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Abstract

This thesis makes a contribution to network theory and how it applies to eco-

nomics. It consists of three self-contained papers. It predominantly considers

how connections between economic entities can affect economic outcomes. In

particular, the first two papers examine social learning, in the one case by ap-

plying it to portfolio choice, and in the other by conducting an experiment to

determine how people incorporate information from others into their beliefs to

achieve economic outcomes. The final paper looks at how sectoral shocks can

be transmitted through the economy through the connections between indus-

tries.

The first paper, Social learning and financial markets: Can informed neigh-

bors make up for a lack of financial acumen?, allows financially- informed and

uninformed agents to consult with each other on different social networks and

examines what the benefits are to the two different groups of agents on the dif-

ferent networks in terms of financial investment.

The second paper, Incorporating information into beliefs on networks: An

experiment, studies how agents incorporate into their beliefs information they

receive from other agents. In particular, it considers whether agents use the

DeGroot model or a Bayesian approach. Further, it considers how the density

of network connections affects the results of consultation.

The third paper, Sectoral shocks and aggregate volatility, explores how sec-

toral shocks can propagate through the economy through the input-output net-

works. It devises a demand-side measure of industry influence and shows that

such a demand-side measure is needed to fully understand the influence of in-

dustries with a case study of the Australian mining industry.

Keywords: Social Networks, Learning, Portfolio Choice, Information, DeGroot,

Bayes, Macroeconomics

JEL Classification: D85, D83, G11 C67, E32, D03
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Introduction

1 Background

This dissertation investigates various ways in which networks can influence eco-

nomic outcomes, specifically through both transferring information between

individual economic agents and more broadly linking industries within the econ-

omy. Focusing on the connections between economic agents and how their in-

teractions can affect economic outcomes is a comparatively new but rapidly

growing area of economic research.

Rational choice theory assumes that consumers are utility-maximizing ra-

tional agents making individual decisions based on their individual preferences.

Furthermore, rational choice theory assumes that agents are fully informed about

their preferences, their alternative possible courses of action and other relevant

information about the world. However, humans are not independent of their

fellow human beings. We often influence each other’s decisions. Nor are we

fully informed about all aspects of our lives. We often must take cues from oth-

ers’ behavior and learn from each other (Jackson 2008).

In order to become more informed about the world, people often turn to

each other, asking friends and other social contacts for information on which

to base their consumption and investment decisions. In this way people can

become more informed about the world, and so closer to one of the assump-

tions of rational choice theory, but at the same time, losing their independence.

Learning from those to whom an agent is socially connected is called social

learning (see, for example, Goyal 2007, Bala & Goyal 1998, 2001). Chapters 2

and 3 contribute to this area of research by investigating how people gain infor-

mation and how they might incorporate this information into their beliefs and

hence actions.

Another example in which economics has ignored the connections within

an economy is how macroeconomics has considered sectoral shocks. Tradition-

ally, macroeconomics has ignored the effects of sectoral shocks as it is has been

assumed that industries are independent and so in a diversified economy sec-

toral shocks will tend to cancel each other out (Gabaix 2011). However, indus-

tries are not independent of each other but rather fit into a network of interre-

lationships. Chapter 4 explores how the interdependencies between industries

might alter our conclusions about economic volatility.
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2 Social Learning and Financial Markets: Can informed

neighbors make up for a lack of financial acumen?

Chapter 2 investigates how social learning can affect financial decisions with

particular reference to portfolio choice. People often need to make financial

decisions. However, many people are not particularly well-informed when it

comes to financial matters. As a result people will often turn to their social

networks to gain information to make financially beneficial decisions. Chap-

ter 2 investigates whether this is a reasonable strategy for people to use, where

the benefits lie for people who are not financially well-informed and indeed for

those who are, and on which networks they might best gain knowledge about

financial matters.

Applying social learning to portfolio choice theory is fairly thin area of re-

search, which appears somewhat strange given how many people turn to their

social contacts for advice when it comes to financial matters. Various papers

consider how social neighbors can affect agents’ choice to participate in the

stock market but not how they might choose their portfolio (see, for example,

Hong et al. 2004, Ivkovich & Weisbenner 2007, Hong et al. 2005, Cohen et al.

2008). The few papers that do exists in this area tend to assume that all agents

have equal access to information, even if their information does not always turn

out to be so useful. These models might be considered to be how consulta-

tions between financial experts might affect financial outcomes (Acemoglu et al.

2011, Ozsoylev & Walden 2011).

In contrast, this is the first paper that has treated financial agents as categor-

ically different in term of their access to information and how this might affect

their portfolio choices in response to social leaning. That is, how consultation

might affect experts and non-experts differently.

The model presented considers three specific networks, designed to repre-

sent different social networks on which people might seek financial advice. The

networks represented are finance-related blogs, Facebook and LinkedIn. Agents

can choose how many people they wish to consult with and on which network

they can consult to improve their beliefs. In this model, consulting is defined

as learning their neighbors’ beliefs about the likely state of nature. Following

consultation, the agents incorporate their neighbors’ beliefs into their own and

then choose their optimal portfolio based on their beliefs about the likely state

of nature.
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The paper analyses how consultation affects the expected beliefs and vari-

ance in beliefs for the two types of agents. It then analyses how their beliefs

flow through to expected returns and variance in returns and, ultimately, to the

certainty equivalents of their investments.

The analysis shows that for informed agents the benefits of consultation do

not lie in increases in their expected returns but rather in a reduction in the vari-

ance in their returns. These benefits are realized on finance-related blogs and

LinkedIn, regardless of how well they know how informed their neighbors are.

On Facebook, these gains are only realized if they can tell how well-informed

their neighbors are. For uninformed agents the benefits lie in an improvement

in their expected returns with only a relatively small gain through a reduced

variance. Again the greatest benefit is on finance-related blogs. However, if they

can tell how informed their neighbors are, networks similar to Facebook can

also be beneficial.

3 Incorporating Information into Beliefs on Networks:

An experiment

Within the model of chapter 2 agents used the DeGroot (1974) model to incor-

porate the information from their neighbors into their beliefs about the state of

nature. This is a simple model in which people weight the beliefs of their social

contacts and then using these weights, they update their beliefs and a weighted

average of their neighbors’ beliefs. Given the simplicity of this model of infor-

mation incorporation, it is very attractive to use and assumes a low cognitive

load on the part of the agents, and, thus, has been regularly used in the eco-

nomic literature (see, for example, Jadbabaie et al. 2012, Golub & Jackson 2010,

Eyster & Rabin 2009). An alternative model of information incorporation that

has also regularly been used in the economic literature is based on Bayes rule

(Acemoglu et al. 2011, Holt & Smith 2009, Charness et al. 2007). The benefit of

this model is that the updated beliefs of agents will be use information in much

more sophisticated way. The downside is that it assumes a high degree of so-

phistication on the part of the agents. So which do people actually use when

they incorporate information from other people into their beliefs?

Chapter 3 outlines an experiment I conducted to try to tease out which model

is most reasonable model to use to describe how people incorporate informa-

tion into their beliefs. In general, it finds that the DeGroot model is a reasonable
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one to describe how people come to their beliefs. However, there was a signifi-

cant group who would follow what might be described as a Bayes rule model at

least some of the time. This group was larger than that has been found through

previous research.

Another prediction of the DeGroot model, and indeed also those models

that rely more on Bayes rule, is that people on networks will come to consen-

sus if they consult with each other enough times. Given that many networks

of people do not end up at consensus a reasonable question is why not? What

stops them from reaching consensus? Chapter 3 also investigates whether it is

the perceived costs and benefits of consulting that stops people from consulting

to consensus, and how the network structure might affect this.

In general, I found that the perceived benefits of consulting were the most

important factors in whether people decided to consult with their neighbors an

extra round, with little evidence that the costs of consulting played much role.

People on more sparsely-connected networks tended to consult more times than

those on more densely-connected networks. However, this extra consultation

did not lead to better results in terms of uncovering information.

4 Sectoral Shocks and Aggregate Volatility

While chapters 2 and 3 focused on individual actors, networks can affect eco-

nomic outcomes at a broader perspective. Chapter 4 considers how interrela-

tionships between industries can affect macroeconomic volatility.

Traditionally macroeconomics has ignored the effects of sectoral shocks.

This has largely been because it was felt that in a well-diversified economy posi-

tive shocks to one sector will be counterbalanced by negative shocks to another

and so they will have no aggregate effect (Gabaix 2011). This theory relies on the

assumption that industries are independent of each other. Of course, industries

are not independent of each other because they are connected through input-

output relationships. Therefore, if an industry has a productivity shock this will

be passed on to the industries that it supplies inputs to, and then through to the

industries that those industries supply inputs to and so on. Looking the other

way, if an industry is hit by a negative demand shock that industry will not de-

mand so many inputs from its supplying industries, and so the shock will be

passed on to those industries that supply inputs to it. The supplying industries

will then not demand so many inputs from their supplying industries and so
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on. In this manner demand and supply shocks will be passed on beyond the

original industries that receive those shocks.

Some research has looked at this process. In particular, Acemoglu et al.

(2012, 2013) looked at supply shocks and the influence that industries have

over each other through that channel. I construct a similar instrument to mea-

sure the influence of industries through the demand channel and show how a

demand-side measure is needed with a case study of the Australian mining in-

dustry.

The Australian mining industry is a good case study here because mining

has been considered one of the keys to Australia’s strong economic performance

over the past couple of decades. However its influence over the Australian econ-

omy is almost completely through the demand side. While it produces a large

amount of exports and demands inputs from a number of other industries, it

supplies very few inputs to other industries within Australia. Indeed, using my

measures of industry influence, the mining industry is one of the least influen-

tial industries on the supply side but one of the most influential on the demand-

side.
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1 Introduction

In considering the question of choice among investment options, many investors

resort to asking people in their social network for advice. For example, is it cur-

rently a good time to invest in real estate? Should agents ask their pension funds

to focus their investment on stocks or bonds? This naturally prompts questions

about whether this is a reasonable strategy for uncovering information about

the current merits of investing in different asset classes. If investment analysis

is beyond the abilities of some agents who still must make investment decisions,

can they make up for this lack of financial knowledge by asking more-informed

people to whom they are socially connected? Moreover, even if an agent is able

to conduct investment analysis themselves, might they still gain from consult-

ing other informed investors in their social neighborhood?

Studies have shown that participation in financial markets is significantly

influenced by agents’ social contacts. This is true not only among finance pro-

fessionals (Hong et al. 2005, Cohen et al. 2008) but also across the general public

(Hong et al. 2004, Ivkovich & Weisbenner 2007). Therefore, it is worth consid-

ering what the benefits of social learning are for finance professionals and the

general public, and how these benefits might differ between the two groups.

This paper contributes to the literature by applying a social learning model to

a portfolio choice setting and studying what the gains from consultation are in

terms of certainty equivalents for different agents in a network in which there

are both informed and uninformed agents, and in which the signals received by

the informed agents are neither fully informative of the state of nature nor of the

returns to investment. Furthermore, it considers how quickly gains can be re-

alized as the neighborhood size increases, on three specific networks designed

to reflect real world networks through which people can gain financial advice.

These networks are: a network with a central core of informed investors with

uninformed investors observing the core from outside, to represent finance-

related blogs; a decentralized network with informed investors randomly dis-

tributed throughout the network, to represent Facebook; and finally, a decen-

tralized network with informed investors grouped together, to represent LinkedIn.

In this study, agents choose a portfolio consisting of a risk-free asset and a

risky asset. The expected returns on the risky asset changes with an unknown

state of nature. A subset of agents receives private signals regarding the un-

known state of nature. All agents can then consult with a subset of other agents

(their “neighbors”) to come to final beliefs about the state of nature. In the
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context of this paper “consulting” refers to agents observing the beliefs of their

neighbors about the state of nature. Having observed their neighbors’ beliefs

agents then incorporate those beliefs into their own beliefs by constructing a

weighted average of their neighbors’ beliefs (including their own beliefs). This

method is based on the model produced by DeGroot (1974). After agents have

updated their beliefs following consultation, they choose a portfolio of assets

based on their beliefs about the state of nature.

Those agents that receive a signal about the state of nature (and hence are

more informed) gain in certainty equivalents on hub networks (reflecting fi-

nance blogs), and non-random wheel networks (representing LinkedIn) with

most of the gains realized through comparatively small neighborhoods. If they

can determine whether their neighbors are informed or not, informed agents

can also gain through consulting on random wheel networks (representing Face-

book), but it requires far larger neighborhoods than for the other networks.

While uninformed agents gain in certainty equivalents on all of the networks,

the gains are far greater on the hub networks, even for small neighborhoods. If

they can determine the type of their neighbors, uninformed agents can also gain

through consulting random wheel networks, though, as with informed agents,

they require large neighborhoods to achieve this. There appears to be little ben-

efits for uninformed agents to consult on non-random wheel networks.

Various social learning models include agents receiving a private informa-

tive signal which they can share with other agents on their network (for exam-

ple, Acemoglu et al. (2011) and Ozsoylev & Walden (2011)), though few include

uninformed agents in their models. In a finance context these studies could

be thought of as dealing with financial market professionals, as they can be ex-

pected to be more informed than the general public in terms of financial in-

vestment. Acemoglu et al. (2011) consider a model in which agents receive a re-

turn based on whether they correctly work out what the state of nature is. Prior

to making their decisions, agents received a private signal and can observe a

stochastically determined subset of the agents that have previously acted. The

study determines certain conditions under which asymptotic learning occurs

(that is, when the probability of agents making the correct decision approaches

one as the number of agents goes to infinity). In the model of Ozsoylev & Walden

(2011), agents receive a noisy signal about the return on a risky asset. As agents

become more connected to other agents, their beliefs about the return on the

asset become more accurate. Again all agents are equally likely to have an accu-
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rate signal.

While these models give interesting insights into the nature of social learn-

ing, when it comes to portfolio choice it seems more likely that agents will share

their beliefs about general asset classes to invest in rather than their portfolios

(as per Acemoglu et al. (2011)) or their beliefs about the retruns of those assets

(as per Ozsoylev & Walden (2011)). In this study’s model, observations are made

directly of other agent’s beliefs and, even if an agent is certain about the state

of nature, they will still not be certain about the returns on the assets. Further-

more, in contrast to these two models, this model includes agents who do not

receive a private signal as well as those who do, and so can distinguish the gains

that might accrue to both types of agent given the structure of the network.

A model of social learning that includes agents with heterogeneously infor-

mative signals is that of Jadbabaie et al. (2013). In this model, agents receive

signals that can distinguish between some but not all potential states of nature.

Given that only one state of nature is drawn in any period only some agents’

signals will be informative. The authors then analyze how quickly the agents

learn the true state of nature through consultation. From a finance perspective

it is not clear that it is possible to completely distinguish the true state of nature

(particularly if there are many potential states of nature). Moreover, the hetero-

geneity of the agents’ information in the model of Jadbabaie et al. (2013) is not

determined categorically but rather only after the state of nature is determined.

In my model, no agent’s signal is completely informative, but it is possible for

an agent to know categorically how informed they are. This appears to be more

relevant to a real world setting in which agents should know how informed they

are likely to be, even if they cannot be certain that their information is correct.

Sections 2 and 3 introduce the general and specific models to be investigated

in this paper. Section 4 presents the analysis of the results of consultation on

different networks and conclusions are provided in Section 6.

2 General Model

In the model, there is a set, N = {1, . . . ,n} with n ≥ 3, of individuals in a society

who choose an action from a finite set of alternatives, Ai . It is assumed that all

individuals have the same set of alternatives, i.e. Ai = A j = A for all individuals.

Denote by ai the action taken by individual i . The pay-offs associated with an

action depend on the state of nature θ, which belongs to a finite set,Θ. The state
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of nature is exogenously determined.

If θ is the true state of nature and individual i chooses action ai ∈ A, then

she will observe outcome y ∈ Y with conditional density φ(y, a;θ) and obtains a

reward r (a, y).

Individuals do not know the true state of nature but their private informa-

tion is summarized in beliefs over the set of states. For individual i this belief is

denoted πi . The set of beliefs is denoted P (Θ). It is assumed that 0 < πi (θ) <
1,∀θ and i ∈ N . Given belief π, an individual’s expected utility function from

action a is:

u(a,π) = ∑
θ∈Θ

π(θ)
∫

Y
r (a, y)φ(y, a;θ)d y

Given a belief, π, an agent chooses an action that maximizes the expected

pay-offs. Formally, B : P (Θ) → A is the optimality correspondence such that:

B(π) = {a ∈ A|u(a,π) ≥ u(a′,π),∀a′ ∈ A}

For each i ∈ N , let bi : P (Θ) → A be a selection from the optimality corre-

spondence B . Let δθ represent a point mass belief on the state θ; then B(δθ)

denotes the set of optimal actions if the true state is θ.

3 Specific Model

There are two assets, a risk-free asset and a risky asset. The agents’ action set is

A = {ao , a1} and ai ∈ R, where a0 is the share of wealth invested in the risk-free

asset and a1 is the share of wealth invested in the risky asset. By assumption,

a0 +a1 = 1.1 The states of nature are Θ = {θ0,θ1}. The outcome observed by all

agents (y) is the return on the risky asset and the reward received by the agents

(r (a, y)) is the return on their investment portfolio.

The return on the risk-free asset is R f in both states of nature, while the

return on the risky asset (y) is either Rh or Rl , with Rl < R f < Rh . The return

on the agent’s portfolio is then r = [ay + (1− a)R f ]. In state θ1, the probability

that the return on the risky asset is Rh is P (y = Rh |θ = θ1) = P1, and in state θ0,

P (y = Rh |θ = θ0) = P0. It is assumed that P0 < P1. Therefore, the conditional

expected return on the risky asset is:

1Given this assumption, a0 = 1−a1 and so the agents’ action set becomes A = {a1}. For convenience

sake, we drop the subscript on a from here.



16 PAPER I

R̃ = P1Rh + (1−P1)Rl if state = θ1

R̂ = P0Rh + (1−P0)Rl if state = θ0

and R̃ > R f > R̂

It is assumed that the possible returns and the probability of those returns

are known to the agents.

The agents have a prior belief about the probability that the state of nature

is state 1, πi .2 Some agents (called “analysts”) then obtain a private signal as to

the state of nature. After the analysts receive their signals, agents on the net-

works can consult with the other agents in their neighborhood to update their

beliefs about the state of nature. The agents then decide a portfolio and the out-

come and pay-offs are determined based on the state of nature and the agents’

actions.

3.1 Network Structures and Scenarios

Each individual is located as a node on a network. They are connected to a sub-

set of other agents on the network with whom they can consult (share beliefs). It

is assumed that agents know their own type (i.e. analyst or uninformed agent),

the general nature of the network on which they are located, in terms of the

general structure of the network and the distribution of the agents between in-

formed and uninformed agents, and how many other agents they will consult. It

is assumed that, before consultation, agents do not know the type of the agents

to whom they are connected.

Two scenarios are considered. Under one scenario, through the process of

consultation, agents are able to perfectly determine the type of their neighbors,

while under the other scenario they cannot determine their neighbors type at

all and so assume that the probability that their neighbors are analysts is equal

for all of their neighbors. These two scenarios are designed as the extremes of

knowledge that an agent can gain about the knowledgeability of their neigh-

bors. In reality, people can probably discern with some degree of accuracy how

knowledgeable their neighbors are. The scenarios were chosen in order to ab-

stract from modeling how accurately people could discern how knowledgeable

2Given that there are only two states of nature, the agent’s belief about the probability that the state

of nature is state 0 is 1−πi , and so their beliefs are fully described with reference to state one.
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their neighbors are and instead see these scenarios as border cases with reality

somewhere in between

The potential gains from consultations were analyzed using three different

network structures. These network structures were selected to represent three

different social networks through which people might gain information about

financial markets. The first was a hub network, in which the informed agents

formed a central hub (which was itself a wheel network), while the uninformed

agents were situated outside this hub and could observe some of those within

the hub (Figure 1, Top Panel). This network could be thought of as uninformed

investors reading finance-related discussion boards and blogs on the Internet,

or gaining advice from finance professionals who have consulted with other fi-

nance professionals. The second network was a wheel network in which the

informed agents (that is, those agents that received a signal) were randomly

distributed throughout the network (Figure 1, Middle Panel). This could be

thought of as resembling Facebook, where people are grouped without specific

reference to their knowledge of financial matters. The final network was also a

wheel network but on this network the informed agents were grouped together

with links to the uninformed agents (those who did not receive a private sig-

nal) only at the margins (Figure 1, Bottom Panel). This can be thought of as

resembling LinkedIn, where people are grouped with some reference to their

occupation and so finance workers might be more likely to be grouped together

than on Facebook.

It should be noted that these network structures are only stylized renderings

of the networks that they are supposed to represent. For one thing the networks

are unlikely to be balanced. On these networks, some agents will have more

connections than others (in some cases many more connections). The number

of connections agents have will affect how much influence they have over the

network and potentially how much weight each agent to whom they are con-

nected will place on their opinions. However, this influence will only affect their

opinions after at least one round of consultation has been completed. In this

analysis, agents only consult with each other for one round, which will only in-

clude the opinions of their neighbors based on their neighbor’s signals, not on

their neighbors consultations. Therefore, this is not a major consideration in

this analysis.

Another difference between these network structures and their real-world

analogs is that the financially- informed agents are unlikely to be completely
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Informed agent

Uninformed agent

Hub Network with informed agents in the central hub

Informed agent

Uninformed agent

Wheel network with randomly placed informed 
agents

Informed agent

Uninformed agent

Wheel network with non-randomly placed informed 
agents

Figure 1: Network Structures: The three basic network structures that were an-

alyzed were: a hub network with the informed agents forming a central hub,

while the uninformed agents are situated outside this hub observing some of

those within the hub (top panel); a wheel network with informed agents ran-

domly placed around the network (middle panel); a wheel network with in-

formed agents grouped together with links to uninformed agents only at the

margins (bottom panel); In each of the diagrams the arrows indicate the direc-

tion of observation.
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randomly spread over Facebook nor completely clustered on LinkedIn. On Face-

book people connect with people they work with and so finance professionals

are likely to be more clustered than a completely random assignment would

suggest, while people on LinkedIn also connect with people that they don’t work

with. Nonetheless, it is still likely that the clustering of financially-knowledgeable

people is lower on Facebook than on LinkedIn, as LinkedIn is more specifi-

cally geared to people’s employment. Therefore, the interpretation should be

that these structures are probably more extreme than in the real world and that

the real world conclusions are probably somewhat less extreme than suggested

here. Nonetheless, these structures should give some idea of the relative bene-

fits of consulting on each of these networks to glean financial information.

3.2 Agents’ Beliefs

Each agent has beliefs about the probability that the state of nature is state 1.

This belief is updated after the agent receives a signal as to the state of nature

(if the agent does receive a signal); and during consultation with other agents.

Therefore, we can define the beliefs of agent i as:

π1i belief before receiving a signal

π2i belief after receiving a signal, before consultation

π3i belief after consultation

The agent’s belief, π1i , will summarize all relevant information known to the

agent before receiving a signal. This might include, past returns on the risky

asset, any public information about the assets and any consultation that the

agent has previously engaged in. It is assumed that all agents on the network

have independent and identically distributed beliefs, prior to agents receiving

their signals.

3.3 Signals

Some agents receive a private signal of the state of nature. The agents that re-

ceive this signal are called “informed agents” or “analysts”. The agents that do

not receive this signal are called “uninformed agents”. The signal received by

agent i is θm
i . The accuracy of this signal, η, is assumed to be identical for all an-

alysts and is defined as η= Pr (θm
i = θ j |θ = θ j ),η ∈ [0.5,1]. This means that it is
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likely that the analysts will not all receive the same signal but that each analyst

has an equal probability of receiving a correct signal. If an agent has a belief,

prior to obtaining the signal, that Pr (θ = θ1) = π1i , then according to Bayes’

Theorem, the probability that the state of nature is state 1, given that the signal

indicated that it is state 1 is:

P (θ = θ1|θm
i = θ1) = ηπ1i

ηπ1i + (1−η)(1−π1i )

=πB1i

The probability that the state of nature is state 1 given that the signal indi-

cated that it will be state 0 will be:

P (θ = θ1|θm
i = θ0) = (1−η)π1i

(1−η)π1i +η(1−π1i )

=πB0i

Therefore, the agent will set

π2i =
πB1i if θm

i = θ1

πB0i if θm
i = θ0

Uninformed agents do not receive a signal and so for them π2i =π1i .

Here we define the concept of “correctly certain” (CC) beliefs. CC beliefs are

defined as π = 1, given that the state is state one, and π = 0 given that the state

is state zero.

Proposition 1 Beliefs that are closer to correctly certain (CC) beliefs lead to higher

expected returns

See Section A.1 in the Appendix for the proof of this proposition.

Proposition 2 Analysts’ post-signal beliefs will be closer to CC beliefs than their

prior beliefs regardless of the state of nature or prior beliefs.

