0 (3.16)
and the change of the action dJ,, defined by
]xlzjx +d]x) (317)

can be sorted by its order in momentum change from SR emission

relative to the reference momentum:
dp ( dp )2

) (3.18)

aj,=—w,—+w
]x IPO 2

The rate of change of the horizontal action over time is then given by

dJ, 1dP  dPdp

dr ——(J)IFOE'FO)zP—OZE. (3.19)

In the a classical model SR is emitted continuously hence that the
power emitted during infinitely short time intervals approaches zero.
The second term on the right hand side of Eq. 3.19 is therefore zero
in the classical model and a pure damping effect is found, since the
change of horizontal action over time is

dJ, 1 dp P,

—— =

=— — 3.20
dr B ar 'E, (3.20)

and the time average by integrating over a full turn is given by

<d]x> - a)P(l+£)£ 3.21)
dt [, Tk v P Boc’ '

To evaluate this integral the bending radius p caused by magnetic
fields must be known. Neglecting horizontal magnetic fields (from
quadrupoles or skew quadrupoles), but retaining the gradient of the
vertical field (for horizontal deflection of the particle) to first order,
ie.

0B,
B=By+x——, (3.22)
ox

the integral becomes

< pli+2 >£~U(1—é (3.23)
“ 7( p) Poc 12)6’" '

where U, is the energy loss per turn (see Eq. 3.10) and I, is the fourth
synchrotron radiation integral, defined as

1
I4=jg &(—+2k1)ds. (3.24)
p \p?
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Here k; is the normalized quadrupole gradient in the dipole field.
Now the horizontal damping time becomes

2 by (3.25)
T,=——TN, .
U
and the horizontal damping partition number is defined as
: I
Je=1—2. (3.26)
L

In the absence of dispersion we find j, = 1, which agrees with
the result from Section 3.1. Quadrupole gradients in dipoles have,
according to Eq. 3.24, a contribution to I,. In many storage ring light
sources the dipole magnets are realized as combined function mag-
nets, providing a negative quadrupole gradient for vertical focusing
in addition to the dipole field for bending. This leads to negative val-
ues for I, and increases the horizontal damping partition number,
thereby reducing the horizontal emittance. This concept is also em-
ployed in the MAX IV 3 GeV storage ring, where j, ~1.8.

A lattice where the vertical dispersion is non-zero will, according
to Eq. 3.24 in its vertical representation, have a damping partition
number j, # 1. The vertical dispersion generated in the examples
presented in Paper I leads, however, only to a minor decrease of j,
on the order 1073,

In the longitudinal degree of freedom a damping effect of syn-
chrotron oscillations similar to the damping in the horizontal plane
is found and can be described by

2 by (3.27)
T,=—— .
A
with the longitudinal damping partition number
. I
jo=2+2 (3.28)
L

The amount of damping by SR in a storage ring is constant, but
can be distributed differently between the three planes. This gen-
eral theorem is known as the Robinson damping theorem [Robinson,
1958] and is expressed by the statement that the sum of the damping
partition numbers is constant:

Jxtiyti:=4 (3.29)

3.3 Quantum excitation

Synchrotron radiation is emitted in photons, therefore the 'recoil’
on the emitting particle (momentum conservation) occurs in dis-
crete quanta dP. This has an exciting effect on particle motion that
competes with the previously discussed damping effect. The natural
emittance is the result of an equilibrium of excitation and damping.
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~
electron\ ~

Figure 10. Emittance generation by
quantum excitation due to SR
emission in presence of dispersion.

40

3.3.1 Natural emittance

In Section 3.2 we neglected the second term on the right hand side
of Eq. 3.19. Taking quantum effects into account this term does not
vanish, since the momentum change in infinitesimally short times is
non-zero due to the emission of discrete quanta of SR. The evalua-
tion of this term requires knowledge of the number of photons emit-
ted per time and per energy range, obtained from the intensity spec-
trum of the radiation [Jackson, 1999]. A detailed derivation is found
in [Sands, 1970] and [Wolski, 2014]. The resulting change of the hor-
izontal emittance in time can be described by
de, 2 2 215

—e,+—C,yr:—. 3.30
dt Tx € ijx a%o 12 ( )

The first term, depending on the horizontal emittance itself and on
the horizontal damping rate 7, describes damping in the classical
model. The additional term describes the quantum excitation due
to emission of SR, where

= % 7 (3.31)
73243 mc '
is a constant and
T,
L=¢ —Xds (3.32)
I3

is the fifth synchrotron radiation integral with the chromatic invari-
ant or dispersion invariant in the horizontal plane, defined as

Sy ZYxni+2axnxnpx+/jxnix~ (3.33)

An equilibrium between damping and excitation is found for
de./dt = 0, resulting in an equilibrium emittance or natural emit-
tance in the horizontal plane given by
€x0= qu(z),l—s. (3.34)
Jx 12
The quantum excitation of the emittance can be understood as
follows (see Figure 10): assume we follow a particle with momen-
tum P, through a bending magnet, where the horizontal dispersion
is non-zero. Within the bending magnet the particle emits a SR pho-
ton and thus suffers a momentum loss AP. It is then, however,
not on the closed orbit that is associated with its new momentum
PBy— AP. Consequently, the particle performs betatron oscillations
around this closed orbit. Since the emission of SR is an incoherent
process, particles within a bunch emit in different locations in the
bending magnets and the betatron oscillations is incoherent as well.
The particle distribution will therefore grow in phase space and lead
to an increasing emittance, if not compensated by damping.
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In case of non-zero vertical dispersion, a natural vertical emit-
tance can be formulated accordingly. An expression for the natural
vertical emittance as a projected emittance is, however, not appli-
cable in the scheme presented in Paper I due to betatron coupling,
which affects the vertical emittance independently of vertical disper-
sion. In presence of betatron coupling, a horizontal offset from the
reference trajectory, originating from horizontal dispersion, results
in both horizontal and vertical betatron oscillations, therefore ex-
citing both planes to a certain extent. In a fully coupled lattice the
natural emittance is therefore defined by the normal modes of the
beam [Wolski et al., 2011]. This is shown in Section II B of Paper I for
the normal mode II emittance, that is associated with, but not equal
to, the vertical projected emittance. It is important to note here that
it is still quantum excitation from SR emission by horizontal deflec-
tion of the electron beam that generates emittance.

3.3.2 Quantum limit emittance

Let us assume an ideal storage ring with no betatron coupling and
vertical dispersion. Without excitation the radiation damping, de-
scribed for the vertical plane in Section 3.1, would reduce the verti-
cal emittance to very small values in short time, without ever reach-
ing a lower limit. There is, however, an exciting effect on the beam,
originating from the fact that SR is emitted in discrete photons into
a finite opening angle, that has so far been neglected. Synchrotron
radiation is therefore not emitted strictly in the direction of particle
motion and a particle without any vertical momentum component
will eventually emit a photon that has a non-zero vertical momen-
tum component. For reasons of momentum conservation the parti-
cle will then have a non-zero vertical momentum. In an ensemble of
electrons this effect is uncorrelated and leads to emittance growth.
An equilibrium is reached at

C

€ min = gl—: I%I s. (3.35)

This minimum vertical emittance is of little relevance in most
storage ring light sources, since the emittance growth from lat-
tice imperfections dominate the vertical emittance in many storage
rings. The numerical value for €, is for the MAX IV 3 GeV ring
approximately 0.05 pm rad [Streun], which is still one order of mag-
nitude less than what might be achieved by correction of lattice im-
perfections.
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CHAPTER 4

TOUSCHEK LIFETIME AND INTRABEAM
SCATTERING

Electrons in a bunch perform (transverse) betatron oscillations and
(longitudinal) synchrotron oscillations independently of each other.
Depending on the particle density, there is a finite probability of col-
lision. In such a case elastic scattering leads to a redistribution of
momenta. In the so-called Touschek event [Bernardini et al., 1963]
momentum is transfered from the fast betatron oscillations into the
longitudinal dimension, such that the momentum acceptance is ex-
ceeded. Consequently, both particles are lost from the bunch. Even
in cases of a momentum transfer where no loss of electrons occurs,
the redistribution of momentum is usually associated with an emit-
tance growth. This effect is called intrabeam scattering. Since both
effects grow with electron density in the bunch, they are relevant
in fourth generation synchrotron light sources and their ultralow-
emittance lattices.

4.1 Touschek lifetime

The loss rate from Touschek events, the inverse of the Touschek life-
time, is given by [Streun, 1997]

S, (4.1)

Oacc(s) )2
1 rjeq F((yoms) ) 4
T 8meyso.Cy 0 (5)0 ,(5)0 1/ (5)62,.(5)
where r, denotes the classical electron radius, ¢ the vacuum velocity
of light, e the elementary charge, C; the circumference of the stor-
age ring, g the bunch charge and 7, the Lorentz factor of the beam.
The horizontal and vertical rms beam sizes are o, and o, respec-
tively, while o, denotes the rms bunch length and 0 ,.(s) the local
momentum acceptance.
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The horizontal rms divergence in the center of the bunch (x ~ 0),
where the particle density is highest and Touschek scattering events
are most likely to occur, is given by

€x

1+ , 4.2)

72 (8)= 9 €x

where ¢, (s) is the chromatic invariant (Eq. 3.33). Finally, the func-
tion F(x)is defined as

1

F(x)=f(%—%ln(%)—l)exp(—%) du. (4.3)

0

4.1.1 Local momentum acceptance

The local momentum acceptance §,..(s) at any location of the stor-
agering can be defined either by the rf system or by the lattice accep-
tance, that means

04cc($)=minimum {5rf ’ 5acc,lattice(s)} . (4.4)

While the rf acceptance is constant, the lattice momentum accep-
tance needs to be evaluated along the storage ring. In a lattice with
significant nonlinear dynamics (as in the MAX IV 3 GeV storage ring)
this is done by particle tracking. The local lattice momentum ac-
ceptance is then found as the maximum momentum deviation a
particle can acquire, while still surviving a certain number of turns
without being lost. Computer codes for particle tracking in the 6-
dimensional phase space are therefore based on symplectic, nonlin-
ear transfer maps and efficient ways to determine particle loss, for
example by exponential growth in the dynamical variables. Local
momentum acceptances from particle tracking with the code Tracy-
3 are shown in Figure 12 of Paper I. The rf acceptance is set to 6,; =
7%, limiting only in the long straight sections, since the lattice mo-
mentum acceptance is significantly lower in the arcs. The Touschek
lifetimes given in that paper have been determined based on the
these local momentum acceptances.

4.1.2 Charge density and transverse momentum

The Touschek lifetime depends on the charge density in the bunch
which can be expressed as

q

o(s)oy(s)o,’ @5

pq(s) =

The design goal of fourth generation synchrotron light sources, the
reduction of the transverse emittances, is therefore competing with
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a sufficient Touschek lifetime. On the other hand, a lower emittance
is associated with less transverse momentum that can be transfered
in a scattering event. For a sufficiently small horizontal emittance
and a sufficiently large momentum acceptance, a regime where
fourth generation storage ring light sources such as the MAX 1V 3 GeV
storage ring operate, the latter effect dominates and a horizontal
emittance decrease is associated with an increase in Touschek life-
time [Leemann, 2014].

In the MAX IV 3 GeV storage ring the concept of long bunches is
applied to relax the charge density, an approach based on a compar-
ativelylow main rf of 100 MHz and on the double rf system, described
in detail in Paper II, to achieve sufficient Touschek lifetime.

The design value for the vertical emittance of 8 pmrad is moti-
vated by a diffraction limited operation at 1 A [MAX IV Facility, 2010].
Brightness and transverse coherence of SR from IDs can, neverthe-
less, be gained by further reducing the vertical emittance [Leemann
and Eriksson, 2013]. The increased charge density from a lower ver-
tical emittance, however, reduces Touschek lifetime. In the context
of this trade-off between Touschek lifetime and SR brightness, the
work presented in Paper I describes a scheme for vertical emittance
adjustment and Touschek lifetime recovery.

4.2 Intrabeam scattering

While Touschek scattering events are associated with particle loss,
there is a much more frequent of type scattering, based on the same
fundamental principle but at small angles, which do not lead to par-
ticle loss. The momentum transfer in the bunch, however, blows
up the beam emittance in 6-dimensional phase space, i.e. increas-
ing the bunch length and energy spread as well as the transverse
emittances. This effect is called intrabeam scattering (IBS) [Piwinski,
1974].

Similar to the quantum excitation from SR emission the effect of
intrabeam scattering on the beam emittance can be expressed as IBS

growth times
T, 2e; dt (.

where i = x, y or z. Compared to growth times from SR emission, the
IBS growth times are more complicated to determine since they de-
pend on the beam emittance, and therefore an equilibrium must be
found which usually requires iteration. IBS studies in the context of
ultralow-emittance storage rings and the MAX IV 3 GeV storage ring,
where IBS blowup of primarily the transverse emittances is mitigated
by harmonic cavities, are presented in [Leemann, 2014].
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CHAPTER D

BEAM DIAGNOSTICS WITH SYNCHROTRON

RADIATION

Synchrotron radiation that is inevitably produced in bending mag-
nets around the storage ring is of great value for electron beam diag-
nostics. The entirely parasitic operation mode of SR-based diagnos-
tic beamlines allows a high availability and enables continuous mon-
itoring, as well as high-precision measurements. In this chapter the
emission process of SR is briefly introduced and a few concepts are
discussed that complement the work presented in Papers III and IV.

5.1 Theoretical background

Synchrotron radiation is emitted by electrons when they are trans-
versely deflected (e.g. in a dipole magnets) at relativistic velocities.
The observable angular distribution of the emitted electromagnetic
fields is strongly affected by the Lorentz transformation from the rel-
ativistic rest frame of the electron to the laboratory frame [Jackson,
1999]. Synchrotron radiation is therefore emitted into a narrow cone
in the direction of the electron motion with an opening angle that
is usually estimated by 6, ~ 1/y around the critical frequency, given

by [Schwinger, 1949]
3 4(c

(UC—E'}’O(E), (51)
with the Lorentz factor 7, the vacuum speed of light ¢ and the radius
of curvature of the electron trajectory p. Half of the total SR power
emitted in a dipole magnet is radiated below the critical photon en-
ergy E.=fw,.. Assuming a 3 GeV electron beam in a 0.53 T magnetic
dipole field, we find a critical wavelength of A, =27¢/w,. ~0.37 nm.
The narrow opening angle and the curved trajectory in the mag-
netic field let SR, emitted from a single electron, appear as a flash
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5.2 Synchrotron radiation imaging
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Figure 11. Spectral flux of
unpolarized SR from a 0.53 T bending
magnet. The beam energy is 3 GeV
and the current is 500 mA.
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Figure 12. Image of o -polarized SR
with Fraunhofer diffraction
characteristics. ay =2 mrad and A =
930 nm. FBSF calculated in SRW.
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with short duration in time than can be approximated by

4p

ot~ .
3crg

(5.2)

The short pulse duration translates to a broad spectrum, for which an
example is given in Figure 11. Since the pulse duration 6 ~4-10719s
is orders of magnitude shorter than the rms length of the electron
distribution (several 10 ps in the MAX 1V storage rings), the measure-
ment of the bunch shape is not impaired by incoherently emitted SR
from electrons within the bunch.

Theradiation opening angle is, however, wavelength-dependent.
In the low frequency range (w < w,.) a considerably wider opening
angle 6, is observed than for the critical wavelength:

3¢\ 1 (2w,.\13
erm(_) =_(_C) . (5.3)
wp Yo\ @

In the UV-visible-IR spectral range the opening angle is therefore
0, ~ 2 to 3mrad. The increased opening angle is essential for the
operation of diagnostic beamlines in this spectral range, since the
diffraction patterns in SR images, originating from few-mrad open-
ing angles, are taken advantage of in order to resolve small electron
beam sizes.

5.2 Synchrotron radiation imaging

With a suitable focusing element, for example a spherical lens, SR
can be imaged onto an observation plane (for example a CCD sen-
sor). This image is dominated by diffraction and polarization effects
that are inherent to SR and need to be understood in order to make
SR imaging a suitable electron beam diagnostic.

Let us assume the case of SR from a single electron in a dipole
magnet that bends the trajectory in the horizontal plane. The verti-
cal angular distribution of the emitted electric field will then be lim-
ited within the angle 26,. The radiated electromagnetic field in the
horizontal plane can be assumed to be uniform, a consequence of
the 'search light effect’ when the narrow opening angle is swept hori-
zontally along the curved trajectory. In the horizontal plane an aper-
ture is therefore assumed, that limits the horizontal acceptance angle
ay while the vertical acceptance angle ay is chosen large enough to
cover the entire radiated field. For sufficiently small horizontal open-
ing angles an intensity distribution shown in Figure 12 is found. As
a typical sign of Fraunhofer diffraction, the intensity distribution is
proportional to sinc?(x) in the horizontal plane [Hofmann and Méot,
1982] [Andersson et al., 2008].

The polarization of the electric field vector in Figure 12 is ori-
ented horizontally and parallel to the bending plane. This is referred
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to as o -polarized SR. Radiation with a vertical electric field, the 7-
polarized SR, is emitted into an opening angle that is roughly equal
to the one given in Eq. 5.3 and with approximately a fifth of the in-
tensity of the horizontally polarized SR. The main characteristic of
n-polarized SR is the phase shift of = between the upper and lower ra-
diation lobe, while no vertically polarized SR is emitted in the bend-
ing plane. Imaged n-polarized SR is shown in Figure 13 with zero in-
tensity across the bending plane (where the vertical position equals
Z€ero).

5.2.1 Depth-of-field and filament beam

Restricting the horizontal opening angle minimizes the depth-of-
field effect, a consequence of the longitudinal extension of the elec-
tron beam as the imaged object. The lens equation for imaging with
alens of focal length f is

1_1.1

s %
with the distances S; from the lens to the object (electron beam) and
S, from the lens to the image plane. Assuming a fixed lens and ob-
servation plane, the above relation can only be met for one location
along the electron trajectory. Although a well-known effect in geo-
metrical optics, the depth-of-field effect as shown in Figure 14 de-
scribes imaging of a longitudinally extended source with SR only in
a simplified picture. The SR from a single electron radiated at differ-

(5.4)

| observation

 plane

electron trajectory

lens

St Sz

Figure 14. Schematic of the depth-of-field effect when imaging SR from a
dipole magnet.

ent locations along its trajectory can not be described as radiation
from a point source. Instead, the so-called filament beam as a lon-
gitudinally extended SR source is introduced. The single electron SR
intensity distribution in the observation plane is then determined by
the superposition of the electric fields, emitted from coherent point
sources with magnitude and phase that are related to the emission
point along the arc trajectory.

A characteristic of the image of a longitudinally extended source
is the horizontally asymmetric diffraction pattern in the observation
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Figure 13. Image of n-polarized SR
with Fraunhofer diffraction
characteristics. g =2 mrad and A =
930 nm. FBSF calculated in SRW.
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5.2.2 Finite beam size
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Figure 15. Image of o -polarized SR
with depth-of-field characteristics.
ay =18 mrad and A = 930 nm. FBSF

calculated in SRW,
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Figure 16. Image of -polarized SR
with depth-of-field characteristics.
ay =18 mrad and A = 930 nm. FBSF

calculated in SRW,
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plane that is more pronounced the longer the source, contributing to
theimage, is. Figures 15 and 16 are calculated with identical parame-
ters as Figures 12 and 13, except for the horizontal acceptance angle
ay thatis increased from 2 mrad to 18 mrad. Imaging with radiation
from wider horizontal angles is equivalent to an effective increase in
the length of the curved filament beam as a radiation source. The
horizontal asymmetry found in Figures 12 and 13 is therefore due to
a superposition of fields in the observation plane that are radiated
along the curved trajectory, and the intensity deviates clearly from
I o< sinc?(x) behavior.

A model for the computation of SR has been outlined by [Chubar,
1995] where the radiation from arbitrary magnetic field distributions
is calculated in the near-field regime. This has been implemented
in the code Synchrotron Radiation Workshop (SRW) [Chubar]. Since
the amplitude and phase relations of the emitted radiation are pre-
served according to wave optics and classical electrodynamics, the
depth-of-field effect is fully accounted for in the image formation.
Radiation propagation in free space, through apertures and the per-
fect thin lens, is implemented in the code and allows the precise cal-
culation of the intensity distribution of focused bending magnet ra-
diation.

Similar to the point spread function, being the response of an
optical imaging system to a point source, the image of the filament
beam (no transverse size) as the filament beam spread function
(FBSF) can be calculated in SRW for a given electron beam in a mag-
netic field and imaged by an optical beamline. The images of SR un-
til Figure 16 are FBSFs, calculated with the properties of the electron
beam, the magnetic field and the elements for SR propagation that
resemble those of the MAX IV 3 GeV storage ring diagnostic beam-
line in a simplified way and with an optical magnification of approx-
imately —2.4. A main aspect of Papers III and IV is modeling a beam-
line in SRW, that resembles the physical diagnostic beamline, in or-
der to arrive at a precise prediction of the FBSE which is not accessi-
ble in the experiment.

5.2.2 Finite beam size

So far the SR from an electron beam with no transverse dimensions
has been considered. Since the transversely extended electron beam
is the result of (uncorrelated) SR emission by individual electrons
(each described by the FBSF), a convolution of the electron distri-
bution with the FBSF describes the image of the ’thick beam’. In
principle an arbitrary electron distribution can be convoluted with
the FBSE The assumption of a Gaussian distribution of particles in
transverse dimensions is, however, often adequate in electron stor-
age rings.

An example is given for electron beam dimensions of o, = 25
um and o, = 11.5 um in Figure 17, where the FBSF is identical to
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the one shown in Figure 15. The example is to be considered in
the diffraction dominated regime, where the dimensions of the FBSF
are of the same order as, or even larger than those of the electron
beam. Therefore, the image of the extended beam resembles rather
a smeared out FBSF than a Gaussian intensity distribution. If the
source dimensions dominate over the diffraction, however, an im-
age that resembles the shape of the source is expected, as in usual
imaging of macroscopic objects.

5.3 Measurement principles

Measurements of the longitudinal bunch shape, being directly ac-
cessible as the time-dependent intensity of the SR pulse, are based
on fast readout electronics (Section 5.3.5). The design criteria of
the diagnostic beamline optics are, however, determined by imaging
properties relevant for measurements of the transverse beam size.
Besides the surface quality of optical components and mechanical
stability, the imaging properties are determined by the FBSF of the
diagnostic beamline. The FBSF depends on various parameters of
which some are predetermined, such as the dipole field magnitude
and distribution, or might, like the beam energy, depend on the cur-
rent operation mode of the machine. Another set of parameters is
given by the diagnostic beamline design, namely the focal length of
the focusing element, the horizontal and vertical acceptance angles,
polarization, wavelength (also bandwidth) and possibly diffraction
obstacle properties. The fundamental target in the design of the di-
agnostic beamline is then to create a FBSF that, when convoluted
with the electron beam distribution, generates an image that is as
sensitive to the electron beam size as possible.

