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Abstract

In computer vision, many problems can be formulated as
finding a low rank approximation of a given matrix. Ideally,
if all elements of the measurement matrix are available, this
is easily solved in the L2-norm using factorization. How-
ever, in practice this is rarely the case. Lately, this prob-
lem has been addressed using different approaches, one is
to replace the rank term by the convex nuclear norm, an-
other is to derive the convex envelope of the rank term plus
a data term. In the latter case, matrices are divided into
sub-matrices and the envelope is computed for each sub-
block individually. In this paper a new convex envelope is
derived which takes all sub-matrices into account simulta-
neously. This leads to a simpler formulation, using only one
parameter to control the trade-of between rank and data fit,
for applications where one seeks low rank approximations
of multiple matrices with the same rank. We show in this
paper how our general framework can be used for man-
ifold denoising of several images at once, as well as just
denoising one image. Experimental comparisons show that
our method achieves results similar to state-of-the-art ap-
proaches while being applicable for other problems such as
linear shape model estimation.

1. Introduction

Low rank approximation and PCA type procedures are
important in many disciplines, for example, statistics, bio-
informatics, compression and prediction. In computer vi-
sion it has been proven useful for applications such as non-
rigid and articulated structure from motion [5, 23, 12], pho-
tometric stereo [3], optical flow [13] and linear shape mod-
els [8, 22]. The rank of the approximating matrix typically
describes the complexity of the solution. Therefore one
seeks to find a low rank factorization UV T ≈ M . If the
measurement matrix M is complete and the rank of the ap-
poximating matrix is known, then the best approximation,
in a least squares sense, can be computed in closed form

using the singular value decomposition (SVD) [10].
Alternatively the problem can be formulated as mini-

mization of the objective function

f(X) = µ rank(X) + ‖X −M‖2F . (1)

Here µ is a parameter that controls the trade-off between
data fit and rank. While the solution is easy to compute
using SVD the optimization problem itself is non-convex
and non-differentiable. As a consequence it is difficult to
modify the formulation without having to resort to heuris-
tic optimization approaches. For example, in case there are
missing entries and/or outliers the optimization problem is
substantially more difficult. In structure from motion, re-
cent approaches [11, 20] attack these problems by optimiz-
ing jointly over fixed size U and V matrices. As a conse-
quence the rank has to be predetermined and the quality of
the result is dependent on initialization.

To achieve flexible formulations that are independent of
initialization, researchers have instead started to consider
convex surrogates of the rank function. Most commonly the
convex nuclear norm, or sum-of-singular-values penalty is
used [18, 6, 17, 2, 7]. One reason for its popularity is that it
can be shown that if the locations of the missing entries are
random the approach gives the best low rank approximation
[6]. In many computer vision applications missing entry
locations are highly correlated which makes the approach
break down.

An additional downside of using the nuclear norm is that
it has a bias to small solutions. Due to its definition it penal-
izes both small and large singular values equally. Indeed its
proximal operator corresponds to soft thresholding [6]. In
contrast, the desirable operation of hard thresholding, which
is performed when solving (1) with SVD, leaves the larger
singular values unchanged.

A convex formulation that only penalizes the small sin-
gular values was recently proposed in [16]. It is shown that
the convex envelope of (1) is given by

f∗∗(X) =

n∑
i=1

(
µ− [

√
µ− σi(X)]2+

)
+ ‖X −M‖2F , (2)
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Figure 1: A simple illustration of how to estimate tangent
planes of the manifold.

where [·]+ denotes truncation at 0 and σi(X), i = 1, . . . , n
are singular values of X . Since f∗∗ is the convex envelope
of f their minimum values coincide and f∗∗(X) is a lower
bound f(X) for every X . Furthermore, singular values that
are larger than

√
µ get a constant penalty, which is similar

to hard thresholding.
In this paper we are interested in problems where mul-

tiple matrices of the same unknown rank need to be esti-
mated. One example where this appears is in manifold esti-
mation. All the tangent spaces of a connected manifold have
the same dimension, equal to the dimension of the manifold.
Locally a d-dimensional manifold can be thought of as a
d-dimensional tangent space. Therefore approximating the
data with a d-dimensional manifold can be thought of as lo-
cally approximating data with low rank matrices (all of rank
d). Another problem that can be cast in the same frame-
work is the missing data problem. In [16] it was solved
by applying the objective (1) on complete sub-blocks of the
measurement matrix. To achieve the same rank on all sub-
blocks, one µ-parameter for each block had to be selected.
Optimal parameter selection is a major obstacle for this ap-
proach.