See Section A.2 in the Appendix for the proof of this proposition. Informally,

this follows from the fact that analysts have more information on which to base

their beliefs, as long as the signal is informative.
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These two propositions combine to show that analysts will expect to have

higher returns than the uninformed agents in the absence of consulting. Through

the course of consulting, those agents that place greater weight on the beliefs of

analysts should also expect that their post-consultation beliefs will be closer to

CC beliefs and hence will have higher expected returns on their portfolios, ce-

teris paribus.

3.4 Updating beliefs through Consultation

After the analysts have received their signals and updated their beliefs based on

those signals, all agents are able to consult with their neighbors; that is, they can

observe their neighbors’ beliefs about the state of nature. The method through

which agents incorporate their neighbors’ beliefs into their own updated beliefs

is based on the DeGroot (1974) model.

In the DeGroot model, each agent is located as a node on a network. The

set N = {1, . . . ,n} is the set of nodes (agents). A real-valued n ×n matrix g de-

scribes the relationships between each of the nodes. The relationship between

two agents, i and j , is denoted by gi j , where gi j ∈ {0,1}. gi j = 1 denotes an in-

formation flow from agent j to agent i , namely agent i can observe something

about agent j . In the context of this model, the observation is the agent’s belief

about the state of nature (i.e. the probability that agent j places on it being state

1,π2 j ). This study does not explore reasons why agents might wish to share their

information with other agent, beyond the possibility of increasing the certainty

equivalent of their investment. However, other researchers have investigated

reasons for exchanging information including; extrinsic and intrinsic motiva-

tions (Lin 2007), mediating the effects of social capital on competitiveness (Wu

2008), and increased profits from increased precision from the pooled informa-

tion (Vives 2007).

The network is directed so that gi j = 1 does not imply that g j i = 1, that is,

if agent i can observe agent j this does not necessarily imply that agent j can

observe agent i 3. The set of agents that agent i can observe is called the neigh-

borhood of i , denoted N d
i (g ) = {k ∈ N |gi k = 1}. The number of agents that an

agent is linked to (that is, the cardinality of the agent’s neighborhood) is called

that agent’s degree, and is denoted di (g ) = #{ j |g j i = 1} = #N d
i (g ) (Jackson 2008,

p. 29).

3By assumption, gi i = 1.
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Each agent assigns a weight to the information that they receive from each

person in their neighborhood. This weight is represented by a number, ti j ,

where:

ti j =
xi j ∈ [0,1] if gi j = 1

0 if gi j = 0

and

n∑
j=1

ti j = 1 ∀i

The information transfer matrix, T , is defined as:

Tn,n =



t11 t12 · · · t1n

t21 t22 · · · t2n

...
...

. . .
...

tn1 tn2 · · · tnn


Each of the rows in T will sum to 1. However, the columns will not necessar-

ily also sum to 1.

To calculate how information is passed around the network we can set up

the vector of initial beliefs about the state of nature (i.e. the vector of beliefs

held by each of the agents immediately prior to consultation). Namely:

Π2 =



π21

π22

...

π2n


After information sharing the beliefs matrix will be:

Π3 = TΠ2

The belief of agent i after they have finished consulting with their neighbors

is π3i . The beliefs of agents prior to investment will therefore be based on their

prior beliefs about the state of nature, any private signals they might receive,

the beliefs of their neighbors and the weights that they place on their neigh-

bors’ beliefs. Apart from the weight that they place on their neighbors’ beliefs,
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agents are, therefore, assumed to use only relevant information and to use this

information correctly when coming to their beliefs. The psychological litera-

ture suggests that, in certain groups, the members do not always act rationally

in coming to their beliefs and opinions about the world.4 However, in trying to

abstract from such concerns to examine the economics of the decision making,

I have not included such possibilities in this model.

A note here should be made about why the DeGroot model was chosen to

incorporate neighbors’ beliefs into agents updated beliefs rather than another

model; for example, one based on Bayes Rule. There were three main reasons

for this choice. The first was that, to use Bayes Rule, agents need to know the

evidence on which their neighbors’ beliefs are based. In this model, with agents

having a distribution of priors, it is not clear that an agent could infer from their

neighbors’ posterior beliefs what their signals were and so it would not be pos-

sible to use Bayes Rule.

Secondly, various studies have shown that people generally do not use Bayes

Rule but rather simpler methods of incorporating information, such as the DeG-

root model (see for example: Acemoglu et al. (2011), Holt & Smith (2009), Char-

ness et al. (2007), Tenenbaum et al. (2006), Charness & Levin (2005), Gale & Kariv

(2003), El-Gamal & Grether (1995), Grether (1992)). Most of these studies sug-

gest that people sometimes use Bayes rule but usually only under certain spe-

cific conditions, such as that they are sophisticated agents in large networks and

can distinguish between new and repeated information, but even then Bayes

rule is an incomplete explanation for how people incorporate information. Fi-

nally, the model becomes far more tractable if a simpler model is used.

The use of Bayes rule to incorporate personal experience into beliefs and the

DeGroot model to incorporate others’ beliefs is also consistent with previous

studies such as those of Jadbabaie et al. (2012) and Jackson & Golub (2007).

3.5 Utility maximization

After consultation with their neighbors, each agent chooses the share of wealth

that she will invest in the risky asset, ai , with the balance invested in the risk-

free asset. All agents are assumed to be small, price takers so that their choice

of portfolio does not affect the returns on the assets. This leads to the utility

maximization problem of:

4One well known example of this is groupthink. For a review of the literature concerning groupthink

see Turner & Pratkanis (1998).
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M ax
ai

E(Ui ) =π3i

[
P1U [ai Wi Rh + (1−ai )Wi R f ]

+ (1−P1)U [ai Wi Rl + (1−ai )Wi R f ]
]

+ (1−π3i )
[

P0U [ai Wi Rh + (1−ai )Wi R f ]

+ (1−P0)U [ai Wi Rl + (1−ai )Wi R f ]
]

where Wi is the agent’s wealth before investment.

By assumption, agents have an iso-elastic (power) utility function:

U (Wi ) = W 1−γ
i −1

1−γ γ> 0

where γ is a measure of risk aversion. Therefore, the utility maximization prob-

lem becomes:

M ax
ai

E(U ) = π3i P1

1−γ
[

[ai Wi Rh + (1−ai )Wi R f ]1−γ−1
]

+ π3i (1−P1)

1−γ
[

[ai t Wi Rl + (1−ai )Wi R f ]1−γ−1
]

+ (1−π3i )P0

1−γ
[

[ai Wi Rh + (1−ai )Wi R f ]1−γ−1
]

+ (1−π3i )(1−P0)

1−γ
[

[ai Wi Rl + (1−ai )Wi R f ]1−γ−1
]

This maximization problem is solved by setting ai to the following value:

a∗
i = R f (g

−1
γ

i −1)

(R f −Rl )(g
−1
γ

i −1)+Rh −Rl

where,

gi =
−(Rl −R f )

[
π3i (1−P1)+ (1−π3i )(1−P0)

]
(Rh −Rl )

[
π3i P1 + (1−π3i )P0

]
The optimal value of ai , a∗

i , will be continuously increasing in π3i .

Following the choice of portfolios, the return on the risky asset is determined

and so are the returns on the agents’ portfolios.
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4 Analysis

In analyzing this model, a number of simplifying assumptions are made.

Assumption 1 Agents know the structure of the network and the shares of the

types of agents on the network but not their own position on the network.

Assumption 2 Agents’ pre-signal beliefs are independent and identically dis-

tributed.

Assumption 3 Agents do not know their neighbors’ types before consultation.

But they might be able to determine their neighbors’ type through the process

of consultation.

Assumption 4 Agents know the network on which they are consulting and the

number of agents they are consulting (k).

Assumption 5 The number of analysts in agent i ’s neighborhood (ψi ) is inde-

pendent of all agents pre-consultation beliefs (π2 j ).

The analysis conducted in this paper attempts to answer the question of

which network it is best to consult to gain knowledge about financial markets.

Therefore, for individual agents the question is; through consultation on which

networks is their certainty equivalent expected to be greatest and under which

circumstances (such as the size of their neighborhood). A first step is to consider

what the agents expect their beliefs will be after consultation, given the size of

their neighborhood and the network on which they will consult, and what they

expect the variance in those beliefs will be.

Under Assumption 2 (that the agents pre-signal beliefs are iid), the pre-consultation

beliefs of uninformed agents will also be iid (as their pre-consultation beliefs

will simply be their pre-signal beliefs). Given that the signals that analysts re-

ceive are independent of each other, the analysts’ pre-consultation beliefs will

also be iid (though likely with a different distribution to the uninformed agents’

beliefs). Therefore, the agents’ pre-consultation beliefs then can be thought of

as independent random variables drawn from two populations; one for the an-

alysts and one for the uninformed agents.

As shown in the previous section, agents’ beliefs after consultation will be a

convex combination of the pre-consultation beliefs of their neighbors. There-

fore, given expectations about the number of analysts in agents’ neighborhoods,
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we can determine the expected post-consultation beliefs and variance in agent’s

beliefs as convex combinations of the pre-consultation expected beliefs and

variance in beliefs of the two types of agent, and hence compare the different

networks under the two scenarios.

4.1 Expected Beliefs and Variance in Beliefs after Consultation

Through consulting their neighborhoods, agents update their beliefs as weighted

averages of their neighbors’ beliefs. The absolute weights that agent i places on

one of their neighbor’s, j , beliefs is ti j . As will be shown the effects of consul-

tation on agent’s beliefs and hence on their optimal portfolios will be dictated

by how much overall weight is placed on analysts beliefs in the agent’s updated

beliefs. That is, the sum of the absolute weights placed on the analysts in the

agent’s neighborhood.

In analyzing the model, however, it is easier to work with relative weights, as

these are more separable. The relative weight that agent i places on one of their

neighbor’s, j , beliefs is wi j . The difference between wi j and ti j is that the sum

of the ti j across all j for each agent must be equal to 1, while there is no such

restriction on the relative weights, wi j . The relationship between the relative

weights wi j and the absolute weights, ti j , is:

ti j =
wi j∑k+1

j=1 wi j

Where k is the total number of agents in an agent’s neighborhood (excluding

the agent herself), wi j is the relative weight agent i puts on the beliefs of agent

j in consultation. In this model, the agent herself is the (k + 1)th agent in the

neighborhood.

The beliefs of an agent after one round of consultation will then be:

π3i =
∑ψi

j=1 wi jπ2 j +∑k
j=ψ+1 wi jπ2 j +wi iπ2i∑k+1
j=1 wi j

Whereψi is the number of analysts in agent i ’s neighborhood (not including

the agent herself if she is an analyst), π2 j is the pre-consultation belief of agent

j , and wi i is the relative weight an agent puts on her own beliefs in consultation.

Therefore, the first expression in the numerator is the contribution to the

agent’s post-consultation beliefs that comes from the analysts in her neighbor-

hood, the second term is the contribution from uninformed agents and the fi-
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nal term in the numerator is the contribution from her own pre-consultation

beliefs.

The number of analysts in an agent’s neighborhood (ψi ) is unknown to the

agent before she consults with her neighborhood. However, prior to consulta-

tion she can have some expectations over ψi given the network on which she is

consulting, how large her neighborhood is and the relative numbers of analysts

and uninformed agents on the network.

The signals received by analysts are independent, and so the pre-consultation

beliefs of agents will be independent. Therefore, conditional on ψ, the variance

in agent i ’s beliefs post-consultation will be:

V ar (π3i |ψ) =V ar

(
k+1∑
j=1

wi j∑k+1
j=1 wi j

π2 j

)

=
k+1∑
j=1

(
wi j∑k+1

j=1 wi j

)2

V ar (π2 j )

=
ψi∑
j=1

(
wi j∑k+1

j=1 wi j

)2

V ar (π2 j )+
k∑

j=ψ+1

(
wi j∑k+1

j=1 wi j

)2

V ar (π2 j )

+
(

wi i∑k+1
j=1 wi j

)2

V ar (π2i )

The first term is the contribution to the variance in the agent’s beliefs from

the analysts in her neighborhood, the second term is the contribution from the

uninformed agents and the final term is the contribution from the variance in

her own pre-consultation beliefs.

Based on the general expressions for the expected beliefs and variance in

those beliefs of agents post-consultation, we can consider different scenarios

based on how much knowledge the agent can gain about the other people in

their neighborhood.

4.1.1 Scenario 1: Perfect Knowledge of Neighbors

Under the first scenario of perfect neighbor knowledge, each agent can deter-

mine the type of the agents in their neighborhood through the process of con-

sultation. Therefore, while agents do not know the types of agents in their neigh-
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borhoods before consultation, they can determine the types of their neighbors

perfectly after consultation. Because each agent knows the type of each of the

agents in her neighborhood after consultation, she gives zero weight to the un-

informed agents and equal weight to the analysts in their neighborhood, includ-

ing the agent herself if she is an analyst. Therefore, under this scenario wi j = 1

for all neighbors who are analysts, wi j = 0 for all neighbors who are uninformed

agents, wi i = 1 if the agent is an analyst and wi i = 0 if the agent is an uninformed

agent (andψi ≥ 1). If the agent is an uninformed agent and there are no analysts

in her neighborhood, the agent puts equal weight on each of the agents in her

neighborhood including her own beliefs.

In this scenario, an analyst’s beliefs after consultation (given ψi ) will be:

π3i =
∑ψi

j=1π2 j +π2i

ψi +1

Prior to consultation, ψi and π2 j will be unknown to the agent. Nonetheless,

she can have expectations over these variables and, under the assumption that

ψi and π2 j are independent, the expectations over the post-consultation beliefs

will be:

E [π3i ] = E

[
ψi +1

ψi +1

]
πa

=πa

Where πa is the expected pre-consultation beliefs of analysts.

An uninformed agent’s beliefs after consultation (when ψi ≥ 1) will be:

π3i =
∑ψi

j=1π2 j

ψi

Taking expectations over this gives:

E
[
π3i |ψi ≥ 1

]= E

[
ψi

ψi

]
πa

=πa
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When ψi = 0, an uninformed agent’s beliefs after consultation will be:

π3i =
∑k+1

j=1 π2 j

k +1

Taking expectations over this gives:

E
[
π3i |ψi = 0

]= k +1

k +1
πu

=πu

Whereπu is the expected pre-consultation beliefs of an uninformed agent. There-

fore, an uninformed agent’s expected post-consultation beliefs will be:

E [π3i ] = P (ψi = 0)πu +P (ψi ≥ 1)πa

Therefore, if agents can perfectly determine the type of the agents in their

neighborhoods then analysts will expect that their beliefs after consultation will

be the same as the expected pre-consultation beliefs of the analysts. Unin-

formed agents will expect that their beliefs will approach those of analysts as

the probability that there are no analysts in their neighborhood decreases.

Under perfect neighbor knowledge the variance of an analyst’s beliefs post-

consultation given the number of analysts in their neighborhood, ψi , will be:

V ar (π3i |ψi ) =
ψi∑
j=1

(
1

ψi +1

)2

V ar (π2 j )+
(

1

ψi +1

)2

V ar (π2i )

= 1

(ψi +1)2

(
ψi∑
j=1

V ar (π2 j )+V ar (π2i )

)

Given that the agent is an analyst,

V ar (π2 j ) =V ar (π2i ) ∀ j
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and so

V ar (π3i |ψi ) = 1

ψi +1
V ar (πa

2 )

Where V ar (πa
2 ) is the variance of analysts’ pre-consultation beliefs. Taking ex-

pectations over ψi gives:

E [V ar (π3i )] = E

[
1

ψi +1

]
V ar (πa

2 )

If ψi ≥ 1, the variance of an uninformed agent’s beliefs will be:

V ar (π3i |ψi ≥ 1) =
ψi∑
j=1

(
1

ψi

)2

V ar (πa
2 )

Taking expectations over ψi gives:

E [V ar (π3i |ψi ≥ 1)] = E

[
1

ψi
|ψi ≥ 1

]
V ar (πa

2 )

If ψi = 0, the variance of an uninformed agent’s beliefs will be:

V ar (π3i |ψi = 0) =
k+1∑
j=1

(
1

k +1

)2

V ar (π2 j )

= 1

k +1
V ar (πu

2 )

where V ar (πu
2 ) is the variance in uninformed agents’ pre-consultation be-

liefs.

Therefore, the expected variance in post-consultation beliefs for an unin-

formed agent with perfect neighbor knowledge is:

E [V ar (π3i )] = P (ψi = 0)
1

k +1
V ar (πu

2 )+P (ψi ≥ 1)E

[
1

ψi
|ψi ≥ 1

]
V ar (πa

2 )
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Thus, under perfect neighbor knowledge, both analysts and uninformed agents

will expect that the variance in their beliefs will decrease as the number of an-

alysts in their neighborhood increases, though uninformed agents might have

greater variance after consultation compared with before if the variance of ana-

lysts’ beliefs is greater than that of uninformed agents.

4.1.2 Scenario 2: No Knowledge of Neighbors

Under the second scenario, agents cannot determine the type of their neigh-

bors through consultation, and so they have no knowledge of the type of the

agents in their neighborhood. Therefore, agents give equal weight to all of their

neighbors. The relative weight that they give to their neighbors is based on the

probability that any individual neighbor is an analyst, that is wi j = vi , ∀ j , j 6= i ,

where vi is the probability that an agent in agent i ’s neighborhood is an ana-

lyst. The expected number of analysts in an agent’s neighborhood will then be

E [ψi ] = kvi . It should be noted that k and vi might not be independent. The

agent knows their own type so wi i = 1 if the agent is an analyst and wi i = 0 if the

agent is an uninformed agent. See Section A.3 in the Appendix for the derivation

of the following results.

Under this scenario, an analyst’s expected beliefs after consultation will be:

E [π3i ] = (kv2
i +1)πa +kvi (1− vi )πu

kvi +1

An uninformed agent’s beliefs after consultation will be:

E [π3i ] = viπa + (1− vi )πu

The expected variance of an analyst’s beliefs post-consultation will be:

E [V ar (π3i )] = kv3
i +1

(kvi +1)2 V ar (πa
2 )+ kv2

i (1− vi )

(kvi +1)2 V ar (πu
2 )

The expected variance of an uninformed agent’s beliefs will be:

E [V ar (π3i )] = vi

k
V ar (πa

2 )+ (1− vi )

k
V ar (πu

2 )

Therefore, under the scenario of no knowledge of neighbors’ type, given

that the absolute weight that analysts will place on the beliefs of analysts post-

consultation is expected to be less than 1, analysts expect that their beliefs will

move away from CC beliefs as their neighborhood increases. For uninformed
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agents, however, they expect that their beliefs will be closer to CC beliefs after

consultation compared with before consultation, but the size of their neighbor-

hood will not affect how close to CC beliefs they are as long as the probability

that a neighbor is an analyst, vi , is unaffected by the size of the neighborhood.

Analysts expect that the variance in their beliefs will decrease with the size

of their neighborhood (as long as the variance of analysts’ beliefs is greater than

the variance of uninformed agents beliefs). Uninformed agents expect that the

variance in their beliefs will decrease with the size of their neighborhood as long

as the probability of a neighbor being an analyst is unaffected by the size of the

neighborhood. However, the variance of uninformed agents beliefs might in-

crease with consultation compared with no consultation if the variance of ana-

lysts’ beliefs is greater than that of uninformed agents.

4.2 Consulting on the Three Specific Networks

Having considered what will happen to the beliefs and the variance of beliefs

of agents after consultation, and what is expected to happen to those beliefs

and variance in beliefs, we can now consider what will happen on the specific

networks that were chosen for this study.

4.2.1 Hub Networks

When agents consult on a hub network they know that all of their neighbors will

be analysts simply because of the structure of the network, that is, ψi = k for

all agents. Therefore, the perfect neighbor knowledge scenario is the only one

that applies. Furthermore, the uninformed agents will certainly have at least

one analyst in their neighborhood. Therefore, we can say that the expected be-

liefs of both analysts and uninformed agents will be πa . This means that the

analysts’ beliefs are not expected to move any closer to CC beliefs after con-

sultation, while the uninformed agents’ beliefs will (though no closer than the

analysts’ beliefs). This result follows from the fact that analysts in the hub net-

works in this model are essentially identical and that the DeGroot (1974) model

of consultation uses a weighted average of beliefs rather than a Bayesian anal-

ysis. Therefore, given all publicly available information, the expected beliefs of

any two (or more) agents before consultation will be identical. Their expected

beliefs after consulting with each other will be a weighted average of their (iden-

tical) pre-consultation expected beliefs, and so will be unchanged.
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If the uninformed agents on a hub network fully adopt the beliefs of the an-

alysts with whom they consult (that is, they place no weight on their own pre-

consultation beliefs) their expected post-consultation beliefs will be identical

to those of the analysts. The uninformed agents will then have expected beliefs

identical to that of the analysts if they consult with at least one analyst in each

period.

The variance of analysts’ beliefs will be:

V ar (π3i ) = 1

ψi +1
V ar (πa)

= 1

k +1
V ar (πa)

and the variance of uninformed agents’ beliefs will be:

V ar (π3i ) = 1

ψi
V ar (πa)

= 1

k
V ar (πa)

Therefore, on a hub network, the variance of analysts’ beliefs will fall post-

consultation and will be less than that of uninformed agents who have the same

size neighborhood. The benefits of consultation on a hub network for an analyst

are not that they expect to improve their beliefs but rather that they will reduce

the variance in their beliefs. For uninformed agents, the expected benefits are

an improvement in their expected beliefs, and if they increase their neighbor-

hood beyond a minimal one, a reduction in the variance in their beliefs.

4.2.2 Random Wheel Networks

Assumption 6 On a random wheel network, agents pre-consultation beliefs

about the number of analysts in their neighborhoods follows a binomial dis-

tribution.

That is, agents assume that the number of analysts in their neighborhood is

a binomial random variable.5 Under this assumption, each neighbor is effec-

5Strictly speaking this should be a hyper-geometric random variable as the neighbors are sampled

without replacement. However, as long as the neighborhood is small compared with the size of the

network and the probability of a neighbor being an analyst is sufficiently far away from zero or one

the binomial distribution is a reasonable approximation.
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tively a separate trial, and so the number of trials is k, the size of the neighbor-

hood (not including the agent herself), and the probability of “success” (that

a neighbor is an analyst) is vi . Therefore, the expected number of analysts in

agent i ’s neighborhood, ψi , is kvi .

On random wheel networks, the probability of that a neighbor is an analyst,

vi , is the share of analysts on the network and is independent of the size of the

neighborhood. That is:6

vi = x

x + y

Where x is the number of analysts on the network as a whole, and y is the

number of uninformed agents on the network as a whole. This probability is the

same for analysts and uninformed agents. Therefore, the expected belief of an

analyst after consultation on a random wheel network with perfect neighbor

knowledge is πa , while that of an uninformed agent will be:

E [π3i ] = P (ψi = 0)πu +P (ψi ≥ 1)πa

= (1− vi )kπu + (1− (1− vi )k )πa

=
(
1− x

x + y

)k

πu +
(

1−
(
1− x

x + y

)k
)
πa

=
(

y

x + y

)k

πu +
(

1−
(

y

x + y

)k
)
πa

Therefore, as the number of neighbors, k, increases on a random wheel net-

work with perfect neighbor knowledge, the expected post-consultation beliefs

of uninformed agents will approach that of analysts.

We turn now to the variance of agents’ beliefs on a random wheel network

with perfect neighbor knowledge (See Section A.4 in the Appendix for this deriva-

tion). The expected variance of an analyst’s post-consultation beliefs with per-

fect neighbor knowledge on a random wheel network will be:

6Strictly the probability that a neighbor is an analyst is vi = x−1
x+y−1 if the agent is an analyst, and

vi = x
x+y−1 if the agent is an uninformed agent. However, for a large enough network these two

expressions will be approximately equal to x
x+y .
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E [V ar (π3i )] = x + y

(k +1)x

[
1−

(
y

x + y

)k+1
]

V ar (πa
2 )

The expected variance of an uninformed agent’s beliefs on a random wheel

network with perfect neighbor knowledge will be:

E [V ar (π3i ] =
(

y

x + y

)k 1

k +1
V ar (πu

2 )+
(

1−
(

y

x + y

)k
)

E

[
1

ψi
|ψi ≥ 1

]
V ar (πa

2 )

Therefore, on a random wheel network with perfect neighbor knowledge

the expected post-consultation variance of analysts’ beliefs will decrease as the

neighborhood increases. For uninformed agents as the neighborhood increases

the post-consultation variance of their beliefs is expected to fall. However, if

the pre-consultation variance of analysts’ beliefs is greater than that of unin-

formed agents’ beliefs, the variance of uninformed agents’ beliefs after consul-

tation might be greater than compared with no consultation.