The difference between the horizontal and vertical plane in SR
intensity distribution, but also in electron beam size, might require
different or even opposed beamline parameters to optimize sensitiv-
ity in both planes. This must not necessarily lead to a compromise,
since multiple operation modes of a diagnostic beamline, ideally si-
multaneously, are in principle possible.

For typical beam sizes in an ultralow-emittance storage ring of a
few tens of micrometers and below, a SR image of the beam, taken in
the UV-visible-IR spectral range, is dominated by diffraction effects.
The consequence is a non-Gaussian image and possibly a character-
istic diffraction fringe pattern. The contrast of this fringe pattern (or
visibility) is easily accessible in experiment and can be related to the
beam size by comparison with a calculated model.

5.3.1 Horizontal beam size

The horizontal beam size measurements presented in this work
follow two different approaches. The measurements presented in
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Figure 17. Image of a transversely
extended electron beam, calculated
in SRW,
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5.3.1 Horizontal beam size
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Figure 18 a). SRW calculation for
ay =2 mrad, A=325nm. Beam size
determination at o , ~ 60 um by the
width of the imaged beam.
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Figure 18 b). SRW calculation for
ay =2mrad, A=930nm.
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Figure 18 c). SRW calculation for
ay =18 mrad, A=325nm.
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Paper III have been performed at the SLS, a third generation syn-
chrotron light source with a horizontal emittance of approximately
6 nmrad and a horizontal electron beam size at the source point of
the diagnostic beamline of o, ~ 60 um, where amethod based on the
width of the measured image is still applicable for beam size mea-
surements. In the MAX IV 3 GeV storage ring with a horizontal emit-
tance of approximately 0.3...0.2 nm rad, depending on the number
and properties of IDs, horizontal beam sizes lower than 20 pm are
to be expected in the SR source point of the diagnostic beamlines.

A method based on the contrast of a horizontal fringe pattern has
therefore been introduced and is presented in Paper IV.

An example, based on SRW calculations for a simplified model of
a MAX IV diagnostic beamline at the 3 GeV storage ring, is given be-
low to demonstrate in four examples a) to d), with horizontal inten-
sity profiles given in Figures 18 a) to 18 d), how sensitivity to the hor-
izontal beam size is achieved in different ranges of horizontal beam
size.

a) At a horizontal opening angle of 2 mrad and a wavelength of
325nm the FBSF shows the typical Fraunhofer diffraction pattern.
A horizontal beam size of 60 pm is significantly wide compared to
the FBSF and the width of the measured image has a sufficient sen-
sitivity to the beam size. This is the measurement principle used
in [Andersson et al., 2008] and in Paper IIIl. The dominance of the
FBSE however, reduces the effect of the beam size on the width of
the measured image the smaller the beam size is, and the method
becomes insensitive to the beam size.

b) For the same horizontal opening angle and a wavelength of
930 nm the dependence of the width of the FBSF on the wavelength
becomes apparent, a result of the wavelength-dependent angle the
SR is radiated into. Compared to example a) the beam size sensitiv-
ity is largely lost already for wider electron beams. Naturally, imag-
ing with shorter wavelength will have the opposite effect, with a po-
tential to resolve smaller electron beams. The reduction of the mea-
surement wavelength is, however, technically limited in a optical di-
agnostic beamline by transmission and reflection coefficients of the
materials and by the sensor efficiency.

¢) Increasing the horizontal opening angle of the beamline by a
factor 9 compared to example a) leads to a significant depth-of-field
contribution to the FBSF with a strong asymmetry and an extended
fringe pattern. At an imaging wavelength of 325 nm the period of this
fringe pattern is small compared to that of the horizontal beam sizes,
and is, from convolution with the beam size, smeared out entirely.

d) Finally, combining the wide horizontal opening angle with an
IR imaging wavelength, the fringe period becomes comparable to a
beam size of 25 pm and the horizontal intensity profile of the image
shows several local minima. A measurement method that relates the
fringe pattern contrast to horizontal beam size is applicable.
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5.3.2 Vertical beam size

At the SLS a vertical emittance of approximately 1 pmrad has been
reached by minimization of vertical dispersion and betatron cou-
pling[Aiba et al., 2012]. Ultra-low vertical emittance diagnostics with
visible-UV SR has been demonstrated at the SLS using m-polarized
SR [Andersson et al., 2008]. In the 7-polarization method, the depen-
dence of the contrast between the maxima and the central minimum
to the vertical beam size is used for determination of the beam size,
and allows resolutions of a few micrometers (see Figure 19). For this
method short wavelengths in the near-UV range are applied to in-
crease the sensitivity of the fringe contrast to the vertical beam size.

A modification of the m-polarization method is the obstacle
diffractometer presented in Paper III. Here a diffraction obstacle is
introduced to modify the FBSF of the diagnostic beamline in a way
that is similar to the principle of the classical double-slit interfer-
ometer (Appendix A of Paper III). With the obstacle diffractometer
methods the sensitivity to the vertical beam size can, under certain
conditions, be enhanced. Furthermore, the o -polarized SR becomes
available for vertical beam size measurements. Another aspect of
the obstacle diffractometer is that the diffraction obstacle is a part
of the diagnostic beamline, that may be removed or modified solely
to the requirements of the beam size measurement. Thus, the FBSF
can be varied systematically in the experiment and the observed im-
ages are compared to those, calculated numerically, with similarly
varied models of the beamline. The aim of the obstacle diffractome-
ter is therefore mainly to provide complementary methods to mea-
sure the vertical beam size. The optional obstacle diffractometer is
also applied in the MAX IV diagnostic beamlines and first results are
presented in Paper IV.
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Figure 19. Example of vertical intensity profiles of t-polarized SR at 325 nm
for different vertical beam sizes.
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Ox=25 um
Gx= 60 pm

Intensity

-0.4 0.0 0.4
Horizontal Position

Figure 18 d). ay =18 mrad,
A =930nm. Beam size determination
at o, ~ 25 um by fringe contrast.
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5.3.3 Dispersion

As described in Section 1.5.1, dispersion is the contribution of mo-
mentum deviation to the transverse coordinates and momenta of a
particle. If the beam momentum is changed collectively dispersion
can be observed as a transverse displacement of the beam. The dis-
persion in the SR source point is therefore be measured by the diag-
nostic beamline as a transverse displacement of the source.

In the linear approximation the relative momentum change
AP/P,is related to the relative change in main rf as follows:

Afre AP

S ‘P’
Here a, is the linear momentum compaction (Section 2.1). The

beam displacementin the vertical plane Ay, caused by a relative mo-
mentum change, yields the vertical dispersion:

(5.5

__4Ay
= Ap/R,

(5.6)

As an example, data recorded during a vertical dispersion mea-
surement in the MAX IV 3 GeV storage ring is shown in Figure 20. The
+50 Hz variation of the main rfin 11 steps caused a relative momen-
tum change of approximately 0.33% and changed the vertical beam
position by approximately 14 um. The position of the beam centroid
is hereby derived from same fits to the measured image that are ap-
plied for the evaluation of the fringe contrast (Section 5.3.4). Linear
fits to the measured beam positions result in a linear vertical dis-
persion of n, ~ 4.3 mm! in this example. The pattern of frequency
change is chosen to detect and compensate for possible drifts of the
detected beam position, that are not related to the rf change.

5.3.4 Image evaluation

The process of beam size determination from a recorded image is
briefly described in this section for a vertical beam size measure-
ment with the t-polarization method. With modifications and adap-
tations, however, this procedure is also applicable for processing
obstacle diffractometer images (Paper III), and for the determina-
tion of the horizontal beam size by evaluation of diffraction pat-
terns (Paper IV).

We assume that an image of the electron beam is recorded and a
background image? is subtracted from the raw image as a first step.
The vertical intensity profile, shown in Figure 21, is derived from the

I This amount of vertical dispersion is expected since lattice imperfections were
largely uncorrected at the time of this measurement.

2For example an image taken at exactly the same parameters but without stored
beam
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Figure 20. Example of a vertical dispersion measurement with a diagnostic
beamline at the MAX IV 3 GeV ring. The variation of the rf changes the elec-
tron beam momentum. The vertical beam displacement is then related to
vertical dispersion.

background-subtracted image by a line-by-line averaging over a nar-
row column around the intensity maximum to reduce pixel noise.
The width of this column needs to be chosen with care, especially
for asymmetric diffraction patterns, since only pixel noise but no
diffraction effects should be averaged out.
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Figure 21. Vertical profile with fitted parabolas. The intensity ratio between
minimum and maxima (valley-to-peak ratio) is 6.4%.

As a next step the minima and maxima of the diffraction pattern
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Figure 22. Example of a monitor
response function for vertical beam
size measurement, obtained by a fit
to SRW-calculated data.
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are identified and fitted. The example in Figure 21 shows parabo-
las, being a convenient choice of fit function, fitted to both maxima
and the central minimum. The number of data points (red in the fig-
ure) considered for each fit is chosen depending on the width of the
diffraction pattern compared to the pixel size. For each of the three
extrema the vertical position and the intensity are derived from the fit
parameters and a random error on position and intensity is obtained
by error propagation with an estimate of the covariance matrix of the
fit parameters. The directly observable position in the image plane
is then translated into the position of the source, while further steps
are required to obtain the beam size. As an experimentally accessible
measure of the fringe contrast, the valley-to-peak ratio is defined as
the intensity ratio 7/, = (Inin)/{Imax), Where an average is taken over
two maxima. The result is the measured valley-to-peak ratio and its
random error.

Translating the measured valley-to-peak ratio into a beam size re-
quires SR images, calculated with a modeled diagnostic beamline,
that resembles its physical counterpart. Calculating SR images for a
range of beam sizes and obtaining valley-to-peak ratio as a function
of beam size, a lookup table is created. For the evaluation of mea-
surement data it is useful to apply a fit to the lookup table. A conve-
nient choice of fitting is:

o,—03)?
yploy)=c1 +cexp _(0—4) , (5.7)

referred to as the monitor response function, which connects the
measurable valley-to-peak ratio to the (vertical) beam size. Thus, this
approach allows the characterization of a given diagnostic beamline
for various setups by four parameters c; ... ¢4. The function in Eq. 5.7
proved to be a suitable fit to the lookup table, providing better re-
sults than a polynomial fit. Figure 22 shows an example of a moni-
tor response function for vertical beam size measurements with the
m-polarization method, and in Figure 2 and 4 of Paper III the moni-
tor response functions are shown for several methods, applicable for
vertical beam size measurements, at the SLS diagnostic beamline.

By inversion of Eq. 5.7, a closed expression for the beam size as
a function of the valley-to-peak ratio is obtained, that completes the
image evaluation process described above:

rV/p_Cl)

Based on this expression, the random error on the valley-to-peak ra-
tio is propagated to a random error on the vertical beam size. The
beam size and its standard deviation can therefore be stated for a
single measurement, as shown for a vertical beam size measurement
series in Figure 7 of Paper III.

(5.8)
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5.3.5 Longitudinal bunch shape

The rms bunch length in the MAX IV 3 GeV storage ring with a natu-
ral energy spread of o5 ~ 0.77-1073 and a peak rf voltage of V;;=1.8
MV is approximately 29 ps. This natural bunch length can be ob-
served on a stable beam at low current, where the excitation of fields
in the harmonic cavities is low. At design current, a bunch length-
ening by up to a factor 5 is achievable. Synchrotron radiation based
bunch shape measurements require therefore time-resolved inten-
sity measurements at signals of a few 10 ps width. Two approaches,
the single-shot and the sampling technique, are available.

Single-shot measurements with a 12 GHz photo diode have been
performed but are limited by the bandwidth of the 4 GHz oscillo-
scope used to analyze the photo diode signal. Although not sufficient
for resolving the bunch profile, the single-shot technique allows the
evaluation of longitudinal bunch stability in terms of coherent syn-
chrotron motion. For this purpose the oscilloscope is triggered with
the revolution clock of the storage ring, which is synchronized to the
rf system. Only in case of a longitudinally stationary electron bunch,
that is a rigid bunch with no detectable motion of the bunch cen-
troid, the sampling technique is applicable.

A sampling oscilloscope, the Hamamatsu O0S-001, is triggered
with the revolution period and samples the intensity profile of the SR
from one specific electron bunch over several thousand turns. In the
detector part of the device, the incident SR is focused and converted
into photo-electrons by a photo-cathode. The emitted electrons are
deflected by a time-dependent electric field, generated between two
plates. The fast sweep of the electrons by the field, combined with
a narrow slit, allows a time resolution as low as 4 ps, depending on
the operation mode of the sampling oscilloscope. Electrons passing
the slit are converted to light by a phosphor screen. The light is then
transformed to an electric signal by a photomultiplier tube. With suf-
ficiently long signal accumulation and averaging, the noise level can
be suppressed and bunch profile measurements at single-bunch cur-
rents below 0.1 mA are possible.

Bunch shapes measured with the sampling oscilloscope at
MAX 111, a third generation storage ring light source, are shown in
Figure 9 of Paper II. The figure compares the bunch shapes, com-
puted with the theoretical model presented in the paper, with mea-
surements for three cases of bunch lengthening by harmonic cav-
ities. A bunch shape, measured with the same instrument at the
MAX IV 3 GeV storage ring at low current, is shown in Figure 8 of
Paper IV. The deviation from the natural bunch length quoted above
is mainly due to a lower rf voltage.
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5.3.6 Emittance and energy spread

A diagnostic beamline based on SR imaging measures the transverse
beam size, from which an emittance, here in the vertical plane, is de-
rived as follows:

o (s) =1’ (s)0

ﬂy(s)

This so-called apparent emittance [Franchi et al., 2011] from beam
profile measurements is equal to the projected emittance, given in
Section 1.4, only in the absence of coupling. In such a situation the
apparent emittance is also equal to the normal mode emittance, in-
troduced in Section 1.5.4, and these distinctions become obsolete,
since € = & = E. Betatron coupling and spurious vertical disper-
sion from lattice imperfections should therefore be minimize as far
as possible, in order to access the normal mode emittance & as the
invariant of vertical particle motion in a measurement with a diag-
nostic beamline, since then E, — &;. Due to the small emittance
ratio &/ &, the horizontal emittance is less affected by betatron cou-
pling and E , ~ &; is usually a good approximation.

While the beam sizes and the dispersions are measured with
the diagnostic beamline itself, the local values of the beta functions
are obtained by other means. Well-known procedures are the mea-
surement of the betatron tune shifts by variation of the gradient in
quadrupole magnets, and the measurement and fit of the orbit re-
sponse matrix, following for example the LOCO approach [Safranek,
1997]. The beta functions from either of these methods need to be in-
terpolated from the quadrupole magnet or the beam position mon-
itor, to the SR source point of the diagnostic beamline.

The beam energy spreads for the emittances presented in
Papers III and IV have been calculated from a computer model of the
storage ring, since no reliable diagnostics had so far been available
without major effort. With two diagnostic beamlines in locations of
different optics functions, however, the emittance can be obtained
without the need for a model based energy spread. From Eq. 5.9 for-
mulated for the horizontal plane follows for the horizontal apparent
emittance

E,(s)= (5.9

2
2 Nx2 2
O-)C,Z (nx,l) O.xrl

Nx2 2 ’
/J’x,z—(nxv,) ﬁx,l

where the local values of the beta function §,; and S, , at source
point 1 and 2, respectively, are obtained in the traditional way.
Similarly, the beam energy spread is given by

E, = (5.10)

1/2

(5.11)
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In the MAX IV 3 GeV storage ring a diagnostic beamline with the
source point in the first matching cell dipole of achromat 20 and local
values of the optics functions 1, , ~ 1 mm and f,, ~ 1.7 has been
installed (Paper IV). The installation of another diagnostic beamline
with source point in the fifth unit cell dipole of achromat 2, where
Ny1~25mm and f, ;~1.3 mis being prepared. For small dispersion
ratios 1, /1,1, Egs. 5.10 and 5.11 can be approximated as follows:

0.2

E, = 22 (5.12)
* ﬁx,z
2
Vo, —EB
o= VX1 Rl (5.13)
Nx1

Covering the entire 6-dimensional phase space by beam diagnos-
tics is of special interest in an ultralow-emittance storage ring in the
context of intrabeam scattering.
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SUMMARY AND OUTLOOK

CHAPTER O

A method allowing horizontal emittance diagnostics in electron stor-
age rings by near-visible SR imaging has been introduced. The fringe
pattern from imaged SR in the near-IR spectral range is sufficiently
sensitive to the horizontal beam size of o, ~ 24 um at a diagnostic
beamline in the MAX IV 3 GeV storage ring. Preliminary results from
measurements applying this method are presented in Paper IV, in-
dicating, however, experimental imperfections. Subject to further
commissioning of the diagnostic beamline is therefore mainly the
improvement of SR optics alignment. Furthermore, the numeri-
cal model applied so far is insufficient in the given case of varying
transverse beam sizes along the longitudinally extended radiation
source. Further development of the numerical simulation is there-
fore required to enable the precise calculation of the image forma-
tion of the MAX IV matching cell dipole SR at large horizontal open-
ing angles, considering the variation of the beta functions within the
observable range of the diagnostic beamline (Figure 2 of Paper IV).
Measurements of the horizontal beam sizes at two locations of dif-
ferent dispersions and beta functions are envisaged on both MAX IV
storage rings and will enable experimental access to the beam energy
spread.

Vertical beam size measurements with SR in the few micrometer
range have been performed with a diagnostic beamline at the Swiss
Light Source and are presented in Paper III. The obstacle diffrac-
tometer methods have been useful in finding systematic deviations
in beam size measurements, leading to a better understanding and
more accurate modeling of the diagnostic beamline in the simula-
tion code. The same principle, applied in the MAX IV 3 GeV storage
ring diagnostic beamline, gives an estimate of systematic measure-
ment errors (see Table 1 of Paper IV) and allows for determination
and correction of error sources. The progress in storage ring com-
missioning in terms of reduction of betatron coupling and spurious
vertical dispersion, leading to smaller vertical beam sizes, will there-
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fore be accompanied by the commissioning of the diagnostic beam-
lines to eventually enable vertical beam size measurements at 2 to
3 pm.

The bunch lengthening by harmonic cavities, required for the op-
eration of the MAX IV 3 GeV storage ring, has been studied experi-
mentally at the MAX 111 storage ring with time-resolved diagnostics of
SR, and good agreement with simulations is found (Paper II). Subject
to this paper, however, is a wider range of harmonic cavity parame-
ters that will be investigated experimentally at the MAX IV 3 GeV stor-
agering. Although the sampling technique used for the bunch shape
measurements is applicable only at a longitudinally stable beam, it
does enable the determination of the longitudinal charge distribu-
tion with high precision. Applying a complementary measurement
with a photo diode and in a single passage of the bunch, possible
longitudinal bunch oscillations can be studied.

A scheme for vertical emittance control has been introduced in
Paper I, that raises the vertical emittance to a desired level to restore
Touschek lifetime while maintaining good source properties at the
insertion devices. The skew quadrupoles suggested for this scheme
are available in the MAX IV 3 GeV storage ring today. The effective-
ness of closed controlled dispersion bumps can, however, only be
tested experimentally once spurious vertical dispersion and betatron
coupling are sufficiently reduced. As storage ring commissioning
progresses, this scheme may be implemented and verified experi-
mentallyin terms of vertical dispersion increase in the arcs, Touschek
lifetime increase and possibly IBS-induced emittance blowup reduc-
tion by the appropriate diagnostics. Eventually, the effectiveness and
eligibility of the successive closed vertical dispersion bump scheme
will be decided during machine operation for SR production.
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Improving Touschek lifetime in ultralow-emittance lattices

through systematic application of successive closed vertical
dispersion bumps

This paper describes a method to design vertical dispersion
bumps in a fourth generation light source. The purpose of
these dispersion bumps is the adjustment of the vertical emit-
tance to a desired level, while preserving source properties
for insertion devices. This approach is relevant in ultralow-
emittance lattices, where a vertical emittance lower than re-
quired leads to unnecessary Touschek lifetime reduction and
emittance blowup from IBS. I have developed the algorithm
for the design of the dispersion bumps under given bound-
ary conditions and I have studied the performance of the
MAX IV 3 GeV storage ring lattice when employing these dis-
persion bumps in numerical simulations. I wrote most of the
manuscript.

Equilibrium bunch density distribution with passive
harmonic cavities in a storage ring

Subject of this paper is the operation mode of passive har-
monic cavities in the MAX IV 3 GeV storage ring, an essential
ingredient to reach the targeted beam lifetime and emittance.
These passive harmonic cavities are operated in a parameter
range in which the amplitude, but also the phase of waves ex-
cited in these cavities depend on the electron bunch shape. I
have contributed to the measurements in the MAX III storage
ring, where I have prepared and carried out the bunch shape
measurements. I wrote parts of the manuscript that relate to
these measurements.
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III

v

Methods for measuring sub-pm rad vertical emittance at
the Swiss Light Source

This paper introduces a refined concept of vertical beam size
measurements with visible to ultraviolet synchrotron radia-
tion from bending magnets, employing a diffraction obstacle.
At a diagnostic beamline at the Swiss Light Source effects of
the diffraction obstacle on the beam image have been stud-
ied experimentally. During several visits I have participated in
preparations and modifications of this diagnostic beamline. I
have contributed to the measurements, developed numerical
models of the beamline, evaluated the measurement data and
developed ways to quantify and compare measurement accu-
racy. [ wrote most of the manuscript.