More specifically, in this paper we propose an approach
where a trade-off between the maximal rank of a set of ma-
trices and their fit to observed data is penalized. In contrast
to the approach in [16] we consider all matrices at the same
time. The formulation, which has only one parameter, en-
sures that the estimated matrices are of the same (unknown)
rank. Our main technical contribution is that we derive an
expression for the convex envelope and show that its prox-
imal operator is equivalent to a convex cone problem. This
allows efficient optimization using an ADMM approach [4].
We present several applications where this framework can
be applied, including manifold denoising and missing data
problems.

2. Regularization With the Maximal Rank

In applications like manifold estimation, one seeks to
estimate a manifold by its tangent spaces, where the tan-
gent spaces have a lower dimension than the ambient space,

Figure 2: Illustration of how measurement matrices can di-
vided into blocks. Left: Blocks for tangent spaces. Right:
Example of block division with missing data.

see Figure 1. In particular, all tangent spaces have the
same dimension which is also equal to the dimension of the
manifold. To achieve this, one can divide the data points
in a measurement matrix M into different neighborhoods.
These neighborhoods form blocks (or sub-matrices) Mj of
M , see left of Figure 2. Note that in this case, the blocks
Mj have the same number of rows as the matrix M , but
they may vary in sizes and typically have no missing data.
We will show how one can compute a low-rank approxima-
tion X where all blocks Xj corresponding to Mj have the
same rank. These low-rank approximations correspond to
the low dimensional (affine) tangent spaces. Further details
of the specific formulation for this application will be given
in Section 3.1. In this section, we will work with a more
general formulation.

We let M̂ = (M1,M2, ...,Mb) be a collection of mea-
surement matrices that we wish to approximate with X̂ =
(X1, X2, ..., Xb), where Xj , j = 1, . . . , b, are of the same
(unknown) rank. Note that the matrices Mj in M̂ need not
to have the same sizes, and thus M̂ should be regarded as a
collection of measurement matrices. Our objective function
will be of the form

min
X̂

µr(X̂) + ‖X̂ − M̂‖2, (3)

where the regularization term is

r(X̂) = max( rank(X1), rank(X2), ...., rank(Xb)), (4)

the data fit is measured by

‖X̂ − M̂‖2 =

b∑
j=1

‖Xj −Mj‖2F , (5)

and ‖ · ‖F is the regular Frobenious norm. The parame-
ter µ controls the trade-off between rank and data fit. In
practice we are interested in solutions where the ranks of
the Xj matrices are the same. It can be seen that the reg-
ularizer (4) will achieve this under the assumption that the



Mj matrices are all of full rank. If for some j we have
r(X̂) > rank(Xj) then the data term ‖Xj − Mj‖2F can
be reduced by adding another singular value to Xj without
affecting any other term.

A common approach would be to simply replace the rank
functions in (4) with nuclear norms. However in contrast
to the rank function the nuclear norm is not scale invari-
ant. Therefore this will result in a regularizer that penalizes
the matrices unevenly. In particular if the matrices Xj have
varying sizes. Furthermore, the nuclear norm is only a lower
bound on the rank function on the set {X;σ1(X) ≤ 1},
while in contrast our convex envelope will be valid on an
unbounded domain. Recall that the convex envelope is by
definition the tightest possible lower-bounding convex func-
tion, hence the ideal tool for our purposes.

In the following sections we will compute the convex
envelope of our formulation via conjugate functions and de-
rive its proximal operator [19].