When agents have no neighbor knowledge on a random wheel network,

the expected beliefs of an analyst will be (see Section A.5 in the Appendix for

a derivation of this result):

E [π3i ] = [kx2 + (x + y)2]πa +kx yπu

kx2 + (x + y)2 +kx y

The expected beliefs of an uninformed agent will be:

E [π3i ] = x

x + y
πa + y

x + y
πu

Therefore, the expected weight on the pre-consultation beliefs of analysts

will always be greater in the expected post-consultation beliefs of analysts com-

pared with that of uninformed agents. This means that on random wheel net-

works with no neighbor knowledge the expected post-consultation beliefs of

analysts will be closer to CC beliefs than those of uninformed agents regard-

less of the size of the neighborhood. However, the expected post-consultation

beliefs of analysts will be further away from CC beliefs than they were before

consultation, while those of uninformed agents will be closer to CC beliefs than

before consultation.

The expected variance of analysts’ beliefs on random wheel networks with

no neighbor knowledge is (see Section A.6 in the Appendix for a derivation of

this result):
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E [V ar (π3i )] = kx3 + (x + y)3

(x + y)(kx +x + y)2 V ar (πa
2 )+ kx2 y

(x + y)(kx +x + y)2 V ar (πu
2 )

The expected post-consultation variance of uninformed agents on random

wheel networks with no neighbor knowledge will be (see Section A.7 in the Ap-

pendix for a derivation of this result):

E [V ar (π3i )] = x

k(x + y)
V ar (πa

2 )+ y

k(x + y)
V ar (πu

2 )

Therefore, the variance of both analysts’ and uninformed agents’ beliefs will

fall as the neighborhood size increases, though there might be an initial increase

in variance for one of the types of agents if the difference in variance between

analysts’ and uninformed agents’ pre-consultation beliefs is large.

4.2.3 Non-random Wheel Networks

Assumption 7 On a non-random wheel network, it is assumed that k is an

even number. That is, under consultation agents consult with an equal num-

ber ( k
2 ) of their nearest neighbors on each side on the network.

On non-random wheel networks the expected numbers of analysts in the

neighborhoods of analysts will be different to those of uninformed agents. The

make-up of analysts’ and uninformed agents’ neighborhoods can be determined

if we know their position on the network. Restricting the analysis to situations

where the neighborhoods are “small” compared with the network as a whole,

that is, k < mi n(2x;2y), we can determine the expected number of analysts in

both analysts’ and uninformed agents’ neighborhoods.

Proposition 3 The expected number of analysts in analysts’ neighborhoods on a

non-random wheel network is E(ψa) = k
x

(
x − k

4 − 1
2

)
Proposition 4 The expected number of analysts in uninformed agents’ neighbor-

hoods on a non-random wheel network is E(ψu) = k(k+2)
4y

For proofs of Propositions 3 and 4 see Sections A.8.1 and A.8.2 in the Ap-

pendix.

Agents, by assumption, do not know their position on the network. There-

fore, on non-random wheel networks, they assume that it is equally likely that
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they are situated in any of the possible positions on the network for their type.

There are y possible positions for uninformed agents on the network. Of these y

positions, y−k positions will have no analysts in their neighborhood. Therefore,

if an uninformed agent considers that all positions on the networks are equally

likely the probability that they have no analysts in their neighborhood will be

P (ψi = 0) = y−k
y .

Therefore, on non-random wheel networks with perfect neighbor knowl-

edge, the expected beliefs of analysts will be πa and the expected beliefs of un-

informed agents will be:

E [π3i ] = P (ψi = 0)πu +P (ψi ≥ 1)πa

= y −k

y
πu + k

y
πa

Therefore, under perfect neighbor knowledge the expected post-consultation

beliefs of uninformed agents on a non-random wheel network will approach

those of analysts as the size of the neighborhood increases but at a much slower

rate than that of the random wheel network.

To determine the expected variance of their post-consultation beliefs, agents

need to consider the expected number of analysts in their neighborhoods. Ac-

cording to Proposition 3, the expected number of analysts in analysts’ neigh-

borhoods is:

E(ψa) = k

x

[
x − k

4
− 1

2

]
Given that E(ψa) = kva , where va is the probability that any particular neighbor

in an analyst’s neighborhood is themself an analyst. Then:

va = E(ψa)

k

= 1− k +2

4x

This means that the probability that any particular neighbor on an analyst’s

neighborhood is an analyst decreases as the neighborhood increases.
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The expected number of analysts in uninformed agents’ neighborhoods, ac-

cording to Proposition 4, is:

E(ψu) = k(k +2)

4y

Given that E(ψu) = kvu , where vu is the probability that any particular neighbor

in an uninformed agent’s neighborhood is an analyst. Then:

vu = E(ψu)

k

= (k +2)

4y

This means that the probability that any particular neighbor on an unin-

formed agent’s neighborhood is an analyst increases as the neighborhood in-

creases.

The expected variance of analysts’ post-consultation beliefs on a non-random

wheel network under perfect neighbor knowledge will be:

E [V ar (π3i )] =
 x −k

x(k +1)
+ 2

x

k
2∑

i=1

(
1

k
2 + i

)V ar (πa
2 )

(See Section A.9 in the Appendix for the derivation of this result.)

The expected variance of uninformed agents’ post-consultation beliefs on a

non-random wheel network under perfect neighbor knowledge will be:

E [V ar (π3i )] = y −k

y(k +1)
V ar (πu

2 )+ 2

y

k
2∑

i=1

1

i
V ar (πa

2 )

(See Section A.10 in the Appendix for the derivation of this result.)

Therefore, the expected variance of analysts’ post-consultation beliefs will

fall as the neighborhood increases under perfect neighbor knowledge on a non-

random wheel network, and, while the dynamics of the variance of uninformed

agents beliefs are not clear, as their neighborhood increases it becomes more

likely that the variance of their beliefs will fall with consultation.
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Under no neighbor knowledge the expected post-consultation beliefs of an-

alysts on a non-random wheel network are:

E [π3i ] = k(4x −k −2)2 +16x2

4xk(4x −k −2)+16x2πa + k(k +2)(4x −k −2)

4xk(4x −k −2)+16x2πu

(See Section A.11 in the Appendix for the derivation of this result.)

Under no neighbor knowledge the expected post-consultation beliefs of un-

informed agents on a non-random wheel network are:

E [π3i ] = viπa + (1− vi )πu

With vi = (k+2)
4y

= (k +2)

4y
πa +

(
4y −k −2

4y

)
πu

Therefore, the expected post-consultation beliefs of analysts will move away

from CC beliefs as the size of the neighborhood increases but at a slower rate

than on a random wheel network. The post-consultation beliefs of uninformed

agents are expected to be closer to CC beliefs than before consultation but not

as close as on a random wheel network unless the neighborhood is extremely

large.

Under no neighbor knowledge the expected post-consultation variance of

analysts’ beliefs on a non-random wheel network is:

E [V ar (π3i )] = k(4x −k −2)3 +64x3

4x[k(4x −k −2)+4x]2 V ar (πa
2 )+ k(k +2)(4x −k −2)2

4x[k(4x −k −2)+4x]2 V ar (πu
2 )

(See Section A.12 in the Appendix for a derivation of this result.)

Under no neighbor knowledge the expected post-consultation variance of

uninformed agents’ beliefs on a non-random wheel network is:

E [V ar (π3i )] = vi

k
V ar (πa

2 )+ (1− vi )

k
V ar (πu

2 )
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With vi = (k+2)
4y

E [V ar (π3i )] =
(k+2)

4y

k
V ar (πa

2 )+
(1− (k+2)

4y )

k
V ar (πu

2 )

= k +2

4yk
V ar (πa

2 )+ 4y −k −2

4yk
V ar (πu

2 )

4.2.4 Summary

The expected beliefs of analysts do not get any closer to CC beliefs on any of

the networks under either scenario. If the analysts do not know the type of

their neighbors their beliefs will move away from CC beliefs after consultation.

For uninformed agents, however, their beliefs will move closer to CC beliefs on

all networks under both scenarios. The variance of analysts beliefs will fall on

all networks under all scenarios. The dynamics of the variance in uninformed

agents’ post-consultation beliefs are not clear for all networks though in general

the variance will tend to be smaller on larger neighborhoods compared with

smaller neighborhoods.

4.3 Certainty Equivalents, Expected Returns and Variance in Re-

turns

Having established the effects on expected beliefs and the variance in those be-

liefs from consulting on the different networks under the two scenarios for both

analysts and uninformed agents, we can now turn to how those beliefs affect the

certainty equivalents of the agents’ investments to assess the potential gains to

be made from consultation.

Expected beliefs and variance in beliefs affect the expected returns and vari-

ance in returns through the choice of portfolio. Without making assumptions

about the distribution of beliefs and the parameters of the model it is difficult to

be too conclusive about the effects of the consultation on the choice of portfo-

lio and then on expected returns, variance in returns and ultimately on the cer-

tainty equivalents of the agents’ investments. However, under certain reason-

able assumptions we can make some general conclusions about what is likely

to happen.

As the degree of risk aversion increases beyond a low level, the optimal port-

folio function becomes near linear. In this case, changes in the expected optimal
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portfolio are mainly affected by changes in the expected beliefs with only a rel-

atively small effect coming from changes in the variance in beliefs. Therefore,

in cases where consultation affects both the expected beliefs of agents and the

variance in their beliefs, the effect on the optimal portfolio from the expected

beliefs is likely to dominate. It is only in the cases where consultation only has

an effect on the variance in beliefs should we expect the expected optimal port-

folio to be significantly affected by the variance in beliefs. The relationship be-

tween the expected beliefs and the optimal portfolio is positive so as the agents

becomes more certain that the state is state one, the more the optimal portfolio

will be weighted towards the risky asset. There is likely to be a positive relation-

ship between changes in the expected variance of beliefs and the variance of

the optimal portfolio, that is, increases (decreases) in the variance in beliefs will

likely lead to increases (decreases) in the variance of the optimal portfolio.

The function mapping the optimal weight allocated to the risky asset to the

expected returns is linear in the optimal portfolio so we can say that the ex-

pected returns will be affected by the optimal portfolio, and the variance in re-

turns will be affected by the variance in the optimal portfolio. In state zero, a

greater allocation to the risky asset will reduce the expected returns. The reverse

will be the case in state one. Given that the agents are risk averse, we can say

that increases in expected returns will increase the certainty equivalents, while

increases in the variance in returns will decrease the certainty equivalents. It is

possible that higher order moments might also affect the certainty equivalents,

though here we abstract from such concerns.

Bringing all of this together, we can say that when consultation moves the

expected beliefs towards CC beliefs this will work to increase the certainty equiv-

alents. Likewise, when consultation reduces the variance in beliefs this will also

work to increase the certainty equivalents. Therefore, cases where consultation

moves expected beliefs towards CC beliefs and reduces the variance in beliefs

will increase the certainty equivalents, while cases in which consultation moves

beliefs away from CC beliefs and increases the variance of beliefs will reduce the

certainty equivalents. When the effects of consultation on expected beliefs and

the variance in beliefs have opposite effects on the certainty equivalents, it is

not a simple matter to determine which effect will dominate in general.

To try to tease out the effects on certainty equivalents from consultation, a

numerical example was run. In this numerical example, the returns were calcu-

lated for all three networks under both scenarios for neighborhood sizes rang-
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R f 1.02 P1 0.7

Rh 1.10 P0 0.3

Rl 0.95 γ 6

η 0.9

Table 1: Parameters: The parameters used for the analysis of the certainty

equivalents of the different networks for each agent were set according to those

in this table.

ing from zero to 20 neighbors. Within each of these neighborhood sizes, the

results were calculated for each possible number of analysts in each neighbor-

hood and the number of those analysts receiving a correct signal under both

states of nature. Certainty equivalents, expected returns and variance in returns

were calculated using the probabilities of each of these possible neighborhoods

given the networks and the priors of the agents. The parameters assumed in the

example were as shown in Table 1.

Assumption 8 To simplify the calculations it was assumed that all agents had

the same beliefs at the start of the period.

This assumption means that the effects on certainty equivalents presented

here are likely to be be an upper bound given the parameters, as agents will

have a minimum variance in their beliefs and hence in their returns. The ex-

pected beliefs and variance in beliefs for each of the agents were calculated for

the two agent types under the two scenarios for consultation on the three dif-

ferent networks with neighborhoods sizes varying from zero (no consultation)

to 20 neighbors.

The results of the certainty equivalents, expected returns and variance in re-

turns on each of the three networks and under the two scenarios for different

sizes of neighborhoods are shown in Figure 2 for the analysts and in Figure 3 for

the uninformed agents. The general results are robust to changes in the param-

eters.

For analysts, as shown in Figure 2, consulting will increase the certainty

equivalents of their investment on hub networks and on non-random wheel

networks, under both scenarios when their neighborhoods contain up to 20

neighbors and on random wheel networks if they can discover the type of their

neighbors. If analysts cannot discover the types of agent that their neighbors

are, then the certainty equivalents of their investment will fall when they con-
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Figure 2: Analysts: The figure shows the effects of consultation among neigh-

borhoods of various sizes for analysts in terms of certainty equivalents, ex-

pected returns and the variance in returns under the scenarios when the agent

can tell perfectly the type of their neighbors (Perfect neighbor knowledge) and

when they cannot tell the type of their neighbors at all (No neighbor knowledge).
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Figure 3: Uninformed Agents: The figure shows the effects of consultation

among neighborhoods of various sizes for uninformed agents in terms of cer-

tainty equivalents, expected returns and the variance in returns under the sce-

narios when the agent can tell perfectly the type of their neighbors (Perfect

neighbor knowledge) and when they cannot tell the type of their neighbors at

all (No neighbor knowledge).
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sult on a random wheel network. Consulting on a hub network gives the greatest

increase but the difference between the certainty equivalents on a hub network

compared with those on a non-random wheel network are extremely small. While

the difference is slightly larger when the analyst cannot tell which type of agent

her neighbors are, even then the difference is very small.

For analysts, the source of the improvement in certainty equivalents (when

they improve) is entirely due to a fall in the variance of returns. On no networks

under either scenario do the expected returns in investment improve with con-

sulting. On most networks expected returns fall marginally, though on a random

wheel network under the scenario of no neighbor knowledge the expected re-

turns on investment fall significantly. This fall is due to analysts giving weight to

many uninformed agents in their beliefs and so their expected returns worsen

significantly. This fall in expected returns is the cause of the fall in certainty

equivalents on random wheel networks with non neighbor knowledge and in-

dicates that analysts would be better off not consulting at all than consulting on

a random-wheel networks if they cannot determine how knowledgeable their

neighbors are.

On each of the networks under both scenarios the variance in returns falls

for analysts. Similar falls are recorded on the hub and non-random wheel net-

works under both of the scenarios. On a random wheel network when there is

perfect neighbor knowledge the falls in variance are less than those on the other

networks. When there is no neighbor knowledge, the falls in variance of returns

are far greater on the random wheel network than on the other networks. This

fall is due to the analysts including more uninformed agents (who have lower

variance in beliefs than analysts) in their post-consultation beliefs.

Figure 3 shows that for uninformed agents, consulting increases the cer-

tainty equivalents of their investment on each of the three networks under both

of the scenarios. However, these gains are comparatively very small on the non-

random wheel network under both scenarios. On a hub network, almost all of

the gains are made on a small neighborhood with much smaller marginal gains

to be made by increasing their neighborhood beyond this small amount. This

suggests that uninformed agents can receive almost the full benefits of consult-

ing by only reading a few finance blogs. The greatest difference between the

two scenarios in terms of certainty equivalents is found on the random wheel

network. While the uninformed agents do gain on the random wheel networks

when they cannot tell the type of their neighbors, far greater gains are made
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when they are able to determine whether their neighbors are informed or not.

Even with perfect knowledge of their neighbors the gains on a random wheel

network only approach those of the hub network when the neighborhood be-

comes quite large.

It is clear from Figure 3 that, for uninformed agents, the main source of

the gains in certainty equivalents is through an increase in expected returns.

On each of the networks under both of the scenarios the expected returns of

the uninformed agents increases in similar proportions to that of the certainty

equivalents. On hub networks the expected returns increase significantly with

the smallest amount of consultation. On random wheel networks, the expected

returns approach those of the hub networks but only on larger neighborhoods

under the perfect neighbor knowledge scenario. Under no neighbor knowledge

the gains are far more modest. There are few gains on the non-random wheel

network under either of the scenarios.

The variance in returns for uninformed agents increases on each of the net-

works under both scenarios when they consult compared with not consulting.

This would normally tend to reduce the certainty equivalents of their invest-

ments. However, the increase in the certainty equivalents resulting from the

improvements in expected returns outweighs any decrease from the increased

variance.

4.3.1 Summary

For analysts, the gains from consulting derive exclusively from a reduction in the

variance of their returns with no gains in their expected returns. For analysts,

consulting on hub networks or on non-random wheel networks provide almost

equivalent gains whether or not they can tell the type of agent that is their neigh-

bor, given that they are likely to be among other financially-knowledgeable peo-

ple on either platform. Nonetheless, consulting on random wheel networks can

also be beneficial for analysts, provided they can tell which of their neighbors

are financially-informed and which are not and they have a large neighborhood.

On the other hand, for uninformed agents, the benefits of consulting derive

almost exclusively from improvement in their expected returns. Of the network

types that have been examined here, the greatest gains are to be made through

consulting hub networks, and they only need consult comparatively few neigh-

bors to receive almost all of the benefit. However, similar gains can be made

on random wheel networks if they can tell which of their neighbors are ana-



Social Learning and Financial Markets 47

lysts and which are uninformed, though they need to have large neighborhoods

to achieve these gains. For uninformed agents there appears to be little to be

gained from consulting on non-random wheel networks as they are likely to be

too far away from financially-informed neighbors for this to be of great use.

5 Conclusion

This study examines where the benefits from consultation accrue to financially

informed and uninformed agents. It compares three networks, a hub network,

a random wheel network and a nonrandom wheel network. These networks

are specifically designed to represent real-life social networks on which people

might consult to gain financial knowledge; specifically, finance-related blogs,

Facebook and LinkedIn. Informed and uninformed agents could share their be-

liefs with other agents to whom they are socially connected and incorporate

their neighbors’ views into their own. Using these updated beliefs about the

state of nature, they then choose a portfolio consisting of a risk-free asset and a

risky asset. Certainty equivalents, expected returns and the expected variance in

returns are calculated for each of these agents on each of these networks under

two scenarios reflecting how well an agent could determine how knowledgeable

their neighbors are.

The study suggests that for informed agents the best networks on which

to consult are hub networks where they are linked to other informed agents,

such as finance-related blogs, or on networks where they are closely connected

to other financially knowledgeable people, such as LinkedIn. However, if they

can determine how financially knowledgeable their neighbors are, Facebook

can yield similar gains, though the size of the neighborhood required for such

gains to be realized is significantly larger than for finance blogs or LinkedIn.

This might not be a great problem given the size of many neighborhoods on

Facebook. The gains to be made for financially informed agents is exclusively

through a reduction in the variance of their returns.

For uninformed agents, a hub network is also the best network to consult.

However, in contrast to informed agents, LinkedIn is the worst network to con-

sult, because most of the uninformed agents are simply too far away from the

informed agents for it to be a helpful source of information. Facebook is better

than LinkedIn for uninformed agents if they can determine the type of their

neighbors. The gains to be made for uninformed agents are largely through
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improvement in their expected returns, with only modest gains to be made

through a reduction in the variance of their returns.
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A Appendix

A.1 Proof of Proposition 1: Beliefs that are closer to correctly

certain (CC) beliefs lead to higher expected returns

Assumption 9 P1Rh + (1−P1)Rl > R f > P0Rh + (1−P0)Rl

If the state is state one, CC beliefs are π = 1, which is the maximal value for

beliefs. Therefore, in state one, beliefs that are closer to CC beliefs will have a

higher value. The optimum portfolio a∗ is increasing in beliefs, so in state one

beliefs that are closer to CC beliefs will have a higher value for a∗. The expected

returns on a portfolio in state one are:

E(R) = P1[a∗Rh + (1−a∗)R f ]+ (1−P1)[a∗Rl + (1−a∗)R f ]

The derivative of the expected return with respect to a∗ is:

∂E(R)

∂a∗ = P1Rh + (1−P1)Rl −R f

This derivative is positive by assumption. Therefore, in state one, the closer be-

liefs are to CC beliefs the greater a∗ will be and the greater the expected returns

will be.

If the state is state 0, CC beliefs are π = 0, which is the minimal value for

beliefs. Therefore, in state zero, beliefs that are closer to CC beliefs will have a

lower value. The optimum portfolio a∗ is increasing in beliefs, so in state zero

beliefs that are closer to CC beliefs will have a lower value for a∗. The expected

returns on a portfolio in state zero are:

E(R) = P0[a∗Rh + (1−a∗)R f ]+ (1−P0)[a∗Rl + (1−a∗)R f ]

The derivative of the expected return with respect to a∗ is:

∂E(R)

∂a∗ = P0Rh + (1−P0)Rl −R f

This derivative is negative by assumption. Therefore, in state zero, the closer

beliefs are to CC beliefs the lower a∗ will be and the greater the expected returns

will be.

Therefore, in either state the closer beliefs are to CC beliefs the greater the

expected returns will be.
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A.2 Proof of Proposition 2: Analysts’ post-signal beliefs will be

closer to CC beliefs than their prior beliefs regardless of the

state of nature or prior beliefs.

If an analyst receives signal θm = 1 their belief will be:

π2 = ηπ1

ηπ1 + (1−η)(1−π1)

If an analyst receives signal θm = 0 their belief will be:

π2 = (1−η)π1

(1−η)π1 +η(1−π1)

E(π|θ = 1)−π1 = π1(1−π1)2(1−2η)2[
1− (π1 +η−2ηπ1)

]
(π1 +η−2ηπ1)

> 0 If π1 6= 0,1 and η 6= 0.5

π1 −E(π|θ = 0) = π2
1(1−π1)(1−2η)2[

1− (π1 +η−2ηπ1)
]

(π1 +η−2ηπ1)

> 0 If π1 6= 0,1 and η 6= 0.5

Therefore in either state of nature the expected post-signal beliefs of the an-

alysts will be closer to CC beliefs than the prior beliefs, for all prior beliefs. Fur-

thermore, regardless of the state of nature the difference between the expected

post-signal beliefs and the prior beliefs will be greater the greater is η.

A.3 Derivations of expected beliefs and variance in beliefs un-

der no neighbor knowledge

Under no neighbor knowledge:

wi j = vi ∀ j , j 6= i

where vi is the probability that an agent in i ’s neighborhood is an analyst.

wi i =
1, if the agent is an analyst,

0, if the agent is an uninformed agent,
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Under this scenario, an analyst’s beliefs after consultation (givenψi ) will be:

π3i =
∑ψi

j=1 viπ2 j +∑k
j=ψi+1 viπ2 j +π2i

kvi +1

Under Assumption 5, that agents’ pre-consultation beliefs (π2) and the number

of analysts in their neighborhood (ψi ) are independent of each other, taking

expectations over π2 and ψi gives:

E [π3i ] = E [ψi ]viπa + (k −E [ψi ])viπu +πa

kvi +1

= (kv2
i +1)πa +kvi (1− vi )πu

kvi +1

An uninformed agent’s beliefs after consultation (given ψi ) will be:

π3i =
∑ψi

j=1 viπ2 j +∑k
j=ψi+1 viπ2 j

kvi

Given Assumption 5, taking expectations over π2 and ψi gives:

E [π3i ] = E [ψi ]πa + (k −E [ψi ])πu

k

= kviπa + (k −kvi )πu

k

= viπa + (1− vi )πu

Turning now to the variance in agent’s beliefs, under no neighbor knowl-

edge, the variance of an analyst’s beliefs post-consultation will be:

V ar (π3i ) =
ψi∑
j=1

(
vi

kvi +1

)2

V ar (πa
2 )+

k∑
j=ψi+1

(
vi

kvi +1

)2

V ar (πu
2 )

+
(

1

kvi +1

)2

V ar (πa
2 )
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Taking expectations over ψi gives:

E [V ar (π3i )] = E [ψi ]v2
i +1

(kvi +1)2 V ar (πa
2 )+ (k −E [ψi ])v2

i

(kvi +1)2 V ar (πu
2 )

= kv3
i +1

(kvi +1)2 V ar (πa
2 )+ kv2

i (1− vi )

(kvi +1)2 V ar (πu
2 )

The variance of an uninformed agent’s beliefs will be:

V ar (π3i ) =
ψi∑
j=1

(
vi

kvi

)2

V ar (πa
2 )+

k∑
j=ψi+1

(
vi

kvi

)2

V ar (πu
2 )

Taking expectations over ψi gives:

E [V ar (π3i )] = E [ψi ]

k2 V ar (πa
2 )+ k −E [ψi ]

k2 V ar (πu
2 )

= vi

k
V ar (πa

2 )+ (1− vi )

k
V ar (πu

2 )

Therefore, under the scenario of no knowledge of neighbors’ type, analysts

expect that their beliefs will move away from CC beliefs as their neighborhood

increases. For uninformed agents, however, they expect that their beliefs will be

closer to CC beliefs after consultation compared with before consultation, but

the size of their neighborhood will not affect how close to CC beliefs they are as

long as the probability that a neighbor is an analyst, vi , is unaffected by the size

of the neighborhood.