Emittance diagnostics at the MAX IV 3 GeV storage ring

In this paper the diagnostic beamline concept for ultralow-
emittance measurements with synchrotron radiation from
bending magnets in the MAX IV 3 GeV storage ring is intro-
duced. While the vertical beam size is measured with the ob-
stacle diffractometer method in the near-ultraviolet spectral
range, the horizontal beam size is inferred from a fringe pat-
tern formed by infrared SR at wide horizontal acceptance an-
gles. [ have participated in the design of the MAX IV diagnostic
beamlines, their installation and the commissioning of the first
beamline. I have performed the numerical calculations and I
participated in the measurements presented in this paper. 1
wrote the manuscript and presented this work at the confer-
ence.
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Improving Touschek lifetime in ultralow-emittance lattices through
systematic application of successive closed vertical dispersion bumps

J. Breunlin,* S. C. Leemann, and A. Andersson

MAX IV Laboratory, Lund University, SE-22100 Lund, Sweden
(Received 4 December 2015; published 9 June 2016)

In present ultralow-emittance storage ring designs the emittance coupling required for the production of
vertically diffraction-limited synchrotron radiation in the hard x-ray regime is achieved and in many cases
surpassed by a correction of the orbit and the linear optics alone. However, operating with a vertical
emittance lower than required is disadvantageous, since it decreases Touschek lifetime and reduces
brightness due to the transverse emittance increase from intrabeam scattering. In this paper we present a
scheme consisting of closed vertical dispersion bumps successively excited in each arc of the storage ring
by skew quadrupoles that couple horizontal dispersion into the vertical plane to a desired level and thereby
raise the vertical emittance in a controlled fashion. A systematic approach to vertical dispersion bumps has
been developed that suppresses dispersion and betatron coupling in the straight sections in order to
maintain a small projected emittance for insertion devices. In this way, beam lifetime can be significantly
increased without negatively impacting insertion device source properties and hence brightness. Using
simulation results for the MAX IV 3 GeV storage ring including magnet and alignment imperfections we
demonstrate that Touschek lifetime can be increased by more than a factor 2 by adjusting the vertical
emittance from 1.3 pm rad (after orbit correction) to 8 pm rad (after application of dispersion bumps) using
two to three independent skew quadrupole families all the while ensuring deviations from design optics are

restrained to a minimum.

DOL: 10.1103/PhysRevAccelBeams.19.060701

I. INTRODUCTION

Today’s ultralow-emittance (ULE) storage rings are
based on multibend achromat (MBA) lattices. In such
storage rings the emittance coupling required to operate
at the diffraction limit in the vertical plane is comparably
high. With orbit corrections and linear optics corrections
applied the vertical emittance resulting from imperfec-
tions (magnet and alignment errors) can, however, become
extremely low, lower in fact than required to be diffraction-
limited at the wavelengths of interest. This is a highly
undesirable situation because of the resulting Touschek
lifetime penalty [1-3] as well as brightness limitations
caused by the increased emittance blowup from intrabeam
scattering (IBS) [4].

We propose therefore to drive successive closed vertical
dispersion bumps (SCVDBs) in the MBA arcs around the
storage ring. Ideally, the vertical emittance is then created
directly via quantum excitation in the bending magnets.
Closing the vertical dispersion bump at the end of the arc
ensures that the straights remain dispersion free. In this way,
and by ensuring low betatron coupling in the straights, the
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electron beam in the insertion devices (IDs) provides small
source properties in order to produce diffraction-limited
synchrotron radiation (SR) and maintain high levels of
transverse coherence [5]. The Touschek lifetime is, however,
substantially improved by the increase in vertical emittance
since it can be shown to scale like 7 o /&y (see Sec. 11 A).

As will be shown in this paper, a SCVDB lattice with
properly closed vertical dispersion bumps but otherwise
only minor deviations from the design lattice can be found.
In such a lattice the dynamic aperture (DA) remains high
and there is only negligible betatron coupling in the IDs
where the vertical acceptance limitations are located.
Therefore, lifetime can be considerably improved while
injection efficiency remains excellent.

Vertical dispersion bumps have been proposed before. In
one set of applications a local closed bump is required to
achieve a transverse separation within an energy-modulated
beam [6]; contrary to what is proposed in this paper such a
bump is created explicitly within the ID. In other applica-
tions vertical dispersion waves for lifetime improvement
have been proposed [7.8], however, in such cases the
vertical dispersion follows a wave extending throughout
both straights and arcs. It therefore improves the Touschek
lifetime, but it also removes achromaticity and alters the
source properties in the IDs. In ULE storage rings this is no
longer an acceptable perturbation.

In contrast to such attempts, the method proposed here
takes a more fundamental approach where achromaticity

Published by the American Physical Society
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and beam properties in the IDs are introduced as fixed
boundary constraints. The vertical dispersion is then
tailored in specific locations away from the IDs to exactly
match lifetime requirements while respecting all boundary
constraints. This systematic approach of successive closed
vertical dispersion bumps and three examples of applica-
tions to the MAX IV 3 GeV storage ring along with
estimates of the achievable performance, based on results
from 6D tracking with Tracy-3 [9], will be presented in
this paper.

II. BACKGROUND AND PRINCIPLE

A. Touschek lifetime and vertical emittance

Touschek scattering is the dominant beam loss mecha-
nism in present storage ring light sources. The effect of
vertical emittance on Touschek lifetime can be derived
from [1-3]

)

1o Fhaits
R regq f 70,(s) < dS, (1)
7 8rmey’o,C C5.\'(5)5)‘(S)Gx’(s)éacc(s)

where r, denotes the classical electron radius, ¢ the vacuum
velocity of light, e the elementary charge, C the circum-
ference of the storage ring, ¢ the bunch charge and y the
Lorentz factor of the beam. The horizontal and vertical rms
beam sizes are o, and o, respectively, while o, denotes the
rms bunch length, ,..(s) the local momentum acceptance
and oy (s) the horizontal rms beam divergence for an
electron at x ~ 0, where Touschek scattering events are
expected to occur. Finally, the function F(x) is defined as

F(x) = (/01 B—%ln(i) - 1} exp (—%)du. 2)

Under the assumption that both vertical dispersion and
betatron coupling are negligible contributions to the vertical
beam size (0, (s) & \/EnpPu(s)) the Touschek lifetime then
scales like

7o /& 3)

Hence a substantial improvement of the Touschek lifetime
can be achieved by increasing the vertical emittance.

B. ULE lattices and vertical dispersion

A typical example for an ULE storage ring lattice is the
design lattice of the MAX IV 3 GeV storage ring [10]. It
shows a low horizontal dispersion in the arcs while the long
straights are dispersion-free (achromatic lattice), see Fig. 1.
Since the vertical dispersion is zero by design (flat lattice),
the only sources of vertical emittance in the real storage
ring, apart from quantum excitation from SR emission
(amounting to less than 0.1 pm rad), are betatron coupling

and spurious vertical dispersion, resulting from imperfec-
tions such as magnet and alignment errors.

It is common practice to minimize both vertical
dispersion and betatron coupling in order to improve the
DA' and to reduce beam losses on narrow vertical accep-
tances (usually found in the long straights as a consequence
of narrow-gap chambers and in-vacuum IDs). This can be
achieved following the widely used LOCO [14] approach:
The betatron coupling is determined from off-diagonal
elements in the orbit response matrix whereas vertical
orbits from rf frequency shifts yield the vertical dispersion
response matrix. Betatron coupling and vertical dispersion
are then minimized by inversion of sensitivity matrices
from a calibrated machine model, which describes the
influence of correcting skew quadrupoles on the orbit and
dispersion response matrix, for an example see [15].
However, the resulting low emittance coupling might
reduce the Touschek lifetime to unacceptable values.
Negative consequences of a short beam lifetime are an
increased top-up rate and possibly radiation issues.
Furthermore, a low emittance coupling further increases
IBS blowup which is already severe in ULE lattices, when
storing high current at medium energy [4].

To alleviate this problem the vertical emittance might be
created from vertical dispersion in the arcs only up to the
maximum permissible level (diffraction limit). In the
presence of vertical dispersion the natural emittance for
the vertical plane yields [16,17]:

Hu
o

2 Isn

Eur Cyy T with Is5y = ds, 4)

where the constantis C, ~ 3.823 x 10-'3 m, I, and I5 ; are
the second and fifth (vertical) synchrotron radiation inte-
grals and the bending radius is p (p = p, in a flat machine).
The chromatic invariant in the vertical plane is defined as

Hu(s) = yunty + 2wy + Punl'i- (5)

By excitation of skew quadrupole magnets horizontal
dispersion can be coupled into the vertical plane, which,
together with the excited betatron coupling [18,19]
increases the vertical emittance [20].

With a suitable set of skew quadrupoles a local vertical
dispersion bump with locally increased betatron coupling
can be created. Once a dispersion bump has been designed
for one achromat, the principle is leveraged by systemati-
cally applying it to each achromat, resulting in SCVDBs
around the entire ring. Opening and closing each dispersion
bump within the same arc ensures that the straight sections
remain dispersion-free. If in addition to closing the vertical

IMaintaining sufficient DA is a crucial requirement considering
off-axis injection e.g. [11], which is being employed in several
new ULE rings [10,12,13].
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FIG. 1.

Design optics of the MAX IV 3 GeV storage ring in one achromat. The design vertical dispersion is zero everywhere. The

positions of the magnets are indicated at the bottom in black. The positions and names of sextupole and octupole magnets, equipped with
auxiliary coils to generate skew quadrupole gradients, are indicated below. The sequence of magnets repeats mirror-symmetrically

throughout the second half of the achromat.

dispersion bumps the betatron coupling is restricted to the
arcs the increase in beam size is also mainly restricted to
locations in the arcs. The source properties of IDs in the
long straights2 on the other hand are not altered, apart from
the increase in vertical emittance, which is, however,
adjusted below the diffraction limit.

In the simplest case and if no assumptions on the phase
advance between skew quadrupoles are made, a closed
vertical dispersion bump can be created with three skew
quadrupoles. However, the dispersion function in the
horizontal plane and beta functions present additional
constraints. Since every deviation from the design lattice
presents a potential source of undesired effects such as
betatron coupling in the long straights or nonlinear optics
detuning, the implementation of the vertical dispersion
bumps must be done under consideration of those lattice
functions. A certain flexibility in the choice of skew
quadrupoles is helpful. It is therefore of great advantage
that a large number of potential skew quadrupoles along the
arcs have been built into the MAX IV 3 GeV storage ring
from the start (Fig. 1). The task remaining is to identify
those skew quadrupoles and their gradients that create the
vertical dispersion as desired in an efficient way and with a
minimum deviation from the design optics.

C. Vertical dispersion bump design
using a SVD-based algorithm

Closed expressions for the electron optics, such as beta
functions and dispersion, as a function of the gradients of a
set of skew quadrupoles can in principle be derived within
the framework of linear approximation (e.g. [21]). Finding
suitable dispersion distributions as analytical solutions of

*The MAX IV 3 GeV storage ring design does not include
bending magnet SR source points.

such a system of equations, however, becomes impractical
for large numbers of skew quadrupole magnets. Instead,
our systematic approach to SCVDBs is based on the
recording of the lattice response to skew quadrupole
magnet excitations, in order to generate a sensitivity matrix.
Inverting this matrix a skew quadrupole setting can then be
found that generates a dispersion bump with the desired
properties. The required optics calculations are carried out
with e.g. Tracy-3 and are applied to the design magnetic
lattice of the storage ring.

The implementation of the dispersion bump as well as
undesired deviations from the design lattice can be char-
acterized by a set of key parameters e.g. the vertical
dispersion in the bending magnets (where vertical emit-
tance is created) as well as the beta functions and dispersion
in SR source points or in regions of narrow apertures. The
response of the lattice, given by all key parameters
D = Pi..-Pn» is then recorded as a function of the gradients

of a set of skew quadrupoles k= ky...k,,. This skew
quadrupole setting may include many potentially available
skew quadrupoles, since the selection of the most efficient
skew quadrupoles follows in a later step. Systematic

variations in skew quadrupole strengths k and recordings
of the related responses p subsequently form the matrices
Pj, and K; ,, where j denotes the index of the generated
set of skew quadrupole setting and lattice response.

With the pseudoinverse of the P; , matrix, calculated via
SVD (singular value decomposition) [22], the sensitivity
matrix M is calculated as

Mn,m = P_l

n,j :

ch.mv (6)
with which the skew quadrupole strengths E, required to
approach a defined target p, in the key parameter space, can
be determined as follows:

060701-3
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ko= by M. ™)

This target p,, expressible in terms of the key parameters,
may represent the design lattice including the desired
dispersion bump, or may be a more relaxed but still
tolerable deviation from it. Once the lattice is adjusted

for the setting %l and the lattice response is recorded, the
success in approaching the target parameters is evaluated.
In an iterative process the parameter space, given by
the combinations and gradients of the available skew
quadrupoles, is searched for suitable dispersion bump
implementations.

In addition to the direct evaluation of the implemented
dispersion bumps, the analysis of the sensitivity matrix
itself provides valuable information. Due to lattice sym-
metry several groups of potential skew quadrupoles might
be located where the ratios of the betatron functions and the
horizontal dispersion are similar, and are therefore expected
to have similar effects on the optics. Such a linear
dependence presents an inefficient use of skew quadrupoles
and should be avoided. For testing this the sensitivity
matrix is written in its factorized form as follows (SVD):

M=uvzvT (8)

Here U and V are orthogonal matrices and X is a n x m
matrix with the singular values of M along its diagonal. Any
inefficiently implemented dispersion bump can then be
identified by a smaller number of nonvanishing singular
values (the rank of the sensitivity matrix M) compared to
the number of employed skew quadrupoles. Furthermore,
the sensitivity of each of the individual skew quadrupoles
to the key parameters can be studied. This offers a systematic
way to evaluate, compare, and improve dispersion bump
implementations and their effect on the optics.

In practice the target parameters can often not be
simultaneously fulfilled, but only approached. This can
be caused by a dependency of the skew quadrupoles or just
because the number of available skew quadrupole families
is lower than the number of target parameters (m < n),
which leads to an underdetermined system of equations.
Under these conditions trade-offs between the boundary
conditions become necessary and can be investigated by
variations of the target parameters within tolerable limits.
An example for this is discussed in Sec. IIT A.

Applying this systematic approach allows finding a set of
suitable skew quadrupoles and their individual excitation
required to increase the Touschek lifetime efficiently by an
increase in vertical emittance, while respecting the defined
boundary conditions. An added benefit of this approach
compared to a derivation from closed expressions is
generality since no solutions have to be a priori excluded.
Furthermore, the method allows quantifying the cost in
terms of deviation from the design optics, possibly con-
nected to an increase in beam size in IDs, and the achieved

lifetime gain as a function of effort. Verification of the
implemented SCVDBs can be performed by measuring a
vertical dispersion response matrix and applying a LOCO
fit to the lattice. With a suitable emittance monitor, as it is in
preparation for the MAX IV 3 GeV storage ring [23], the
vertical emittance can be measured in a nondestructive way.
This allows the controlled implementation and verification
of SCVDBs even during user shifts.

III. CASES AND RESULTS

We use the MAX IV 3 GeV storage ring to showcase our
approach. Throughout the design phase of this storage ring
it has been assumed that the vertical emittance would be
adjusted to desired values. In the Detailed Design Report
[23] the vertical emittance was specified to be 8 pm rad,
aiming for diffraction limited operation with 1 A SR. Later
optimizations, aiming for maximum brightness and trans-
verse coherence, called for 2 pm rad vertical emittance [5].

Examples for how SCVDBs can be implemented in a
real machine in order to meet such emittance requirements
will now for the first time be demonstrated in detail. We
present three design cases of SCVDB lattices to demon-
strate how, with varying effort, the boundary constraints
and target parameters can be enforced to required levels.
Apart from the varying effort, represented by the number of
individually powered skew quadrupole families (number of
magnet power supplies), the cases are designed under
slightly different trade-offs of the boundary constraints,
to achieve the goal of a scalable Touschek lifetime increase
with the least effect on the design optics.

A. Boundary constraints and target parameters

The MAX IV 3 GeV storage ring provides 12 potential
skew quadrupole families. This high number is achieved by
auxiliary coils available on all sextupole and octupole
magnets that can be powered (among others) as skew
quadrupoles. Each of these magnets has an effective length
of 0.10 m and a maximum normalized skew quadrupole
gradient of 0.10 m~2 to 0.26 m~2, depending on the exact
magnet type. The positions of all available auxiliary coils
on sextupole and octupole magnets in the lattice are
indicated in Fig. 1 for one half of the achromat. In
accordance with the lattice symmetry the skew quadrupoles
on mirror-symmetric positions within the achromat are
paired and kept at identical gradients for the cases presented
in this study. The presented cases presume that these skew
quadrupole pairs are powered in each of the 20 achromats
to generate identical vertical dispersion bumps around the
entire storage ring. Therefore, one independent family of
skew quadrupoles consists of 40 equally powered skew
quadrupoles, and the lattice symmetry is unbroken (exclud-
ing machine imperfections).

Four of the five target parameters are set in order to
minimize deviations from the design optics: Two

060701-4
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parameters, #, = 9.0 m and 8, = 2.0 m in the center of the
long straight, prevent excessive growth of the beta func-
tions compared to the design optics. The main purpose of
this target is to avoid an increase in beam size in the ID.
Stipulating this target also prevents large betatron coupling
in the long straights as an indirect effect. In the ideal design
lattice the horizontal and vertical dispersion 7, and 7, are
zero in the long straights to ensure a sufficiently small
source size in the IDs. In order to maintain this achroma-
ticity, two additional targets are stipulated: |17,| < 6 mm
and [7,| < 0.5 mm in the long straights. This ensures
that dispersive contributions to the beam size remain
negligible in the IDs for the assumed energy spread of
65 = 0.8 x 1073 Since there are no bending magnet SR
sources in the MAX IV 3 GeV storage ring no constraints
are made to maintain source properties in the arcs. In
principle this could however be done in the same manner as
in the long straights. The fifth target parameter is related to
the amplitude of the vertical dispersion bump. For this
purpose one key parameter is introduced that depends on
the vertical dispersion in the bending magnets, since this
is where vertical emittance is generated. The exact ampli-
tude of the vertical dispersion bump is, however, not
controlled by a target parameter. This problem is addressed
in Sec. III C. Solutions where the vertical dispersion bump
is opened as far upstream as possible in the arc (and closed
as far downstream as possible) are preferred since they
allow for lower vertical dispersion (more bends are
involved in increasing the vertical emittance). In the cases
presented here, this is achieved by using skew quadrupoles
close to the long straights, rather than those around the
center of the arc.

B. Motivation of cases

In the following a brief motivation for the design of the
three presented cases is given. A detailed and comparative

3.5

Case 1] |
Case 2]
Case 3

0 5 10 15 20 25
s [m]

FIG. 2. Ideal vertical dispersion in Cases 1 to 3. Approximately
6.6 pm rad of vertical emittance is created in the ideal lattice
which gives on average 7.9 pm rad when including imperfections.

investigation can be found in the following sections. The
vertical dispersion created in one achromat is shown in
Fig. 2 for the three SCVDB cases. The vertical emittance
created by these three cases in the ideal lattice (i.e. without
imperfections) is 6.6 pm rad.

Case | demonstrates that a considerable gain in
Touschek lifetime can be achieved using just a single skew
quadrupole family. In this case the vertical dispersion bump

Case 1
Case 2
Case 3

0 5 10 15 20 25
s[m]

(a) Horizontal beta functions

Case 1

0 5 10 15 20 25
s[m]

(b) Vertical beta functions

0 5 10 15 20 25
s[m]

(c) Horizontal dispersion functions

FIG. 3. Difference between the design optics functions and the
optics functions from SCVDB lattices. For all cases, the vertical
emittance is 6.6 pm rad in the ideal lattice and on average
7.9 pm rad when including imperfections.
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is not closed but only suppressed in the long straights
(Fig. 2). This case also shows considerable growth in the
horizontal beta function compared to the design optics
(Fig. 3(a)). The design of Case 2 makes use of two skew
quadrupole families and is focused on minimizing the
betatron coupling in the long straights, here an undesired
side-effect of skew quadrupole excitation. Although the
horizontal dispersion in the long straight appears compa-
rably large [Fig. 3(c)], this example still shows advantages
compared to Case 1. Case 3 shows a similar design as
Case 2 but involves three skew quadrupole families,
where the added family allows an efficient correction
of the deficiencies of the previous cases. With the addi-
tional degree of freedom the defined target parameters can
be approached more closely. However, further enforcing
the target parameters does not appear to be of much
practical benefit since the remaining discrepancies
approach the level of deviations between ideal lattice
and real lattice (i.e. lattices including imperfections, see
Sec. IITF).

C. Scaling of SCVDBs

The method introduced in Sec. II C provides SCVDB
designs that can be easily scaled in vertical dispersion,
generated vertical emittance and hence, Touschek lifetime
as required. By adjusting the gradients proportionally in all
skew quadrupoles, only the amplitude but not the general
shape of the vertical dispersion bumps is changed [21], see
Fig. 4. For adjusting the vertical emittance in practice the
approximation &y « k> [20] offers a simple way to scale
without requiring a redesign via the sensitivity matrix
approach. Since not only the vertical dispersion but also
the deviations from the design optics scale with the skew
quadrupole gradient it is useful to design SCVDBs with

n, mm]

FIG. 4. SCVDB scaling in the ideal lattice of Case 3. Indicated

O  Design optics
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FIG.5. Vertical emittance scales with skew quadrupole gradient
squared. Ideal lattice (x) and error lattice (o) with standard
deviations from 10 error seeds. Only the k of the strongest skew
quadrupole involved in each case is considered.

sufficient amplitude, followed by a down-scaling to the
exact required vertical emittance. This ensures that the
defined boundary constraints are not violated due to
the scaling.

Scaling is demonstrated in Fig. 5, where the vertical
emittance generated in Case 1, 2, and 3 in the ideal lattice
is shown as a function of the required normalized skew
quadrupole gradient k. Since Cases 2 and 3 are based
on more than one skew quadrupole family (see Table I
for details), the strongest skew quadrupole is considered
here. The quadratic fit for Case 3 gives 1.83 pm rad
vertical emittance per (0.01 m™2)? skew quadrupole
gradient.

D. Skew quadrupole gradients

Skew quadrupole gradients are constrained by the
available gradients in the real machine (magnet coils,
power supplies), but also by the design goal of minimum
perturbations of the design optics, especially avoiding
nonlinear effects. Therefore, one design criterion is min-
imizing required skew quadrupole gradient while enforcing
target parameters to sufficient degree. In all presented cases
the normalized skew quadrupole gradient required to
achieve 8 pm rad vertical emittance (including lattice

TABLE 1. Normalized skew quadrupole gradient k in m™2,

generated by auxiliary coils on the magnets used for the presented
SCVDBs. The effective length of each magnet is 0.1 m. The
vertical emittance &y given here is created in the ideal lattice (i.e.
without magnet errors or misalignments).

with a solid line is the vertical dispersion that creates 6.6 pm rad OXX SDend SFm &y [pm rad]
of vert_lcal emittance in thc? ideal lattice and on average 7.8 pm.rad Case 1 0 0.0187 0 6.62
when including imperfections. The dashed lines show the vertical .
& . £ scaled SCVDBs th £ —09. 184189 Case 2 0.0198 0.0138 0 6.74
ispersions of scaled SCVDBs that create &y = 0.9, 1.8, 4.1, 8.9 cpie 3 00193 00114 —0.0017 6.64
and 11.4 pm rad in the ideal lattice, respectively.
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imperfections) is less than 0.02 m~2 i.e. less than 20% of
the maximum available gradient in these types of magnets.
In comparison, the expected skew quadrupole gradient
required to compensate for coupling effects from EPUs is
approximately 0.03 m~2 [24].