2.1. Conjugate Functions

To find the convex envelope of (3) we consider the con-
jugate function, which is by definition

f∗(Ŷ ) = max
X̂
〈X̂, Ŷ 〉 − µr(X̂)− ‖X̂ − M̂‖2, (6)

where 〈X̂, Ŷ 〉 =
∑b
j=1 tr(XT

j Yj). By completing squares
via

||X̂−(M̂+
Ŷ

2
)||2 = ||X̂||2−2〈X̂, M̂+

Ŷ

2
〉+ ||M̂+

Ŷ

2
||2,
(7)

the maximization in (6) can be written

max
k

max
r(X̂)=k

−‖X̂ − Ẑ‖2 + ‖Ẑ‖2 − ‖M̂‖2 − µk, (8)

where Ẑ = M̂ + Ŷ
2 . For a fixed k the problem is separable

in the matrices Xj , j = 1, ..., b. That is, the optimal Xj can
be obtained from the SVD of Zj giving

Xj =

k∑
i=1

σi(Zj)uiv
T
i . (9)

Inserting into (8) we get

max
k
−

n∑
i=k+1

‖σi(Ẑ)‖22 + ‖Ẑ‖2 − ‖M̂‖2 − µk. (10)

Here σi(Ẑ) is the vector (σi(Z1), σi(Z2), . . . , σi(Zb)) and
‖ · ‖2 is the regular euclidean vector norm. To select the
maximizing k we note that

µk +

n∑
i=k+1

‖σi(Ẑ)‖22 =

k∑
i=1

µ+

n∑
i=k+1

‖σi(Ẑ)‖22. (11)

Since each entry in the vector σi(Ẑ) is positive and decreas-
ing in i, its norm ‖σi(Ẑ)‖22 will also be decreasing with i.
Therefore k should be selected such that

‖σk+1(Ẑ)‖22 ≤ µ ≤ ‖σk(Ẑ)‖22. (12)

This gives the conjugate function

f∗(Ŷ ) = −
n∑
i=1

min(µ, ‖σi(Ẑ)‖22) +‖Ẑ‖2−‖M̂‖2. (13)

Recall that Ẑ depends on Ŷ through Ẑ = M̂ + Ŷ
2 . Next we

consider the biconjugate, which is by definition

f∗∗(X̂) = max
Ŷ
〈X̂, Ŷ 〉 − f∗(Ŷ ) (14)

= max
Ẑ

2〈X̂, Ẑ − M̂〉 − f∗(2Ẑ − 2M̂). (15)

The objective function in (15) can be written

n∑
i=1

min(µ, ‖σi(Ẑ)‖22)− ‖Ẑ − X̂‖2 + ‖X̂ − M̂‖2. (16)

Using von Neumann’s trace theorem it can be seen that the
optimal Zj has to have an SVD with the same U and V as
Xj . Therefore the optimization can be reduced to a search
over the singular values of the Zj , j = 1, ..., b, giving the
convex envelope

f∗∗(X̂) = Rµ(X̂) + ‖X̂ − M̂‖2, (17)

where

Rµ(X̂) = max
Ẑ

n∑
i=1

min(µ, ‖σi(Ẑ)‖22)−‖σi(Ẑ)−σi(X̂)‖22.

(18)

2.2. The Proximal Operator of f∗∗

The maximization over the singular values in (18) does
not seem to have any closed form solution. Evaluation of
f∗∗(X̂) therefore has to be done by numerically maximiz-
ing the (concave) objective function. At first glance it may
therefore seem as though minimization of f∗∗ would in-
volve a search over numerical evaluations of f∗∗. Fortu-
nately this can be avoided. In this section we show that the
proximal operator

proxf∗∗(Ŷ ) = arg min
X̂

f∗∗(X̂) + ρ‖X̂ − Ŷ ‖2, (19)

which is the basis for ADMM can be computed using a
single cone program. The trick is to switch the order of
minimization and maximization and thereby obtain a closed
form solution for X̂ . If ρ > 0 the objective function is



closed, proper convex-concave, continuous and the opti-
mization can be restricted to a compact set. Switching op-
timization order is therefore justified by the existence of a
saddle point, see [19]. To find the optimal X̂ we consider
the terms of (19) that contain X̂

− ‖Ẑ − X̂‖2 + ‖X̂ − M̂‖2 + ρ‖X̂ − Ŷ ‖2. (20)

It can be seen (e.g., by taking derivatives of (20)) that the
optimal X̂ is given by

X̂ = Ŷ +
M̂ − Ẑ
ρ

. (21)