Analysts expect that the variance in their beliefs will decrease with the size

of their neighborhood (as long as the variance of analysts’ beliefs is greater than

the variance of uninformed agents beliefs). Uninformed agents expect that the

variance in their beliefs will decrease with the size of their neighborhood as long

as the probability of a neighbor being an analyst is unaffected by the size of the

neighborhood. However, the variance of uninformed agents beliefs might in-

crease with consultation compared with no consultation if the variance of ana-

lysts’ beliefs is greater than that of uninformed agents.
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A.4 Expected variance of an analyst’s post-consultation beliefs

with perfect neighbor knowledge on a random-wheel net-

work.

The expected variance of an analyst’s post-consultation beliefs on a random

wheel network will be:

E [V ar (π3i )] = E

[
1

ψi +1

]
V ar (πa

2 )

On a random-wheel network it is assumed that ψi follows a binomial distribu-

tion with trials k and probability of success vi . The expected value of 1
X+1 when

X is a binomial variable with n trials and p chance of success is:

E

[
1

X +1

]
=

n∑
k=0

1

k +1

(
n

k

)
pk (1−p)n−k

= 1

(n +1)p
·

n∑
k=0

(
n +1

k +1

)
·pk+1(1−p)n−k

= 1

(n +1)p
· (1− (1−p)n+1)

Therefore:

E

[
1

ψi +1

]
= 1

(k +1)vi
· (1− (1− vi )k+1)

and so

E [V ar (π3i )] = 1

(k +1)vi
· (1− (1− vi )k+1)V ar (πa

2 )

with vi = x
x+y

E [V ar (π3i )] = x + y

(k +1)x
·
[

1−
(

y

x + y

)k+1
]

V ar (πa
2 )

A.5 An analyst’s expected post-consultation beliefs with no neigh-

bor knowledge on a random-wheel network.

When agents have no neighbor knowledge on a random wheel network, the

expected beliefs of an analyst will be:
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E [π3i ] = (kv2
i +1)πa +kvi (1− vi )πu

kvi +1

with vi = x
x+y

=
(k

(
x

x+y

)2 +1)πa +k x
x+y (1− x

x+y )πu

k x
x+y +1

=

(
kx2

(x+y)2 +1
)
πa +k x

x+y ( y
x+y )πu

k x
x+y +1

=
(

kx2+(x+y)2

(x+y)2

)
πa + kx y

(x+y)2πu

kx+x+y
x+y

=
(

[kx2 + (x + y)2]πa +kx yπu

(x + y)2

)
· x + y

kx +x + y

= [kx2 + (x + y)2]πa +kx yπu

(x + y)(kx +x + y)

= [kx2 + (x + y)2]πa +kx yπu

kx2 + (x + y)2 +kx y

A.6 The expected variance in an analyst’s post-consultation be-

liefs with no neighbor knowledge on a random-wheel net-

work.

On a random wheel network the variance of an analyst’s beliefs will be:

E [V ar (π3i )] = kv3
i +1

(kvi +1)2 V ar (πa
2 )+ kv2

i (1− vi )

(kvi +1)2 V ar (πu
2 )
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with vi = x
x+y

=
k

(
x

x+y

)3 +1

(k x
x+y +1)2 V ar (πa

2 )+
k

(
x

x+y

)2 (
1− x

x+y

)
(k x

x+y +1)2 V ar (πu
2 )

=
(

kx3+(x+y)3

(x+y)3

)
(kx+x+y)2

(x+y)2

V ar (πa
2 )+

(
kx2

(x+y)2

)(
y

x+y

)
(kx+x+y)2

(x+y)2

V ar (πu
2 )

=
(

(kx3 + (x + y)3)(x + y)2

(x + y)3(kx +x + y)2

)
V ar (πa

2 )+
(

kx2 y(x + y)2

(x + y)3(kx +x + y)2

)
V ar (πu

2 )

= kx3 + (x + y)3

(x + y)(kx +x + y)2 V ar (πa
2 )+ kx2 y

(x + y)(kx +x + y)2 V ar (πu
2 )

A.7 The expected post-consultation variance of uninformed agents

on random wheel networks with no neighbor knowledge.

The expected post-consultation variance of uninformed agents on networks

with no neighbor knowledge will be:

E [V ar (π3i )] = vi

k
V ar (πa

2 )+ (1− vi )

k
V ar (πu

2 )

with vi = x
x+y

= x

k(x + y)
V ar (πa

2 )+ y

k(x + y)
V ar (πu

2 )

A.8 Derivations of the Neighborhood Mix of Agents in Non-random

Networks (Propositions 3 - 4)

For Propositions 3 - 4, agent a1 is the analyst who has an uninformed agent as

their immediate neighbor in the anti-clockwise direction. The analyst imme-

diately next to a1 in the clockwise direction is agent a2, and so on until agent

ax is reached. Similarly, for uninformed agents, agent b1 is the uninformed

agent whose immediate neighbor in the anti-clockwise direction is an analyst.

Their neighbor in the clockwise direction is agent b2 and so on until agent by

is reached. In all of these derivations it is assumed that the size of the neigh-

borhood is small. More specifically it is assumed that k ≤ mi n(2x,2y), where
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k is the number of agents in each neighborhood other than the agent herself,

x is the number of analysts in the network, and y is the number of uninformed

agents in the network.

A.8.1 Proof of Proposition 3

The number of analysts in each analyst’s neighborhood in an anti-clockwise di-

rection are:

a1 = 0

a2 = 1

a3 = 2

...

a k
2 −1 =

k

2
−2

a k
2
= k

2
−1

a k
2 +1 =

k

2

a k
2 +2 =

k

2
...

ax−1 = k

2

ax = k

2

The sum of these agents’ neighbors is:
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Sum = 0+1+2+ . . .+
(

k

2
−2

)
+

(
k

2
−1

)
+

(
k

2

)
︸ ︷︷ ︸(

k
2 +1

)
agents

+
(

k

2

)
+ . . .+

(
k

2

)
︸ ︷︷ ︸(

x−
(

k
2 +1

))
agents

=
k
2∑

i=1
i + k

2

(
x −

(
k

2
+1

))
=

(
k

2
+1

)(
k

4

)
+ k

2

(
x − k

2
−1

)
= k

2

(
x − k

4
− 1

2

)

There will be an equal number of analysts in analysts’ neighborhoods going

in a clockwise direction from the agents, therefore the total number of analysts

in analysts’ neighborhoods (not including the analyst herself) will be:

Tot al = k

(
x − k

4
− 1

2

)

To get the expected number of analysts in any analyst’s neighborhood this total

must be divided by the number of analysts (namely by x) to give:

E(ψa) = k

x

(
x − k

4
− 1

2

)
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A.8.2 Proof of Proposition 4

The number of analysts in each uninformed agent’s neighborhood in an anti-

clockwise direction are:

b1 = k

2

b2 = k

2
−1

b3 = k

2
−2

...

b k
2 −1 = 2

b k
2
= 1

b k
2 +1 = 0

b k
2 +2 = 0

...

by = 0

The sum of these agents’ neighbors is:

Sum =
(

k

2

)
+

(
k

2
−1

)
+

(
k

2
−2

)
+ . . .+2+1︸ ︷︷ ︸(

k
2

)
agents

+ 0+ . . .+0︸ ︷︷ ︸(
y− k

2

)
agents

=
k
2∑

i=1
i

=
k
2

(
k
2 +1

)
2

= k(k +2)

8

There will be an equal number of analysts in uninformed agents’ neighbor-

hoods going in a clockwise direction from the agents. Therefore, the total num-

ber of analysts in uninformed agents’ neighborhoods will be:



Social Learning and Financial Markets 61

Tot al = k(k +2)

4

To get the expected number of analysts in any uninformed agents’ neighbor-

hood this total must be divided by the number of uninformed agents (namely

by y) to give:

E(ψu) = k(k +2)

4y

A.9 The expected variance of analysts’ post-consultation beliefs

on a non-random wheel network under perfect neighbor

knowledge

The expected variance of analysts’ post-consultation beliefs under perfect neigh-

bor knowledge will be:

E [V ar (π3i )] = E

[
1

ψi +1

]
V ar (πa

2 )

On a non-random wheel network, there will be x−k analysts that have k +1

analysts in their neighborhood (including themselves), 2 analysts with k ana-

lysts in their neighborhood, 2 analysts with k − 1 analysts in their neighbor-

hoods, and so on until there are 2 analysts with k
2 + 1 analysts in their neigh-

borhood.

Given that each position is equally likely, the probability that an analyst con-

sulting on a non-random wheel network has k + 1 analysts in their neighbor-

hood is x−k
x , and the probability of any other possible number of analysts in

their neighborhood is 2
x . Therefore,

E

[
1

ψi +1

]
= x −k

x

[
1

k +1

]
+ 2

x

[
1

k
2 +1

+ 1
k
2 +2

+ . . .+ 1

k

]

= x −k

x

[
1

k +1

]
+ 2

x

k
2∑

i=1

(
1

k
2 + i

)
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and so:

E [V ar (π3i )] =
 x −k

x(k +1)
+ 2

x

k
2∑

i=1

(
1

k
2 + i

)V ar (πa
2 )

A.10 The expected variance of uninformed agents’ post-consultation

beliefs on a non-random wheel network under perfect neigh-

bor knowledge

The expected variance of uninformed agents’ post-consultation beliefs under

perfect neighbor knowledge will be:

E [V ar (π3i )] = P (ψi = 0)
1

k +1
V ar (πu

2 )+P (ψi ≥ 1)E

[
1

ψi
|ψi ≥ 1

]
V ar (πa

2 )

On a non-random wheel network, there will be y−k uninformed agents with

no analysts in their neighborhood. Given that each position is assumed to be

equally likely, the probability that an uninformed agent has no analysts in their

neighborhood on a non-random wheel network will be: P (ψi = 0) = y−k
y . There-

fore, P (ψi ≥ 1) = k
y .

Of the positions which have at least one analyst in their neighborhood, there

will be 2 positions with ψi = 1, 2 positions with ψi = 2,..., 2 positions with ψi =
k
2 . Therefore:

E

[
1

ψi
|ψi ≥ 1

]
= 2

k

[
1+ 1

2
+·· ·+ 1

k
2

]

= 2

k

 k
2∑

i=1

1

i


and so

E [V ar (π3i )] = y −k

y

1

k +1
V ar (πu

2 )+ k

y

2

k

 k
2∑

i=1

1

i

V ar (πa
2 )

= y −k

y(k +1)
V ar (πu

2 )+ 2

y

k
2∑

i=1

1

i
V ar (πa

2 )
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A.11 The expected post-consultation beliefs of analysts on a non-

random wheel network under no neighbor knowledge

Under no neighbor knowledge the expected post-consultation beliefs of ana-

lysts are:

E [π3i ] = (kv2
i +1)πa +kvi (1− vi )πu

kvi +1

With vi = 1− k+2
4x

E [π3i ] = (k(1− k+2
4x )2 +1)πa +k(1− k+2

4x )(1− (1− k+2
4x ))πu

k(1− k+2
4x )+1

= 4x

k(4x −k −2)+4x

[
k(4x −k −2)2 +16x2

16x2 πa + k(4x −k −2)(k +2)

16x2 πu

]
= k(4x −k −2)2 +16x2

4xk(4x −k −2)+16x2πa + k(k +2)(4x −k −2)

4xk(4x −k −2)+16x2πu

A.12 The expected post-consultation variance of analysts on a

non-random wheel network under no neighbor knowledge

Under no neighbor knowledge the expected post-consultation variance of ana-

lysts’ beliefs is:

E [V ar (π3i )] = kv3
i +1

(kvi +1)2 V ar (πa
2 )+ kv2

i (1− vi )

(kvi +1)2 V ar (πu
2 )

With vi = 1− k+2
4x

E [V ar (π3i )] = k(1− k+2
4x )3 +1

(k(1− k+2
4x )+1)2

V ar (πa
2 )+ k(1− k+2

4x )2(1− (1− k+2
4x ))

(k(1− k+2
4x )+1)2

V ar (πu
2 )

=
k(4x−k−2)3+64x3

64x3[
k(4x−k−2)+4x

4x

]2 V ar (πa
2 )+

[
k(4x−k−2)2

16x2 · (k+2)
4x

]
[

k(4x−k−2)+4x
4x

]2 V ar (πu
2 )

= k(4x −k −2)3 +64x3

4x[k(4x −k −2)+4x]2 V ar (πa
2 )+ k(k +2)(4x −k −2)2

4x[k(4x −k −2)+4x]2 V ar (πu
2 )
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Beliefs on Networks: An Experiment

Abstract

In many applications in economic theory a model is needed to explain how

people incorporate information into their beliefs about the world. Two of the

main models of information incorporation are Bayes rule and DeGroot’s model.

This study compares these two models on networks in an experimental setting.

While the DeGroot model provides the most accurate estimates of agents’ be-

haviors, there was a large group, possibly as large as half of subjects, who some-

times use a Bayesian approach. Further, consultation was found to help over-

come individual uncertainty about the state of nature but could not overcome

more general uncertainty, and more consultation beyond a minimal amount

did not improve beliefs. Consultation generally led to a convergence in beliefs

but rarely to the point of consensus.
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1 Introduction

In order to gain knowledge about the world beyond their own personal expe-

rience people consult with others to whom they are socially connected; their

neighbors. They then must incorporate the knowledge that they gain into their

beliefs. This paper investigates how people incorporate other people’s beliefs

about the world into their own beliefs. It contributes to the literature by directly

comparing two of the main models of information incorporation (namely the

DeGroot (1974) model and one using Bayes rule) in an experimental setting. It

finds that, while the DeGroot model more accurately reflects the information in-

corporation process, over half of subjects will deviate from the DeGroot model’s

predictions when Bayes rule suggest that they should. Further, this study finds

that convergence to group consensus is unrelated to people’s connectivity or the

number of consultations people make with their neighbors, despite these both

being predictions of the DeGroot and Bayes models. Nonetheless, connectivity

does help people gain more accurate information about the world.

In the economic literature two main models tend to be used to model the

incorporation of information into beliefs. These models are the Degroot model

and one based on Bayes rule. The Degroot model is a bounded rationality model

in which people assign weights to the beliefs of the people they consult, and so

update their beliefs as a convex combination of their neighbors’ beliefs. The

benefits of this model is that it imposes a far lighter cognitive load on agents

compared with Bayes rule, requires far less knowledge of how neighbors came to

their beliefs, and, hence, how to incorporate agents’ neighbors’ beliefs into their

own. Therefore, it is expected to be used in a wider variety of contexts. As such it

is regularly used in the economic literature to model information incorporation

(see for example: Jadbabaie et al. (2012), Golub & Jackson (2010), Eyster & Rabin

(2009, 2010), DeMarzo et al. (2003), Ellison & Fudenberg (1993, 1995) ).

In contrast to the DeGroot model, information incorporation according to

Bayes rule requires agents to use information beyond the beliefs of their neigh-

bors such as beliefs about the evidence on which their neighbors gained their

knowledge, and whether their neighbors’ beliefs are based on their neighbors’

personal experience or if their neighbors gained their knowledge through oth-

ers (see for example: Acemoglu et al. (2011), Holt & Smith (2009), Charness et al.

(2007), Tenenbaum et al. (2006), Charness & Levin (2005), Gale & Kariv (2003),

El-Gamal & Grether (1995), Grether (1992)). This requires significantly greater

sophistication on the part of agents than the DeGroot model. However, having
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just one agent using Bayes rule can significantly improve the knowledge of a

network compared with only having agents using the DeGroot model (Mueller-

Frank 2014).

The current study evaluates these models in an experimental setting. Sub-

jects were asked to assess the likelihood that there were at least 50 white balls in

a hypothetical urn of 100 balls. To assess this probability, they each received an

independent sample of three balls from the urn and could then view other sub-

jects’ estimates in order to update their own estimate. The subjects could then

choose to consult as many times as they liked to get more accurate beliefs about

the number of white balls in the urn. In this study, the subjects could have used

the DeGroot model to update their estimates, or they could have used a more

Bayesian process, as they could potentially infer the evidence on which their

neighbors have derived their beliefs. Overall, a DeGroot model predicted the

subjects estimates better than a prediction based on Bayes rule. However, over

half of the subjects, at least some of the time, deviated from the DeGroot model

when Bayes rule suggested that they should. This suggests that more people

are Bayesian than suggested by previous research such as Chandrasekhar et al.

(2015).

In an experiment comparable to the current one, Chandrasekhar et al. (2015)

directly compared the use of DeGroot and Bayes rule. Chandrasekhar et al.

(2015) provided subjects with binary information based on which they took bi-

nary actions. In viewing neighbors’ actions, subjects could then change their

course of action if they wished. They found that the best model to describe the

way agents incorporated information was one in which none of the subjects

were Bayesian. They show that when Bayesian and DeGroot models have di-

verging predictions only 17 per cent of agents take the Bayesian option. The

current study approaches the question from a different perspective to that of

Chandrasekhar et al. (2015), with subjects provided with more nuanced infor-

mation from which they could derive beliefs across a range, and hence the data

aligned more closely with that of the original DeGroot formulation. Taken to-

gether these studies suggest that, while the DeGroot model is the best to de-

scribe how people incorporate information into their beliefs, there is a signifi-

cant minority of people who will use a Bayesian approach if they can.

The DeGroot model also predicts that if agents consult with each other enough

times they will eventually come to consensus, even though this is not a goal of

their interactions, as long as there is an information path from at least one agent
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to all other agents on the network (Berger 1981). Nonetheless, consensus only

happens when the rounds of consultation go to infinity and this convergence

tends to be quite slow (Golub & Jackson 2010). In reality, agents do not continue

to consult indefinitely and so consensus is unlikely to result from the DeGroot

model in practice.

There have been numerous experiments studying consensus formation on

networks. Most of these experiments involve agents consciously attempting to

reach consensus as the goal of their interactions (see for example, Judd et al.

(2010), Kearns et al. (2009), Kearns et al. (2006)). In contrast, comparatively lit-

tle experimental research has looked at agents reaching consensus passively on

networks. That is, agents reaching consensus even though consensus is not a

goal of their interaction. In one study on passive consensus formation, Mueller-

Frank & Neri (2015) found consensus was hard to achieve when it was not a

direct goal of interaction.

Therefore this experiment also investigates whether agents reach consen-

sus, how often agents choose to consult, and how accurate their beliefs are after

consultation. Subjects were allowed to consult as often as they wanted to, and,

in general, it was found that subjects would continue to consult as long as they

saw a marginal benefit in doing so, while the costs of consultation did not ap-

pear to affect their decisions to consult. Consensus was rarely reached in this

experiment. Subjects consulted more often, and their beliefs also converged

more often, on sparse networks than on more densely connected networks.

Nonetheless, despite consulting more often on sparse networks, the accuracy

of subjects’ final beliefs tended to be worse than on more densely-connected

networks. Furthermore, given the type of network on which subjects were con-

sulting, consulting more times did not lead to more accurate final beliefs. This

suggests that consulting a minimal number of times might give as good infor-

mation as consulting more times, but consulting with a broader range of people

can improve the accuracy of beliefs.

In Section 2, I will outline Degroot’s model with reference to network theory.

I will describe the experimental design in Section 3, and Section 4 will provide

the main hypotheses to be tested. Section 5 gives details of the experiment and

the subjects. Section 6 shows the main results, with subsidiary results presented

in Section 7, and conclusions are provided in Section 8.
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2 DeGroot’s Model and Network Theory

The DeGroot (1974) model of consensus formation conitnues to be used by re-

searchers to model the effects of information sharing on a social network (see

for example, Jadbabaie et al. (2012), Golub & Jackson (2010), Eyster & Rabin

(2009, 2010), DeMarzo et al. (2003), Ellison & Fudenberg (1993, 1995)). This

study is designed to test some of the predictions that come out of the Degroot

model. Specifically, the experiment will test whether or not agents updated be-

liefs can be considered to be a weighted average of their neighborhoods’ pre-

vious beliefs. Furthermore it will test whether or not agents’ beliefs converge

towards a consensus, and the reasons behind how often agents choose to con-

sult with each other.

In the DeGroot model, each agent is located as a node on a network. The

set N = {1, . . . ,n} is the set of nodes. A real-valued n ×n matrix g describes the

relationships between each of the nodes. The relationship between two agents,

i and j , is denoted by gi j , where gi j ∈ {0,1}. gi j = 1 denotes an information flow

from agent j to agent i , namely agent i can observe something about agent j .

The network is directed so that gi j = 1 does not imply that g j i = 1. That is, if

agent i can observe agent j this does not necessarily imply that agent j can ob-

serve agent i 1. The set of agents that agent i can observe is called the neighbor-

hood of i , denoted N d
i (g ) = {k ∈ N |gi k = 1}. All agents in agent i ’s neighborhood

are agent i ’s neighbors. The number of agents that an agent is linked to (that is,

the cardinality of the agent’s neighborhood) is called that agent’s degree, and is

denoted di (g ) = #{ j |g j i = 1} = #N d
i (g ) (Jackson 2008, p. 29). A path in a network

between nodes i and j is defined as a sequence of links i1i2, i2i3, . . . , iK−1iK such

that ik ik+1 ∈ {g |gik ik+1 = 1} for each k ∈ {1, . . . ,K −1}, with i1 = i and iK = j , and

such that each node in i1, . . . , iK is distinct (Jackson 2008, p. 23). A network in

which there exists a directed path between any two nodes is called a strongly

connected network.

Each agent assigns a weight to the information that they receive from each

person in their neighborhood and, as such, their updated beliefs will be a con-

vex combination of the beliefs of their neighbors. This weight is represented by

a number, ti j , where:

1By assumption, gi i = 1.
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ti j =
xi j ∈ [0,1] if gi j = 1

0 if gi j = 0

and

n∑
j=1

ti j = 1 ∀i

The information transfer matrix, T , is defined as:

Tn,n =



t11 t12 · · · t1n

t21 t22 · · · t2n

...
...

. . .
...

tn1 tn2 · · · tnn


Each of the rows in T will sum to 1. However, the columns will not neces-

sarily also sum to 1. To calculate how information is passed around the network

we can set up the matrix of initial beliefs about the state of nature. Namely:

Π0 =



π1

π2

...

πn


After one round of information sharing the beliefs matrix will be:

Π1 = TΠ0

After n rounds of information sharing the beliefs matrix will be:

Πn = T nΠ0

Given that all of the elements of T are between zero and one, the elements in

each of the subsequent beliefs matrix will be weighted averages of the elements

in the initial beliefs matrix (DeMarzo et al. 2003, p. 10).

If, and only if, there exists a positive integer, n, such that every element in

at least one column of T n is strictly positive then the beliefs will converge to a

consensus (Berger 1981). This means that if there is an information path from
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at least one agent to every other agent on the network (that is, it is a strongly-

connected network), a consensus will form as the rounds of consultation go to

infinity, and this consensus will be a weighted average of the agents’ initial be-

liefs.

3 Experiment Design

The experiment was conducted entirely through computers, using students drawn

from the Lund University School of Economics and Management. The experi-

ment was conducted over 4 phases of 3 rounds each for a total of 12 rounds.

At the start of each round the subjects were randomly assigned to networks

of five people. Each of the phases involved a different treatment and the or-

der of the presentation of the treatments changed between the sessions. The

treatments were: a sparsely-connected network with a ‘baseline’ treatment; a

highly-connected network with a ‘baseline’ treatment; a highly-connected net-

work with an ‘information’ treatment; and a non-consultation treatment. These

treatments will be explained below.

In the experiment there was a hypothetical urn with 100 balls in it. Each of

these balls was either white or black. The number of white balls in the urn was

drawn from a uniform distribution across all possible outcomes. Each of the

subjects was asked to assess the probability that the number of white balls in the

urn was greater than or equal to 50. To assist them in assessing this probability

each subject received their own independent sample of three balls from the urn.

Having initially estimated the probability that the number of white balls in

the urn was greater than or equal to 50, the subjects were then able to consult

with their neighbors. This consultation involved viewing their neighbors’ esti-

mates of the probability that the number of white balls was greater than or equal

to 50. Based on this consultation, the subjects could then update their estimate

of the probability. They could then elect to consult with their neighbors again to

view their neighbors’ updated estimates. Consultation continued until no-one

on the network wanted to consult again. The subjects’ final estimates were used

to determine their payoffs.

The subjects’ payoffs were calculated as follows:

πi (xi ) =
100

[
1− (xi −1)2

]
if W ≥ 50

100
[
1−x2

i

]
if W < 50.
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Where πi (xi ) is the payoff to subject i , xi is subject i ’s final estimate of the

probability that the number of white balls is greater than or equal to 50, W is

the number of white balls in the urn.