E. Impact on design optics and corrections

Deviations of the beta functions from design values
induce small changes in the phase advance over the
achromats and, thus, shift the machine working point.

6
a4l i
2 | B
E o A
> \
b i
oL
Design, errors, SH= 1.3 pm rad
—4r “000t SCVDB, ideal, £ 0.8 pm rad h
— SCVDB, errors, 8“: 2.1 pmrad
-6 I I I I I L L L L L L L
0 264 528 79.2 1056 132 158.4 184.8 211.2 237.6 264 290.4 316.8 343.2 369.6 396 422.4 448.8 475.2 501.6 528
s[m]
(a) Resulting vertical emittance, &1 = 2 pm rad scaling.
6

Choa. AR

Design, errors, EH: 1.3 pm rad |

n, [mm]

‘' SCVDB, ideal, &7 6.6 pm rad
— SCVDB, errors, 5“: 7.8 pm rad

6 1 1 1 1 1 1 1 1 1 1 1 1
0 264 528 79.2 1056 132 158.4 184.8 211.2 237.6 264 290.4 316.8 343.2 369.6 396 422.4 448.8 475.2 501.6 528
s[m]

(b) Resulting vertical emittance, &1 = 8 pm rad scaling.

FIG. 6. Vertical dispersion in the entire storage ring (20 achromats) for the design lattice and Case 3 lattice with identical error seed for
two scalings. The ideal lattice SCVDB is shown for comparison.

n, lrm]
o

Design, error lattice

gt SCVDB, ideal lattice _

—— SCVDB, error lattice

— — — SCVDB, ideal lattice + Design, error lattice
T T

-6

264 396

290.4 316.8 343.2 369.6

s[m]

FIG. 7. Detail of vertical dispersion Case 3 in five achromats. Adding the vertical dispersion from the two independent sources, lattice
imperfections and SCVDBs, linearly leads to a good estimate of the vertical dispersion under the influence of lattice errors.
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TABLEIL. Impact of SCVDBs on beam sizes, vertical projected emittance in IDs (center of long straights), eigenemittances and on the
emittance ratio k = &y;/&;. All results are averaged over 20 straight sections and 10 error seeds. The standard deviation is also displayed.
oy [um] oy [um] €, [pm rad] & [pm rad] &y [pm rad] K [%]
Design 54.35 +£0.37 1.89 £0.14 1.95 +£1.27 3283 +04 1.31 £0.82 0.40
Case 1 5529 +0.43 4.66 +0.30 12.35 £ 1.05 330.2+04 8.06 £0.78 2.44
Case 2 54.424+0.44 4.13 £0.09 8.96 +0.88 3274403 7.88 +0.57 2.41
Case 3 54.354+0.40 4.09 £0.08 8.53 +£0.97 327.84+0.3 7.80 + 0.63 2.38

This is easily corrected by a slight global tuning of the main
quadrupoles in the storage ring. The required changes in
quadrupole gradient are less than 0.1%. This adjustment of
the quadrupole gradients can shift the linear chromaticity in
both planes requiring a correction with at least two
chromatic sextupole families. A change in sextupole
gradient of less than 2% restores the linear chromaticities
to the design values &, = +1.0. These corrections are
performed on the ideal lattice, before adding lattice
imperfections to the simulation. Examples for deviations
of higher order optics from design and their effect on the
machine performance and beam lifetime are discussed in
Sec. IIT' L.

F. Effect of lattice imperfections on SCVDBs

Studies on error lattices are performed in order to
estimate the performance of SCVDBs under realistic
conditions. As in previous studies on the MAX IV
3 GeV storage ring [23,25], the generated error lattices
include the effects of misalignments of magnets, magnetic
field errors and multipole errors. For each error seed orbit
correction is applied, however, no minimization of betatron
coupling or spurious vertical dispersion is attempted at this
point, since the vertical emittance of the error lattices is
~1.3 pmrad and beam tilts from betatron coupling in the
long straights are sufficiently small for user operation. The
same 10 error seeds are applied to both the design lattice
and to the three SCVDB cases. The increase in average
vertical emittance due to errors varies between 1.1 pm rad

15

Design
Case 1|
Case 2
Case 3

—— P

10

o

o

Beam tilt 6[deg]

0 5 10 15 20 25
s[m]

FIG. 8. Beam tilt angle ® in the ideal lattice.

and 1.4 pm rad, depending on the individual SCVDB case
and scaling.

The effect of errors on the Case 3 vertical dispersion
function is shown in Fig. 6(a) and (b) for one error seed as
an example. Note that orbit correction is applied but
spurious vertical dispersion and betatron coupling are
not minimized. For a desired vertical emittance of 2 pm rad
the necessary emittance increase by the SCVDB amounts
to only half of the vertical emittance generated by errors.
Therefore, the ideal vertical dispersion from the SCVDB is
small compared to the vertical dispersion caused by errors
in the design lattice [see Fig. 6(a)]. As expected, the vertical
dispersion of the SCVDB lattices with errors does not
deviate much from the vertical dispersion of the design
lattice. For 8 pm rad desired vertical emittance the
SCVDBs are the dominant source of vertical emittance,
since they create approximately 6.6 pm rad. Figure 6(b)
illustrates the working principle of the SCVDB lattice as a
shift of the design vertical dispersion caused by random
errors toward positive values. A relatively small increase in
vertical dispersion is sufficient to achieve the targeted
vertical emittance.

It is an interesting observation that the vertical dispersion
of the SCVDB lattice without imperfections added linearly
to the vertical dispersion in the design lattice generated
randomly by imperfections, provides a good approxima-
tion® of the total vertical dispersion of the SCVDB lattices
including errors. This behavior is shown in Fig. 7.

G. Beam sizes, beam tilt and projected emittance

Apart from the expected growth of the vertical beam
size, following the approximate relation o, « \/&j, only
Case 1 shows an increased vertical beam size in the center
of the long straight (Table II). The Case 1 lattice shows the
largest deviations from design in terms of beta function [see
Fig. 3(a) and (b)]. Furthermore, the betatron coupling
created in the arc is not closed and a comparably large
systematic beam tilt angle [18] is introduced in the long
straight (see Fig. 8). In all cases the beam sizes are
dominated by the betatronic contribution while the
dispersive contributions can be neglected. This is in

3The error lattice contains among others rolled sextupoles as
well as misaligned and rolled octupoles as nonlinear sources of
dispersion, leading to deviations from a strictly linear behavior.
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FIG. 9. Vertical projected emittance ¢, (solid lines) and vertical
eigenemittance £y (dashed lines) in the ideal lattice for the three
cases. (Markers are displayed for Case 1 since traces partially
overlap.)

accordance with the original design paradigm where
maximum tolerable 7., contributions were specified for
the long straights (see Sec. III A).

Both electron beam size and divergence define the phase
space surface occupied by the beam in the laboratory frame
and form the projected emittance € [19,26,27] as a relevant
source parameter in terms of matching electron beam optics
to the intrinsic radiation from IDs [5]. Unlike the constant
eigenemittance &, the projected emittance € varies along the
storage ring and is equal to the eigenemittance only in the
absence of coupling. Both emittances in the vertical plane,
€, and &y, are shown in Fig. 9 for the three cases and
excluding lattice imperfections. Only in Case 2 and Case 3
does e, approach &y in the long straight sections, demon-
strating the effective local betatron coupling suppression of
these SCVDBs. Case 1 on the other hand shows an increase
of vertical projected emittance in the long straight sections,
amounting to €, = 10.4 pmrad in the ideal lattice, and is
therefore not compatible with the targeted diffraction
limited operation with 1 A SR.

A slight improvement of Case 1 is, however, possible
without much extra effort by changing the polarity of the
skew quadrupoles in every other achromat. The result is a
zero crossing (instead of a constant deviation from zero, see
Fig. 2) of the vertical dispersion and a reduction of the
beam tilt angle in the long straights (Fig. 8). Nevertheless,
since the vertical dispersion and betatron coupling are not
properly closed, the vertical projected emittance remains
substantially higher than the vertical eigenemittance
(e, = 9.5 pmrad, &; = 6.6 pmrad).

When including the effects of lattice imperfections the
vertical projected emittance of the design optics becomes

y

Vert. proj. emittance € [pm rad]

1234567 8 910111213141516 17 1819 20
Long straight section

FIG. 10. Vertical projected emittance e, in the long straight
sections (ID locations) including lattice imperfections (10 error
seeds) for the design optics and the three SCVDB cases.

4.29, 1.08, and 0.73 pm rad, respectively, as shown in
Table II.

H. Touschek lifetime results from tracking

Touschek lifetime was calculated from local lattice
momentum acceptance derived from tracking in 6D around
the entire storage ring with Tracy-3. The Touschek lifetime
calculated here, however, does not take into account bunch
elongation from Landau cavities which increases the
Touschek lifetime by roughly a factor five [4] independ-
ently of the vertical emittance adjustments detailed here.
Lattice errors are included in the simulations and the
vertical aperture is globally limited to 10 mm, corre-
sponding to the vertical acceptance of the vacuum system
without in-vacuum undulators or narrow-gap chambers.
The tracking is performed over a full synchrotron period
which in the MAX IV 3 GeV storage ring (without Landau
cavities) is 7, = 880 us (500 turns). Results are displayed
in Table III.

Under the approximation 7 o /& (see Sec. Il A) the
Touschek lifetime gain achieved with SCVDBs compared
to the design lattice can be quantified with a Figure Of
Merit (FOM) as follows:

i élli
FOM, = -1 [ 9
! %i gII,i ( )

TABLE III.  Tracking results for Touschek lifetime along with
FOM for each case. Mean value and standard deviation are given
for 10 error seeds.

. . & d h FOM

1.95 pm rad averaged over 20 long straight sections and - u [pm rad) all
10 error seeds (Fig. 10). This is an increase of 0.64 pmrad ~ Design 1.31+£0.82 5.06 + 1.64 1
compared to the vertical eigenemittance. In the SCVDBs gase ; ggg i 8;273 i é ﬁ i ggg ggg‘; i 88;1

. . . . ase . . . . . WUS3
Cas.e 1,2, anq 3 the vertical prolecu.sd eml.ttance in the long Case 3 780 1+ 0.63 12.55 1 0.51 0.969 £ 0.019
straight sections exceeds the vertical eigenemittance by
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FIG. 11. Touschek lifetime as a function of skew quadrupole
gradient. Tracking with errors, average and standard deviation for
10 seeds. Only the gradient of the strongest skew quadrupole used
in each case is considered in this plot.

where 7 and é’n relate to the design lattice, 7 and &y relate to
the SCVDB lattice, and i is an identifier for the error seed.
Thus, a resulting FOM < 1 indicates that the Touschek
lifetime gain is lower than expected from the simple 7 «
V& relation. Possible reasons for this behavior are
discussed in the following section. The FOM as an average
over 10 error seeds is shown in Table III for the three
SCVDB lattice designs. It is important to note that the FOM
must be calculated for the individual error seed, as
indicated in Eq. (9), in order to be a realistic measure of
the performance of a SCVDB lattice under different
conditions of lattice imperfections. Scaling averaged life-
times with averaged vertical emittances will not lead to the
same result.

A rough estimate of the general performance of the
presented cases in terms of Touschek lifetime 7 as a
function of the normalized skew quadrupole gradient k,
based on the relation 7 o /&y, and including the effect of
lattice imperfections is given by

t=a\/b- K+ (&), (10)

where (&) = 1.31 pm rad is the vertical emittance of the
design lattice, including lattice imperfections and averaged
over 10 error seeds. The fitted parameters are a = 4.42
hours Touschek lifetime per \/pmrad of vertical emittance
and b, the 1.83 pm rad vertical emittance per (0.01 m~2)?
skew quadrupole gradient, mentioned in Sec. III C. The
curve based on this simple model, representing a
FOM = 1, is shown, together with the tracking results
for Touschek lifetime, in Fig. 11.

1. Discrepancies in lifetime gain

Generally, the FOM is higher for lower skew quadrupole
excitation and thus SCVDBs closer to the design lattice.

8 T

fI— ‘u»»J‘A‘~~~~-"“-‘-"‘-"ﬁm,m

ar . Design []
Case 1
2r B

5 [%]
)

QAL FEEEETTRE

20 25

ar Design |
Case 2
2r 1

s [m]

(c) Case 3

FIG. 12. Momentum aperture from 10 error seeds for the 3
cases, compared to design lattice (black) in the first achromat.
The SCVDB lattices are scaled to approximately & = 8 pmrad
while the design lattice with errors is on average at 1.3 pm rad.

This is illustrated in Fig. 11, where the deviation from the
theoretical, ideal behavior becomes larger with increasing
skew quadrupole gradient. Also, the differences between
the SCVDB lattices become apparent, since designs that
fulfill the target parameters to higher degree show less
deviation from the theoretical assumption of FOM = 1.*

“Situations with FOM < 1 can occur if the dispersive contri-
bution to the vertical beam size is not negligible. However, this is
in contradiction to the initial assumptions.
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Dynamic aperture for the ideal lattice and 10 error seeds. (a) shows the design lattice and (b)—(d) show the three SCVDB

cases. The DA was calculated at the center of the first long straight section, close to the injection point.

To study the effects in detail that lead to beam loss and
therefore reduced Touschek lifetime we investigated
momentum aperture (MA), dynamic aperture, amplitude
dependent tune shift (ADTS) and nonlinear chromaticity
for all 10 error seeds. The tendency of a larger MA with
increasing number of involved skew quadrupoles supports
the design paradigm of minimizing deviations from design
optics in order to maximize SCVDB performance. The
MAs shown for the three cases and the design lattice can be
found in Fig. 12. Although the differences are small, Case 3
shows the least restrictions in MA and is closest to the MA
of the design lattice. This agrees with the fact that the FOM
approaches 1 even at vertical emittances of 8 pm rad for this
SCVDB design.

The DA was simulated in the center of the first long
straight section (s = 0), not far from the injection point
[11]. For the MAX IV 3 GeV ring injection scheme
(on-energy, off-axis) the on-energy horizontal DA is the
relevant parameter in terms of injection efficiency and
ideally needs to be maintained at or beyond 7 mm.
Figure 13 shows that with lattice errors included the DA
stays within tolerable limits.

Generally, the small deviations from design in the linear
optics, followed by a correction of betatron tunes and linear
chromaticity keep the ADTS within acceptable limits in the
three presented SCVDB cases. Performance limitations in
terms of Touschek lifetime that originate in restricted local
MA may, however, be explained by increased ADTSs. For
example, Case 1 shows large negative horizontal tune shift
with vertical amplitude [Fig. 14(b)] compared to the design
optics and the Case 3 optics [Fig. 14(a) and (c)]. Also,
for Case 3 only slight changes of the chromatic tune
shifts compared to the design lattice can be recognized
(see Fig. 15).

In principle the ADTS as well as the quadratic chroma-
ticity can be corrected after the implementation of a
dispersion bump, with expected positive effects on the
beam lifetime and the injection efficiency. For such
corrections the MAX IV 3 GeV storage ring is equipped
with three families of octupole magnets (where corrections
of ADTS and quadratic chromaticity are both first order
effects) and five families of sextupole magnets in various
locations. During the original lattice design the ADTS and
quadratic chromaticity were optimized with these magnets
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FIG. 14. Amplitude dependent tune shifts [horizontal tune (v,)]
for the design lattice and Case 1 and 3 SCVDB lattices, adjusted
for &; = 6.6 pmrad without errors. Ideal lattice in blue
(horizontal) and red (vertical). Ten error seeds in gray.

[10,28]. In this study, however, we focus on a SCVDB
implementation with minimum impact on the design lattice.
Corrections of ADTS and quadratic chromaticity with
octupoles, combined with detailed frequency map analysis
remain, therefore, as an option for further performance
improvement, but are, as shown here, not inevitable for
good SCVDB performance.

Vi ideal
4222 Vy, ideal 16.34
error seeds
422 16.32
42.18 16.3
« >
B =
42.16 16.28
42.14 16.26
42.12 . 16.24
4 3 2 1 0 1 2 3 4
Aplp [%]
(a) Design
V. ideal
2.2 v, ideal 1634
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42.18 163
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42.14 16.26
2n—t e o4
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(b) Case 3

FIG. 15. Chromatic tune shifts for the design lattice and the
Case 3 SCVDB lattice, adjusted for &7 = 6.6 pmrad without
errors. Ideal lattice in blue (horizontal) and red (vertical). Ten
error seeds in gray.

IV. SUMMARY

We have presented a systematic way of increasing the
Touschek lifetime by employing successive closed vertical
dispersion bumps that generate vertical emittance in a
storage ring in a controlled fashion. By increasing the
vertical emittance from 1.3 to 8 pm rad we can increase the
Touschek lifetime by a factor 2 to 2.5 with normalized skew
quadrupole gradients of 0.02 m~2 in the MAX IV 3 GeV
storage ring. For a high-brightness operation mode [5]
cases with a lower skew quadrupole excitation, leading to a
vertical emittance of 2 pm rad and a Touschek lifetime
increase by 30%, have been studied as well.

The systematic SVD-based approach allows a thought-
ful, reasonable trade-off between the targeted lifetime
increase, required effort and possible risks in terms of
deviations from design optics. By keeping deviations from
design optics low the dynamic aperture of the design lattice
is preserved and injection efficiency remains high.

Employing just two independently excited skew quadru-
pole families, deviations from design optics of the MAX IV
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3 GeV storage ring can be reduced to a level that is
comparable to deviations caused by lattice imperfections.
Since vertical dispersion and betatron coupling are
restricted to the arcs the source properties for IDs are
not significantly altered except for the growth in vertical
beam size due to the desired vertical emittance increase. By
adding a third skew quadrupole family residual betatron
coupling and vertical dispersion in the ID source points can
be further reduced, however, considering the benefit during
actual user operation the additional effort might not be
justified.

Finally it remains to be emphasized that the presented
approach to SCVDBEs, starting from an ideal design lattice,
is applicable to any ULE storage ring as long as a sufficient
number of skew quadrupoles is available.
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The MAX IV storage rings, currently under construction in Lund, Sweden, will use third harmonic
cavities operated passively to lengthen the bunches and alleviate collective instabilities. These cavities are
an essential ingredient in the MAX IV design concept and are required for achieving the final design goals
in terms of stored current, beam emittance, and beam lifetime—such performance challenges are in fact
common to all recent ultralow emittance storage ring designs and harmonic cavities are currently under
consideration in several laboratories. In this paper, we report on parametric studies comparing different
harmonic cavity settings in terms of the resulting bunch length, peak bunch density, and incoherent
synchrotron frequency spread for the MAX IV 3 GeV ring. The equilibrium longitudinal bunch density
distribution was calculated by establishing a self-consistent equation for the bunch form factor, describing
the bunch shape. The calculations are fully self-consistent in the sense that not only the amplitude but also
the phase of the waves excited by the beam in the harmonic cavity were assumed to be a function of the
bunch shape, which allowed us to explore a wide parameter range not restricted to the region close to the
conditions for which the first and second derivatives of the total rf voltage are zero at the synchronous
phase. Our results indicate that up to a factor 5 increase in rms bunch length is achievable with a purely
passive system for the MAX IV 3 GeV ring while keeping a relatively large harmonic cavity detuning, thus
limiting the unavoidable Robinson antidamping rate from the fundamental mode of a passively operated
harmonic cavity to values below the synchrotron radiation damping rate. The paper is complemented by
results of measurements performed in the MAX III storage ring, which showed good agreement with
calculations following the fully self-consistent approach.

DOI: 10.1103/PhysRevSTAB.17.064401

I. INTRODUCTION

The MAX 1V facility [1], currently under construction in
Lund, Sweden, includes a 3 GeV storage ring optimized for
hard x rays and featuring ultralow emittance (down to
0.2 nm rad) and a 1.5 GeV storage ring optimized for soft
x rays and UV radiation production. A 3 GeV linear
accelerator plays the role of a full-energy injector into
both rings as well as delivers the beam to a short pulse
facility designed to produce spontaneous radiation from
undulators with pulse lengths down to 100 fs.

A key ingredient in achieving stable operation of the
MAX IV rings at high beam current (500 mA nominal
stored beam current) is the use of a low frequency
(100 MHz) rf system [2] and third harmonic rf cavities
which, together, lead to rms bunch lengths on the order of
5-6 cm.

The long bunches are essential for achieving the ultimate
design performance parameters of the MAX IV rings. In
fact, it is only with lengthened bunches that the low

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.
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emittance can be preserved under the action of intrabeam
scattering and the design intensity can be guaranteed
against coherent collective effects, in particular, the long
bunches help to keep the heat load due to induced fields
in vacuum chamber components at an acceptable level
and avoid excitation of high frequency trapped (high Q)
modes in the chamber structures and rf cavity higher
order modes (HOMs). Additionally, the long bunches allow
us to cope with coupled-bunch resistive wall instabilities
[3] that are enhanced by the very compact design of the
storage ring vacuum chamber [4], which is in turn a
consequence of the compact magnet design [5] required
to reach a very low emittance in a relatively short machine
circumference through the multibend achromat lattice
concept. Moreover, the harmonic cavities increase the
synchrotron frequency spread within the bunches, thus
enhancing Landau damping of collective instabilities.

All of the issues mentioned above are in fact common to
many recent ultralow emittance storage ring designs and
the possibility of using harmonic cavities is contemplated
in new projects [6,7] as well as in upgrade proposals [8].

Harmonic cavities have been successfully used for many
years in second and third generation light sources in both
active [9] as well as passive [10-14] configurations. The
basic theory is described in [15] and beam instability
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analyses under the presence of harmonic cavities have been
carried out by several authors (e.g. [16,17]).

In this paper, we focus on the MAX IV 3 GeV ring and
describe calculations of the equilibrium longitudinal bunch
density distribution in the double rf system (main and
harmonic cavities), having in mind that the harmonic
cavities will be operated passively, i.e., the fields in those
cavities will be excited by the beam itself. Passive operation
implies therefore that the fields excited in the harmonic
cavities depend on the bunch density distribution, which,
in turn, is determined by the sum of the fields in the main
cavities and those in the harmonic cavities. Clearly a self-
consistent solution for the density distribution needs to
be found.