Inserting into (20) and completing squares gives

− ρ+ 1

ρ

∥∥∥Ẑ − Ŵ∥∥∥2

+ C, (22)

where

Ŵ =
ρŶ + M̂

ρ+ 1
(23)

and

C =
2ρ+ 1

ρ
‖M̂‖2 + ρ‖Ŷ ‖2 − ρ‖Ŷ +

M̂

ρ
‖2. (24)

Note that C is independent of Ẑ. In practice we are only
interested in finding the optimizers Ẑ and X̂ and not the
objective value itself. Hence we can ignoreC. We therefore
need to maximize

n∑
i=1

min(µ, ‖σi(Ẑ)‖22)− ρ+ 1

ρ

∥∥∥Ẑ − Ŵ∥∥∥2

. (25)

The terms in the sum only depend on the singular values of
the matrices Zj , j = 1, . . . , b. For the second term we have∥∥∥Ẑ − Ŵ∥∥∥2

= ‖Ẑ‖2 − 2

b∑
j=1

〈Zj ,Wj〉+ ‖Ŵ‖2. (26)

By von Neumann’s trace theorem 〈Zj ,Wj〉 ≤∑n
i=1 σi(Zj)σi(Wj) one sees that the SVD of Zj has

the same U and V as the SVD of Wj . Therefore (25)
simplifies to
n∑
i=1

(
min(µ, ‖σi(Ẑ)‖22)− ρ+ 1

ρ

∥∥∥σi(Ẑ)− σi(Ŵ )
∥∥∥2

2

)
.

(27)
The singular values can now be determined using a cone
program. To see this we introduce the auxiliary variables
si, i = 1, ..., n and write

max

n∑
i=1

si (28)

s.t. si ≤ µ−
ρ+ 1

ρ

∥∥∥σi(Ẑ)− σi(Ŵ )
∥∥∥2

2
(29)

si ≤
∥∥∥σi(Ẑ)

∥∥∥2

2
− ρ+ 1

ρ

∥∥∥σi(Ẑ)− σi(Ŵ )
∥∥∥2

2
. (30)

Note that as we are maximizing the sum of si, (29) or (30)
will always attain equality at the optimal solution. Thus the
above program is equivalent to (27). For the singular values
to be feasible they have to be decreasing for each block. To
enforce this we add linear constraints on the entries of the
vectors σi(Ẑ) which results in the formulation

max

n∑
i=1

si (31)

s.t.
∥∥∥σi(Ẑ)− σi(Ŵ )

∥∥∥2

2
≤ ρ

ρ+ 1
(µ− si) (32)

ρ+ 1

ρ

∥∥∥σi(Ẑ)− σi(Ŵ )
∥∥∥2

2
−
∥∥∥σi(Ẑ)

∥∥∥2

2
≤ −si (33)

σ1(Ẑ) ≥ σ2(Ẑ) ≥ ... ≥ σn(Ẑ) ≥ 0. (34)

Equation (32) is easily seen to be convex since the left side
is a positive definite quadratic form and the right hand side
is linear. To see that the same holds true for (33) we can
rewrite this constraint as∥∥∥σi(Ẑ)− (ρ+ 1)σi(Ŵ )

∥∥∥2

2
≤ ρ

(∥∥∥(ρ+ 1)σi(Ŵ )
∥∥∥2

2
− si

)
.

(35)
Constraints (32) and (35) can be realized using the cone

{(x1, x2, x3); x1x2 ≥ ‖x3‖22, x1 + x2 ≥ 0}. (36)

This type of cone (which is a rotation of the quadratic cone)
is supported in SeDuMi [21] and Mosek [1] which we use
to solve (19).

3. Applications
In this section, we present two applications of our frame-

work: (i) Manifold denoising and (ii) Linear shape basis
models.

3.1. Manifold Denoising

Manifold denoising can be formulated as seeking affine
tangent spaces with the same dimension. If we have a set of
images, possibly corrupted with noise, then the assumption
is that the true uncorrupted images lie on a low-dimensional
manifold. The images, represented by mi, i = 1, . . . , N ,
are assumed to be column-stacked so one image lies in Rn,
where n is the number of pixels. The assumption means
that several points which are close to each other should be
close to the tangent space of the manifold as illustrated in
Figure 1. To determine neighbourhoods, we find for each
image point its K-closest neighbors in the euclidean dis-
tance and consider them to be one block.