Under this payoff structure subjects maximize their expected payoff by set-

ting their final estimate equal to their actual belief about the probability that

the number of white balls is at least 50. Therefore, if the subjects are risk neutral

that is their best strategy.2

In this experiment, two balanced networks were tested. These networks are

depicted in Figures 1 and 2. Both networks contain five subjects, with one net-

work sparsely-connected, and the other network more highly-connected. In

consultation on the sparsely-connected network, each subject was able to ob-

serve one other subject’s estimates, and in turn had one other subject observe

their estimates (a different subject to that which they could observe). In the

highly-connected network, each subject was able to observe three other sub-

jects.

Balanced networks were chosen because balanced networks give the most

straightforward predictions in the DeGroot model. That is, with each person

connected to an equal number of people and each person being as informed

as everyone else, an equal weighting under the DeGroot model is an obvious

prediction. If some subjects were more connected than others or had more or

better information it was not always clear what a reasonable weighting scheme

would be. The Bayesian updating was also more clear with balanced networks.

Therefore, with these networks, there should be less noise in the data.

Two treatments were used on the highly-connected network; a ‘baseline’

treatment and an ‘information’ treatment. Under the ‘baseline’ treatment the

subjects only received the estimates of their neighbors and were allowed to in-

corporate the information from their neighbors in whatever way they wanted

to. Under the ‘information’ treatment, in addition to their neighbors’ estimates,

subjects also received a simple average of their neighbors’ current estimates ex-

cluding their own previous estimate, and a simple average of their neighbors’

current estimates including their own previous estimate. Subjects could then

use this information in whatever way they wished to come to their updated es-

timates. Assuming that subjects wished to use the DeGroot model of consulting

2If the subjects are risk averse then their best strategy is to set their final estimate closer to 0.5 than

what they actually assess the probability to be. The more risk averse they are, the closer to 0.5 they

should set their final estimate.
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A

B

C

DE

Figure 1: Sparsely-connected Consultation Network. The circles represent

subjects and the arrows represent the direction of viewing. Each subject can

view one of the other four people’s estimates on the network. Each subject’s

estimates can be viewed by one of the other four people on the network.
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A

B

C

DE

Figure 2: Highly-connected Consultation Network. The circles represent sub-

jects and the arrows represent the direction of viewing. Each subject can view

three of the other four people’s estimates on the network. Each subject’s esti-

mates can be viewed by three of the other four people on the network.
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with equal weights, then, under the ‘information’ treatment, subjects were not

required to estimate these averages themselves and so incurred fewer costs to

consulting. This treatment was, therefore, included to investigate the impact

of the costs of consulting on subjects’ decisions to consult. The ‘information’

treatment was only used on the more densely-connected network.

4 Hypotheses

While Bayes rule is often used in theoretical papers, research suggests that peo-

ple are more likely to use the DeGroot model in practice. Therefore, the first hy-

pothesis that will be tested in this study is that subjects use the Degroot model.

Hypothesis 1 Subjects use the DeGroot model

Under the DeGroot model subjects’ post-consultation estimates will be a

weighted average of their neighbors’ estimates. Therefore, regardless of how

they weight their neighbors’ estimates, the subjects’ post-consultation beliefs

will be within the range of estimates on their neighborhood. A simple assess-

ment of the possibility that subjects are using the DeGroot model is, therefore,

how often their post-consultation estimates fall outside the range of neighbor-

hood estimates. The more often the estimates fall outside of the range of neigh-

borhood estimates the less likely is it that they are using the DeGroot model.

If subjects are able to make an educated guess as to their neighbors’ samples

based on their neighbors’ first round estimates, subjects can get a more accu-

rate estimate of the probability that the number of white balls is at least 50 using

Bayes’ rule compared with using an average of their neighbors’ estimates. For

certain combinations of samples the estimate based on Bayes’ rule will fall out-

side of the range of the neighborhood’s estimates. Therefore, one predictor of

whether subjects are using the De Groot model or Bayes’ rule is to measure how

often the post-consultation beliefs fall outside of the range of neighborhood es-

timates when Bayes’ rule predicts that they should.

Given that no subject has more information than any other, under the De-

Groot model an equal weighting of the neighborhood estimates would seem

reasonable. Therefore, a final test can be done by comparing whether a sim-

ple average of the neighborhood estimates is a better predictor of the post-

consultation estimates than that predicted by Bayes’ rule. This comparison can
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be done through comparing root mean square errors (RMSE) of the two predic-

tors.

Under the information treatment subjects will receive the averages of their

neighborhood’s estimates and so should be primed to use the averages. This

will possibly make them less likely to use Bayes Rule in favor of DeGroot. Fur-

thermore, having seen the information treatment in a previous phase, subjects

could be primed to use the DeGroot model in future phases making them more

likely to use the DeGroot model in phases subsequent to the information treat-

ment phase.

Predictions based on this hypothesis, are that:

1. if subjects use the DeGroot model

(a) their updated estimates after the first round of consultation will not

be outside the range of their neighborhood’s estimates

(b) RMSE(DeGroot) < RMSE(Bayes)

2. if subjects use Bayes Rule

(a) their updated estimates after the first round of consultation will be

outside the range of their neighborhood’s estimates when the Bayesian

update is outside the range

(b) RMSE(DeGroot) > RMSE(Bayes)

3. The information treatment should reduce the likelihood of the subjects

using Bayes Rule

4. Subjects should be less likely to use Bayes rule after they have seen the

information treatment

Under both the Degroot model and Bayes rule, networks that continue to

consult should end up at consensus. However, many networks do not reach

consensus. This prompts questions about why networks do not reach consen-

sus. One explanation could be that agents on networks stop consulting on net-

works because they do not see any net benefits to reaching consensus. That is,

that they believe that the costs of consulting an extra time outweigh the benefits

of doing so.

Hypothesis 2 Costs of consulting cause subjects to stop consulting before consen-

sus is reached
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If there is a cost to consulting, people will only continue to consult as long

as they expected that the marginal benefit to another round of consulting will

be greater than the cost. First, I look at the marginal benefits to consulting and

then I will consider the costs involved.

4.1 Marginal Benefit of Consultation

If it is assumed that the subjects give correct estimates based on their individ-

ual samples, the estimates can be thought of as independent random variables,

with a mean, µx , and standard deviation, σx , determined by the number of

white balls in the urn. If we define the estimate of subject i after n rounds of

consultation as xni then the expected value of the estimate before consultation

will be E(x0i ) =µx with variance V ar (x0i ) =σ2
x . If the subjects use the DeGroot

model, then the estimate of subject i after one round of consultation will be:

x1i =
k∑

j=1
w j x0 j

where w j is the weight that subject i places on subject j ’s estimate (with

w j ∈ [0,1] and
∑k

j=1 w j = 1) and k is the number of subjects in agent i ’s neigh-

borhood. Assuming that the weights assigned to neighbors’ beliefs are inde-

pendent of the neighbors’ estimates, the expected value of the estimate after

one round of consultation then will be:

E(x1i ) = E

(
k∑

j=1
w j x0 j

)

=
k∑

j=1
w j E

(
x0 j

)
=µx

k∑
j=1

w j

=µx

Similar calculations can be made for subsequent rounds of consultation to

show that the expected value of the estimate is unaffected by the number of

rounds of consultation.
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Considering now the variance of the estimates, the variance before consul-

tation is V ar (x0i ) =σ2
x . After one round of consultation the variance of the esti-

mates will be:

V ar (x1i ) =V ar

(
k∑

j=1
w j x0 j

)

=
k∑

j=1
w2

j V ar
(
x0 j

)
=σ2

x

k∑
j=1

w2
j

Assuming that the agents do not change the weights that they assign to their

neighbors’ beliefs, after two rounds of consultation the variance of the estimates

will be:

V ar (x2i ) =V ar

(
k∑

j=1
w j x1 j

)

=
k∑

j=1
w2

j V ar
(
x1 j

)
=σ2

x

(
k∑

j=1
w2

j

)2

Similarly, after n rounds of consultation the variance of the estimates will

be:

V ar (xni ) =σ2
x

(
k∑

j=1
w2

j

)n

The conditions that w j ∈ [0,1] and
∑k

j=1 w j = 1, imply that 1
k ≤ ∑k

j=1 w2
j ≤

1. Therefore, the variance in the estimates will be a weakly convex decreasing

function of the number of rounds of consultation.
∑k

j=1 w2
j = 1 if one, and only

one, subject’s estimate is given weight in the consultation (presumably the sub-

ject themself). Therefore, as long as at least one other subject’s estimate is given

weight, and hence that there actually is consultation, the variance in the esti-

mates will be a strictly convex decreasing function of the number of rounds of
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consultation.3

Given that the payoff function is quadratic, we can determine that the ex-

pected value of the payoff is:

E [π(xni )] =
100

[
1− (µx −1)2

]−100σ2
x

(∑k
j=1 w2

j

)n
if W ≥ 50

100
[
1−µ2

x

]−100σ2
x

(∑k
j=1 w2

j

)n
if W < 50

The expected payoff, therefore, is a concave increasing function of the rounds

of consultation, regardless of the number of white balls in the urn. The marginal

benefit to consulting (here defined as the first derivative of the expected payoff

function with respect to the number of rounds of consultation) is:

Marginal benefit =−100σ2
x

(
k∑

j=1
w2

j

)n

ln

(
k∑

j=1
w2

j

)

This is a convex decreasing function of the number of rounds of consulta-

tion, regardless of the number of white balls in the urn.

If b = ∑k
j=1 w2

j and it is reasonably assumed that b is decreasing in k (that

is,
∑k

j=1 w2
j is lower in larger neighborhoods, which will be the case, for ex-

ample, with an equal weighting of neighbors’ estimates), then, bH < bS < 1,

where bH is b on more highly-connected networks and bS is b on more sparsely-

connected networks. The marginal benefit of consultation then will be greater

on highly-connected networks compared with that on sparsely-connected net-

works, when:

(
bS

bH

)n

< ln(bH )

ln(bS )

If, as assumed, bH < bS < 1 then the marginal benefit to consultation will

initially be greater in more-connected networks, but as the rounds of consul-

tation increase the marginal benefit to consultation on highly-connected net-

works will fall below that on sparsely-connected networks.

Predictions based on the marginal benefits of consulting include:

1. More subjects should choose to consult on densely-connected networks

than on sparsely-connected networks

3From now it is assumed that at least one other subject’s estimate is given weight in the consultation,

and hence
∑k

j=1 w2
j < 1.
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2. Those that choose to consult on densely-connected networks should stop

consulting earlier than on sparsely-connected networks.

4.2 Costs of consulting

In this study, in considering the costs that a subject might believe they will incur

with an extra round of consultation, there appear to be three different potential

sources of costs of consulting:

1. Costs of integrating multiple sources of information.

This cost implies that it is harder for people to integrate more pieces of in-

formation than fewer into their beliefs. In the context of this study, it sug-

gests that people in the larger neighborhoods should face greater costs to

consulting (other things being equal) compared with those in the smaller

neighborhoods because they have more sources of information to inte-

grate. Under the DeGroot model, in which the subjects are estimating

averages of their neighbors estimates, it says that it is harder for the sub-

jects (and, hence, involves a greater cost) to calculate an average of four

estimates than two estimates.

2. Costs of integrating diverse information.

This cost implies that it is harder for people to integrate more diverse

pieces of information, compared with less diverse information, into their

beliefs. If the subjects are using the DeGroot model, this cost suggests

that it will be more difficult for the subjects to calculate the average of

estimates with a greater variance than those with a smaller variance.

3. Fatigue from having previously consulted.

As subjects consult it is conceivable that fatigue builds up and so the costs

of consulting in later rounds are greater than the costs in earlier rounds.

If subjects consult until consensus is reached (V ar (xni ) = 0, ∀i ), then it is

clear that the costs of consulting are so low as to pose no obstacle to reaching

consensus. Even if costs are effectively zero, subjects are unlikely to consult un-

til absolute consensus is reached. Rather they are likely to consult until they

believe that further consultation will not increase their return. If subjects con-

sult until this point we can conclude that costs of consultation were not a factor

in inhibiting consultation.
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Under the ‘information’ treatment, each of these costs will be effectively

zero (assuming that subjects wish to use the DeGroot model, with equal weight-

ing). Therefore, a test of whether costs of consulting stop subjects from reaching

consensus is if networks under the ‘information’ treatment get closer to con-

sensus than those under the ‘baseline’ treatment. If the difference between the

final variance between the two treatments is greater on networks with greater

initial variance would be an indication that cost type 2 is a factor, and finally if

networks consult for more rounds under the ‘information’ treatment compared

with the ‘baseline’ treatment this would be an indication that fatigue is a factor

in consultation.

Based on the costs of consulting, predictions for the experiment include:

1. In general, if costs are a factor:

(a) More subjects will choose to consult under the ‘Information’ treat-

ment compared with the ‘Baseline’ treatment.

(b) Those that consult will have more consultations under the ‘Informa-

tion’ treatment compared with the ‘Baseline’ treatment.

2. If cost type 1 is a factor:

(a) Fewer subjects will choose to consult on dense networks compared

with sparse networks.

(b) Those that consult will have fewer consultations on dense networks

compared with sparse networks.

3. If cost type 2 is a factor:

(a) There will be fewer consultations on networks with greater initial

variance.

(b) Networks with greater initial variance will have greater final vari-

ance.

4. If cost type 3 is a factor:

(a) Fewer subjects will choose to consult later in the session.

(b) Those that consult will have fewer consultations later in the session.
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5 Experiment Details and Subjects

The experiment was designed using the software program z-tree (Fischbacher

2007) and conducted at the Lund University School of Economics and Manage-

ment (LUSEM). The experiment was conducted across nine sessions, with a to-

tal of 120 subjects. The subjects were drawn from the student body at LUSEM.

In each session the subjects completed four phases of three rounds for a total of

twelve rounds. The subjects were paid for three of the twelve rounds randomly

selected by the computer. In each of the phases a different treatment was pre-

sented. The four treatments used were:

1. a sparsely-connected network, baseline treatment (T1),

2. a highly-connected network, baseline treatment (T2),

3. a highly-connected network, information treatment (T3),

4. a non-consulting treatment (T4).

Under the ‘baseline’ treatment subjects only received their neighbors’ most

recent estimates. Under the ‘information’ treatment subjects received their neigh-

bors’ most recent estimates as well as the averages of their neighbors’ most re-

cent estimates and the average of their neighborhoods’ most recent estimates

(that is, the average of their neighbors’ estimates and their own most recent es-

timate). In the non-consulting treatment the subjects were not able to consult

with other subjects and their payment was based on their initial estimates. Ta-

ble 1 shows the details of the sessions. In the first six sessions, the order in which

the consultation treatments (T1, T2, T3) were presented was rotated so that ev-

ery permutation of the order of the three treatments was used. The final phase

in each session was always the non-consulting treatment. The final three ses-

sions repeated the order of sessions 1, 4 and 6 as these were the least-attended

sessions of the first six.

After the instructions for the experiment were read to the subjects and be-

fore they started the experiment the subjects completed control questions (CQ)

in which they were asked to estimate the probability that there were at least 50

white balls in the urn based on each of the four possible samples. After the sub-

jects had submitted their estimates they were each provided with the true prob-

abilities based on the different samples. These true probabilities are shown in

Table 2. They were allowed to refer to these true probabilities during the course
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Table 1: Session Information

Session Number of Subjects Order of Treatments

1 10 T1, T2, T3, T4

2 15 T2, T3, T1, T4

3 15 T3, T2, T1, T4

4 10 T1, T3, T2, T4

5 15 T2, T1, T3, T4

6 10 T3, T1, T2, T4

7 20 T1, T2, T3, T4

8 10 T1, T3, T2, T4

9 15 T3, T1, T2, T4

Table 2: The true estimates of the probability of there being 50 or more white

balls in the urn based on a single sample of three balls randomly drawn (without

replacement) from the urn
Number of white balls in sample 0 1 2 3

True estimate 0.06 0.32 0.70 0.94

of the experiment. The subjects were thus induced to have correct priors about

the number of white balls in the urn (that is, priors reflecting that the number of

white balls in the urn were drawn from a uniform distribution across all possible

outcomes).

Following the experiment, to gauge their level of risk aversion, the subjects

were asked to select from eight different gambles the one gamble that they pre-

ferred. The gambles were modified versions of those in Eckel & Grossman (2002)

and are presented in Table 4 in the Appendix. The gambles were in order of in-

creasing riskiness, with gamble 1 a risk-free gamble and gamble 8 the most risky

gamble. The subjects were not paid based on their choice of gamble. Follow-

ing the experiment subjects also completed a questionnaire on general demo-

graphic information and a cognitive reflection task (CRT). The CRT consisted of

five questions in which the intuitive answers were not the correct answers. The

CRT was an extended version of the CRT in Frederick (2005) and the questions

are in Table 5 in the Appendix.

Of the subjects, 69 were men and 51 women. The ages of subjects ranged

from 18 to 49 with an average age of 24.9 and a median age of 24. 46 subjects
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were undergraduate students, 72 were postgraduate students, with a further two

not studying. 78 subjects were majoring in economics, 24 in business adminis-

tration and 18 had other majors. 66 subjects had attended a Swedish high school

and 54 had not.

6 Main Results

In the regressions shown in the Appendix and commented on in this section,

session dummies and demographic information on the subjects’ age, gender,

undergraduate/postgraduate status, major, and whether they went to a Swedish

high school or not were included but are not presented in the tables. The data

was clustered at the subject level where appropriate.

6.1 Bayes vs DeGroot: Testing Hypothesis 1

Under the DeGroot model, subjects’ updated estimates are a weighted average

of their neighborhoods’ beliefs. One of the consequences of this is that, if sub-

jects are using the DeGroot model, their updated estimates should never be out-

side the range of their neighborhood’s estimates. Therefore, if a subject updates

their estimate to an estimate that is outside the range of their neighborhood,

they clearly are not using the DeGroot model. However, even if their updated

estimate is outside their neighborhood’s range this does not mean that they are

necessarily using a Bayesian updating framework, as the Bayesian update might

not be outside the range of their neighborhood.

To calculate the Bayesian update it is necessary to infer the evidence on

which the original estimate was made. While subjects can credibly infer the

evidence on which their neighbors’ initial estimates are based (particularly if

their neighbors’ estimates coincide with the true probabilities), inferring the

evidence on which their neighbors’ subsequently updated estimates are based

requires significant assumptions about how their neighbors updated their esti-

mates. Given these complexities, this analysis was only conducted on the first

updates after the initial estimates were made. To make inferences about the

neighbors’ samples, I have treated a neighbor’s estimate as uninformative if

their estimate was 0.5. If the neighbor’s estimate was not 0.5, I assumed that

the subjects would assess their neighbor’s sample to be whichever sample cor-

responds to the true estimate that is closest to the estimate of the neighbor’s
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estimate. That is, if, for example, the neighbor gave an estimate of 0.75, I have

assumed that the subject assessed the neighbor’s sample as being two white

balls and one black ball as that corresponds to the nearest true estimate (0.699)

to 0.75, regardless of what the neighbor’s actual sample was.

The calculation of the Bayesian update was based on the inferred sample of

the subject’s neighbors and used the true probability based on the subject’s own

sample as their prior belief (rather than their initial estimate). The true proba-

bility was used because the initial estimate could be affected by risk aversion,

while the subject would know what the true probability was as this had been

given to them. Nonetheless, the results did not change significantly when the

Bayesian update was assessed using the subjects’ own initial estimates.

Across observations in which the subject chose to consult at least once (882 ob-

servations), the neighborhood’s average estimate (including the subject’s own

estimate) proved to be a better predictor of subjects’ updated estimates (RMSE=0.168)

compared with the Bayesian update (RMSE=0.255), indicating that the DeGroot

model was a better predictor of subject behavior. Nonetheless, Table 3 shows

that, of the times in which a subject chose to consult at least once, 17.7 per

cent of the time (156 observations) the subject’s updated estimate was outside

the range of their neighborhood’s estimates and so they could not have been

using the DeGroot model. Furthermore, when the Bayesian estimate was out-

side the range of the neighborhood’s estimates (447 observations), 30 per cent

of the time (134 observations) the subject also updated their estimate outside

the range of their neighborhood’s estimates.

Of the 120 subjects, 111 had, when they chose to consult, at least one occa-

sion when the Bayesian update was outside the range of their neighborhoods’

estimates. Of these 111 subjects, 65 updated their estimate outside their neigh-

borhoods’ range on at least one occasion when the Bayesian update suggested

that they should. This suggests that 59 per cent of subjects who had a chance

to “show that they were Bayesian”, took at least one of those opportunities. This

implies a far higher rate of Bayesian updating on the part of subjects than has

been shown by previous research, such as that of Chandrasekhar et al. (2015)

who found that only 17 per cent of subjects would choose the Bayesian ap-

proach when the predictions of the Bayesian and DeGroot models diverged.

A probit model was run to investigate the factors that caused a person to

update their estimate in line with the Bayesian update. The sample for this

model was all observations in which a subject chose to consult at least once
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Table 3: Bayes vs Degroot Shares. The sample used for the table is all obser-

vations in which a subject chose to consult at least once. The columns show

the number of observations where the Bayesian update is outside the range of

the subject’s neighborhood. The rows show the number of observations when

the subject’s updated estimate following the initial consultation was outside the

range of their neighborhood’s estimates.
Bayesian update outside range

Yes No Total

Actual update outside range
Yes 134 22 156

No 313 413 726

Total 447 435 882

and the Bayesian update was outside the range of the subject’s neighborhood’s

estimates. Table 7 in the Appendix shows the results of this probit model. Sub-

jects were more likely to update their estimate outside the range of their neigh-

bors’ estimates: the further the neighborhood average was from 0.5; the further

the Bayesian estimate was from the neighborhood’s range; or if they received a

‘moderate’ sample4.

That the subjects were more likely to update outside the neighborhood range

the further the neighborhood average was from 0.5, perhaps indicates that, when

the subjects were more certain that the number of white balls was on one side

of 50 than the other, they felt more secure giving an update further from 0.5

and hence more likely outside their range. Assuming that subjects that used

Bayesian updating had some error around the Bayesian estimates, it is not un-

expected that the further the Bayesian update was outside the neighborhood

range the more likely they were to also update their estimates outside the range

of their neighborhoods. The final factor that increased the likelihood of a sub-

ject updating her estimate outside the range of her neighbors was if the subject

received a moderate sample. This perhaps suggests that subjects with a more

extreme sample had more extreme estimates and so did not have so far to up-

date their estimates to outside the range.

Interestingly, personal factors such as, CRT scores, risk aversion and scores

on the control questions had no effect on the likelihood of following the Bayesian

4A ‘moderate’ sample is defined as one that contains two balls of one color and one ball of the other

color.
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update outside the neighborhood range. Receiving the averages of the neigh-

borhood also did not affect the likelihood of subjects updating outside the range,

suggesting that if subjects were Bayesian they could ignore a signal not to be.

Being more or less connected also had no effect on the likelihood of being Bayesian.

These results suggest that, while the best model for predicting the updated

estimates of subjects was the Degroot model, there was a significant minor-

ity of subjects who did not use the DeGroot model, probably in favor of being

Bayesian. Moreover, personal factors and factors relating to the network condi-

tions did not seem to affect the likelihood of being Bayesian. Instead conditions

relating to the information received, and how confident this information made

subjects, caused them to follow the Bayesian estimate.

6.2 Consultations: Testing Hypothesis 2

To test Hypothesis 2, regressions were run at the group level and at the individ-

ual level to investigate the influences on the number of times agents consulted.

Table 8 shows the results for regressions at the group level, while Table 9 shows

the results from two regressions looking at the decisions of individuals to con-

sult.

Under the DeGroot model, groups reach consensus if allowed to consult an

infinite number of times. In reality people do not consult infinitely so the first

group-level regression considered the factors that determined the number of

times groups consulted. When subjects were connected on sparse networks,

the average number of consultations was significantly greater than when sub-

jects were connected on more highly connected networks (treatment 2). How-

ever, when subjects were on highly-connected networks with additional infor-

mation (treatment 3), the average consultations was not significantly different

to those under treatments one or two. This is consistent with the analysis pro-

vided previously that the marginal benefit of consulting falls more quickly on

highly connected networks than on sparsely connected networks and so groups

on the sparsely connected network consult more times. That subjects were no

more likely to consult under the ‘information’ treatment than under the ‘base-

line’ treatment from the densely-connected network indicates that the costs of

consulting were not a factor. Fatigue does not appear to be a factor in decid-

ing whether or not to consult, given that the number of consultations groups

undertook was not affected by how late in the session it was.

Another result was that greater initial variance in a group’s estimates led the
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group members to consult more times. As shown in Section 4, there is greater

marginal benefit to consulting if the group has greater initial variance and so,

this evidence suggests that the main factor causing people to consult longer is

the perceived marginal benefits of consultation.

Given that decisions around consulting occurred at the individual level it

is worthwhile analyzing the individual level data so I now look at the factors

influencing their individual decisions regarding how many times to consult.