This problem has been treated by various authors before.
In some cases (e.g [18]), the influence of the bunch shape
on the excitation of the fields in the harmonic cavity is
disregarded, i.e. the bunch lengths are assumed to be
negligible when compared to the rf wavelength (even in
lengthened conditions). In other cases [11], the influence of
the bunch shape on the amplitude of the wave excited by
the beam in the harmonic cavity is taken into account by
introducing a bunch form factor F, which is equal to unity
for a pointlike bunch and decreases as the bunches get
longer, as a result of the reduced overlap of the bunch
spectrum with the impedance of the fundamental mode of
the harmonic cavity. In this way, a self-consistent equation
is established for the determination of the equilibrium
density distribution, in which the beam frequency spectrum
depends on the bunch shape and the frequency response of
the harmonic cavity depends on the cavity properties (shunt
impedance, quality factor, tuning angle). A more direct, but
more time consuming approach is to perform multiparticle
tracking including the effects of the long-range wakefields
of the harmonic cavities (e.g. [19]).

The self-consistent equation approach described above
(which we call a scalar approach) works well for certain
ranges of harmonic cavity settings (i.e. harmonic cavity
shunt impedance and tuning angle). In particular, if the
shunt impedance is low enough, the scalar approach is
sufficient for any choice of tuning angle. Moreover, if the
shunt impedance and tuning angle are close to the so-called
flat potential conditions, in which the first and second
derivatives of the longitudinal potential well are zero at the
synchronous phase, the density distribution may safely be
calculated using the scalar method. However, passive
operation of the harmonic cavities implies operation on
the Robinson unstable slope of those cavities, generating
a Robinson growth rate that needs to be counteracted by
other damping mechanisms such as synchrotron radiation
damping and Robinson damping in the main cavities. This
can be made easier if the harmonic cavities are tuned far
away from resonance, which in turn implies the need for
high shunt impedance to reach the necessary field ampli-
tudes that provide enough lengthening. Such conditions,

with high shunt impedance and far away from flat potential
conditions may lead to a significant deformation of the
bunch shape and cannot be treated by the scalar self-
consistent approach. Instead, both the amplitude and the
phase of the fields in the harmonic cavities must be
assumed to depend on the bunch shape when writing up
the self-consistent equations, which then become two
dimensional—in other words, the bunch form factor that
describes the excitation of fields in the harmonic cavities is
now a complex number with an amplitude and a phase and
we may define a fully self-consistent solution.

Once the equilibrium bunch density distribution is
obtained, parameters such as the rms bunch length, the
peak bunch density, and the distribution of incoherent
synchrotron frequencies within the bunch can be calculated
and used to compare different settings for the harmonic
cavity system.

This paper is structured as follows. In Sec. II, we briefly
review the theoretical background to calculations of the
equilibrium bunch density distribution in double rf
systems—the analysis here is general in the sense that it
applies to both active and passive harmonic rf systems. We
then go on, in Sec. II A, to the specific case of passive
harmonic systems and consider the usual solution to the
equilibrium bunch density distribution with the use of a
real form factor for defining the bunch shape, whereas the
fully self-consistent treatment with a complex form factor
is described in Sec. II B. Section III shows the numerical
results for the MAX IV 3 GeV ring case—first the
difference between the scalar and fully self-consistent
solutions is illustrated by analyzing two extreme cases,
namely, a low shunt impedance/small detuning case and a
high shunt impedance/large detuning case. We then define
a metric to quantify the difference between the two
approaches and identify the parameter region where the
fully self-consistent approach is essential. The resulting
beam density distribution is then analyzed and different
harmonic cavity settings are compared. Finally, in Sec. IV
we present results of longitudinal bunch profile measure-
ments performed in the MAX III storage ring, which are
compared to the calculated bunch distribution.

II. EQUILIBRIUM BUNCH DENSITY
DISTRIBUTION IN DOUBLE RF SYSTEMS

Double rf systems have been analyzed by many authors
(see e.g. [11,15]) to which we refer the reader for a detailed
discussion. Below we list the relevant results and establish our
notation and conventions. We assume a rf system composed
of main and harmonic cavities so that the total accelerating
voltage seen by the beam on every turn is given by

V(@) = Vue(®) + Vic(o), (1)

where V(@) = Vi sin(p + ¢,) is the main cavity voltage
and Vyc(@) = kV¢sin(ng + n¢y,) is the harmonic cavity
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voltage. The harmonic cavity is assumed to resonate at a
frequency close to the nth harmonic of the radio frequency.
The parameters k and ¢, define the amplitude and phase
of the fields in the harmonic cavity. The equations of motion
of a particle with phase deviation ¢ and relative energy
deviation € are

de 2rh
i 2
ar % Ty e @)
de 1
&t " ET, [eoVr(9) — Uo], (3)

where .. is the momentum compaction factor, / the harmonic
number, E is the nominal beam energy, T is the revolution
period, and U, is the energy loss due to synchrotron radiation
per turn. The synchronous phase in the absence of a harmonic
cavity (the unperturbed synchronous phase) is given by

eoVis singyy = Uy, 4)

while the presence of the harmonic cavity causes the
synchronous phase to shift to a new value ¢, given by

eoVr(0) = egVie(sing, + ksinngy,) = U,. (5)
Note that we choose ¢, such that cos ¢, < 0. The canonical

equations of motion above can be derived from a
Hamiltonian:

H(p,e) =
(9.€) T, |2 h*aZ cos gy

5 /Jtp eoVr(¢') — Uy d(p’}, )

2045

_271]’1(16{12 0% 1

where we introduced the unperturbed synchrotron tune

haL. () Vrf COS @40
27E,

Q%o = s (7)

and the corresponding equilibrium bunch density distribution
is given by

p(@.€) = poexp <— ZﬂT};’a‘ H(:;’ €)> (8)

where o, is the equilibrium relative energy spread determined
by the interplay between quantum excitation and radiation
damping. This distribution in the (¢, €) phase space can be

where

a’o?

Y el A
(0) cosrpsoaéo

{cos s —cos(@p + @)
k

+ . [cos ngpy, — cos(ng + ney,)|

— (sin g +ksinn¢h)(p}, (10)

ha,

where the natural bunchlengthis 649 = Op. The equations
above are general in the sense that they apply to both actively
and passively operated cavities. In the active case, however,
both amplitude and phase can be chosen independently,
whereas in the passive case, once the cavity shunt impedance
is fixed (by its construction) only one parameter is available
for optimization, namely, the cavity tuning angle (or equiv-
alently the cavity resonant frequency). In particular, we may
choose the harmonic cavity voltage and phase such that both
the first and second derivatives of the voltage at the synchro-
nous phase are zero and an approximately quartic potential
well is formed. This is achieved when the harmonic cavity
voltage and phase are [11]

1 1 Uy \?2
kp =1/~ =—=— ’
n~ n-—1\e)Vy
nU,
eVt

tan ”¢/1.fp == 2 ’
212 _ (2 U
\/(n 1) (n eovn’)

where the subscript fp identifies this as the flat potential case.
This is possible for both passive and active operation, but in
the passive case, once the harmonic cavity shuntimpedance is
fixed by its construction, these conditions are only reached at
a given beam current and a given harmonic cavity detuning.

A. Scalar self-consistency

The response of the harmonic cavity to the excitation by
the beam can be described by the cavity impedance [11]

Zye =R, <1 +iQw2 m2>_1 ~R, <1 +iQ2?f> (13)

2_
0w, B

where R; is the cavity shunt impedance, Q the quality
factor, and w, = 2z f, is the resonant frequency. In terms
of the harmonic cavity detuning Af and tuning angle v,

projected onto the ¢ axis to yield the longitudinal equilibrium Af =nfu=1fr (14)
bunch density distribution: Af
tany, :2Qf—‘, (15)
1 r
p() = poexp (— oy ‘P(rﬂ)) ) ) . ) )
Ac0p we may write the voltage induced in the cavity as
064401-3
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Ve (@) = =2IyRF cosyr;, cos(np —yry,). (16)
where /) is the stored beam current and we have introduced
the (real) bunch form factor

1 F D@
= o)

given by the absolute value of the Fourier transform of the
bunch density distribution at the nth harmonic of the radio
frequency, normalized to the dc component and we identify

(17)

_ 2I4FR,|cosyr,|

k
Vir

(18)

b4
ney, ZE—W}r (19)

The equations above give us the recipe for finding p(¢),
namely, given the beam current, harmonic cavity shunt
impedance, harmonic cavity tuning angle, and a bunch
form factor, we calculate the harmonic cavity voltage from
Eq. (16), determine the total voltage from Eq. (1) and
corresponding potential from Eq. (10), and finally calculate
the bunch density distribution from Eq. (9). Once the bunch
density distribution is known, the bunch form factor can
be calculated back from Eq. (17), which leads to a self-
consistent equation in one variable (F) of the form
F = f(I.R,.yy. F). (20)
where the functional form f stands for the series of
calculations described in the preceding paragraph. The
equilibrium bunch form factor, which is a solution of the
equation above, can be easily determined numerically as
the root of the penalty function (see Appendix C),
g(F):F_f(IﬂRsvl//h?F)' (21)
For the flat potential case, the required shunt impedance
and harmonic cavity tuning angle are given by

R, = Ve . (22)
P 2IFp| cosyy,
T
Yhip = ) - ”¢h,fp7 (23)

where kg, and ¢, g, are given in Eqs. (11) and (12).

B. Full self-consistency
The full self-consistency is implemented by writing the
harmonic cavity fields as

Vic(@) = kVy sin (ng + ngy, — @ge), (24)

where we have introduced the form factor phase ¢rr and
the harmonic phase ¢, is determined by the harmonic
cavity detuning v, (Eq. 19), just as in the scalar case. The
potential is obtained from Eqs. (5) and (10) by replacing
n¢g, with n¢, — @pp and the same self-consistent equa-
tion (20) above can be used, but the form factor is now a
complex quantity

F = |F|eior, (25)

which may be determined from the density distribution p by

F[p] _ ‘F[f)(w)]w:nwn .
IF ()]0l
and the numerical root finding algorithm of the scalar
case is replaced by a two-dimensional minimization of the
penalty function (see Appendix C)

(26)

g(F) = |F = f(I.R,.y;,. F)|.

which gives us both amplitude and phase of the complex form
factor F. Clearly both approaches lead to the same results
when the form factor phase @y is close to zero, which, as we
will see, will be the case for conditions close to the flat
potential case or for low harmonic cavity voltage ratios.

(27)

III. RESULTS AND DISCUSSION

Table I shows the MAX IV 3 GeV ring parameters
assumed in the calculations reported in this paper. Only
operation at full current (500 mA) was considered and all
176 bunches were assumed equally populated, which
implies that our treatment does not consider transient
effects' due to the presence of a gap in the bunch train.
This limitation is, however, not a problem for the MAX IV
case in its baseline configuration, which does not foresee
the use of such gaps.

The equilibrium bunch parameters when no harmonic
cavities are present (or when they are tuned far away from
resonance) are shown in Table II. The harmonic cavity
was assumed to operate at the third harmonic of the radio
frequency and flat potential conditions are realized for
k = kg, = 0.277, corresponding to R g, = 2.017 MQ and
Wip = 103.717° or, equivalently a harmonic cavity detun-
ing of Af = —28.43 kHz, which leads to a rms bunch
length of 54.1 mm, a peak bunch current of 8.9 A, and a
perturbed synchronous phase ¢, = 143.786°.

These figures were confirmed by a direct solution of the
scalar (21) and fully self-consistent (27) equations, as

'An extension of the proposed method to include transient
effects could be considered by defining a separate complex form
factor for each individual bunch. The self-consistent equations
become, however, more involved and it is doubtful that this
method would allow for a faster solution than direct multiparticle
tracking in this case.
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TABLE I. MAX IV 3 GeV ring parameters.

Parameter Description

E, energy 3 GeV

Iy current 500 mA

Ty revolution period 1.76 us

fi radio frequency 99.93 MHz

h harmonic number 176

U, energy loss per turn 856 keV

a, momentum compaction factor 3.07 x 10~

[ small amplitude unperturbed 1.994 x 1073
synchrotron tune

@0 unperturbed synchronous phase 148.32°

T longitudinal radiation damping time 25.6 ms

o, relative energy spread 7.82 x 1074

Vi peak rf voltage 1.63 MV

0 harmonic cavity quality factor 21600

TABLE II. Equilibrium bunch parameters without harmonic

cavities.

Parameter ~ Description

o) rms bunch length 10.1 mm

1, peak current 59.1 A
bunch form factor at third harmonic 0.998

shown in Fig. 1. Clearly, in that parameter range, the
scalar and fully self-consistent approaches lead to essen-
tially the same results. However, the small detuning implied
by the flat potential brings about a significant Robinson
growth rate from the interaction of the beam with the
fundamental mode of the harmonic cavity. This growth rate
(cf. Appendix B) is too large (67 s™!) to be compensated by
radiation damping alone (39 s~') and Robinson damping
from the fundamental mode of the main cavity is required
to maintain a stable beam under those conditions.

10 T T T T T
Scalar self-consistency
gl Full self-consistency |
< 6 1
H
L
3 4 B
ok .
0 } L
0.4 -0.2 0.0 0.2 0.4
Phase [rad]
FIG. 1. Equilibrium density distribution for R, =2.017 MQ

and Af = —28.43 kHz calculated with both scalar (solid line)
and fully self-consistent (dashed line) approaches. The rms bunch
length is 54.1 mm.

12 T T T T T

iy Scalar self-consistency
o= e |- - - Full self-consistency 1

®
T

Current [A]
o
T

0.4 0.2 0.0 0.2 0.4
Phase [rad]

FIG. 2. Equilibrium density distribution for R, = 4.2 MQ and
Af = —60.36 kHz calculated with both scalar (solid line) and
fully self-consistent (dashed line) approaches.

It is, however, possible to reduce the Robinson anti-
damping due to the harmonic cavity while maintaining
significant bunch lengthening, as long as we abandon the
flat potential condition and allow the cavity detuning to
grow while increasing the cavity shunt impedance. Such a
situation is illustrated in Fig. 2, in which the self-consistent
distribution calculated using both scalar and fully self-
consistent approaches is shown for R, =4.2 MQ and
v, = 96.558° corresponding to Af = —60.36 kHz. It is
clear that a fully self-consistent calculation is mandatory
under such conditions. We also see from the fully self-
consistent results that, even far away from the flat potential
conditions, we can reach a comparable rms bunch length
(54.2 mm) at the cost of a slightly larger peak density
(10.6 A) and an asymmetric bunch profile. The Robinson
growth rate is then reduced by more than a factor 4 down to
15.3 571, well within the range in which radiation damping
alone can deal with it.

The results above indicate that for some (potentially
interesting) parameter ranges, the scalar self-consistency is
not capable of predicting the equilibrium density distribu-
tion correctly, which naturally raises the question of when
one may safely apply the simpler scalar approach. In order
to address that issue, we define the parameter & to compare
two density distributions p; (¢) and p,(¢) and quantify how
different they are,

¢ [ -nords 03

where both p; and p, are normalized such that

JZpi(@)de = [T py(p)dp = 2x.

Figure 3 shows the parameter ¢ as a function of the product
R;| cos(yy,)|, proportional to the harmonic cavity voltage for
various values of the harmonic cavity detuning. For any
cavity detuning, the difference between the two approaches
becomes negligible as the harmonic cavity voltage decreases
whereas for a fixed harmonic cavity voltage, the fully
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12 B
—o— Af =-60.36 kHz
—o— Af=-43.82 kHz

1ol —5- Af =-39.36 kHz |
—e— Af=-35.70 kHz
—5— Af=-32.65 kHz
—B- Af =-30.06 kHz

0.8 4 Af=-28.43 kHz

* 06
0.4
0.2
0.0
0.1 0.2 0.3 0.4 0.5
R [cos(y)| [MQ]
FIG. 3. Difference £ between self-consistent and scalar solu-

tions to the bunch density distribution as a function of R| cosy,|
for various values of harmonic cavity detuning. The points
identified by A and B correspond to the cases displayed in the
plots of Fig. 1 and Fig. 2, respectively.

self-consistent approach becomes essential as the harmonic
cavity detuning is increased from the value corresponding to
flat potential conditions” (A f = —28.43 kHz). This plot
confirms and details the trend illustrated by the two extreme
cases explored above, which are indicated in Fig. 3 as points
A and B.

In order to determine optimum values for shunt imped-
ance and detuning parameters for the harmonic cavity
system, we considered three properties of the resulting
equilibrium bunch density distribution: rms bunch length,
peak bunch density, and incoherent synchrotron frequency
spread.

Figure 4 shows the rms bunch length vs shunt impedance
for various values of harmonic cavity detuning. The bunch
length grows monotonically with shunt impedance for all
detuning values and we see that lengthening much larger
than the lengthening corresponding to flat potential con-
ditions may be obtained. However, as shown in Fig. 5, such
overstretched conditions actually lead to peak densities
somewhat above the minimum achievable. In fact, the peak
density vs shunt impedance curves show a minimum at a
shunt impedance value which decreases as the detuning
decreases. That minimum peak density varies only slightly
as the detuning increases. In other words, by going to larger

*Note that, if one reduces the detuning further from the flat
potential case values towards zero, the difference between scalar
and full self-consistency results for a given value of R,|cosy|
grows again (cf. Fig. 17 in Appendix C 2). However, this case has
less interest in this context as it does not lead to reduced Robinson
growth rates.

T T T T T T
—6— Af = -60.36 kHz
100 || —o— Af = -43.82 kHz —
5 Af=-39.36 kHz
—E Af = -35.70 kHz
—o— Af=-32.65 kHz
80 —| —m— Af = -30.06 kHz -
= 4 Af = -28.43 kHz
£
£
B 60~ —
Q
2
5
o 40k —
E
20+ —
okt 1 1 1 1 +H
0 1 2 3 4 5
RyMQ]

FIG. 4. The rms bunch length as a function of harmonic cavity
shunt impedance for various values of harmonic cavity detuning.
The points identified by A and B correspond to the cases
displayed in the plots of Fig. 1 and Fig. 2, respectively.

shunt impedance and detuning (while keeping the harmonic
cavity voltage approximately constant), one may obtain
essentially the same rms bunch lengths at the cost of a
slightly larger peak density. This is in fact the approach
adopted for the MAX IV 3 GeV ring, where a significant
margin in shunt impedance above the flat potential con-
dition is provided by installing three identical harmonic
cavities, each with a shunt impedance of 2.5 MQ. Having
the total shunt impedance split among three different

60 [ _ T T T T +H
—6— Af =-60.36 kHz
—6— Af =-43.82 kHz
50 —5- Af=-39.36 kHz| _|
—5- Af=-35.70 kHz
—o— Af=-32.65 kHz
—m— Af =-30.06 kHz
40— —p4— Af =-28.43 kHz
<
=
2
o 30
a
X
[
D
o
20—
10
okt ] ] ] ] Ex
0 1 2 3 4 5
RsMQ]
FIG. 5. Peak current as a function of harmonic cavity shunt

impedance for various values of harmonic cavity detuning. The
points identified by A and B correspond to the cases displayed in
the plots of Fig. 1 and Fig. 2, respectively.
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R=2.017 MQ, W¥,;=103.7°, Af=-28.43 kHz
Rs=4.2 MQ, ¥=96.558°, Af =-60.36 kHz
Rs=4.4 MQ, ¥,=96.558°; Af =-60.36 kHz

ooon

10°

Number of Particles
=

0.0 0.5 1.0

15 2.0 25x10°

Synchrotron Tune

FIG. 6. Histogram of incoherent synchrotron tune distributions for different harmonic cavity settings. The tune distribution without

harmonic cavities is shown for comparison.

cavities allows us to tailor the actual shunt impedance seen
by the beam by tuning each cavity independently and
additionally permits us to keep the power dissipated in each
cavity within acceptable levels.

Another figure of merit that allows us to compare
different choices of parameters for the harmonic cavity
system is the incoherent synchrotron frequency spread,
directly related to the Landau damping of collective
instabilities. Figure 6 shows the numerically determined
(see Appendix A) density distribution in synchrotron tune
space for various cases. Compared to the situation without
harmonic cavities, the average synchrotron tune is signifi-
cantly reduced and the spread is increased when harmonic

20fF 1 T T T T T K
—— No HC
— R=2.017 MQ, Af=-28.43 kHz
15 — Rs=4.2 MQ, Af=-60.36 kHz
: —— Rs=4.4 MQ, Af=-60.36 kHz
&
s 1.0 —
B
05— / Primary bucket
Secondary bucket
0.0 = | | | 1 4l
-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Phase [rad]

FIG. 7. Potential distribution for various settings of the har-
monic cavity. The (approximately parabolic) potential when no
harmonic cavity is present is also shown for comparison.

cavities are included. Even though this increase is larger for
conditions close to the flat potential case (R, = 2.017 MQ)
than for the high shunt impedance/large detuning case
analyzed earlier (R; = 4.2 MQ), the tune spread can be
reobtained for large detuning by going to even larger shunt
impedance (see for example the case R, = 4.4 MQ
in Fig. 6).

One can better understand those results by considering
the behavior of synchrotron frequency as a function of the
Hamiltonian invariant [Eq. (6)] and the corresponding
potential functions [Eq. (10). As the potential well becomes
wider (Fig. 7), the tunes are reduced and span a wider
range as a function of the Hamiltonian invariant (Fig. 8).
Moreover, instead of the usual decrease in synchrotron tune
for increasing oscillating amplitude, which characterizes a
single rf system, the double rf system actually shows an
increasing synchrotron tune as a function of amplitude for
amplitudes above a threshold value. This threshold value
and the synchrotron tune at the threshold is lower when we
are close to flat potential conditions than for the high
impedance, large detuning conditions, implying a larger
tune spread for the flat potential condition case.” However,
as the shunt impedance is increased further, the minimum
of the synchrotron tune at the threshold is decreased and
approaches the flat potential situation, which causes the
corresponding tune distribution to extend to lower syn-
chrotron tunes in Fig. 6. Moreover, when the distortion of
the potential well is so large that a second stable fixed
point of the Hamiltonian (a secondary bucket) is created,
as in the case of Ry, = 4.4 MQ, a new set of synchrotron

*Exactly at flat potential conditions, the synchrotron tune
reduces to zero for vanishing oscillation amplitude.
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FIG. 8. Synchrotron tune as a function of the (normalized)

Hamiltonian for various settings of the harmonic cavities. The
(nearly constant) curve corresponding to the case without
harmonic cavities is also shown for comparison.

frequencies, corresponding to oscillatory motion around
this secondary synchronous phase, appears. These syn-
chrotron frequencies are shown by the magenta curve in
Fig. 8 and lead to the extended shoulder to the right of the
corresponding tune distribution in Fig. 6.