Given a set of images, stacked in a measurement ma-
trix M = [m1,m2, ...,mN ], we determine a collection of
blocks via the neighbourhoods, M̂ = (M1,M2, . . . ,Mb),
see left of Figure 2. Since the images are corrupted by noise,



Input PSNR Output PSNR
Our method 10.4553 17.5231
Manifold Denoising 10.4553 15.6656

Table 1: The PSNR using different methods for denoising
on the USPS Digits.

each sub-matrix Mi will have high rank, and the task is to
find a low-rank approximation Xi for each Mi. Note that
the different Xi share common varibles. Also, since we are
interested in the affine tangent spaces, which do not neces-
sarily go through the origin, we add the row-vise mean vec-
tor x̄i of each Xi. Assuming that Xi have zero row means,
that is Xi1 = 0, the fitting terms in the objective function
can be written

b∑
i=1

‖Xi + x̄i1
T −Mi‖2 = (37)

b∑
i=1

‖Xi − (Mi − m̄i1
T )‖2F + ki‖x̄i − m̄i‖22, (38)

where m̄i is the row mean ofMi and ki is equal to the num-
ber of columns in blockMi. To ensure consistency between
shared variables, we penalize the differences by adding to
the objective

α

b∑
i=1

‖Pi(X)− (Xi + x̄i1
T )‖2F ,

where α is a weighting factor,X is the approximation of the
measurement matrix M and Pi(X) retrieves block i in X .
In summary, we have the following optimization problem

min
X̂,X,x̄i

r(X̂) +

b∑
i=1

(
‖Xi − (Mi − m̄i1

T )‖2F+ (39)

ki‖x̄i − m̄i‖22 + α‖Pi(X)− (Xi + x̄i1
T )‖2F

)
(40)

s.t. Xi1 = 0 i = 1, . . . , b. (41)

We have already derived the convex envelope for the terms
on the first row (39) and the terms on the second row (40)
are convex from the start. To minimize (39) we use the con-
vex envelope and introduce auxiallary variables Zi, which
results in

min
X̂,X,x̄i,Ẑ

f∗∗(X̂)+

b∑
i=1

(
ki‖x̄i − m̄i‖22 + α‖Pi(X)− Zi − x̄i1T ‖2F

)
(42)

s.t. Xi = Zi, Zi1 = 0, i = 1, . . . , b, (43)

and in turn, this leads to the ADMM formulation

min
X̂,X,x̄i,Ẑ

f∗∗(X̂) + ρ‖X̂ − Ẑ + Λ̂‖2 − ρ‖Λ̂‖2+

b∑
i=1

(
ki‖x̄i − m̄i‖22 + α‖Pi(X)− Zi − x̄i1T ‖2F

)
(44)

s.t. Zi1 = 0, i = 1, . . . , b. (45)

We get one part which depends on X̂ ,

min
X̂

f∗∗(X̂) + ρ‖X̂ − Ẑ + Λ̂‖F , (46)

which is precisely the proximal operator we have seen
before. To minimize with respect to the other variables Ẑ,
x̄i and X is now straightforward. Keeping the other vari-
ables fixed and solving for one we get the following up-
dates:

Xt+1 = arg min
Xt

α

b∑
i=1

‖Pi(Xt)− Zti − x̄ti1T ‖2F (47)

which is a separable least squares problem,

Zt+1
i = arg min

Zt
i

α‖Pi(Xt+1)− Zti − x̄ti1T ‖2F+

ρ‖Xt
i−Zti + Λti‖2F i = 1, . . . , b, (48)

since all blocks are independent in the minimization,

x̄t+1
i = arg min

x̄t
i

ki‖x̄ti − m̄i‖22+

α‖Pi(Xt+1)− Zt+1
i − x̄ti1T ‖2F , (49)

since we can minimize each x̄i separately. To find X̂t+1 we
use the proximal operator we have deduced:

X̂t+1 = proxf∗∗(Ẑt+1 − Λ̂t+1). (50)

For Λ̂ we take a step in the ascent direction, that is,

Λt+1
i = Λti +Xt+1

i − Zt+1
i , (51)

since again, each block is separable.