Each of the regressions in Table 9 has the number of times the subjects chose

to consult as the dependent variable. The first regression includes all subjects

in all consultation rounds (1080 observations). The second regression restricts

the sample to those times when the subject chose to consult at least once.

The results of the first regression (that included those subjects that chose to

consult and those that chose not to consult) indicate that subjects chose to con-

sult more times if: they were less risk averse; they received a ‘moderate’ sample;

their initial estimate was further from 0.5; or their initial estimate was further

from their neighborhood’s average. Subjects tended to choose to consult fewer

times if: their neighborhood’s average was further from 0.5 or if their neighbor-

hood’s variance was greater. Of the treatments, subjects consulted more times

if they were under treatment one than treatments two or three, while there was

no statistically significant difference between treatments two and three.

As will be shown later, the dominant group among the subjects who chose

not to consult were subjects who were risk averse and chose to estimate 0.5 re-

gardless of other factors. This explains why these factors became insignificant

when the sample is restricted to just those who chose to consult. Furthermore,

receiving a moderate sample does not affect the number of consultations once

the sample is restricted to those who choose to consult at least once, suggesting

the receiving a moderate sample makes subjects more likely to choose to con-

sult than not consult, but does not affect the number of times they choose to

consult after that.

Looking at those factors that remain significant when the sample is restricted

to those who chose to consult at least once, less risk averse subjects consulted

more than more risk averse subjects. This result is somewhat surprising as choos-

ing to consult more did not involve any reduction in the payoff and so would

seem to be a less risky strategy. Potentially the risk averse subjects were less

likely to stray too far from an estimate of 0.5 and so saw less gain in consulting.

Having fewer connections lead to more consultations than having more con-
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nections. This is consistent with the analysis that suggested that the marginal

benefits of consultation would reduce more quickly with more connections than

fewer. Receiving the averages of neighbors’ beliefs did not affect the number of

consultations, again suggesting that the costs involved in updating beliefs was

not a significant factor in deciding how many times to consult.

Once subjects had chosen to consult, measures of more general uncertainty

tended to increase the number of consultations subjects chose, but measures of

more individual uncertainty did not. The closer the number of white balls were

to fifty (and hence the closer to the border between the two payoff states) and

the closer was the neighborhood average to 0.5 the more consultations subjects

chose. However, receiving a moderate sample and having an initial estimate

closer to 0.5 did not affect the number of consultations chosen once the subject

had chosen to consult.

Given the neighborhood variance, the further subjects’ initial estimates were

from the neighborhood average the more they would consult. This suggest that

if subjects were initially more in line with their neighborhood they felt there was

less to gain through consultation and so consulted less.

Taken together these results suggest that subjects’ decisions to consult were

based primarily on the perceived benefits of consulting rather than the costs of

doing so. That is, subjects continued to consult until they felt that there was no

more marginal benefit to consulting. Furthermore, uncertainty about that state

of nature induced subjects to choose to consult and consult more times.

6.3 Convergence to Consensus

One of the predictions of the DeGroot model is that strongly-connected net-

works will converge to consensus if left to continue to consult. To test this pre-

diction regressions were run at the group level for all groups in the consultations

rounds (216 observations). Table 8 shows the results for these regressions.

In this experiment, consensus can be defined as all members of the group

having the same beliefs. This will entail that there is no variance in group mem-

bers’ beliefs after consultation is finished. Only six times in the experiment was

the final variance of a groups’ beliefs equal to zero. Of these instances, five times

the consensus was at zero or one, and once the consensus was at 0.5. Consen-

sus occurred once under treatment one, four times under treatment two and

once under treatment three. The consensus at 0.5 was under treatment two and

took two consultations to reach. Of the other instances of consensus, three were
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reached with a maximum of two consultations within the group and the other

two instances took three consultations within the groups.

Given how few groups reached consensus, it is difficult to draw many con-

clusions from those instances. Instead I looked at the factors that influence the

final variance of the groups and finally the factors that cause groups members’

beliefs to converge. Table 8 shows that groups that had a larger initial variance

tended also to have a larger final variance and that groups’ final variance tended

to be smaller later in the sessions. Interestingly, the number of consultations did

not affect the final variance nor did the number of connections. These results

suggest that while greater initial variance led group members to consult more

often, this extra consultation did not reduce the final variance to the same lev-

els as those groups with smaller initial variance. So perhaps while groups with

greater variance saw greater initial benefit in consulting, this extra consulting

did not ultimately lead to closer beliefs due to the cost of integrating more di-

verse information. That the treatments did not affect the final variance suggests

that the costs of integrating more information sources was not a factor in con-

sultations.

Groups’ members’ beliefs converged (that is, the final variance of the group’s

beliefs was less than the initial variance) 73 per cent of the time (158 groups

out of 216). Convergence is predicted both if it is assumed that the subjects

follow the DeGroot model or that they are Bayesian (Gale & Kariv (2003), Choi

et al. (2005), Choi et al. (2012)). Therefore, it is interesting that over a quarter

of groups’ beliefs diverged. Groups were more likely to converge if they had

a greater initial variance (which possibly reflects that they had more scope to

converge) or if it was later in the session. On the whole, the treatments had no

effect on the likelihood of groups converging, nor did the number of consulta-

tions. These are somewhat strange results as the DeGroot model predicts that

convergence should occur more quickly on more connected networks, and that

convergence should be more likely the more times a group consults.

6.4 Accuracy of beliefs

Ultimately, agents seek information about the world is in order to improve their

beliefs about the world and their confidence in the correct beliefs. Therefore, it

is worthwhile considering which factors led subjects to become more confident

of the correct answers. Two regressions were run to investigate the efficacy of

the consultations. The results of these regressions are shown in Table 10. In each
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of these regressions, the dependent variable is the absolute difference between

the subjects’ final estimates and the Correctly Certain (CC) beliefs. CC beliefs

are defined as estimates that reflected subjects that were certain of the correct

state of nature. That is, if the number of white balls is at least 50, the CC belief

is 1 and if the number of white balls is less than 50, the CC belief is 0. This

measure was used rather than the payoffs themselves as the non-linear nature

of the payoffs would overweight incorrect answers. The first regression’s sample

is all subjects in all consultation rounds (1080 observations). The sample for the

second regression is the observations in which subjects chose to consult at least

once (882 observations).

In the regression that includes the non-consulters, subjects’ final estimates

were closer to the CC beliefs if: they were less risk averse; they consulted a larger

neighborhood; the number of white balls was further from 50; their initial esti-

mate was further from 0.5; their neighborhood average was further from 0.5;

their neighborhood had a smaller variance; or their initial estimate was closer

to their neighborhood’s average. When the sample is restricted to those subjects

who chose to consult at least once most of the same factors remain significant.

However, those factors relating to subjects’ initial estimates are no longer signif-

icant.

It is reasonable that factors relating to initial estimates should have less im-

pact when excluding non-consulters as, for non-consulters, their initial esti-

mates are their final estimates and so will have greater impact. Nonetheless,

it is interesting that for people who choose to consult, individual initial condi-

tions appear not to have any impact on their final result. Having an initial es-

timate close to 0.5 or further from the neighborhood average can be overcome.

What cannot be overcome, however, are external initial conditions. That is, if the

number of white balls is near 50, the initial neighborhood average is near 0.5 or

greater initial neighborhood variance all negatively impact the final result.

Subjects do significantly worse under treatment one than under treatment

two or three, with no significant difference between treatments two and three.

This suggests that consulting more widely improves outcomes. On the other

hand, reducing the costs of incorporating information does not improve out-

comes, possibly because subjects did not use the averages much anyway. In-

terestingly, neither consulting more nor revising estimates more improved the

outcomes, suggesting that consulting widely is important but consulting more

often among your neighbors does not improve results. Alternatively, this shows
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Figure 3: Declined consultations and estimates. The chart on the left shows

the number of subjects who chose not to consult the relevant number of times.

For example, 15 subjects chose not to consult once, while 9 subjects chose not

to consult three times. The chart on the right is a histogram of the estimates

made by subjects who chose not to consult with their neighbors in a particular

consultation round. The modal estimate is 0.5 with smaller peaks at the true

estimates associated with the ‘moderate’ samples.

that information travels more easily around a highly connected networks than

a less-connected network as the information path around a less-connected net-

work is more easily broken by an agent stopping consulting.

7 Subsidiary Results

7.1 Non-consulters

Of the 1080 times that subjects could consult (120 subjects by 9 consultation

rounds), subjects declined to consult with their neighbors 198 times, or nearly

20 per cent of the time. Given that consulting did not reduce the subject’s pay-

off, it seems somewhat strange that, so many times, subjects should choose not

to consult at all. As shown in Figure 3, over 40 per cent of the subjects (51 of the

120 subjects) chose not to consult at least once, with five subjects choosing not

to consult at all. Figure 3 also shows a histogram of the estimates given by sub-

jects when they did not consult. The modal estimate is 0.5. Smaller peaks can

be seen around the true estimates associated with the moderate samples and

smaller peaks at 0 and 1. The smaller peaks at 0 and 1 compared with the true

estimates associated with the moderate samples, suggest that non-consulters

who received ‘extreme’ samples split their estimates between the true estimates

associated with those samples and the corner solutions.
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To investigate the decision not to consult, a probit model was run on a dummy

variable that took the value of one if the subject chose not to consult in a par-

ticular consultation round, and zero otherwise. The results of this model are

shown in Table 11. Subjects were more likely to choose not to consult if: they

were more risk averse; it was earlier in the session; they had not received a ‘mod-

erate’ sample; or their estimate was closer to 0.5. These results suggest that the

dominant group among the non-consulters were subjects who were more risk

averse, and chose to estimate 0.5 knowing that they would then be guaranteed

to receive 75 kronor regardless of the number of white balls in the urn.

As mentioned in the previous section, when subjects received a moderate

sample they were presumably less certain about the state of nature and so de-

sired more information before making their final estimate and so chose to con-

sult at least once. That subjects were less likely to choose not to consult later

in the session possibly reflects that they felt more comfortable with the process

and so were more willing to consult, or alternatively they might have felt that

they were not doing so much and so boredom led them to consult.

To further investigate the group of non-consulters, an additional regressions

was run to investigate the factors that led subjects who chose not to consult to

estimate closer to the correctly certain beliefs (CC beliefs). As shown in Table 11,

subjects were more likely to make an estimate closer to the CC beliefs if they:

were less risk averse; did better on the control questions; or did not get a mod-

erate sample. These results again confirm that the dominant group among the

non-consulters were risk averse, with a less intuitive grasp of probability theory,

who chose to estimate 0.5.

7.2 Initial Estimates

In order for subjects to use Bayesian updating they must be able to rely on the

estimates of their neighbors to provide accurate information about the evidence

on which those estimates are based. Therefore, an investigation into the accu-

racy of the beliefs as expressed by the estimates is warranted.

The subjects were provided with the actual probabilities of there being at

least fifty white balls in the urn based on the different possible samples. Figure 4

shows the share of subjects who accurately reported those probabilities in their

initial estimates. Over the first nine rounds of the experiment, there appears to

be an increasing share that report those probabilities accurately (and those who

are within five percentage points of the correct estimates). Up to 70 per cent of
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Figure 4: Initial estimates. The figure on the left shows the share of subjects

whose initial estimate was the true estimate of the probability that there were

at least 50 white balls in the urn, as well as the share whose initial estimate

was within five percentage points of the true estimate. The figure on the right

shows the mean absolute difference between the subjects’ initial estimates and

the true probabilities based on their samples.

subjects gave initial estimates that were within 5 per cent of the true probability.

In the final three rounds, however, this share drops dramatically. Figure 4 also

shows the mean absolute difference between the initial estimates and the true

estimates. Again there appears to be an improvement in the accuracy of initial

estimates over the course of the first nine rounds, which then reverses over the

final three rounds. This suggests that over the course of the consultation rounds

(rounds 1-9) subjects learnt to give more accurate estimates based on their sam-

ples. However, once they got to the non-consultation rounds (rounds 10-12)

they felt less need to be accurate in their estimates.

Possibly this was because they found that they preferred to have accurate

information from other subjects and so due to some form of cooperative moti-

vation tried to help other subjects as well by giving accurate information. How-

ever, once the consultation rounds were finished, there was no cooperative need

to give the true estimates anymore. Therefore, subjects instead gave estimates

more in line with predictions based on their risk aversion. This explanation is

borne out by regressions conducted on the subjects initial estimates.

Table 12 shows the results of two regressions. The first regression shows

the factors contributing to the accuracy of the initial estimates, measured by

the absolute difference between the initial estimates and the true probabilities

based on the relevant samples. As the figures suggested, subjects got more ac-

curate as the round number increased but were much less accurate in the non-

consultation rounds (T4). Furthermore, this regression suggests that subjects
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were more accurate in their initial estimates if they got a ‘moderate’ sample.

Giving the correct estimate of the probability based on the subject’s beliefs

is only the utility maximizing solution if the subject is risk neutral. If the sub-

ject is risk averse they should give an estimate that is closer to 0.5 than their

beliefs about the probability that there are at least 50 white balls, and if they

are risk loving they should give an estimate that is further away from 0.5 than

their beliefs. The second regression in Table 12 tests this proposition. The de-

pendent variable is the absolute difference between the initial estimate and 0.5,

minus the absolute difference between the true estimate and 0.5. This measures

whether or not the subject’s initial estimate is closer to 0.5 than the true prob-

ability. The results show that a subject is more likely to give an estimate in the

non-consultation rounds that is closer to 0.5 than the true estimate if they did

better on the CRT or if they received a moderate sample. However, the subjects’

risk aversion did not make them more likely to give an initial estimate further

away from 0.5 than the true estimate.

These results suggest that, as subjects went through the experiment, they

gave progressively more accurate initial estimates, possibly in an act of reci-

procity as they appreciated receiving accurate estimates from their neighbors.

However, once they got to the non-consultation rounds they felt less obligated

to give accurate estimates. Nonetheless, during the consultation rounds, with

up to 70 per cent of subjects within 5 per cent of the true estimate, it can be con-

sidered that it was reasonable for subjects to rely on other subjects’ estimates to

come to conclusions about their neighbors’ samples.

8 Conclusions

For many applications in economics it is important to have an accurate model

of how people incorporate information into their beliefs. This study compares

two of the main theories of information incorporation. I investigated this topic

through conducting an experiment in which agents had to estimate the prob-

ability that the number of white balls in an urn of 100 balls was greater than

50, using a private sample and information about other agents’ estimates of the

probability. The specific questions that I sought to answer were whether agents

used a Bayesian or DeGrootian method to incorporate other agents’ beliefs into

their own; what influenced agents decisions to consult with their neighbors;

what caused groups to approach consensus and how accurate agents’ final esti-
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mates were.

Overall, the study shows that over half of agents would take a Bayesian ap-

proach at least some of the time, which is a significantly greater share than pre-

vious research has suggested. Nonetheless, an estimate based on the DeGroot

model outperforms a Bayesian estimator in predicting the updates of agents’

beliefs. The size of the group that will use a Bayesian approach gives some sup-

port to the use of this model in economic theories, though it should be main-

tained that the DeGroot approach will possibly still provide more accurate esti-

mates overall.

Decisions of agents appear to be focused mostly on the perceived bene-

fits of consulting rather than any costs involved. Agents tend to consult more

times with their neighbors when they have fewer neighbors or if there is more

general uncertainty about the state of nature. This confirms that the perceived

marginal benefits from consulting leads people to consult more when they are

less connected. However, this increase in consultation does not lead to more

convergence to others’ beliefs or to better final beliefs. The average number

of consultations and the connectedness of the networks have no effect on how

close to consensus groups finish, despite the DeGroot model suggesting that

they should. Agents have better final estimates the more connected they are.

However, the number of times they consult with their neighbors has no effect

on the accuracy of their final estimates.

This is not to say that consultation cannot improve beliefs. Consultation

can improve beliefs by overcoming individual uncertainty about the state of

the world, but it will not overcome more general uncertainty. While consult-

ing more widely can improve beliefs, consulting the same neighbors more of-

ten does not improve beliefs. This possibly suggested that information is more

likely to be passed around a highly connected network than a poorly connected

one, as it is far easier for an information path to be broken in a poorly connected

network.
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A Appendix

Table 4: Risk choices. Subjects were asked to choose one of the gambles de-

scribed below. In each gamble, each of the two possible outcomes had a 0.5

probability of occurring, as though a coin was tossed and the subject would be

awarded the amount of money corresponding to the result of the coin toss for

the gamble they had chosen. The subjects were not actually paid the amount

shown but rather asked to choose the gamble that they would most prefer if they

were to be paid for their choice. This is a modified version of the risk choices in

Eckel & Grossman (2002).
Gamble number 1 2 3 4 5 6 7 8

Heads 240 210 190 170 150 110 70 10

Tails 240 300 340 380 420 500 540 570



Instructions

February 19, 2016

1 General Information

� In this experiment, there will be 4 phases of 3 rounds for a total of 12 rounds.

� Your total earnings for the experiment will be based on your actions in 3 of the

12 rounds randomly selected by the computer.

� At the beginning of each round, you will be randomly assigned to a group of �ve

people.

� In each round, you will be asked to say how certain you are that there are at least

50 white balls in an urn of 100 balls.

� To assess this you will be provided with a random sample of balls from the urn and

you can interact with other people in your group.

� Your payo� will increase the more certain you are of the correct answer. That is,

� If there are at least 50 white balls in the urn, your payo� increases the more

certain you are that this is so.

� If there are less than 50 white balls in the urn, your payo� increases the more

certain you are that this is so.

� You will interact exclusively within your group through your computer for the du-

ration of each round without knowing the identity of the other members of your

group.

� Your payment after the experiment will be based on your actions taken during the

experiment.

� If you have questions during the experiment please raise your hand.

1



2 The Experiment

� In the experiment, there is a hypothetical urn with 100 balls in it. Each of these

balls is either white or black.

� There will be a separate urn for each group.

� The number of white balls in the urn will be randomly generated at the start of each

round.

� You will be asked to assess the likelihood that the number of white balls in the urn

is at least 50.

� To assist in assessing this likelihood each person will each receive their own random

sample of three balls from the urn.

� Your sample will appear on your computer screen as a set of 3 letters. Each of the

letters will be either �w� or �b�, depending on how many of the balls in your sample

are white or black.

� Having initially assessed the likelihood that the number of white balls in the urn is

at least 50, based on your sample, you will then be able to consult with one of the

other members of your group (your neighbor).

� This consultation will involve viewing your neighbor's estimate, based on their sam-

ple. Your neighbor will be able to consult with their neighbor at the same time.

Their neighbor will be another member of your group.

� You can then update your estimate, and your neighbor can update their estimate as

well.

� You can then elect to consult with your neighbor again to view their updated esti-

mate.

� Consultation continues until no-one on the network wants to consult again.

� Your �nal estimate will be used to determine your earnings.

3 Estimate

� Your estimate of the likelihood that the number of white balls in the urn is at least

50 will be a number between zero and one.

� The estimate can be made up to an accuracy of 3 decimal places.

� The closer the estimate is to one, the more certain you are that the number of white

balls is at least 50.
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� The closer the estimate is to zero, the more certain you are that the number of white

balls is less than 50.

� If your estimate is 1, this means that you are certain that there are at least

50 white balls in the urn.

� If your estimate is zero, this means that you are certain that there are less than

50 white balls in the urn.

� If your estimate is 0.500, this means that you think it is equally likely that there

are more or less than 50 white balls in the urn.

0 0.5 1
More likely < 50 More likely ≥ 50

4 Earnings

Your earnings each round will depend on your �nal estimate and the number of white balls

in the urn.

� Your earnings each round will be between zero and 100 kr.

� You will be paid for 3 rounds randomly selected by the computer. Therefore, your

maximum earnings for the experiment will be 300 kr.

� If the sum of your earnings for the three rounds selected by the computer is less

than 50 kr, you will be paid 50 kr. Therefore, your minimum total earnings for the

experiment will be 50 kr.

� If the number of white balls in the urn is at least 50, your earnings will be greater,

the closer your �nal estimate is to 1.

� If the number of white balls in the urn is less than 50, your earnings will be greater,

the closer your �nal estimate is to zero.

� Examples:

� if the number of white balls in the urn is at least 50; and:

* your estimate is 1.000, your earnings are 100 kr.

* your estimate is 0.750, your earnings are 93,75 kr.

* your estimate is 0.500, your earnings are 75 kr.

* your estimate is 0.250, your earnings are 43,75 kr.

* your estimate is 0.000, your earnings are 0 kr.
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� if the number of white balls in the urn is less than 50; and:

* your estimate is 1.000, your earnings are 0 kr.

* your estimate is 0.750, your earnings are 43,75 kr.

* your estimate is 0.500, your earnings are 75 kr.

* your estimate is 0.250, your earnings are 93,75 kr.

* your estimate is 0.000, your earnings are 100 kr.

For those interested, the mathematical formula for your earnings is as follows:

π(x) =




100

[
1− (x− 1)2

]
if W ≥ 50

100
[
1− x2

]
if W < 50.

Where π(x) is your earnings, x is your �nal estimate of the probability that the number

of white balls is at least 50, W is the number of white balls in the urn.

5 The Groups

The groups in which you will consult are as shown in Figure 1.

� There are �ve people in each group, represented by the circles in the �gure.

� Each of the �ve people assigned to each group will be randomly and anonymously

assigned to one of �ve roles (A, B, C, D, E).

� Each of these roles are essentially identical.

� The arrows show the directions of consultation.

� Each subject can view one of the other four people's estimates on the network.

� Each subject's estimates can be viewed by one of the other four people on the network.

� During consultation:

� subject A will see the estimates of subject B

� subject B will see the estimates of subject C

� subject C will see the estimates of subject D

� subject D will see the estimates of subject E

� subject E will see the estimates of subject A

4



A

B

C

DE

Figure 1: Consultation Network. The circles represent subjects and the arrows repre-

sent the direction of viewing. Each subject can view one of the other four people's estimates

on the network. Each subject's estimates can be viewed by one of the other four people

on the network.

6 Feedback and Payment

� At the end of each round the computer will show you: the number of white balls

in the urn, your �nal estimate and how much you will earn for that round if it is

selected for payment.

� At the end of the experiment your total earnings will be the sum of your earnings

from each of your selected rounds, rounded to the nearest krona.

5
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Table 5: Cognitive Reflection Task (CRT). Subjects were asked to answer the

following questions as part of the final questionnaire. The number of questions

they got correct was used as data. This is an extended version of the CRT in

Frederick (2005).
Question

1

A house contains a living room and a kitchen that are perfectly square. The

living room has four times the area of the kitchen. If the walls of the kitchen

are four meters long, how long are the walls in the living room?

2
A store owner reduced the price of a pair of SEK 1000 shoes by 10%. The next

week, he reduced it by a further 10%. How much do the shoes cost now?

3
If it takes 5 machines 5 minutes to make 5 forks how long (in minutes) would

it take 100 machines to make 100 forks?

4

In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it

takes 48 days for the patch to cover the entire lake, how long (in days) would

it take for the patch to cover half of the lake?

5
A tennis racket and a ball cost SEK 110 in total. The racket costs SEK 100 more

than the ball. How much does the ball cost (in SEK)?
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Table 6: Data description

Variable Description

ABS(Bayes -

range)

The absolute distance from the Bayesian update to the range of the subject’s

neighborhood’s initial estimates.

ABS(final - CC)
The absolute difference between the subject’s final estimate and the CC

belief.

ABS(init - nhood

avge)

The absolute difference between the subject’s initial estimate and the average

of their neighborhood’s initial estimates.

ABS(init - true)
The absolute difference between the subject’s initial estimate and the true

probability based on their sample.

ABS(init - 0.5) The absolute difference between the subject’s initial estimate and 0.5

ABS(init - 0.5) -

ABS(true - 0.5)

The absolute difference between the subject’s initial estimate and 0.5 minus

the absolute difference between the true estimate based on the subject’s

sample and 0.5.

ABS(init avge -

0.5)

The absolute difference between the average of the group’s initial estimates

and 0.5

ABS(Nhood avge

- 0.5)

The absolute difference between the average of subject’s neighborhood’s

initial estimates and 0.5.

ABS(Wballs - 50) The absolute difference between the number of white balls in the urn and 50.

Consultations
The number of times the subject consulted their neighbors’ estimates in a

round.

CRT Correct The number of questions the subject got correct on the CRT.

MAE(CQ) The mean absolute error of the subject’s answers to the control questions.

N10 A dummy variable: 1= there were 10 people in the session; 0 otherwise.

N20 A dummy variable: 1= there were 20 people in the session; 0 otherwise.

N’hood variance The variance in the initial estimates of the subject’s neighborhood.

Revisions The number of times the subject revised their estimates in a round.

Risk choice
The number of the gamble that the subject chose. The higher the number,

the more risky was the gamble.

Round The number of the round in the session.

Smod

A dummy variable: 1= the subject received a ‘moderate’ sample; 0 otherwise.

(A moderate sample is a sample with two balls of one color and one of the

other color.)