IV. BUNCH PROFILE MEASUREMENTS IN
THE MAX III STORAGE RING

MAX 1III is a third generation synchrotron light source
with an electron energy of 700 MeV intended for synchro-
tron radiation generation in the infrared and ultraviolet
region. It was commissioned in 2006 and characterized in
2008 [20]. The rf system in MAX III consists of three rf
cavities: the main cavity at 100 MHz and two passive rf
cavities at the third and the fifth harmonic. The fifth

harmonic cavity was installed at the startup of MAX III
and is currently detuned during regular user operation in
order to avoid the excitation of coupled bunch modes
by HOMs. The third harmonic cavity, a prototype for the
MAXTV harmonic cavity [2], was installed in October 2011
and has been tuned in during user operation since then.

MAX I is equipped with a diagnostic beam line observ-
ing the visible synchrotron radiation emitted from the center
of a dipole magnet [21]. In order to measure the longitudinal
bunch shape, the time structure of the synchrotron light is
resolved with an optical sampling oscilloscope (OSO). In the
sampling head of the OSO, the incident light is focused and
converted into photoelectrons at a photocathode. The elec-
tron path is bent by deflecting plates and swept over a slit.
The electrons passing the slit impinge on a phosphor screen
generating light which is transformed into an electric signal
by a photomultiplier tube. The signal was sampled with 2048
points on a 2.4 ns time axis. The total data acquisition time
was about 70 sec per measured bunch profile.

The relative energy spread was 6.0 x 107* and the
momentum compaction was 0.03288 [22]. The main cavity
voltage during the measurements was V= 108 £ 1 kV
and the rf was 99.925 MHz. The third harmonic cavity with
Q =20430 £40 and R; = 2.68 = 0.015 M€ had a detun-
ing Af = =197 £ 1 kHz. The fifth harmonic cavity with
Q =21720£50 and R, = 1.57 £ 0.01 MQ was detuned
by Af = -703 £ 1 kHz. Despite its large detuning, the
fifth harmonic cavity contributes to the total accelerating
voltage seen by the beam and has to be considered in
calculations. In the case of the fully self-consistent
approach applied to the triple rf system of MAX III, two
independent complex form factors are required to calculate
the voltages in each harmonic cavity. Numerically the self-
consistency has to be found by a now four-dimensional
minimization of the penalty function [compare Eq. (27)].

Figure 9 shows three examples of measured bunch
shapes together with the corresponding calculations based
on the fully self-consistent approach. At low currents (left-
hand plot in Fig. 9), the effect of the harmonic cavities is
negligible. The bunch shape is Gaussian and the bunch

Current: 2 mA Current: 166 mA Current: 186 mA
15 15 15
Measured bunch shape Measured bunch shape Measured bunch shape
. Calculated bunch shape . Calculated bunch shape . Calculated bunch shape
@ @ @
s 1 S 1 S 1
£ £ £
A s s
= 2 2
‘@ ‘@ ‘@
g 05 5 05 5 05
£ = =
0 0 0
-1000 -500 0 500 1000 -1000 -500 0 500 1000 -1000 -500 0 500 1000
Time (ps) Time (ps) Time (ps)

FIG. 9. Examples of measured bunch shapes compared to calculated density distributions. The calculations are based on the full
self-consistency approach. Gaussian bunch (left) with natural bunch length at low currents. Elongated bunch (middle) close to flat
potential conditions for medium currents. At higher currents (right) the bunch is overstretched by the harmonic cavities.
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length is close to the natural bunch length. At medium
currents, the fields in the harmonic cavities are excited and
lead to bunch lengthening. The conditions for the middle
plot in Fig. 9 are close to the flat potential conditions. At
higher currents (right-hand plot in Fig. 9) the fields in the
harmonic cavities overstretches the bunch and the density
in the bunch center decreases.

In order to verify that the overstretched bunch shape
was real and not a time-averaging artifact of the optical
sampling oscilloscope, measuring on an unstable beam, a
measurement of the shape of a single bunch (and in one
turn) was done with a fast diode. Although the single-shot
bunch shapes were noisy, it was still clear that the over-
stretched bunch shape was real.

The symmetry of the bunch density distributions sug-
gests that, contrary to the MAX IV case, a treatment with
full self-consistency is not required for the range of
parameters covered in the MAX III experiments. In fact,
the MAX III synchronous phase is closer to 180° and a
relevant difference in the result of the scalar and fully self-
consistent approaches is expected only for larger values of
the harmonic cavity voltage ratio k, which were not
accessible in MAX III (see Fig. 18 in Appendix C 2).

V. CONCLUSIONS

We have analyzed the effect of a passively operated third
harmonic cavity in the MAX IV 3 GeV electron storage
ring for a uniform fill (i.e. transient effects associated with
the presence of a gap in the bunch train are excluded
from the analysis). The calculation of a fully self-consistent
equilibrium longitudinal beam density distribution, in
which both the amplitude and phase of the waves excited
by the electron beam in the harmonic cavity are assumed to
depend on the bunch current and bunch shape, allowed us
to explore a wide range of parameter settings for the
harmonic cavity system.

Our results indicate that it is possible to achieve bunch
lengthening in MAX IV by about a factor 5 with passive
operation even if the harmonic cavity detuning is signifi-
cantly increased in order to reduce Robinson antidamping
due to the interaction of the beam with the fundamental
mode of the harmonic cavity. Even though the bunch shape
is no longer perfectly flat under those conditions, the rms
bunch length is comparable to or longer than what can be
obtained by setting the first and second derivatives of the rf
voltage to zero at the synchronous phase. The peak bunch
density becomes only slightly larger and a comparable
incoherent synchrotron frequency spread can also be
obtained. The price to be paid in order to allow operation
in that regime is a significantly larger harmonic cavity
shunt impedance. We have also shown that, under those
circumstances, it is essential to take into account the
dependence of the phase of the waves induced by the
beam in the harmonic cavity on the bunch shape by

establishing a fully self-consistent solution for the equi-
librium bunch density distribution.

Finally, we found good agreement in a comparison of
longitudinal bunch profile measurements done in MAX III
with calculations following the fully self-consistent
approach. We note that, for the MAX III parameters, the
fully self-consistent approach gives approximately the same
results as the scalar approach. The MAX IV 3 GeV ring will,
on the other hand, offer the opportunity to cover exper-
imentally a range of parameters in which the fully self-
consistent method is essential.
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APPENDIX A: EVALUATING EQUILIBRIUM
BUNCH DENSITY DISTRIBUTIONS

Given the motivations listed in the introduction for
lengthening the bunches, some obvious figures of merit
which we can use to compare the effectiveness of two
distributions generated by different harmonic cavity set-
tings are the rms bunch length, the peak bunch density, and
the distribution of incoherent synchrotron tunes. The first
two parameters affect directly the beam lifetime (through
the Touschek component) and the heat load on vacuum
components due to interaction of the beam with the
chamber impedance, whereas the third affects how the
beam center-of-mass motion reacts to the wakefields
produced by the beam itself. In fact, lengthening of the
bunches alleviates the impact of coherent collective insta-
bilities in two complementary ways—on the one hand by
reducing the driving forces to the instabilities, i.e. reducing
the excitation of unstable modes through a reduction of the
overlap of the bunch spectrum with the machine impedance
and on the other hand by reducing the responsiveness of the
beam to those wakefields through an increase in synchro-
tron frequency spread and the ensuing Landau damping of
the instabilities.

The calculation of the rms bunch length and peak bunch
densities are trivial once the density distribution is known.
In order to calculate the distribution of synchrotron tunes,
we must first obtain the expression of the synchrotron
period corresponding to a given oscillating orbit in (e, @)
phase space, identified by the motion invariant H

, // do
o X ON
N

(A1)
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The integral is to be done over half an oscillation cycle,
during which ¢ does not change sign and the integration
limits correspond to two return points of the oscillation,
where € = ¢ = 0. For the limiting case of a single rf cavity,
this reduces to a complete elliptic integral leading to the
familiar decrease of the oscillation frequency as a function
of invariant amplitude H. In the case of a double rf system
tuned such that the first and second derivatives of the total rf
voltage at the synchronous phase are zero, the potential ¢
becomes approximately quartic close to the synchronous
phase and the potential well is flat. Approximate expres-
sions for the synchrotron period as a function of the
invariant amplitude valid in that limit are given in [15].
For the general case of a double rf system tuned to
arbitrary conditions, one is forced to resort to numerical
integration. The area encircled by an oscillating orbit with
invariant H is

A(H) = 2/‘” dg /2(#}:’%11 - q’;%”)), (A2)

and the distribution of synchrotron tunes can be written as

dN
do,

where the distribution p(H) is given by Eq. (8).

Numerical calculation of the functions Q; and A as a
function of H then yields the tune distribution through the
numerical differentiations above. Alternatively, one may
construct histograms in tune space by generating a particle
distribution in the (¢, ¢) phase space following the dis-
tribution p(H) and calculating the synchrotron tune for
every particle.

Even though the procedure outlined above is general,
one must keep in mind that, depending on the relative
amplitudes and phases of the main and harmonic voltages,
situations may arise in which additional stable fixed points
of the Hamiltonian (i.e. more than one synchronous phase)
exist within a narrow phase range. In that case, the tune of
trajectories around each stable point must be calculated and
the resulting distributions must be combined to generate
the full distribution, since there is no longer a one-to-one
relationship between the invariant H and a tune value—
instead the same H value may correspond to different
trajectories, around different stable fixed points.

dA dH
dH dQ,’

p(H)

(A3)

APPENDIX B: ROBINSON GROWTH RATES
FROM THE FUNDAMENTAL MODE OF THE
HARMONIC CAVITY

The growth rate for the lowest order Robinson mode for
a multibunch beam in the short bunch approximation driven
by a high Q resonance of shunt impedance R, and quality
factor Q at the angular frequency w, close to the mth
revolution harmonic is given by [23]

Iyepa .o
1= 1900 1 1 )+ 0,

— (mwy — a)A\.)EH(Z(‘]‘)(ma)O — )}, (B1)
where @, is the angular revolution frequency, w, is the
angular synchrotron frequency, and Z‘O‘ is a longitudinal

resonator impedance

R,

I _
Al =T em ey

(B2)

Figure 10 shows the real part of the harmonic cavity
impedance and corresponding beam harmonic and
synchrotron sidebands for the cases of Fig. 1 (Af =
—28.43 kHz, R;=2.017MQ) and Fig. 2 (Af=-60.36kHz,
R, = 4.2 MQ). In this range of parameters, the impedance
terms can be simplified to

a7
Zl)l(m(uo +w,) & Z‘O‘(mm()) + w, da? (may) (B3)
so that the growth rate becomes
Tyeqat.myq dz)
- 0
== 2mag— " (mwy). (B4)
4rE, dw
and we obtain finally
. _lyepa.m , (I=x)(x?+1)
Tl x 7 R,Q*— > 35 (B5)
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FIG. 10. Real part of harmonic cavity impedance for two
different values of detuning and shunt impedances. The beam
harmonic and synchrotron sidebands are indicated by the vertical
black lines.
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APPENDIX C: SOLVING THE
SELF-CONSISTENT EQUATIONS

1. Direct solution

The Brent method [24] as implemented in IGOR [25] is
used to obtain the numerical solution of the scalar self-
consistent equation (20) for the real form factor F, or
equivalently to find the roots of the penalty function g
defined in Eq. (21). On physical grounds, the roots are
conveniently bracketed to the interval [0, 1]. Figure 11
shows example plots of the penalty function g for two
different sets of harmonic cavity shunt impedance and
harmonic cavity tuning angle.

In order to solve the fully self-consistent equation (27),
the IGOR implementation of the optimization method by
Dennis and Schnabel [26] is used to obtain approximate
zeros of the penalty function g(F), where F is the complex
form factor. Again, we can bracket the search for a
minimum of g to the interval (0 < |F|<1) and
(=7 < @pp < m). A rough search on a rectangular grid
within this interval is used to generate an initial guess for
the desired root as an input to the minimization algorithm.

Figure 12 shows a contour plot of the penalty function
g for R =2.017MQ and Af = -2843 kHz on the
(|F|, ¢rr) plane. While at this relatively low harmonic
cavity shunt impedance the penalty function ¢ presents a
single root in the interval (-7 < @gr < ), for combina-
tions of shunt impedance and tuning angle such that
two minima of the potential function (or two stable fixed
points of the corresponding Hamiltonian) are formed, the
penalty function has more than one root, as can be seen in
the contour plot in Fig. 13, which is calculated for
R, =4.4 MQ and Af = —60.36 kHz. Note however that
the various possible solutions correspond to the same
physical situation, but with a different (arbitrary) choice
of synchronous phase—one can indeed choose any of the

02fs T T T =
0.1 —
c
S
3
5
} 0.0 -
E
g
&
—e— Rg=2.017 MQ, Af = -28.43 kHz
01 - Rg=4.4 MQ, Af = -60.36 kHz
02| I I I =
0.80 0.85 0.90 0.95 1.00
Form factor amplitude
FIG. 11. Penalty as a function of the scalar form factor for low

and high harmonic cavity shunt impedance cases.
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FIG. 12. Contour plot of the penalty function g for R, =
2.017 MQ and Af = —28.43 kHz.

extrema (maxima or minima) of the potential function as a
synchronous phase ¢, in the equation defining the cavity
voltage Vyic(¢) = Vg sin(g + @) without changing any
of the equations in Sec. II. In other words, the self-
consistent equations as written in Secs. IIA and IIB
assume a phase coordinate whose origin (¢ = 0) is always

o

0.3

0.2

For factor phase [rad]
o
o
|

o
)
|

-0.4

0.900 0.905 0.910 0.915 0.920 0.925

Form factor amplitude

FIG. 13. Contour plot of the penalty function g for
R, =44 MQ and Af = —60.36 kHz. The origin of the phase
coordinate is chosen such that Vyc(¢) = V¢ sin(g + ¢,). The
vertical dashed line indicates the form factor amplitude value
corresponding to all three minima.
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FIG. 14. Contour plot of the penalty function g for
R, = 4.4 MQ and Af = —60.36 kHz. The origin of the phase
coordinate is chosen such that Vyc(¢) = Vs sing.

at a point for which the energy gain from the main cavity
exactly compensates for the energy lost to synchrotron
radiation as well as the energy loss to excite the fields in the
harmonic cavity—and more than one phase satisfying that
condition may exist.

Since any one of those possible solutions leads to the
same physical properties (bunch length, bunch density,
synchrotron frequency spread), this has no practical con-
sequences, except if one is interested in comparing dis-
tributions calculated with different methods, as done in
Sec. III. In order for Eq. (28) to be a valid comparison, one
has to make sure that both calculations are done with the
same phase axes origin and a convenient way to do that is to
rewrite the equations in Secs. Il A and II B in the phase
coordinate system for which the main cavity voltage is
Vme(@) = Vigsin(g). When this is done, the g function
has a single minimum in the interval (—z < @pp < 7),
as shown in Fig. 14. As expected, the calculated self-
consistent form factor amplitude is independent of the
choice of phase coordinate system origin.

2. Implicit solution

Even though the approach described above is straight-
forward and conceptually simple to describe, it is possible
to determine self-consistent solutions without actually
solving the self-consistent equations by first determining
a density distribution and calculating back the shunt
impedance and tuning angle that correspond to that
solution. This “implicit” solution approach has the advan-
tage not to involve any iterative numerical procedure,
with associated convergence issues, and is useful as a
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— V= Vip = 103.717°
e yy=102°

—— ,=96.558°

RJMQ]
S

|
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FIG. 15. Shunt impedance vs harmonic voltage ratio normal-
ized to the flat potential voltage ratio kg, for different harmonic
cavity tuning angles.

cross-check as well as a way to illustrate some of relevant
scaling laws of the problem.

For the scalar self-consistency problem, the implicit
approach consists in taking an assumed ratio k of harmonic
cavity voltage to main cavity voltage and determining the
resulting density distribution, which gives the correspond-
ing bunch form factor F. The shunt impedance that leads
to that particular equilibrium is then calculated back from
Eq. (18). Note that R, has now become an output parameter
of the problem, and by scanning a range of values of k one
generates a set of values of R, to choose from.

Figure 15 shows an example of such a calculation, for the
MAX IV parameters. It is interesting to note that the shunt
impedance vs k curve is not monotonic, i.e. the same value
of shunt impedance may correspond to two different values
of k—or correspondingly, as shown in Fig. 16, more than
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FIG. 16. Bunch form factor vs cavity shunt impedance for
different values of harmonic cavity tuning angle.
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one solution of the scalar self-consistent equation with
different bunch form factors may exist for a given set of R,
), values. In the direct approach described in the previous
section, such cases show up in the form of multiple roots of
the penalty function in the (0, 1) interval. There is, however,
no fundamental physical meaning to these degenerate
solutions—as soon as the full self-consistency is imple-
mented, and both phase and amplitude of the bunch form
factor are allowed to depend on the bunch distribution, the
indeterminacy is eliminated and there is a single solution to
the self-consistent equations. This is another indication of
the limitations of the scalar approach to obtaining equi-
librium distributions.

Following the same reasoning above, one may also
implement an implicit solution for the full self-consistency
problem, by making use of the following property of the
potential function ®(¢) and its corresponding distribution:

(k. wy, prei @) = Pk, ), — 6. pr + 55 90). (€1

In other words, given assumed values for &, v, and @gg,
the corresponding potential and density distribution func-
tions do not change if we keep k fixed and shift the phases
w;, and @gr by the same amount and in opposite directions.
That gives us a simple recipe to construct self-consistent
solutions (in the full self-consistency sense), namely, start
with assumed values of k and @gg, determine the resulting
distribution and calculate the corresponding form factor
amplitude and phase. If the calculated form factor phase
differs from the assumed @gp, then calculate a new tuning
angle y, shifted from the initially assumed y;, by the
difference between assumed and calculated bunch form
factors. Once a new v, is determined, the shunt impedance
may again be calculated as for the scalar case and we
thus obtain a pair of values R, ¢, which self-consistently
generates the distribution with the assumed k and @gg.

Even though the approach described in the preceding
paragraph does provide a handy cross-check for the direct
solution approach, itis notas convenient to use as the implicit
approach for the scalar case—in fact, instead of a one-
dimensional map from & to R, one is now confronted with a
two-dimensional nonlinear map from (k, @gg) to (yy,, Ry).

We conclude this appendix by using the implicit solution
to the scalar self-consistent equation to consider once more
the issue of when the full self-consistency is mandatory.
Full self-consistency will be relevant whenever the phase of
the form factor calculated through the scalar approach is
significantly different from zero. Figure 17 shows how the
form factor phase determined by the scalar approach varies
with harmonic cavity voltage ratio for different harmonic
cavity tuning angles. We see the same trends as in Fig. 3,
namely, that the difference between scalar and full
self-consistency approaches increases significantly for
harmonic cavity voltage ratios above the flat potential
condition kg,. Moreover, for k/kg, slightly above 1, the
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_20 —
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FIG. 17. Phase of the bunch form factor as determined by the

implicit scalar approach, for the MAX IV parameters, as a
function of the harmonic cavity voltage ratio k normalized to
the flat potential voltage ratio kg,. The curves are plotted for
different values of Ay =, — 5. The points identified by
A and B correspond to the cases displayed in the plots of Figs. 1
and 2, respectively.

differences become larger as the harmonic cavity tuning
angle deviates from the flat potential detuning y;,¢,. In
particular, full self-consistency becomes important as
the tuning angle is brought towards 90° in order to reduce
the Robinson growth rate. Figure 18 shows the correspond-
ing curves calculated for the MAX III parameters
(¢s0 = 173.204°, 6,9 = 47.46 mm) and indicates that the

30 T
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FIG. 18. Phase of the bunch form factor as determined by the

implicit scalar approach, for the MAX III parameters, as a
function of the harmonic cavity voltage ratio k normalized to
the flat potential voltage ratio k. The curves are plotted for
different values of Ay =y, — y gp-
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full self-consistency is less relevant in that parameter range.
This is basically a result of the larger unperturbed syn-
chronous phase of MAX III compared to MAX IV, which
leads to a larger flat potential harmonic cavity voltage ratio
k¢, and to a flat potential tuning angle v, ¢, closer to 90°,
making higher shunt impedances necessary to enter a
regime significantly far from flat potential conditions.
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We report on methods capable of measuring a rms vertical electron beam size of 3 pm with a rms error
of less than 10% at a diagnostic beamline at the Swiss Light Source (SLS). This corresponds to a vertical
emittance of 0.6 pm rad with a 20% rms error. We showed this capability by presenting the theoretical
basis for, and the data from, a series of measurements on a stable beam at 1.6 pm rad vertical emittance
at the SLS. The methods presented utilized either m- or 6-polarized synchrotron radiation (SR) in the
visible to ultra violet (vis-UV) spectral range. In addition to the established m-polarization method, we
introduced a diffraction method with a potentially high resolution capability. Also an intensity imbal-
anced diffraction scheme was introduced, but was found to be prone to SR induced carbon contamination

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Future SR light sources will be able to reach vertical electron
beam emittances below the pm rad level. Also damping rings for
future colliding beam facilities aim towards this region. It is
therefore of high importance to develop means to measure such
small emittances.

Visible and near UV SR can be used to resolve vertical beam
sizes at the few pm scale. This has been demonstrated by a first
monitor built in 2008 at SLS for the determination of the vertical
beam emittance [1]. The monitor uses the so-called wt-polarization
method to determine the vertical beam size from vertically polar-
ized (m-polarized) vis-UV SR imaged onto a CCD camera. During
measurements in 2011 the first monitor has reached its resolution
limit [2] which is determined by a combination of many factors
such as the transverse optical magnification of the source, the
camera resolution but also the fact that complementary methods
are not available.

As a part of the TIARA work package 6 [3] and in collaboration
with the MAX IV Laboratory a new emittance monitor was
designed and commissioned at the SLS. Besides an increased
optical magnification the new monitor provided complementary
measurement methods to the m-polarization method: the creation
of a diffraction pattern of either vertically (7t-) or horizontally (c-)

* Corresponding author.
E-mail address: jonas.breunlin@maxlab.lu.se (J. Breunlin).

http://dx.doi.org/10.1016/j.nima.2015.09.032
0168-9002/© 2015 Elsevier B.V. All rights reserved.

polarized SR from a simple, vertically centered, rectangular dif-
fraction obstacle. See Fig. 1 for a schematic. The vertical beam size
was then deduced from the detected diffraction pattern. A similar
technique for beam size measurements using interferometry has
originally been used at KEK with a double-slit interferometer and
o-polarized SR [4,5]. The diffraction obstacle, if it was not verti-
cally centered in the path of the SR, enabled a diffraction method
with imbalanced intensity contributions from below and above the
mid-plane. This mode of operation was comparable to the inten-
sity imbalance technique introduced in [6,7]. With a wide range of
different widths of the diffraction obstacle and by using different
SR polarizations we cross-checked our measurement results and
reduced systematic measurement errors.