Experimental results: USPS. To test the denoising
method, we use the USPS dataset [15] of handwritten digits.
We choose 100 images of each digit and rescale the intensi-
ties to lie between [0, 1]. The images are perturbed by Gaus-
sian noise with standard deviation σ = 0.3. We then stack
all images into one measurement matrix M , and find the
K = 30 closest neighbours for each image. With this data,
we apply our optimization to obtain the new approximate



Figure 3: Some results from denoising the USPS digits. From left to right: Input images, our results and the results from
Manifold Denoising.

Figure 4: Denoising results of the Lena image. Left: Noisy input image. Middle: Denoised image using our method. Right:
Denoising results from BM3D.

Figure 5: Left: Input noisy Cameraman. Middle: Our result. Note the preserved details on the camera. Right: Result from
BM3D.

matrix X of M . Each column in X contains a denoised im-
age corresponding to the noisy image in the same column
in M .

For comparison we use the well-known work called
Manifold Denoising by [14]. This work uses a different
approach where a partial differential equation is solved on a
graph created by the data points to obtain a manifold.

The results shown in Table 1 where obtained when
adding noise with standard deviation σ = 0.3 to the USPS
dataset. For Manifold Denoising we set the number of

neighbors to 6 and re-weighting parameter λ = 1 and a
symmetric graph, since that gave the best results in our ex-
periment.

Experimental results: Single image denoising. Our
method for manifold denoising can also be used to denoise
a single image. To apply our method, the image is first di-
vided into several patches, and each patch is considered to
be one point in Rn. As above all points, or patches, are
then stacked into one measurement matrix M . Thereafter,



Input Our method BM3D
Lena 19.9914 28.6064 29.1560
Cameraman 19.9883 26.0663 24.7322

Table 2: Denoising results from the Cameraman and Lena.
BM3D gives a higher PSNR for Lena, but we do better on
the Cameraman.

Figure 6: Zooming in, one can see more details in our result
(left) compared to BM3D’s result (right). Note that one can
see the pupil in the eye of the left image, but not in the right
image.

the optimal X is found applying our optimization method
and each column in X equals a denoised patch which can
be used to rebuild the image.

This was tested on Lena, size 512 × 512 pixels and the
Cameraman, size 256 × 256 pixels. On both images we
added gaussian noise with a standard deviation σ = 0.1. As
can be seen in Figure 4, much of the noise is reduced. To
compare our method, we also provide results from state-of-
the-art method BM3D [9]. In the closeup of Figure 6, it can
be seen that our method keeps details better than BM3D,
for example, the pupil is clearly distinguishable in our result
but not in BM3D’s result. The PSNR on the input data was
19.9914. Our method improved to 28.6064 and BM3D to
29.1560.

To get these results a patch size of 12 × 12 pixels was
used together with an overlap of 2/3 between two consecu-
tive patches, this results 15876 tangent spaces. The param-
eter α was set to 1.5 and µ to 75, 000 and the number of
neighbors K = 20. The optimal blocks Xi had rank 2.

The same approach was also tested on the Cameraman
and as can be seen in Figure 5, our method performs well
compared to BM3D. Figure 5 shows that our method pre-
serves more details compared to BM3D which smooths out
some details. For example the camera is more detailed and
the roof on the tower to the right is more preserved. For
the Cameraman we used the same parameters as above ex-
cept that µ = 22000 and the number of tangent spaces was
3844. The optimal blocks Xi had rank 3. The denoising
results are summarized in Table 2.

Dataset Loc. Rank Func. [16] Our method
Hand 0.474 0.474
Banner 6.54 · 107 4.73 · 107

Book 0.121 0.121

Table 3: The error
∑b
i=1 ‖Xi−Mi‖2F for the method in [16]

and our method. Note that the method in [16] outperforms
the nuclear norm relaxation for the same error metric.