T1 Treatment 1: Sparse network, baseline treatment

T2 Treatment 2: Dense network, baseline treatment

T3 Treatment 3: Dense network, information treatment

T4 Treatment 4: No consultation treatment

T3 previous
A dummy variable: 1=the subject had performed T3 in a previous phase; 0

otherwise.
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Table 7: Bayes vs Degroot Probit model. The dependent variable is a dummy variable that is 1 if

the subject’s first updated estimate is outside the range of their neighborhood’s estimates and zero

otherwise. Positive coefficient implies that the subject’s estimate is more likely to be outside the

range of their neighborhood’s estimates. The sample is all observations when the subject chooses

to consult at least once and the Bayesian update is outside the range of the subject’s neighborhood’s

estimates (447 observations). ***=(p-value<0.01); **=(p-value<0.05); *=(p-value<0.1). Marginal ef-

fects were calculated holding other variables at their medians.

Dependent variable Dummy (actual update outside range)

Sample Consultations>0 and Bayes outside range

No. of Observations 447

Variable Coefficient Marginal effect

Constant -2.8560**

(1.1202)

CRT correct 0.0563 0.0167

(0.00670) (0.0204)

Risk Choice -0.0094 -0.0028

(0.0467) (0.0140)

MAE(CQ) 0.3091 0.0917

(0.6206) (0.1815)

T2 0.1817 0.0570

(0.1776) (0.0536)

T3 -0.1042 -0.0298

(0.2710) (0.0795)

T3 Previous -0.0399 -0.0118

(0.4322) (0.1297)

Round 0.0056 0.0016

(0.0492) (0.0148)

ABS(Wballs - 50) -0.0095 -0.0028

(0.0078) (0.0023)

Smod 0.4354** 0.1291*

(0.2159) (0.0715)

ABS(init - 0.5) 1.2080 0.3582

(0.9163) (0.2835)

ABS(Nhood avge - 0.5) 5.6309*** 1.6698***

(0.8830) (0.3486)

ABS(Bayes - range) 5.0924*** 1.5101***

(1.2237) (0.4186)

Pseudo R2 0.1648
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Table 8: Group analysis. The dependent variable for the first regression is the

average number of consultations in each group. The dependent variable for the

second regression is the final variance of estimates for each group. The depen-

dent variable for the final probit model is a dummy variable that records 1 if the

group converged (final variance less than initial variance) and zero otherwise.

Marginal effects were calculated holding other variables at their medians. The

sample for each model is all groups in the consultation rounds (216 observa-

tions). ***=(p-value<0.01); **=(p-value<0.05); *=(p-value<0.1)
Dependent variable Average Consultations Final Variance Convergence

Sample all groups all groups all groups

No. of Observations 216 216 216

Variable Coefficient Coefficient Coefficient Marginal effect

Constant 2.6682*** 0.0224 -0.3478

(0.1801) (0.0126) (0.7471)

T2 -0.1421* -0.0009 -0.2276 -0.0499

(0.0843) (0.0058) (0.2483) (0.2483)

T3 -0.1985 -0.0007 -0.5901 -0.1295***

(0.1372) (0.0095) (0.4034) (0.0488)

T3 Previous -0.1676 0.0153 -0.5711 -0.1253

(0.2110) (0.0145) (0.6180) (0.0969)

Round 0.0155 -0.0032* 0.1553** 0.0341***

(0.0244) (0.0017) (0.0723) (0.0100)

ABS(Wballs-50) -0.0049 0.0003 -0.0064 -0.0014

(0.0044) (0.0003) (0.0131) (0.0029)

ABS(init avge - 0.5) -0.2537 -0.0481 -0.5029 -0.1103

(0.4347) (0.0299) (1.2762) (0.2783)

Initial variance 1.7393* 0.4098*** 9.2773*** 2.0353**

(0.8856) (0.0615) (2.9822) (1.0171)

Average Consultations 0.0004 0.1151 0.0253

(0.0049) (0.2043) (0.0466)

adj R2 0.3526 0.2904 0.1307
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Table 9: Consultations. The dependent variable is the number of consultations. The sample for

the first regression is all subjects in all consultation rounds (120 subjects by 9 consultation rounds =

1080 observations). The sample for the second regression is subjects in consultation rounds when

the subject chooses to consult at least once (882 observations). Standard errors are in parentheses.

***=(p-value<0.01); **=(p-value<0.05); *=(p-value<0.1)

Dependent variable Consultations Consultations

Sample all consultation rounds Consultations > 0

No. of Observations 1080 882

Variable Coefficient Coefficient

Constant 3.119*** 3.5328***

(0.6715) (0.6621)

CRT correct 0.0110 -0.0017

(0.0530) (0.0425)

Risk Choice 0.0786** 0.0467

(0.0340) (0.0290)

MAE(CQ) 0.0981 0.2784

(0.4384) (0.3657)

T2 -0.1930** -0.2184***

(0.0816) (0.0712)

T3 -0.2689** -0.2638**

(0.1232) (0.1056)

T3 Previous -0.2224 -0.0829

(0.1862) (0.1642)

Round 0.0212 -0.0123

(0.0206) (0.0185)

ABS(Wballs-50) -0.0041 -0.0069**

(0.0037) (0.0032)

Smod 0.3219** 0.0679

(0.1489) (0.1106)

ABS(init-0.5) 1.8835*** 0.3366

(0.6610) (0.4287)

ABS(N’hood avge-0.5) -1.1425** -0.7944**

(0.4421) (0.3878)

N’hood variance -2.1094* -1.7566

(1.1793) (1.1746)

ABS(init-nhood avge) 0.8949** 0.9265**

(0.3584) (0.3689)

R2 0.2363 0.1508
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Table 10: Absolute final error. The dependent variable is the absolute difference between the

subjects’ final estimates and the Correctly Certain (CC) belief. A negative coefficient implies a

more accurate estimate. The sample for the first regression is all subjects in all consultation rounds

(120 subjects by 9 consultation rounds = 1080 observations). The sample for the second regression

is subjects in consultation rounds when the subject chooses to consult at least once (882 observa-

tions). Standard errors are in parentheses. ***=(p-value<0.01); **=(p-value<0.05); *=(p-value<0.1)

Dependent variable ABS(final - CC) ABS(final - CC)

Sample All consultation rounds Consultations > 0

No. of Observations 1080 882

Variable Coefficient Coefficient

Constant 0.6760*** 0.6674***

(0.0553) (0.0875)

CRT correct -0.0058 -0.0096

(0.0053) (0.0066)

Risk Choice -0.0080** -0.0075*

(0.0031) (0.0040)

MAE(CQ) 0.0547 0.0156

(0.0512) (0.0631)

T2 -0.0693*** -0.0773***

(0.0200) (0.0210)

T3 -0.0952*** -0.1070***

(0.0280) (0.0305)

T3 Previous -0.0388 -0.0412

(0.0476) (0.0539)

Round 0.0055 0.0064

(0.0053) (0.0059)

ABS(Wballs-50) -0.0052*** -0.0060***

(0.0010) (0.0011)

Smod 0.0231 0.0301

(0.0214) (0.0297)

ABS(init-0.5) -0.2354*** -0.0979

(0.0803) (0.1136)

ABS(N’hood avge-0.5) -0.6697*** -0.6954***

(0.0718) (0.0887)

N’hood variance 0.6567*** 0.8252***

(0.2611) (0.2910))

ABS(init-nhood avge) 0.1533* 0.0589

(0.0897) (0.1003)

Consultations 0.0034 0.0083

(0.0076) (0.0095)

Revisions -0.0145 -0.0155

(0.0117) (0.0123)

R2 0.3151 0.3045
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Table 11: Non-consulters. The dependent variable in the first probit model is a dummy vari-

able that records 1 if the subject chose not to consult at all in a round, and zero otherwise. A posi-

tive coefficient implies a higher likelihood of choosing not to consult. Marginal effects were calcu-

lated holding other variables at their medians. The sample is all subjects in the consultation rounds

(120 subjects by 9 consultation rounds = 1080 observations). The dependent variable for the second

regression is the absolute difference between the estimate and 0.5. The dependent variable for the

third regression is the absolute difference between the estimate and the CC belief. The samples for

the final two regressions is observations where the subject chose not to consult in the consultations

rounds. ***=(p-value<0.01); **=(p-value<0.05); *=(p-value<0.1)

Dependent variable Non-consultation dummy ABS(estimate - 0.5) ABS(estimate - CC)

Sample All subjects in consultation rounds Consultations=0 Consultations=0

No. of Observations 1080 198 198

Variable Coefficient Marginal effect Coefficient Coefficient

Constant -2.2484** 0.3043*** 0.4096***

(0.9067) (0.0971) (0.1353)

CRT correct -0.0267 -0.0052 -0.0163 -0.0040

(0.0710) (0.0140) (0.0116) (0.0130)

Risk Choice -0.1103** -0.0216 0.0073 -0.0327***

(0.0529) (0.0132) (0.0096) (0.0113)

MAE(CQ) 0.2729 0.0535 -0.2563** 0.3224**

(0.5512) (0.1085) (0.1117) (0.1288)

T2 -0.0708 -0.0139 -0.0060 -0.0412

(0.1021) (0.0216) (0.0228) (0.0390)

T3 0.0781 -0.0153 -0.0286 0.0001

(0.1682) (0.0307) (0.0333) (0.0670)

T3 Previous 0.3746 0.0735* 0.0245 0.0055

(0.2700) (0.0438) (0.0607) (0.0895)

Round -0.0682** -0.0134** -0.0045 0.0037

(0.0309) (0.0052) (0.0067) (0.0114)

ABS(Wballs-50) -0.0009 -0.0002 -0.0002 -0.0030

(0.0067) (0.0013) (0.0012) (0.0019)

Smod -0.4522** -0.0887** -0.1500*** 0.1719***

(0.1968) (0.0439) (0.0234) (0.0383)

ABS(init-0.5) -2.7474*** -0.5389**

(0.8513) (0.2352)

R2 0.2262 0.5606 0.3644
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Table 12: Initial Estimates. The dependent variable in the first regression is the absolute differ-

ence between the initial estimate and the actual probability based on the subject’s sample. Negative

coefficient implies the initial estimate is closer to the true estimate than average. The sample is all

subjects’ initial estimates across all rounds (120 subjects by 12 rounds =1440 observations). The

dependent variable in the second regression is the absolute difference between the initial estimate

and 0.5, minus the absolute difference between the actual probability based on the subject’s sam-

ple and 0.5. Negative coefficient implies the initial estimate is closer to 0.5 than the true estimate.

The sample is all subjects’ initial estimates in the non-consultation rounds (120 subjects by 3 non-

consultation rounds = 360 observations). ***=(p-value<0.01); **=(p-value<0.05); *=(p-value<0.1)

Dependent variable ABS(init-true) ABS(init-0.5)-ABS(true-0.5)

Sample All experimental rounds Non-consultation rounds

No. of Observations 1440 360

Variable Coefficient Coefficient

Constant 0.2441*** 0.0701

(0.0520) (0.1489)

CRT correct -0.0044 -0.0323**

(0.0047) (0.0141)

Risk Choice -0.0007 -0.0124

(0.0036) (0.0082)

MAE(CQ) 0.0433 -0.0516

(0.0403) (0.1041)

T2 0.0087

(0.0076)

T3 0.0203

(0.0152)

T4 0.1298***

(0.0134)

T3 Previous -0.0082

(0.0196)

Smod -0.0277*** -0.1262***

(0.0104) (0.0322)

Round -0.0068***

(0.0022)

Round 11 0.0145

(0.0188)

Round 12 0.0359*

(0.0206)

R2 0.1550 0.2200
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Sectoral Shocks and Aggregate

Volatility

Abstract

Macroeconomics has generally downplayed the effects of sectoral shocks on ag-

gregate volatility because it was considered that, in a well-diversified economy,

sectoral shocks would tend to cancel out at the aggregate level. However, Ace-

moglu et al. (2012, 2013) have shown that if the input-output network is unbal-

anced, the effects of sectoral shocks will not decay as fast as the diversification

argument contends. In this paper, I extend the model of Acemoglu et al. (2012)

by including a demand-side measure of industry influence. Applying this mea-

sure to various economies shows that including the demand-side influence of

industries can capture important sectoral sources of aggregate volatility. I also

present a specific case study of the Australian mining industry to demonstrate

this point.

Keywords: Sectoral shocks, macroeconomics, input-output networks, aggregate

output

JEL Classification: C67, E32
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1 Introduction

Macroeconomics has typically taken the position that sectoral shocks have little

effect on the macroeconomy because, in a well-diversified economy, negative

shocks to some sectors will be balanced by positive shocks to others. There-

fore, shocks at the sectoral level are unlikely to cause fluctuations large enough

to be significant at the macro level. Recently, however, researchers have been

looking more closely at the arguments behind this theory and have found that

there are mechanisms through which sectoral shocks can propagate through

the economy to result in aggregate fluctuations. Furthermore, there is some ev-

idence that the importance of sectoral shocks on aggregate volatility has been

increasing (Foerster et al. 2011). Moreover, monetary policy can have stronger

effects on some industries compared with others, and so policymakers need to

be aware of the influence of the industries that they will be affecting (Dixon et al.

2014, Lawson & Rees 2008).

In this paper, I have constructed a measure of demand-side industry in-

fluence which expands on the work of Acemoglu et al. (2012, 2013) who con-

structed supply-side measures of industry influence. These measures of in-

dustry influence consider the influence that industries have on other industries

through the use of input-output tables and can be used to identify whether an

economy is susceptible to sectoral shocks and to rank industries in order of their

relative influence on the economy.

We can consider that one industry has influence on another if the first in-

dustry supplies inputs to the second industry. Furthermore, this influence is

greater the larger the share of the second industry’s inputs are sourced from the

first industry. The influence of the first industry is further enhanced if the sec-

ond industry itself has large influence over other industries. Therefore, it is not

only the direct effects that an industry has on industries to which it supplies in-

puts that matter, but also indirect effects on industries that source their inputs

from the industries that an industry supplies.

This supply influence is, however, not the only way in which an industry

can be influential in an economy. Another source of influence is through the

demand side. If an industry demands a large share of another industry’s output

as an input then the first industry will have influence over the second industry.

This paper shows that only focusing on the supply-side influences can lead to

incomplete conclusions about whether an economy is susceptible to sectoral

shocks which can create a misleading picture of which industries are the most
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influential in an economy.

The economic model used in this paper is based on the work of Long &

Plosser (1983), in which a representative agent consumes goods that are pro-

duced using Cobb-Douglas production technology, in which all goods are po-

tentially used as inputs. By solving for the competitive equilibrium from both

the consumers’ and the producers’ viewpoints I construct a measure of the sup-

ply of inputs from one industry to other industries and another measure of the

demand for inputs from industries. These measures describe the influence that

each industry has over other industries through the supply of and demand for

inputs. These measures can also be considered through network theory in terms

of measures of centrality where the input-output tables define the network of

industry linkages in an economy.

Having constructed measures of industry influence for both the supply- and

demand-side, I then estimate the influence of industries in various countries. I

find that including the demand-side measures of industry influence alters the

measured susceptibility of countries to sectoral shocks. This suggests that only

focusing on the supply-side measure potentially ignores important sources of

sectoral influences on aggregate volatility. In terms of the more influential in-

dustries, the results show that there are strong similarities between countries.

For example, the most influential industries in Sweden, the US and Australia

tend to be service industries.

A strong example of how incorporating the demand side into measures of in-

fluence gives a more complete picture of the industry influences in an economy

is the case of Australia’s mining industry. In recent years, Australia’s economy

has performed extremely well, having not had a recession since the early 1990’s.

One of the main reasons for this strong performance, especially since 2000, has

been the strength of the mining industry and its production of exports, partic-

ularly to China, but also its demand for inputs as it has expanded its capacity

over the past decade or so (Connolly & Orsmond 2011). This indicates that the

influence of the mining industry on the Australian economy is greater than its

contribution to GDP growth from its gross value added (GVA). However, using

Acemoglu et al’s measure of industry influence suggests that the mining indus-

try is one of the least influential industries in the Australian economy as it does

not produce many inputs for other Australian industries. Rather its influence on

the Australian economy is through its demand for other industries’ outputs and

its production of final output. I confirm this in a case study of Australia, showing
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that, despite the recent strong influence of the mining industry on the fortunes

of the Australian economy, using only a supply-side measure of industry influ-

ence indicates that the mining industry has little importance in the Australian

economy. Adding the demand-side measure corrects this misleading picture,

confirming that that the demand-side measure is important when considering

the influences of industries on an economy as a whole.

In Section 2, I review the macroeconomic literature relating to sectoral shocks.

In Section 3, I outline my economic model. Section 4 applies the model to a

number of economies and Section 5 details a case study of the Australian min-

ing industry. Conclusions are provided in Section 6.

2 Literature Review

The diversification argument that has typically been used in macroeconomics

to downplay the importance of sectoral shocks says that in a well-diversified

economy the influence of any one industry goes to zero as the number of in-

dustries increase (Gabaix 2011). Therefore, shocks to any one sector will be bal-

anced by opposite shocks to other industries and so sectoral shocks will tend to

have little aggregate effect. Nonetheless, sectoral shocks have been estimated to

contribute significant volatility to aggregate output (Atalay 2014, Roson & Sar-

tori 2014, Mehrotra & Sergeyev 2013, Storer 1996), suggesting that the diversi-

fication argument does not always hold. The argument rests on the assump-

tions that industries are independent and identical, and that the distribution

of shocks to those industries are independent and identical. Clearly in most

economies industries are not identical, meaning that shocks to larger indus-

tries are likely to have a greater impact on the aggregate economy than shocks

to smaller ones and so can result in aggregate volatility despite diversification

(Gabaix 2011). Moreover, the shocks to industries can be greater in some indus-

tries than others and industries can have common cycles or trends, and hence

are not independent of each other (Harvey & Mills 2002). Indeed, even with

completely independent shocks, if sectors in the economy are not independent

these shocks can result in aggregate volatility (Jovanovic 1987).

One of the main channels through which industries are not independent is

the input-output linkages between industries (Aroche Reyes & Marquez Men-

doza 2012). Input-output linkages between industries result in spillovers be-

tween industries so that shocks to one industry can propagate through the econ-
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omy far more easily, causing greater aggregate volatility than the diversification

argument would suggest (Shea 2002). Therefore, a productivity shock to an in-

dustry will not only be felt by that industry but also by those industries that the

first industry supplies with inputs (Bak et al. 1992). Furthermore, the second in-

dustries will provide inputs to third industries and so, the productivity shock to

the first industry will be felt by more industries than just their direct customer

industries.

Building on the seminal work of Long & Plosser (1983), and using a measure

of industry influence based on the provision of inputs by industries, Acemoglu

et al. (2012, 2013) show that certain arrangements of the input-output matrix

can result in the influence of industries not falling to zero as quickly as the diver-

sification argument suggests. The supply influence vector outlined in Section 3

broadly replicates Acemoglu et al’s work. They show that as the input-output

matrix becomes more unbalanced, some industries will retain significant influ-

ence over the economy despite an increase in industry diversification. This un-

balancedness means that productivity shocks of the same sign are more likely to

(and hence will more often) land on industries with significant influence, caus-

ing aggregate volatility. Therefore, if the input-output matrix is unbalanced, ag-

gregate fluctuations can result from distributions of productivity shocks with

much thinner tails than the diversification argument would suggest.

The main extension to the approach of Acemoglu et al. (2012) that this pa-

per formulates is to add a demand-side measure of influence. Acemoglu et al

only consider the influence that industries have over other industries through

the supply of inputs, but industries also have influence over other industries

through the demand for inputs. If one industry demands a significant share of

another industry’s output as an input to production, then if the first industry

suffers a negative shock, the second industry will have reduced demand for its

products. In turn this reduction in demand for the second industry’s products

will then affect the industries that provide inputs to it, further propagating the

shock upstream. Therefore, including a measure based on demand-side links

between industries can provide a more complete idea of the influences of in-

dustries in an economy.

A consideration of demand-side shocks was included in Acemoglu et al. (2015),

though this consideration is different to that presented in this paper. Acemoglu

et al. (2015) include a government sector, and so represent demand shocks by

exogenous changes to government consumption. Furthermore, they do not in-



126 PAPER III

clude a measure of industry influence through the demand side. In this pa-

per, I instead represent demand shocks as changes in a “taste” parameter. This

“taste” parameter alters the demand for the products of each industries in fi-

nal consumption. Therefore, this gives a more general depiction of demand

shocks than those which work exclusively through changes in government con-

sumption. I also include a demand-influence vector, which is comparable to

the supply-side measure, to give an overall idea of the industries through which

an economy is most susceptible to demand shocks.

3 Economic Model

The economic model used in this paper is based on that used by Shea (2002),

which is itself based on that of Long & Plosser (1983). There is a representative

agent with preferences

U =
N∑

i=1
δi log (Ci )−L; δi = ai exp(di );

N∑
i=1

ai = 1. (1)

Consumption depends on the consumption, Ci , of N goods, and hours worked

L. The goods have stochastic preference weights, δi , with mean zero taste or de-

mand shocks di .

Each good is produced through a Cobb-Douglas production process that

utilizes labor and capital inputs.1 Each of the goods are potentially used as in-

puts for the production of itself and the other goods.

Qi =λαγi
i Lαγi

i

[
N∏

k=1
(Xki )(1−α)βki

]
; αγi +

N∑
k=1

(1−α)βki = 1. (2)

Here, Qi is the amount of good i produced, Xki is the amount of good k used

in the production of good i , α is the labor share in economy, Li is the hours

employed in the production of good i and λi = exp(si ), where si are mean-zero

supply shocks. Market clearing requires that:

Qi =
N∑

k=1
Xi k +Ci ; L = Li . (3)

1In theory each good is homogeneous and so should be considered to be produced by a single firm.

Later, when I apply data to the model, the goods will be output produced by industries. Therefore,

in this paper the terms ‘firm’ and ‘industry’ are used interchangeably.
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Solving for the competitive equilibrium of the economy (see Appendix A for

the derivation of this result), as per Acemoglu et al. (2012, p. 2005), gives the

deviations from steady-state log GDP due to supply shocks as:

ys = νs
T s+K ; νs = (I− (1−α)WT )−1αl (4)

where νs is the supply influence vector of the economy, s is the vector of supply

shocks to each industry, K is a constant independent of the vector of shocks,

α is the economy’s labor share of production, W is the input-output matrix of

the economy (normalized so that element w j i is the share of industry j ’s inputs

provided by industry i ), I is an n ×n identity matrix (n being the number of

industries) and l is the vector of the shares of the workforce employed in each

industry.

This supply-side measure is fairly similar to that produced by Acemoglu

et al. (2012, 2013).

Turning to the demand side (see Appendix B for the derivation of this result),

the deviations from steady-state log GDP due to demand shocks will be:

yd = νd
T d+M ; νd = (I− (1−Z )GT )−1Z e (5)

where νd is the demand influence vector of the economy, d is the vector of

demand shocks to each industry, M is a constant independent of the vector

of shocks, Z is the share of the economy’s total production that is final pro-

duction, G is the input-output matrix of the economy (normalized so that ele-

ment g j i is the share of total intermediate output produced by industry j and

used by industry i as an input), I is an n ×n identity matrix and e is the vector

of the shares of the economy’s final production produced by each industry.

Combining equations 4 and 5, gives the overall log deviations from steady-

state GDP:

y = νs
T s+νd

T d+K +M ; (6)

This result is analogous to that produced by Shea (2002). Similarly to Shea’s

result, in this model shocks only propagate in one direction; supply shocks prop-

agate to industries downstream, while demand shocks only affect industries up-

stream.

The total influence of an industry on the economy, as shown by Equation 6,

is related to the size of the shocks that hit an industry as well as how those shocks
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are propagated to other industries. For example, an industry might have a large

influence coefficient (as measured by its value in the influence vectors, νs and

νd) but only ever get hit by comparatively small shocks and so have fairly small

influence on the deviations from steady state GDP. Alternatively, another indus-

try’s shocks might not propagate very far through the economy (small influence

coefficient in νs and νd) but get regularly hit by very large shocks and so have

a larger overall influence on the economy than that suggested by the influence

coefficient. In this way, both the influence measures and the size of the shocks

need to be considered together.

The influence measures presented in this paper can also be thought of as

measures of centrality from network theory. In network theory, a node has greater

centrality if it has greater influence on the other nodes in the networks and,

hence, on the network as a whole. Under this interpretation, the input-output

tables are descriptions of the input-output network of the economy and the in-

fluence measures are used to rank the industries (or nodes) as to how great an

influence they have over other industries (nodes) and hence the economy as a

whole. Specifically the influence measures used in this paper can be thought

of as centrality measures based on the measures produced by Bonacich (1987)

and Bonacich & Lloyd (2001) and are derivations based on network theory are

presented in Section C in the Appendix.