The commissioning of the new monitor started in the begin-
ning of 2013 with a lens as the focusing element, see [8-10].
Experiences during commissioning had great influence on the
design of the diagnostic beamlines at the MAX IV synchrotron
light source [11,12].

In this work we investigated the achievable precisions of the
available measurement methods, also with a perspective to the
MAX IV light source. We present the principle of the different
methods in Section 2 and describe the experimental setup of the
SLS monitor beamline in Section 3. Section 4 we present vertical
beam size measurements applying the introduced methods, taken
during one dedicated low emittance machine shift at the SLS.
Measurement results of the magnetic lattice functions at the
source point and the horizontal beam size are given in Section 5.
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Fig. 1. Schematic of the new method using a vertically centered diffraction obstacle.

Section 6 presents the measurement results and ends with a dis-
cussion on the performance and limitations of the new monitor.

2. The methods
2.1. Theoretical foundation

The m-polarization method, described in [1,13], uses bending
magnet SR in the vis-UV range that is focused to create an image of
the electron beam. This image is highly dominated by effects
inherent to SR emission and diffraction, especially for the m-
polarized component of the SR. Since these effects are theoreti-
cally predictable it is possible to derive the horizontal and vertical
size of the electron beam [14,15].

The theoretical calculations were done in Synchrotron Radia-
tion Workshop (SRW) [16,17]. SRW is based on near-field calcu-
lations, preserving all phase information of the SR which is emit-
ted by the electron beam while moving at relativistic velocity
along its curved trajectory (in contrast to spherical waves origi-
nating from a point source, see Appendix A). It is required that the
phenomena of SR emission, propagation and focusing are treated
strictly within the framework of classical electrodynamics and
wave optics, in order to derive a quantitatively correct intensity
distribution in the image plane. The SRW code calculates the
transverse components of the frequency-domain electric field of
synchrotron radiation emitted by a relativistic electron moving in
an external magnetic field, using an accurate method based on the
Fourier transform of retarded potentials. It also allows the simu-
lation of propagation of this field through optical elements and
drift spaces of a beamline, using Fourier optics methods. Effects
related to the finite emittance of the electron beam are accurately
calculated as a convolution of the propagated single electron
radiation intensities with the Gaussian phase-space volume
occupied by the electron beam. One effect of this is seen in the
image plane as a dilution of the fringes in the diffraction pattern.
This feature is the basis for our monitor response function which is
described in the following sections.

The applied SRW model was based on bending magnet radia-
tion and included the relevant optical components and apertures
of the beamline. Via an optical path length map the effect of the
spherical aberration of the lens, as being the dominant Seidel
(third-order) aberration, was included in the model: The optical
path difference varies with the fourth power of the normal dis-
tance from the optical axis to the peripheral ray at the lens posi-
tion. In our case it amounted to 7 nm for the outermost peripheral
ray. The remaining Seidel aberrations were considerably sup-
pressed by the small source size and the precise beamline
alignment.

2.2. Imaging with m-polarized SR

The image of m-polarized SR in vertical projection typically
shows two lobes of high intensity and a minimum between them,
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Fig. 2. Monitor response functions describing the relationship between the
experimentally accessible valley-to-peak ratio and the vertical beam size. The
monitor response functions were calculated in SRW for a wavelength of 325 nm for
n-polarized (dashed lines) and c-polarized (solid lines) SR and for different dif-
fraction obstacle heights (15 mm corresponds to 3 mrad). The diffraction obstacles
were vertically centered.

caused by a phase difference of the electric field of & between the
upper and lower lobe, as can be seen from the solid line in Fig. 6.
The ratio of the minimum intensity to the peak intensity, the
valley-to-peak ratio (Iyayey/Ipear), is identified with the vertical
beam size in the theoretical SRW model, as established in [1]. The
obtained relationship between the valley-to-peak ratio and the
vertical beam size, the monitor response function, is shown in Fig. 2
for a wavelength of 325 nm. As a general behavior each monitor
response function is steeper for shorter wavelengths, see for
example [1].

In the case of m-polarized imaging the only relevant beamline
component was the lens, since no restricting apertures (except
horizontally) were used.

2.3. The obstacle diffractometer

In addition to the described imaging with m-polarized SR we
performed measurements with simple rectangular diffraction
obstacles of different heights, centered in the SR beam path. The
diffraction obstacles were introduced into the SRW model and
treated according to Section 2.1. The vertical intensity profiles of
the resulting images are shown as solid lines in Figs. 8 and 9. The
valley-to-peak ratio was again identified with the vertical beam
size. For c-polarized SR the low and high intensity regions were
interchanged. By reason of experimental accessibility we did not
relate the visibility to the vertical electron beam size, since for this
a knowledge of the envelope functions of the intensity maxima
and minima is required. The resulting monitor response functions
are shown in Fig. 2. As a general behavior the response functions
became steeper with increasing diffraction obstacle height, and
with the use of m-polarized SR compared to o-polarized SR. A
method with a steeper monitor response function is favored for its
higher sensitivity to the vertical beam size, resulting in a higher
measurement precision for a given precision of the detected
valley-to-peak ratio.

The obstacle diffractometer method resembled an interfero-
metric method as presented in [5], where a double-slit has been
used to create an interference pattern with c-polarized SR. We
expect, however, that the obstacle diffractometer technique is
favorable in terms of beam size resolution for reasons given in
Appendix B.
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Fig. 3. Calculated vertical profiles of imaged n-polarized SR for a filament beam
(zero electron beam size) for a centered and vertically displaced diffraction
obstacles of 15 mm height. The imaging wavelength was 325 nm.

2.4. The intensity imbalanced obstacle diffractometer

If the diffraction obstacle was displaced vertically by a few
millimeters (in this setup 1 mm at the position of the diffraction
obstacle covers 0.2 mrad of the SR opening angle) from the SR
mid-plane, the intensities from the upper and the lower lobes
contributing to the image became imbalanced. In SRW this
intensity imbalanced technique was modeled in analogy to the
balanced case. In the imbalanced method the conditions for total
destructive interference in the mid-plane were not fulfilled any
longer for the filament beam, see Fig. 3. This led to a higher
intensity in the central minimum (Iyayey) for the same vertical
beam size and might offer a way to improve the signal/noise ratio
in the determination of the intensity minimum. The effect on the
monitor response function in shown in Fig. 4. The same effect has
been reached by introducing optical flats of different transmit-
tances in a double-slit interferometer [6,7]. See Appendix B for a
direct comparison of the two intensity imbalanced schemes.
However, the slopes of the monitor response functions were not
increased by the intensity imbalanced techniques which means
that the monitor sensitivity was not generally improved.

3. Experimental setup

The beamline was designed to image the SR emitted by the
electron beam in a bending magnet onto a CCD camera detector.
See Fig. 5 for the beamline layout.

3.1. Beamline design

The source point of the radiation was the center of the central
bending magnet (B=1.4035T) of sector 8 of the SLS. The beam
energy was 2.411 GeV. Most of the SR power is emitted into a
small vertical opening angle of o 1/y, where y is the Lorentz
factor. This radiation, mostly x-ray SR, was absorbed by a thin
absorber (4 mm height, covers approx. 0.9 mrad of vertical open-
ing angle) to protect the subsequent optical elements from
damage and heat-load induced surface deformation. This water-
cooled absorber was retractable at low intensities (storage ring
beam current of a few mA) to verify the camera alignment. The
absorber was included in the theoretical model, however, its
influence on the diffraction pattern was negligible: When imaging
with m-polarized SR in the vis-UV range the intensity is close to
zero around the mid-plane in the vicinity of the lens. For the
obstacle diffractometer methods, the diffraction effects caused by

Fig. 4. Monitor response functions for a 3 mrad diffraction obstacle, vertically
centered and displaced by 1-4 mm (0.2-0.8 mrad), calculated in SRW for n-polar-
ized SR at a wavelength of 325 nm.

the absorber were in all cases negligible when compared to those
of the obstacle.

The beamline followed a zig-zag shape layout, defined by two
planar mirrors, the first made of silicon carbide (SiC) because of its
low ratio between expansion and heat transfer coefficients. The
mirrors were held by gimbal mounts, pivoted supports that pro-
vided remote controlled angular adjustment. The lens, located
between the mirrors at 5336 mm from the SR source, was plane-
convex with a spherical surface. It was made of fused silica and
had a diameter of 90 mm. The surfaces of the lens and the mirrors
deviated with less than + 15 nm from the ideal surfaces. Detailed
information on the optical surface qualities is given in [10]. For the
diffractometer methods an obstacle holder with rectangular dif-
fraction obstacles of 15, 20 and 25 mm height (corresponding to 3,
4 and 5 mrad) was introduced into the beamline in vicinity of the
lens. Their widths exceeded the horizontal acceptance of the
beamline. Movable apertures, installed close to the second mirror,
limited the horizontal acceptance angle at 4.4 mrad for imaging.
The vertical acceptance angle was 9.5 mrad and was not limiting
due to the vanishing SR intensity at large vertical angles.

The beamline was connected to the storage ring vacuum and
was terminated with a vacuum window in an optics hutch, the
beamline end station. The measurement wavelength was selected
with interference bandpass filters of central wavelength 325 nm
and a bandwidth of 1 nm FWHM. The used wavelength was a
compromise between monitor response function (increasing slope
at shorter wavelengths) and camera sensitivity. The choice of
bandwidth is motivated in Section 3.3. A Glan-Taylor prism, made
of pure calcite, was used to select the polarization of the SR. A CCD
camera (Basler scA1300-32gm, pixel size 3.75 pm) was located in
the image plane of the lens to record the beam images. The
intensity response of the CCD was measured at a wavelength of
325 nm and over a large range of exposure times, while the light
intensity was varied with neutral density filters. No significant
deviation from a linear response were found. The distance along
the optical path from the lens to the image plane was 10,072 mm,
resulting in a transverse optical magnification of —1.888.

3.2. Alignment

The correct alignment of the lens is essential in order to
minimize the Seidel aberrations coma and astigmatism. A laser
beam from the beamline end station, aligned to the SR path, was
reflected at both surfaces of the lens and formed the well-known
Newton's rings interference pattern. From this pattern we deduced
the angular alignment error of the lens, i.e. the angular deviation
of the lens' optical axis w.r.t. the source-image axis. We reduced
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station.

this alignment error to less than 2 mrad which allowed us to
neglect third-order coma and astigmatism.

The detector needs to be aligned correctly to the laboratory
reference system. We used the dipole SR for this purpose, since the
bend plane of the dipole magnet is aligned in the laboratory
coordinate system with a precision better than 0.1 mrad. With a
retracted thin absorber the m-polarized SR intensity minimum
along the mid-plane was detected and used to correct the roll
(rotation around longitudinal axis) error of the CCD to within
+ 3 mrad.

3.3. Design considerations

When considering a new beamline design, studies with a
spherical mirror as focusing element were conducted. The main
advantage of a spherical mirror is the high surface accuracy that
can be attained, since the manufacturing process is simpler than
for aspherical surfaces. But to keep Seidel aberrations within
acceptable limits the angle of incidence must be chosen as small as
possible which led to an unpractical, complicated design.

A spherical lens design combined the advantages of good sur-
face accuracy and a simple way to verify a correct alignment.
Under these conditions Seidel aberrations were predictable and
were included in the theoretical model, although they were minor
effects. The MAX IV diagnostic beamlines will be based on this
design. As for all refractive optics, the focal length depends on the
wavelength of the light, which required a bandwidth reduction to
a few nm FWHM with interference filters. The use of such narrow-
band filters requires relatively large exposure times up to a few
milliseconds. Therefore, special attention has to be paid to mini-
mize vibrations. This will be accounted for in the MAX IV beam-
lines by a rigid design of vibration critical parts, such as mirror
holders.

A toroidal mirror (replacing the lens and the first plane mirror)
will be the future focusing element in the SLS beamline because of
its aberration suppressing design combined with the advantages
of reflective focusing optics. The wavelength independent focal
length enables using a wider wavelength band than with refractive
focusing optics resulting in a gain in light intensity. Furthermore a
simpler change of the imaging wavelength is possible in practice.
One disadvantage is the complicated alignment of the toroidal
mirror due to the lack of a simple alignment verification technique
[10]. Incorrect alignment affects image quality and measurement
results due to aberrations. A first attempt with a toroidal mirror
has already been performed [18], but the conclusion was that the
image quality was inferior to the lens case, and thus an investi-
gation of the toroid quality and its alignment was necessary. Fur-
thermore, the effects of a broader wavelength band on the dif-
fraction pattern need to be taken into account theoretically.
However, once these difficulties are overcome the new SLS
monitor beamline will benefit from the toroidal mirror in mea-
surement precision, as a long term goal.

110

4. Beam size measurements

In several dedicated machine shifts during fall and winter 2013
the beamline performance was tested with small vertical emit-
tance beams in the SLS. The storage ring was operated at design
current and energy of 400 mA and 2.411 GeV, respectively. Prior to
measurements the SLS was tuned towards small vertical emit-
tance. The tuning was based on iterative response matrix mea-
surement of 36 available skew quadrupoles (12 of them in dis-
persive sections), and subsequent matrix inversion and application
of skew quad strengths for minimum vertical dispersion and
minimum betatron coupling around the ring. On top of this, a
random optimization was performed [2].

The data evaluated for this paper stem from one shift and one
machine tuning. All measurement methods presented below were
performed at 325 nm wavelength (1 nm FWHM). The CCD back-
ground signal was subtracted from all measured images before
further analysis. This background was determined from the outer
areas for each image since the diffraction pattern covered only a
small fraction of the CCD in the center.

4.1. Imaging with m-polarized SR

Measured vertical profiles showed the characteristic double
peak of the m-polarized SR above and below the mid plane (dots in
Fig. 6). The valley-to-peak ratio of the profile was determined and
transformed into a vertical beam size, according to the monitor
response function for this method. A theoretical profile was cal-
culated in SRW with the same vertical beam size and was scaled in
the ordinate (SR intensity) to fit the peak intensity of the measured
profile (line in Fig. 6).

For each method a set of 50 consecutive camera images was
analyzed and the beam size was determined from each image.
Fig. 7 shows a measurement set for mt-polarized imaging. The error
bars represent the single-shot random error for each of the 50
analyzed images. This random error was derived from the preci-
sion of the fits to the intensity minima and maxima in the mea-
surement data to give a valley-to-peak ratio random error, which
was propagated analytically via the monitor response function to
the standard deviation of the vertical beam size o,. The source of
these random errors, common to all methods applied, was to a
large extent a vibration (~ 250 Hz) in either the mirrors or the
lens. In order not to blur the image, we used exposure times no
longer than 0.4 ms. As a consequence the images were under-
exposed and the occurring pixel noise limited the precision of the
valley-to-peak ratio determination. On average the single-shot
random errors corresponded well to the standard deviations
from mean values presented in Table 1.

4.2. Obstacle diffractometer methods

The obstacle diffractometer method required that the diffrac-
tion obstacle was vertically centered in the path of the SR. The
center position was found by a vertical scan of the diffraction
obstacle position: according to theory the valley-to-peak ratio is
minimized for a centered obstacle. Small deviations from the
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Table 1
Summary of beam size measurement results o, and their standard deviations for
the applied methods.

Pol. Diffraction obstacle angular size (mrad) oy (pm)

T - 4.79+0.19
T 3 4.74 +0.14
T 4 4.70 +£0.17
k4 5 4.45+0.22
o 3 4.75+0.19
o 4 4.71+£0.18
c 5 4.64 +0.19

center position (< 0.2 mm) were accounted for by adjusting the
theoretical model accordingly. Even without such adjustments the
effect on the final result was negligible (see the difference of the
monitor response functions for the 1 mm displaced diffraction
obstacle and the centered obstacle in Fig. 4). Measurements were
taken for m-polarized and c-polarized SR with all three available
diffraction obstacles and were compared with the corresponding
theoretical vertical profiles, see Figs. 8 and 9.

4.3. Intensity imbalanced obstacle diffractometer methods

We performed beam size measurements with the diffraction
obstacle vertically displaced from the center position by up to
4 mm (up to 0.8 mrad) to each side, but the first analysis of the
data revealed large, systematic inconsistencies of the final beam
size results. Generally the vertical beam size was stronger

underestimated the more the diffraction obstacle was displaced,
see asterisks in Fig. 10 for an example with the displaced 3 mrad
diffraction obstacle. The cause of this deviation from expected
behavior turned out to be a reduction in transmittance of the
beamline, probably due to the well-known problem of SR induced
carbon contamination on beamline optics [19].

By investigating the relative SR intensity changes in the image
plane when introducing the three differently sized centered dif-
fraction obstacles, we compiled a map of a vertically non-uniform
transmittance reduction of the beamline optics, see Appendix C.
This map was included in the SRW model and affected pre-
dominantly the results for displacements larger than 1 mm (dia-
monds in Fig. 10). However, the evaluation of measurement data
taken with higher diffraction obstacles and especially in o-
polarization still showed systematic beam size deviations in the
20% range. We believe that our simple approach to modeling SR
induced carbon contamination, which takes only the reduction of
transmission by the carbon layer into account, was insufficient. A
refined model that includes also phase modifications of the SR
might be necessary. However, our experimental data supports our
assumption that the major discrepancies between theory and
experiment are accounted for by introducing the transmission
degradation.

Measurements with centered diffraction obstacles (or devia-
tions from the center of less than 1 mm), nevertheless, were only
slightly affected by the transmittance reduction model, as can be
seen in Fig. 10, and were still valid. The intensity imbalanced
obstacle diffractometer method, on the other hand, was prone to
imperfections of the optics and was not applicable in the setup as
it is. Only when having full knowledge about the effects of carbon
contamination the advantage of this intensity imbalanced scheme
can be accessed.

Further studies in SRW revealed that the intensity imbalanced
scheme as introduced in [6,7], using optical flats of different trans-
mittances in the SR path, was not sensitive to effects from carbon
contamination as simulated in our SRW model (Appendix C). We
therefore believe that an optical flat, creating different transmit-
tances above and below the mid-plane, in combination with a
centered diffraction obstacle, might be the favored setup for an
intensity imbalanced scheme, although it requires additional
experimental effort.

5. Auxiliary measurements
5.1. Magnetic lattice functions

The beta functions were determined by repetitive scans of
individual quadrupole strengths and measurements of the
resulting tune shifts. After each scan the betatron tunes were
restored, rather than the individual quadrupole coil current, to
avoid hysteresis effects. From the two quadrupoles adjacent to the
sector 8 central bending magnet the beta functions in the SR
source point (center of the bending magnet) were interpolated,
using transfer matrices, to be f,=0.481+0.008 m and
By, =13.41+0.05m. A dispersion measurement was done with
the monitor itself by observing the change in horizontal and ver-
tical positions of the SR in the image plane when varying the rf
frequency. By a variation Af;= +1kHz in 21 steps a maximum
relative momentum change of Ap/p~ 4 0.0033 was introduced.
The results for the horizontal and vertical dispersion, derived
using model based first and second order momentum compaction,
were 77, = 26.56 + 0.03 mm and 77, = —1.22 + 0.05 mm.
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Fig. 8. Vertical profiles from obstacle diffractometer methods with three different diffraction obstacle heights, using n-polarized SR. (a) Diffraction obstacle covering 3 mrad,
vertical beam size 5, =4.81 + 0.13 pm, valley-to-peak ratio = 0.067 + 0.004. (b) Diffraction obstacle covering 4 mrad, vertical beam size o, =4.68 + 0.16 pm, valley-to-peak
ratio =0.073 + 0.005. (c) Diffraction obstacle covering 5 mrad, vertical beam size oy =4.58 + 0.19 um, valley-to-peak ratio =0.082 + 0.007.
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Fig. 9. Vertical profiles from obstacle diffractometer methods with three different interference obstacle heights, using c-polarized SR. (a) Diffraction obstacle covering
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to-peak ratio = 0.062 + 0.004. (c) Diffraction obstacle covering 5 mrad, vertical beam size ¢, =4.71 + 0.20 pm, valley-to-peak ratio =0.076 + 0.006.
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Fig. 10. Results of beam size measurements with the obstacle diffractometer
method and 3 mrad (15 mm) diffraction obstacle height, displaced by —4 mm to
4 mm. The beamline transmittance reduction (Appendix C) was applied (diamonds)
and not applied (asterisks).

5.2. Horizontal beam size

In contrary to the vertical profile, the horizontal profile of
imaged SR is not dominated by diffraction because of the larger
horizontal beam size of approximately 60 pm. We calculated hor-
izontal intensity profiles of imaged SR with the same theoretical
SRW model as for the vertical method described in Section 2.2 and
at a wavelength of 325 nm. The widths of the calculated horizontal
SR profiles were determined and identified with the horizontal
electron beam sizes. The obtained relationship, now a monitor
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response function for horizontal beam size measurements, was
then used to convert the experimental accessible widths of mea-
sured profiles to the horizontal electron beam size o,. In this way
and under the same machine conditions as for the measurements in
Section 4 we detected a horizontal beam size oy =59.8 + 0.8 pm.

6. Results and discussion
6.1. Beam size results

Table 1 summarizes the measurement results for the vertical
beam size from the applied methods. For reasons given in Section 4.3
the intensity imbalanced obstacle diffractometer methods were
omitted. The vertical beam size result for each method is the mean
value of 50 consecutive camera shots. The standard deviation is
given for a comparison of the precision of the presented methods.
Naturally a large derivative of the monitor response function leads to
a higher measurement precision of oy. In this respect the method
with m-polarized SR and widest diffraction obstacle would be pre-
ferred (Fig. 2). However, the precision of the fits to determine the
extreme values of the diffraction pattern depended on the light
intensity, especially in the minima. This could deteriorate the pre-
cision of methods with larger diffraction obstacles because of their
intrinsically lower light intensity. Methods using c-polarized SR had
the advantage of a higher intensity due to a higher transmittance
through the beamline, leading to comparable rms errors for the
beam size result, although these methods were less sensitive in
terms of monitor response functions.
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In the present monitor design the light intensity in combina-
tion with the need for short exposure times due to vibration was
the limiting factor (Section 4.1). Under these conditions and
looking at Table 1, one may judge that the method with 7-
polarized SR using a moderate diffraction obstacle height, cover-
ing 3 mrad, is preferable.