3.2. Linear Shape Basis Models

Another application we test our framework on is esti-
mation of linear shape models. A common assumption is
that a set of tracked image points moving non-rigidly can
be described with a small number of basis elements in each
frame. If we let Mf = (m1

f ,m
2
f , . . . ,m

N
f ) denote the N

tracked 2D-points in frame f , we want to find shape ba-
sis models (S1, S2, . . . , SK) — each of size 2 × N — and
scalar coefficients Cf1, Cf2, . . . , CfK such that the points
Mf can be described by

Mf =

K∑
k=1

CfkSk. (52)

Stacking the N points in F frames yields a 2F × N mea-
surement matrix M . Since we want to use as few basis el-
ements as possible, the matrix M should be of low rank.
Due to occlusion and tracking failures, not all points will
be seen in all frames. This gives a measurement matrix M
with missing data. To handle this we create sub-blocks Mi

of M , where each Mi has no missing entries, see right of
Figure 2. Hence, we have turned the problem into finding
low-rank approximations Xi of Mi, where the blocks in Xi

share common variables. The objective function we seek to
minimize is

minX̂,X f∗∗(X̂) (53)

s.t. Pi(X) = Xi i = 1, . . . , b,

where X̂ is the collection of blocks (X1, X2, . . . , Xb) and
Pi(X) retrieves block i fromX . The constraint comes from
the requirement that the blocks we optimize over shall coin-
cide on the overlap. To minimize this, we use ADMM and
our augmented Lagrangian becomes

f∗∗(X̂) + ρ‖X̂ − P̂(X) + Λ̂‖2 − ρ‖Λ̂‖2, (54)

where P̂(X) = (P1(X), ...,Pb(X)).
In each iteration we perform the following updates:

X̂t+1 = arg min
X̄t

f∗∗(X̂t) + ρ‖X̂t − P̂(Xt) + Λ̂t||2

(55)

Xt+1 = arg min
Xt

ρ‖X̂t+1 − P̂(Xt) + Λ̂t‖2 (56)

Λt+1
i = Λti +Xt+1

i − Pi(Xt+1). (57)



Figure 7: Frames 280 and 371 from the hand experiment.
The solution has rank 5.

Figure 8: Frames 297 and 337 in the Book sequence. The
solution has rank 3.

Figure 9: Frames 160 and 250 of the Banner sequence. The
solution has rank 9.

When the low-rank approximation is found where only
known data has been used, we complete the missing parts
in X by applying the same method as in [16].

Experimental results. Our framework has been applied
to a number of image sequences obtained from the authors
of [16]. The results of the Hand-, Book- and Banner se-
quences are shown in Figures 7, 8 and 9.

One sees clearly in all sequences that the red and blue
points, which are the reconstructed points, obey a mo-
tion which is reasonable compared to the input data, green
points. The blue points are the reconstructed points which
we could track and the red points are the reconstructed posi-
tions of points with no measurements available. The found
rank for the solution in the Hand sequence is 5, in the Book
sequence we get rank 3 and in the Banner sequence we get
rank 9. The number of blocks in Hand, Book and Banner
was 5,3 and 19.

To compare with [16], we test their method on the same
datasets and measure the error

∑b
i=1 ‖Mi −Xi‖2F and the

results are shown in Table 3. We choose to measure the
error on the blocks since that will show if our method differs
from [16]. Note that this method was shown to perform
better than the nuclear norm relaxation for this application.

As the results in Table 3 show, we do at least as good as
they do on these datasets. We investigated the approximated
sub-matrices from [16] individually and saw that some sub-
matrices had rank 8 and some rank 10. This shows that it
is easier to get uniform rank on all sub-matrices using our
formulation.

4. Conclusion
In this paper we have derived a novel and general convex

framework to approximate low-rank matrices. Our method
is suitable in situations where several matrices of the same
rank need to be approximated. Our main contribution is the
derivation of a strong convex formulation that can be opti-
mized in general frameworks using the proximal operator in
an ADMM fashion [4]. One of the advantages of our formu-
lation is that there is a single tuning parameter controlling
the trade-of between rank and model fit which is important
in manifold estimation where the number of sub-matrices
may be well above 10, 000.

Experimental evaluations showed that our method
achieves results similar to state-of-the-art approaches on
manifold denoising problems and linear shape basis estima-
tion. It should be mentioned that in the case of manifold de-
noising neighborhoods are computed using noisy patches.
Therefore results could potentially be improved by reesti-
mating neighborhoods using cleaned versions. However, to
focus the evaluation on our convex formation we have re-
frained from such heuristics.
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