4 Estimation

4.1 Level of Disaggregation

In estimating the measures of industry influence a question that must be ad-

dressed is what level of disaggregation is best. Data for input-output tables

are provided at various levels of disaggregation depending on the country and

the institution providing the data. Acemoglu et al. (2012, p. 1997) argue that,

for their purposes, even the finest level of disaggregation available through the

Bureau of Economic Analysis (BEA) tables (approximately four-digit SIC defi-

nition) is not fine enough. In their model, they require that the level of disag-

gregation is such that each sector (or firm) produces a homogeneous product

and hence require a finer level of disaggregation than is generally provided by

statistical institutions.

However, Acemoglu et al’s model is based on industries being subject to



Sectoral Shocks and Aggregate Volatility 129

shocks that are independent of those hitting other industries. As some sectoral

shocks are likely to directly affect more than one homogeneous product, an ar-

gument can be made for the level of disaggregation to be at the level at which

shocks will generally hit a single industry or firm. This would potentially argue

for a broader level of disaggregation and so, the data should be considered at a

broader range such as at the industry or sub-industry level.

A further complication is when the interest is in cross-country comparisons.

Readily-available, comparable data across countries tend to only be found at

fairly broad level, such as that provided by the OECD. Therefore, it is at this level

that such comparisons must be made, due to data limitations. In the estima-

tions that follow I provide estimates at both a broad and a fine degree of disag-

gregation to try to explore the results based on these different purposes.

As will be shown, the discussion around the level of disaggregation is not

trivial. Choosing a different level of disaggregation can lead to significantly dif-

ferent results when computing the influence vectors and determining how sus-

ceptible an economy is to shocks of a certain type.

4.2 Data

For the broad disaggregation estimates, I took the input-output data from the

OECD StatExtracts online library, dated to “the mid 2000s”. The estimates of the

labor share in production for Australia, US and Sweden were also taken from the

OECD StatExtracts online library.

For the estimation of the Australian economy at the fine disaggregation level,

I used the input-output data from the Australian Bureau of Statistics (ABS) Input-

output Tables for 2012/13 (catalogue no. 5209.0.55.001), and the data used to

estimate the labor shares by industry from the “ABS Labour Force (Detailed)”

publication (catalogue no. 6291.0.55.003).

The Bureau of Economic Analysis (BEA) Input-output tables for 2007 pro-

vided the input-output data for the US, with the labor share by industry data

from the Bureau of Labor Statistics.

The Swedish input-output data came from the Symmetric Input-output ta-

bles for 2010 from Statistics Sweden. The Labor share by industry data for Swe-

den came from the OECD iLibrary National Accounts for Sweden.
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4.3 Cross-country comparisons

4.3.1 Broad disaggregation

The demand-side and supply-side influence of industries were estimated for

Australia, US and Sweden. For ease of comparison, the data were taken from

a common source, namely the OECD, which provides input-output tables for

countries with the economies divided into 36 industries.2 As stated previously,

this level of disaggregation might be considered to be too broad (Acemoglu et al.

2012, p. 1997) but, nonetheless, this allows for more direct comparisons across

countries.

The three countries were chosen because of their influence of the mining

industry on their economies. As will be shown later the Australian mining in-

dustry gives a strong demonstration of the need for a demand-side measure to

supplement the supply-side measure of industry influence, and so the demand

and supply influence vectors were estimated for Australia. Sweden was chosen

because like Australia it is a developed country with a large mining industry. As

will be shown, Sweden’s mining industry has more influence on the supply side

than the demand side, showing that mining does not only influence a country’s

economy through the demand side. Thereby, Sweden gives a good contrast to

the example of Australia. The US was included for completeness.

Summary statistics for the supply influence and demand influence vectors

for Australia, US and Sweden are shown in Table 1. In Australia and the US,

the demand influence vector is more skewed than the supply influence vector,

while in Sweden the reverse is true. This suggests that Australia and the US are

more susceptible to demand shocks, while Sweden is more susceptible to sup-

ply shocks (Acemoglu et al. 2012). Furthermore, if we were to only consider

the supply influence vector, we would be downplaying the level of unbalanced-

ness in the Australian and US economies and overplaying the unbalancedness

in the Swedish economy. Nonetheless, even if we only considered the supply

influence vector, we would still conclude that the Swedish economy is less un-

balanced than the Australian or US economies, though not by as much as if we

2The data for Australia and Sweden are missing some industries. The Australian data only have

32 industries and the Swedish data have 34 industries, while the US data have the full complement

of 36 industries. The missing industries in the Australian data are Office, Accounting & Computing

Machinery; Radio, Television & Communication Equipment; Renting of Machinery & Equipment;

and Research & Development. The missing industries in the Swedish data are Radio, Television &

Communication Equipment; and Research & Development.
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Table 1: Summary statistics of the Demand Influence vectors and Supply Influ-

ence vectors for Australia, US and Sweden at the broad level of disaggregation.

The skewness statistic is the adjusted Fisher-Pearson standardized moment co-

efficient. Data: OECD. (Total industries: Australia 32, US 36, Sweden 34.)
Demand Influence Supply Influence

Aus USA Swe Aus USA Swe

Mean (1/n) 0.031 0.028 0.029 0.031 0.028 0.029

Median 0.022 0.013 0.022 0.021 0.014 0.018

Std dev 0.031 0.034 0.023 0.027 0.031 0.026

Skewness 2.20 2.55 0.90 1.58 1.99 1.30

Maximum 0.139 0.167 0.082 0.127 0.127 0096

Minimum 0.003 0.002 0.003 0.004 0.003 0.002

had the fuller picture.

The ten most influential industries in each country according to the demand-

side measure are shown in Table 2, and according to the supply-side measure in

Table 3. For Australia, the most influential industries appear to be Construc-

tion and Wholesale & Retail Trade, given that they are very influential on both

the demand- and supply-side. For the US, the most influential industries on

both the demand- and supply-side are Public Administration & Defense, and

Wholesale & Retail trade and for Sweden the most influential industry is Health

& Social Work. In Australia, six industries appear in both the demand-side and

supply-side lists. For the US eight industries are in both list and for Sweden

seven industries do.

There is a strong similarity across these countries in the industries that are

most influential, which is consistent with other research (Jones 2011), with more

similarities on the supply-side. While the order of industry influence varies

among the countries, on the demand-side four industries appear in all three

countries’ lists, six industries appear in two of the lists with a further six indus-

tries only appearing in one of the lists. On the supply-side, five industries ap-

pear in all three countries lists, six appear in two of the lists and a further three

appear in only one of the lists. With the similarities between these countries’

most influential industries, it is also worth noting how central service industries

are to these economies. On the demand side, seven of the ten most influential
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Figure 1: Histograms of the Demand and Supply influence vectors (broad dis-

aggregation) in Australia, US and Sweden. Source: OECD.
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Table 4: Summary statistics of the Demand Influence vectors and Supply In-

fluence vectors for Australia, US and Sweden at the fine level of disaggregation.

The skewness statistic is the adjusted Fisher-Pearson standardized moment co-

efficient. Data: ABS, BEA, Statistics Sweden. (Total industries: Australia 114, US

382, Sweden 59.)

Demand Influence Supply Influence

Aus USA Swe Aus USA Swe

Mean 0.009 0.002 0.017 0.009 0.003 0.017

Median 0.003 0.001 0.009 0.004 0.001 0.011

Std dev 0.014 0.006 0.017 0.011 0.006 0.017

Skewness 3.17 7.04 1.68 2.26 4.82 1.59

Maximum 0.090 0.062 0.082 0.060 0.050 0.073

Minimum 0.000 0.000 0.001 0.000 0.000 0.000

industries are service industries in each of the countries; while on the supply-

side, in Australia and the US, nine of the ten most influential industries are ser-

vice industries and in Sweden, the seven most influential industries are service

industries.

Therefore, these directly comparable data show that the industries that are

most central to these three economies are mostly service industries, with Aus-

tralia and the US more susceptible to demand shocks, while Sweden is more

susceptible to supply shocks.

4.3.2 Fine disaggregation

The influence vectors were then estimated using the more disaggregated data

available from the countries’ statistical bureaus. These data are not directly

comparable across countries because the countries use different definitions for

their industries and have different levels of disaggregation relative to each other.

However, this is the finest level of disaggregation possible with publicly avail-

able data and so is closest to the homogeneous-product level of disaggregation

recommended by Acemoglu et al. (2012).

Summary statistics for the influence vectors at the finer level of disaggrega-

tion are provided in Table 4 and their histograms are shown in Figure 2.

At the finer levels of disaggregation the influence vectors become more skewed
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Figure 2: Histograms of the Demand and Supply influence vectors (fine disag-

gregation) in Australia, US and Sweden. Source: ABS, BEA, Statistics Sweden.
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for each of the countries. For the US and Sweden the demand influence vector

is more skewed than the supply influence vector, while in Australia the reverse is

the case. This suggests that the US and Sweden are somewhat more susceptible

to sectoral demand shocks than supply shocks. Furthermore, it suggest that if

we only considered the supply influence vector, we would conclude that the US

and Sweden are less susceptible to sectoral shocks causing aggregate volatility

than is actually the case. This result contrasts somewhat with that found at the

broad disaggregation level where in Australia the demand influence vector was

more skewed than the supply influence vector while in Sweden the reverse was

the case. Therefore, how we interpret the likelihood of demand or supply shocks

causing aggregate volatility can be affected simply by the level of disaggregation

used in the estimations.

This paper does not provide a model for determining the ‘ideal’ level of dis-

aggregation for constructing the influence vectors. However, given the model’s

specification that sectoral shocks should be independent of each other, disag-

gregating at the level at which sectoral shocks are independent would seem a

reasonable solution. Naturally, data constraints might well have more sway over

this decision than theory.

5 Case study: Australian mining industry

The mining industry in Australia over recent years provides a stark example of

why there is a need in the framework of the model of this paper to include the

demand side influence of industries. This case study is included to show how an

industry can have significant influence on the aggregate outcomes of an econ-

omy even though it rates quite low in terms of influence from the supply side

model of Acemoglu et al. (2012).

5.1 Recent history of the Australian mining industry

In the early 2000s, the mining industry in Australia was largely derided as an ex-

ample that the Australian economy was being held back because it was too de-

pendent on the ‘old economy’ industries of mining, agriculture and related in-

dustrial manufacturing, rather than the ‘new economy’ of hi-tech manufactur-

ing and services. Nonetheless, over the course of the following decade the min-

ing industry experienced one of the strongest booms in Australian economic
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history as the prices of key commodities rose to historically high levels causing

a surge in mining investment and production, particularly in coal, iron ore and

liquefied natural gas (Connolly & Orsmond 2011). As a result of the resource

boom the mining industry is now the largest industry in Australia in terms of

real GVA (Figure 3). This growth has been marked by sustained strong growth in

the GVA of iron ore mining since the late 1990s, while more recently the growth

in oil & gas extraction and coal mining have also contributed to growth.

The turnaround in resource commodity prices, which had been at their low-

est inflation-adjusted level for decades at the start of the 2000s, has largely been

attributed to emerging economies increasing demand for inputs to energy and

steel production (Connolly & Orsmond 2011, p. 6). The increase in commodity

prices caused extremely strong growth in mining investment as mining com-

panies sought to expand their capacity. This increase in mining investment

and the resulting increase in capacity saw revenue from the mining industry

increase from 6 per cent of nominal GDP in 2000 to 14 per cent by 2010, and

mining investment rise from 1 1
2 per cent of GDP to over 4 per cent over the

same period (Connolly & Orsmond 2011, pp. 12-13). Furthermore, the mining

industry has contributed around 12 per cent of the growth in Australian GDP

since 2000.

While the mining industry is now the largest industry in the Australia econ-

omy, its influence is generally considered to be even greater than its share of

GDP would suggest due to its use of inputs from other industries. The resource

economy broadly defined, that is including activities supporting the mining

industry, has been estimated at around 18 per cent of gross value added in

2011/12, double its share in 2003/04 (Rayner & Bishop 2013).

5.2 The mining industry in the Australian supply and demand

influence vectors

The recent history of the Australian mining industry indicates that it has had

a significant and growing influence on Australia’s economic fortunes in recent

years. However, when the supply influence vector is calculated for Australia,

the mining industry is estimated to be one of the least influential industries

in the Australian economy. Using the ABS data and aggregating the data into

19 broad industry categories, mining is estimated to be the 16th most influen-

tial industry on the supply side (Table 5). At the finer level of disaggregation

(114 industries), the mining sub-industries are again estimated to be compara-
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tively lowly-ranked in terms of influence (Oil & Gas extraction 38th; Non-ferrous

metal ore mining 50th; Coal mining 57th; Iron ore mining 67th; Exploration &

mining support services 69th; and Non-metallic mineral mining 95th). This low

ranking of the mining industries compared with their recent performance sug-

gests that something is missing in this measure of industry influence.

In contrast, when the demand influence vectors are estimated, the mining

industry is estimated to be the fourth most influential industry at the broad dis-

aggregation level (behind Construction; Manufacturing; and Rental, Hiring &

Real Estate services), while most of the sub-industries are also estimated to be

far more influential than the supply influence vector would indicate (Coal min-

ing 14th; Iron ore mining 19th; Oil & gas extraction 25th; Non-ferrous metal

ore mining 27th; Exploration & mining support services 51st; and Non-metallic

mineral mining 95th). While, according to these measures, the mining industry

is still not the most influential industry in Australia, these results indicate that

the demand-side measure is capturing an important source of influence that

should not be ignored.

Interestingly, the situation in Australia where the mining industry is more

influential on the demand-side than the supply side contrasts with that in the

US and Sweden where the reverse is the case. Using the OECD data, Mining &

Quarrying is the least influential industry on the demand side in Sweden but

the tenth most influential on the supply side. In the US, it is the 28th most in-

fluential on the demand side but the 21st on the supply side. This suggests that,

while the mining industry in Australia is not a large source of inputs to the Aus-

tralian economy, it is in Sweden. This is perhaps reflected in the generally higher

ranking of industrial manufacturing industries in the Swedish economy (such as

Motor Vehicle manufacturing and Other Machinery & Equipment manufactur-

ing) compared with Australia.

The importance of considering the demand-side influence measure is shown

starkly when viewing the evolution of the influence measures of the mining in-

dustry’s sub-industries during the time of the mining boom. Figure 4 shows

how the different measure of influence have changed through the years from

1999 to 2012. Not only do the sub-industries have greater absolute influence

on the demand side, the demand measures also show a strong increase in the

influence of the mining industries over this time. This increase in influence is

especially strong for Coal mining and Iron Ore mining, with a smaller increases

in Oil & Gas extraction and Non-ferrous Metal mining. In comparison, growth
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Table 5: Australian industries and their rankings according to the demand-side

and the supply-side measures at a broad disaggregation level. Source: ABS,

19 industries.
Rank Demand Influence Supply Influence

1 Construction Manufacturing

2 Manufacturing Professional, Scientific & Technical Ser-

vices

3 Rental, Hiring & Real Estate Services Construction

4 Mining Administrative & Support Services

5 Public Administration & Safety Health Care & Social Assistance

6 Health Care & Social Assistance Financial & Insurance Services

7 Transport, Postal & Warehousing Retail Trade

8 Financial & Insurance Services Transport, Postal & Warehousing

9 Retail Trade Rental, Hiring & Real Estate Services

10 Education & Training Education & Training

11 Wholesale Trade Accommodation & Food Services

12 Professional, Scientific & Technical Ser-

vices

Public Administration & Safety

13 Accommodation & Food Services Wholesale Trade

14 Information, Media & Telecommunica-

tions

Information, Media & Telecommunica-

tions

15 Administrative & Support Services Other Services

16 Agriculture, Forestry & Fishing Mining

17 Other Services Agriculture, Forestry & Fishing

18 Electricity, Gas, Water & Waste Services Electricity, Gas, Water & Waste Services

19 Arts & Recreation Services Arts & Recreation Services
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in the supply- influence measures over this time are far more muted, with only

Oil & Gas extraction showing a significant increase in influence. While Iron Ore

mining’s influence grew over this time, it remained at a very low-level despite

that growth.

This adds more weight to the argument that including the demand-side mea-

sure adds a significant source of economic influence and so should be included

alongside the supply-side measure.

6 Conclusion

In this paper, I add to the literature on how sectoral shocks can affect aggre-

gate volatility by constructing a measure of industry influence through demand

channels to upstream suppliers. While previous work has attributed influence

to industries that provided significant shares of other industries’ inputs, the

demand-side measure that I use considers the influence that derives from in-

dustries using the inputs provided by other industries. By including this chan-

nel to the supply side effects of sectoral shocks, a more complete picture can be

generated as to how susceptible economies are to sectoral shocks and which in-

dustries are key to those economies. What this analysis suggests is that, by only

focusing on the supply-side influences of industries, we will likely miss signifi-

cant sectoral influences on aggregate volatility. A stark example of this shown in

this article is that of the mining industry in Australia, which has had a very large

influence on the economic fortunes of Australia over recent years. Using only

a supply-side measure of influence would significantly downplay the influence

of the mining industry in Australia. Adding the demand-side measure gives the

mining industry a more prominent position in the ranking of Australian indus-

tries.
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Figure 4: Influence measures of the mining sub-industries in Australia for the

period 1999-2012. Data for 2000, 2010 and 2011 interpolated as Input-Output
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tries were combined in the Input-Output tables and so their separate data only

begins in 2001. Source: ABS.
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A Supply shocks derivation

The derivation of the supply influence vector that follows is based largely on

that in Acemoglu et al. (2012, p. 2005) with the only difference being that in

Acemoglu et al’s model γi = 1, ∀i .

The first order conditions for industry i ’s production function (Equation 2)

for labor, Li , and inputs, Xki , gives L∗
i = Pi Qiαγi

h and X ∗
ki =

Pi Qi (1−α)βki
Pk

, where h

is the market wage, and P j is the price of good j . Substituting these values into

industry i ’s production function and taking logs yields:

αγi log (h) =αγi si +B + log (Pi )−(1−α)
N∑

k=1
βki l og (Pk )+(1−α)

N∑
k=1

βki log (βki )

where B =αγi l og (αγi )+(1−α)log (1−α). Dividing the above equation through

byαγi , multiplying by the i th element of the supply influence vectorνT
s =αlT (I−

(1−α)W)−1 and summing over all sectors gives:

ys = l og (h) = νs
T s+K

where K is a constant independent of the vector of shocks equal to:

K =
N∑

i=1

li

γi
l og (Pi )+ B

α

N∑
i=1

νi

γi
+ 1−α

α

N∑
i=1

N∑
k=1

νi

γi
βki log (βki )
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B Demand shocks derivation

The first order condition for the consumer’s utility function for consumption

of good i yields, C∗
i = hδi

Pi
. Substituting this value and the optimum demand

for industry i ’ output as inputs, X ∗
i k = PkQk (1−α)βi k

Pi
, into the resource constraint

gives:

Qi =
N∑

k=1
Xi k +Ci

=
N∑

k=1

[
PkQk (1−α)βi k

Pi

]
+ hδi

Pi

Sum over all i firms

Q =
N∑

i=1

N∑
k=1

[
PkQk (1−α)βi k

Pi

]
+

N∑
i=1

hδi

Pi

A log linearization of this result yields:

qd ≈
N∑

i=1

N∑
k=1

[
PkQk (1−α)βi k

Pi

]
1

Q
qk +

N∑
i=1

hai

Pi

1

Q
di +R

where R is a constant independent of the demand shocks. The deviation from

steady-state output attributable to deviations in individual industry i ’s output

is then:

qdi ≈
N∑

k=1

[
PkQk (1−α)βi k

Pi

]
1

Q
qk +

hai

Pi

1

Q
di +Ri
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At this point we can define some terms. The share of total output that is final

output in the steady state

Z =
N∑

i=1

hai

Pi

1

Q

The share of total output that is intermediate output in the steady state

1−Z =
N∑

i=1

N∑
k=1

[
PkQk (1−α)βi k

Pi

]
1

Q

The share of total final output that is produced by industry i

ei =
hai
Pi∑N

i=1
hai
Pi

The share of total intermediate output produced by industry i that is demanded

by industry k

gi k =
PkQk (1−α)βi k

Pi∑N
k=1

PkQk (1−α)βi k
Pi

Substituting these expressions into the equation for industry i ’s log devia-

tions from steady state output due to demand shocks gives:

qdi ≈
N∑

k=1
(1−Z )gi k qk +ei Z di +Ri

Solving this for the log linearization of deviations from steady state total out-

put due to demand shocks gives:

yd = νd
T d+M ; νd = (I− (1−Z )GT )−1Z e
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C Influence Measures and Network Theory

In network theory, a network is a collection of connected nodes and, in general,

a node is considered more central to a network if it has greater influence on,

or importance to, the network as a whole. The various ways to measure which

node in a network is most central to the network can be categorized into four

broad groups, based on the node’s characteristics that are mainly used in the

measurement. These groups are: degree (how many other nodes the node is

connected to); closeness (how near the node is to other nodes); betweenness

(how important the node is for connecting other nodes), and neighbors’ char-

acteristics (how important a node’s neighbors are) (Jackson 2008, p. 37). The

measures used in this paper to estimate industries’ influence on the economy

are based on those produced by Bonacich (1987) and Bonacich & Lloyd (2001),

which are measures based on the characteristics of a node’s neighbors. That is, a

node is central to the network if it is connected to, and has influence over, other

important nodes.

The general measure of centrality of Bonacich & Lloyd (2001) gives a node

greater centrality based on the influence that the node has from exogenous

sources and its endogenously-derived influence from connections to other im-

portant nodes. A relative weighting is then applied between the exogenous and

endogenous sources of influence to arrive at the final measure of centrality. The

general form of the Bonacich measure of centrality is:

x =αAT x +e (7)

where x is the vector of node centrality; α is a scalar parameter that reflects the

relative importance of endogenous versus exogenous factors in a node’s cen-

trality; A is an adjacency matrix reflecting the direct influence of nodes on each

other, where the element ai j is the influence that i has over j ; and e is a vector

of exogenous sources of influence. Solving Equation 7 for the vector of node

centrality, x, yields:

x = (I −αAT )−1e (8)

where I is the identity matrix.

In the model presented in this paper, industries are nodes in the input-

output matrix. The exogenous influence of an industry is their direct influence
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on the economy, while the endogenous source of influence is their indirect in-

fluence on the economy through their effect on other industries. The exoge-

nous influences that industries have on the economy are their use of labor in

production and their production of final goods. The effects that industries have

on other industries in this model are through their provision of inputs to, or

demands for inputs from, other industries. An industry can, therefore, have in-

fluence on the economy through the supply-side or the demand-side and, as

such, two measures of influence are produced for each industry.

C.1 Supply Influence

The influence vector in the article by Acemoglu et al. (2012, p. 1985) is:

ν≡ α

n
[I− (1−α)WT ]−11 (9)

where α is the economy’s labor share of production, n is the number of indus-

tries, I is an n × n identity matrix, W is the input-output matrix of the econ-

omy (normalized so that element w j i is the share of industry j ’s inputs pro-

vided by industry i ), and 1 is an n-dimensional vector of ones. This measure

differs slightly from that of Bonacich in that the weights on the exogenous and

endogenous sources of influence (α and 1−α) sum to one.

The measure of an industry’s supply-influence presented in this article is

conceptually similar to that produced by Acemoglu et al. (2012). Under this

measure an industry is considered more influential to the economy, if it em-

ploys a large share of the economy’s workforce or if it provides a large share of

the inputs to other industries’ production. These two supply influences of an in-

dustry are weighted according to the labor share in production of the economy

to give the supply influence of industry i :

νsi = (1−α)WTνs +αli (10)

where α is the economy’s labor share of production, W is the input-output ma-

trix of the economy (normalized so that element w j i is the share of industry j ’s

inputs provided by industry i ), and li is the share of the workforce employed in

industry i . Solving Equation 10 for the supply-influence vector of the economy

gives:

νs = (I− (1−α)WT )−1αl (11)
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where I is an n ×n identity matrix (n being the number of industries) and l is

the vector of the shares of the workforce employed in each industry. The differ-

ence between the supply-influence vector here and that of Acemoglu et al is that

Acemoglu et al implicitly assume that every industry employs the same share of

the labor force, while in my model the shares of the labor force used by each

industry are allowed to differ.

C.2 Demand Influence

An industry has a large influence on the economy through the demand side if

it demands a large share of other industries’ output as inputs to its own pro-

duction, or if it produces a large share of the economy’s final production. The

exogenous and endogenous sources of demand influence are weighted by the

share of final production in the economy’s total production. The demand influ-

ence of industry i is:

νdi = (1−Z )GTνd +Z ei (12)

where Z is the share of the economy’s total production that is final produc-

tion, G is the input-output matrix of the economy (normalized so that element g j i

is the share of total intermediate output produced by industry j and used by

industry i as an input), and ei is the share of the economy’s final production

produced by industry i .

Solving Equation 12 for the demand influence vector of the economy gives:

νd = (I− (1−Z )GT )−1Z e (13)

where I is an n ×n identity matrix and e is the vector of the shares of the econ-

omy’s final production produced by each industry.