6.2. Systematic errors

The effect of intensity reduction due to SR induced carbon
contamination as a source for systematic errors is discussed in
Sections 4.3 and Appendix C and was accounted for in the theo-
retical model. However, this model assumed a carbon con-
tamination of vertical symmetry with respect to the central
bending plane. The asymmetry in the measured vertical intensity
profiles in Figs. 8 and 9 gives rise to the suspicion that either a
slightly asymmetric carbon contamination or a non-uniform phase
distortion from the thin carbon layer was present. It is interesting
to note that a similar asymmetry in experimental data is present
also in [4]. Different diffraction obstacle heights, leading to varying
parts of the beamline optics that were covered, might have caused
the observed discrepancies in the results from the applied meth-
ods. Furthermore, manufacturing errors of the optical components
might explain the spread in results of the measurement methods.
Even though the specifications on the surface qualities of the cri-
tical elements were driven to within + 15 nm, one has to consider
that the wavefront distortions caused by these optical surfaces
might have added up and affected the final image.

6.3. Beam emittance results

With the results presented in Section 5.1 and Table 1 and
according to [1] the horizontal and vertical emittances may be
calculated:

£x = (07 — (0510%)/ Px 0]

&y = (03 — (051, * (1= (051,/0:0*) /By )

It results in a horizontal emittance of &y =6.25 + 0.22 nm rad
and is in good agreement with the measured result in [1]. We
assumed the theoretical, natural energy spread o5 =9 10~ *, since
no beam instabilities were detected in this mode of operation. As
indicated in Section 6.2 the spread of the results for the seven
different methods presented in Table 1 is believed to be caused, to
some extent, by systematic effects that could not be further spe-
cified. We combined these results by calculating their mean value,
and the resulting vertical beam size is ¢, =4.68 pm with a stan-
dard deviation of 0.11 um. This leads to a vertical emittance of
£y =1.56 + 0.08 pm rad. In the presented case of the SLS beamline
this standard deviation was determined to largest extent by the
vertical beam size measurement error, and not by the measure-
ment errors on the magnetic lattice functions.

Generally, the emittance uncertainties will grow with
decreasing beta functions. Thus, the monitor performance in terms
of emittance resolution will depend on the individual magnetic
lattice and on the monitor location within this lattice. It is, how-
ever, expected, that the error contribution from the beam size and
dispersion measurements will dominate over the error on the beta
functions which are extracted to high precision by quadrupole
scans, or by LOCO procedures [20].

6.4. Estimate of smallest measurable vertical beam size and
emittance

To predict the monitor performance at smaller vertical beam
sizes, smaller valley-to-peak ratios were investigated. These stem

from the same measurement data as presented above, except that
minima of higher order in the interference patterns (and thus,
lower intensity, see Figs. 8 and 9) were analyzed. The analysis was
conducted as described in Sections 4.1 and 4.2 with data sets of 50
camera images for both 6- and m-polarized SR and different cen-
tered diffraction obstacles. It showed that the measurement of a
vertical beam size of ¢, =3 um with a standard deviation of less
than 10% was feasible for the individual methods. In terms of
vertical emittance this means &, =0.6 pmrad with a standard
deviation of 20%. A combination of the results from com-
plementary methods has the potential to increase the measure-
ment accuracy. The increased standard deviation, compared to the
standard deviations of results presented in the previous sections,
is due to the reduced slope of the monitor response functions for
smaller beam sizes. These results refer to the present beamline
and were, as mentioned above, limited in precision by the low SR
intensity on the detector.

7. Conclusions

We analyzed the performance of several complementary beam
size measurement methods using SR in the vis-UV range at a
diagnostic beamline at the SLS. Combined with machine function
measurements a vertical emittance of 1.56 pm rad with a standard
deviation of 0.08 pm rad was determined. Extrapolating the ana-
lysis to smaller beam sizes, it would be possible with the beamline
in the presented design to determine a vertical emittance of
0.6 pm rad with a 20% rms error, by using any of the methods. It is
an interesting observation that, when analyzed theoretically, the
obstacle diffractometer scheme showed an enhanced sensitivity to
the vertical beam size in terms of a higher valley-to-peak ratio,
compared to the traditional double-slit interferometer. Further-
more, the light transmitted to the detector is in general higher in
the obstacle diffractometer scheme. We also investigated a simple
intensity imbalanced obstacle diffractometer method, but found it
prone to the problem of SR induced carbon contamination, and
possibly to other minor deficiencies in the optical elements.

The limiting feature on the resulting precision of the present
monitor design was light intensity in combination with the need
for short exposure times due to vibration of an in-vacuum optical
element. As a result of a trade-off between theoretically predicted
sensitivity and limited light intensity of the present monitor a
moderate diffraction obstacle covering 3 mrad performed best.
Using a reflective focusing element instead of a lens, like a toroidal
mirror, would alleviate the problem of low light intensities, since a
wider bandwidth could be used.

8. Outlook

Currently, two diagnostic beamlines are in preparation in the
3 GeV storage ring at the MAX IV synchrotron light source [11,12].
These beamlines, following the concept presented in [1] and in
this work, will allow a direct comparison of the obstacle dif-
fractometer methods and the double-slit interferometric methods
in experiment. The concept of two monitors in locations of dif-
ferent lattice functions enables cross-checking of measurement
results and also presents a possibility to measure the energy
spread of the beam. The multibend achromat lattice of the MAX IV
3 GeV storage ring and the resulting low emittance in both planes
will be a new challenge to the emittance measurement methods.
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Appendix A. Analytical approach to the double-slit
interferometer

In principle, the m-polarization method, the obstacle dif-
fractometer method and the SR double-slit interferometer method
are variations of the classical Young's double-slit interferometer.
However, an important difference needs to be pointed out: in the
classical case the transversely extended source is assumed to emit
spherical waves isotropically, leading to a nearly homogeneous
illumination of the interferometer slits. The SR radiation, on the
other hand, has an intrinsic vertical opening angle, typically + a
few mrad at vis-UV wavelengths. Depending on the double-slit
separation and slit widths the vanishing SR intensity at larger
vertical angles causes an inhomogeneous illumination of the slits.
Thus, we have a case which is not described correctly with the
classical (visibility) formula from coherence theory of Van Cittert
and Zernike, whereas the SRW code takes care of the feature
highlighted above. To illustrate this, a comparison of double-slit
interference patterns, calculated in SRW for a bending magnet
(BM) SR source and calculated with an analytical expression for an
isotropic source, was done.

The analytical approach follows the Fraunhofer diffraction and
interference with quasi-monochromatic light [21]. The intensity
profile of the source, denoted f(y), is assumed to be Gaussian with
a width of o equal to the vertical electron beam size o,. The
complex degree of spatial coherence is then calculated as the
Fourier transform of the source:

. kd
v = / f)exp(~2zivy) dy, v="2 A1)

where v is the spatial frequency with the center to center double-
slit separation d and a distance R between source and double-slit
and k=2x/A. The intensity as a function of the position on the
detector yp is given by

I(yo) oc sin c? (%%) {1 +7(v) cos (ﬁ—v%) } (A2)

where 2a is the slit width, m the optical magnification of the
system and the polarization is determined by
0 for o —polarized SR
b= { n for m— polarized SR. (A3)
The result of the analytical equation was compared to the calcu-
lations for a BM SR source, see Fig. A1. When the slit width was
small the resulting interference patterns were in good agreement
(Fig. A1(a)). For such a slit width the SR intensity variation over the
slit, shown in Fig. A2, is small enough so that deviations from the
analytically calculated interference pattern, assuming a homo-
geneously illuminated double-slit, are minor. For larger slit widths
the characteristics of SR, treated correctly in the SRW model, had
an increasing effect on the interference pattern (Fig. A1(b)) and the
discrepancy between analytical model and SRW calculation grew.
Here the interference pattern was dominated by the SR inherently
limited vertical opening angle whereas the outer aperture
restrictions of the double-slit were barely limiting (Fig. A2). Gen-
erally an interference (or diffraction) pattern from SR occurs
without the need of outer vertical aperture restrictions (obstacle
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Fig. A1. Comparison of interference patterns calculated analytically for an isotropic
source with Gaussian intensity profile (solid lines), following Egs. (A.1) and (A.2),
and calculated in SRW for a bending magnet (BM) SR source (dashed lines). The
comparison was made for two double-slit interferometer configurations. The ver-
tical beam size was 6y =5 pm and the wavelength was 2= 325 mm. (a) Double-slit
separation d=27.5mm, slit width 2a=2.5mm. (b) Double-slit separation
d =35 mm, slit width 2a =10 mm.
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Fig. A2. Intensity of BM SR at the double-slit, calculated with SRW in n-polarization
at 325 nm wavelength. The 25 mm diffraction obstacle and the 30 mm outer
aperture form a double-slit of d =27.5 mm,2a=2.5 mm (Fig. Al(a)). The same
diffraction obstacle and the 45 mm outer aperture form a double-slit of d = 35 mm,
2a=10 mm (Fig. A1(b)).

diffractometer methods) or even without any diffraction obstacle
at all (imaging with m-polarized SR). The values for d and a were
chosen to make the example comparable to the 25 mm (5 mrad)
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Fig. B1. Monitor response functions for the 5 mrad (25 mm) diffraction obstacle,
centered (solid line) and displaced by 0.4 mrad (2 mm) (dashed line). Monitor
response functions for a double-slit interferometer with d =27.5 mm slit separa-
tion and 2a = 2.5 mm slit width (solid line), and as an intensity imbalanced double-
slit (dashed line). All response functions were calculated in SRW for SR of 325 nm
wavelength and in n-polarization.

diffraction obstacle, for which a theoretical calculation of the dif-
fraction pattern is presented together with experimental data
Fig. 8(c).

Appendix B. Double-slit interferometer vs. obstacle
diffractometer

The large vertical acceptance angle of our beamlines is an
important design criterion. The beam size measurement methods
based on the obstacle diffractometer, but also the m-polarization
method, performed best in terms of the steepness of their
response functions if the SR, emitted into larger vertical angles,
contributed to the image. This can be understood with the classical
Egs. (A.1) and (A.2): increasing the vertical SR acceptance angle led
effectively to an increased double-slit separation d. The con-
sequence was an increased valley-to-peak ratio (in the classical
picture: reduction in visibility), but also a higher sensitivity to the
source size. Ideally, the beamline acceptance should therefore
cover the full vertically emitted SR of the measurement wave-
length to maximize its performance in terms of beam size reso-
lution. In a double-slit interferometer, however, light emitted into
larger vertical angles is blocked. Thus, a reduced performance in
terms of beam size resolution was expected.

A simplified scenario based on the SLS beamline was modeled
in SRW. The monitor response function for the 5 mrad (25 mm)
diffraction obstacle in m-polarization was calculated. By adding a
rectangular aperture restriction to the diffraction obstacle, a
double-slit with a slit separation (center to center) of d =27.5 mm
and a slit width of 2a = 2.5 mm was introduced (with the central
part being identical to the 25 mm diffraction obstacle). The
resulting monitor response functions are compared in Fig. Bl
(solid lines). The method based on the 5 mrad (25 mm) diffraction
obstacle showed a steeper response function (i.e. higher sensitivity
to the vertical beam size) compared to the double-slit inter-
ferometer result. Another aspect in favor for the obstacle
diffractometer method was the higher light intensity on the
detector, a consequence of the effective increase in ‘double-slit
width a’. The difference between the ©- and o-polarization in the
double-slit interferometer was minor in terms of response func-
tions [22].

The intensity imbalanced double-slit interferometer was
derived from the double-slit interferometer described above by

reducing the transmittance to 0.5 on one slit only and the monitor
response function was calculated. The intensity imbalanced
obstacle diffractometer, with a 0.4 mrad (2 mm) vertical dis-
placement of the diffraction obstacle from center, was calculated
for a 5mrad (25 mm) high diffraction obstacle. The resulting
monitor response functions are compared in Fig. B1 (dashed lines).

The two intensity imbalanced approaches worked equally well
in raising the valley-to-peak ratio for a given vertical beam size,
but did not change the slope of the response function. The gain in
valley-to-peak ratio was adjustable in both techniques by the
choice of the vertical displacement of the diffraction obstacle and
by the difference in transmittance through the double-slits,
respectively. The intensity imbalanced obstacle diffraction method
was, however, sensitive to the effects of carbon contamination on
beamline optics, as described in Section 4.3.

Appendix C. Transmittance reduction model

Experience with former beamlines showed that the irradiation
with the UV part of SR over weeks and months led to a degrada-
tion of the optical components. On mirrors with high SR irradia-
tion a reduction of the reflectivity, visible by eye, was caused by
carbon contamination [19].

To account for this effect in the theoretical model a reduction of
transmittance through the beamline that is proportional to the
local SR intensity was introduced. Since the total SR intensity (both
polarizations, where the c-polarization dominates) must be con-
sidered, an approximation with a Gaussian in the vertical plane
was chosen. The highest SR intensity was in the mid-plane and
reduced the transmittance to 65% of the initial value, see Fig. C1.
The implementation in the SRW code was done by a flat optical
element (no phase change) with an amplitude change as a func-
tion of vertical position, placed in vicinity of the lens. We validated
this model by a relative comparison of the intensities between
theoretical model and experiment when introducing diffraction
obstacles of different heights, thus blocking varying areas on the
optical components with varying transmittances. When including
the transmittance reduction model, the measured reduced inten-
sities were predicted by the SRW model within 1.4% of the mea-
sured intensities.
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Fig. C1. Transmittance reduction function used to model the optical degradation of
the experimental setup in SRW. The dashed lines show the vertical angle shadowed
by the thin absorber and the solid vertical lines show the total vertical acceptance
angle of the beamline.
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Abstract

With the MAX IV project in Lund, Sweden, an ultralow
emittance storage ring light source is going into user opera-
tion in 2016. Due to its multibend achromat lattice design
the 3 GeV storage ring reaches a horizontal emittance lower
than 330 pm rad. Emittance diagnostics will involve two di-
agnostic beamlines to image the electron beam with infrared
and ultraviolet synchrotron radiation from bending dipoles.
Placed in locations of different optic functions the beamlines
will provide experimental access to both horizontal and ver-
tical emittance and to beam energy spread. Since bunch
lengthening with harmonic cavities is essential for machine
performance, time resolved measurements with synchrotron
radiation for individual longitudinal bunch distributions are
of special interest as well.

INTRODUCTION

Visible and near UV synchrotron radiation (SR) can be
used to resolve vertical beam sizes at the few pm scale. This
has been shown by imaging with w-polarized SR [1] and
with the obstacle diffractometer method [2] at the Swiss
Light source. The MAX IV diagnostic beamlines provide
diffraction obstacles as well as double-slits for a direct exper-
imental comparison of the double-slit interferometer [3,4]
and the obstacle diffractometer technique.

Due to the low horizontal emittance the horizontal beam
size is 20 to 30 um at the beamline locations in the MAX IV
3 GeV ring. To resolve such low beam sizes a technique
based on imaging with a wide horizontal opening angle and
at wavelength in the near IR will be applied.

At present one diagnostic beamline (matching dipole 1
in achromat 20) is under commissioning while the other
(unit cell dipole 5 in achromat 2) is delayed due to a me-
chanical problem with one vacuum chamber. We present
the achromat 20 beamline design, measured images of SR
in comparison to results from theoretical models and a first
estimate of the vertical beam size and emittance.

BEAMLINE DESIGN

The diagnostic beamline images SR from a bending mag-
net onto a CCD camera. See Fig. 1 for a schematic beamline
layout. The bending magnet is the first matching dipole in
achromat 20 of the MAX IV 3 GeV storage ring with a dipole
field that increases from zero to 0.53 T within the observ-
able range of the beamline (18.5 mrad or 490 mm along the
dipole), see Fig. 2.

A thin water-cooled absorber, covering a vertical opening
angle of 1.9 mrad, protects the beamline optics from power-
ful x-ray SR. At low beam currents (<3 mA) this absorber
is retractable to allow unaltered imaging of SR. The first
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Figure 1: Schematic beamline layout. The electron beam
path is indicated in red, the SR path is shown in blue. The
distance from the center of the bending magnet to the planar
SiC mirror is 1.85 m.

planar mirror, made of silicon carbide, is chamfered and
installed in proximity to the electron beam (~1 mm from the
electron beam pipe with 20 mm diameter). A second planar
mirror outside the radiation shielding wall is required for
radiation concerns. The lens (fused silica) is planar-convex
with one spherical surface and a diameter of 76 mm. It is
placed 2.45 m from the dipole center and images with an
optical magnification of —2.18 at a wavelength of 488 nm.
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Figure 2: Design beta functions and dipole field strength in
the matching dipole. The dashed lines mark the maximum
horizontal angular acceptance of the diagnostic beamline.

Two movable horizontal absorbers installed close to the
lens define the horizontal opening angle. The vertical ac-
ceptance angle of the beamline is limited by the vacuum
chamber in the dipole and is +£4.5 mrad. A variety of diffrac-
tion obstacles and double-slits can be inserted close to the
lens to generate vertical diffraction in a controlled fashion.
Special attention has been turned to a solid beamline design

02 Photon Sources and Electron Accelerators

A05 Synchrotron Radiation Facilities



Emittance diagnostics at the MAX IV 3 GeV storage ring

Proceedings of IPAC2016, Busan, Korea

to avoid image blurring from mechanical vibrations during
long exposure times.

The beamline front-end outside the radiation shielding
holds an optical table with a polarizing beam splitter (Glan-
Taylor prism), wavelength filters and the CCD camera. By
using the ordinary ray from the polarizer time resolved mea-
surements of SR with a sampling oscilloscope or a photo-
diode can be done simultaneously to SR imaging.

MODELING THE BEAMLINE

Images of the electron beam with SR in the IR-vis-UV
range are highly dominated by effects inherent to SR emis-
sion and diffraction. These effects are theoretically pre-
dictable and it is thus possible to derive both the horizontal
and vertical electron beam sizes from imaged SR. The theo-
retical calculations were done in the Synchrotron Radiation
Workshop (SRW) [5,6]. SRW is based on near-field calcu-
lations and preserves all phase information of the SR witch
is emitted by the ultra-relativistic electron beam along its
curved trajectory in the bending magnet. The SRW model
of our beamline contains the varying bending magnet field
as well as relevant optics such as apertures and the lens.

VERTICAL BEAM SIZE
MEASUREMENTS

Vertical intensity profiles of imaged m-polarized SR offers
vertical beam size resolution by evaluating the intensity ratio
of maxima and minima in the diffraction pattern, see [1].
Such a profile is shown in Fig. 3 for an imaging wavelength
of 488 nm at 1 nm bandwidth. Since in the present state

measurement
theoretical model

intensity [a.u.]

-0.5 0.5 1
vertical position [mm]

-1

Figure 3: Vertical profile of imaged m-polarized SR at
488 nm wavelength. Measurement (blue dots) and SRW
calculation (red lines). The vertical beam size is 11.5 um.

of the MAX IV 3 GeV storage ring coupling and spurious
vertical dispersion are not yet minimized it is not required to
image in the near-UV. The diagnostic beamline is, however,
prepared for wavelength ranges down to 250 nm in order to
resolve vertical beam sizes less than 3 um.

By introducing diffraction obstacles that cover various
vertical angles of the SR (see Fig. 4), complementary mea-
surement methods with a potentially higher sensitivity to
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the vertical beam size become available [2]. The obsta-
cle heights range from 4.5 mm to 9 mm (from 1.83 mrad to
3.66 mrad vertical angle). A vertical profile measured using
the obstacle diffractometer is shown in Fig. 5.

o-polarized vis-UV.

lens diffraction image plane
-polarized vis-UV / obstacle
electron beam / I
thin
absorber polarizer &
filters

Figure 4: Schematic of the obstacle diffractometer technique.

* measurement
theoretical model

intensity [a.u.]

vertical position [mm]

Figure 5: Vertical profile of imaged o-polarized SR with
5 mm diffraction obstacle at 488 nm wavelength. Measure-
ment (blue dots) and SRW calculation (red lines).

When using a double-slit with a narrow slit widths 2a the
SR diffraction pattern can be predicted by analytical expres-
sions [2,4], see Fig. 6. These analytical expressions hold as
long as the intensity variation over the slits, originating in the
non-isotropic emission of SR, is small. Due to the narrow
slits the intensity on the detector is, however, decreased by a
factor 5 compared to a diffraction obstacle of same height.

Table 1: Summary of Vertical Beam Size Measurement
Results

obstacle oy [um]

height [mm]  m-pol. o-pol.

- 11.5+£023 -

4 11.3+£0.17 10.5+0.20
5 11.3+0.21 10.7+0.18
6 11.0+0.15 10.7 £ 0.17
9 11.3+0.21 10.6 +£0.16

The beamsize results achieved with 7-polarized imaging
and with the obstacle diffractometer methods are shown in
Table 1. With the combined result for the vertical beam
size of 11.0+0.4 um combined with beta functions from first
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Figure 6: Vertical profile from a double-slit (d = 6.2 mm,

2a = 1.5 mm) at 488 nm wavelength. Measurement (blue

dots) and analytical calculation (red line). The vertical beam

size is 10.5 um.

attempt LOCO fits in the source point (8, ~2.3mand g, ~
18 m) and measured dispersions of ~ 3 mm in both planes
the vertical emittance is 6.4+0.9 pm rad.

HORIZONTAL BEAM SIZE
MEASUREMENTS

SR inherent diffraction effects occurring at large horizon-
tal opening angles (>10 mrad) can be used to resolve the
horizontal beam size. Since the diffraction pattern is more
pronounced at longer wavelengths this requires imaging of
SR in the near infrared. At large opening angles the variation
of the magnetic field and the beta functions (Fig. 2) need
to be taken into account in the theoretical model. Since the
edge of the bending magnet is within the horizontal open-
ing angle dipole edge radiation effects can be studied with
this beamline. A thorough characterization and theoretical
modeling of the electron beam and the diagnostic beamline
is, however, required for accurate measurements under these
conditions.

Currently the beamline is misaligned by a few mm such
that the optical axis of the beamline deviates from SR emis-
sion tangent. This has been found by optical alignment and
has been modeled in SRW in a basic approach (Fig. 7). Since
the misalignment impedes measuring at the full horizontal
opening angle it needs to be corrected to achieve sufficient
resolution of the horizontal beam size.

BUNCH LENGTH MEASUREMENTS

An optical sampling oscilloscope is used for longitudinal
bunch profile measurements. At low currents (no Landau
cavity excitation) bunch length from natural energy spread
could be verified, see Fig. 8. To verify bunch lengthening
and to distinguish it from longitudinal oscillation a single-
shot method is required and is planned to be implemented
using a fast photo-diode and an oscilloscope.
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Figure 7: Horizontal profiles of o-polarized SR at 930 nm
for 8.2 mrad horizontal opening angle. The horizontal beam
size is 24.5 um.

intensity (a.u.)
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Figure 8: Longitudinal bunch profile measured at <ImA
current. The rms bunch length is 55 ps.
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