
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Minimal Problems and Applications in TOA and TDOA Localization

Burgess, Simon

2016

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Burgess, S. (2016). Minimal Problems and Applications in TOA and TDOA Localization. [Doctoral Thesis
(compilation), Centre for Mathematical Sciences]. Lund University (Media-Tryck).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/741bbe48-4651-4853-8f8b-c9f507bfa1d6


MINIMAL PROBLEMS AND APPLICATIONS IN

TOA AND TDOA LOCALIZATION

SIMON BURGESS

Faculty of Engineering
Centre for Mathematical Sciences

Mathematics



Mathematics
Centre for Mathematical Sciences
Lund University
Box 118
SE-221 00 Lund
Sweden

http://www.maths.lth.se/

Doctoral Theses in Mathematical Sciences 2016:7
ISSN 1404-0034

ISBN 978-91-7623-918-6 (print), 978-91-7623-919-3 (pdf)
LUTFMA-1058-2016

c© Simon Burgess, 2016

Printed in Sweden by Media-Tryck, Lund 2016



Contents

Abstract iii

Acknowledgements v

List of papers vii

Introduction 1

1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Fundamentals of TOA/TDOA localization . . . . . . . . . . . 4

3 Minimal problems and RANSAC . . . . . . . . . . . . . . . . 9

4 Solving polynomial equations with the action matrix method . . 12

5 Overview of the papers . . . . . . . . . . . . . . . . . . . . . . 16

6 Topics for future research . . . . . . . . . . . . . . . . . . . . 20

A TOA Sensor Network Self-Calibration for Receiver and Transmitter

Spaces with Difference in Dimension 31

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B Understanding TOA and TDOA Network Calibration using Far Field

Approximation as Initial Estimate 59

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2 Determining Pose . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Experimental Validation . . . . . . . . . . . . . . . . . . . . . 68

4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

i



Contents

C Minimal Solvers for Unsynchronized TDOA Sensor Network

Calibration 79

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . 81

3 The Ellipsoid Method in Three-Dimensional Space . . . . . . . 83

4 Matrix Factorization Method . . . . . . . . . . . . . . . . . . 88

5 Extension to Overdetermined Cases and Noise . . . . . . . . . 92

6 Experimental Validation . . . . . . . . . . . . . . . . . . . . . 92

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

D TOA Based Self-Calibration of Dual Microphone Array 105

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

2 The TOA-based Microphone-rack Calibration

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3 Solving Minimal Problems . . . . . . . . . . . . . . . . . . . . 112

4 Using Minimal Solvers for Overdetermined Problems . . . . . . 121

5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

E A Complete Characterization and Solution to the Microphone

Position Self-Calibration Problem 137

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

2 The TOA-based Calibration Problem . . . . . . . . . . . . . . 139

3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4 Relation to Prior Work . . . . . . . . . . . . . . . . . . . . . . 147

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

F Smartphone Positioning in Multi-Floor Environments Without

Calibration or Added Infrastructure 155

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

ii



Abstract

The central problem of this thesis is locating several sources and simultaneously

locating the positions of the sensors. The measurements captured by the sensors

are time of arrival (TOA), time difference of arrival (TDOA), unsynchronized

TDOA, or received signal strength indication (RSSI), all a variation of distance

measurement between sensors and sources. Signals can be either sound or radio

for TOA, TDOA, and unsynchronized TDOA, and radio for RSSI. To be able

to simultaneously locate sensors and sources open up for many on-the-fly applic-

ations not needing a calibrated rig of sensors. By doing sensor calibration, the

methods in this thesis also opens up for using much previous research in the field

of TOA and TDOA localization, which has mostly dealt with locating sources

from known positions of the sensors. In this thesis, several minimal problems

for uncalibrated sensor network localization are studied and solved. A problem is

minimal if it only needs the smallest necessary number of measurements to estim-

ate the model parameters, thus neither making the model parameters over- nor

underdetermined. Apart from revealing understanding and theoretical aspects of

the problem, studying minimal problems also have interesting applications when

dealing with larger measurement sets containing severe outliers. This thesis util-

izes the random sample consensus method (RANSAC), that uses the minimal

algorithms developed in this thesis, to do localization of the sensors and sources

and simultaneously weed out outliers in the measurements. The set of inliers

and parameters are then used in non-linear optimization schemes to refine the

parameters. Experiments show that for experiments with sound, microphone and

sound sources can be located with centimeter precision. For solving the minimal

problems, techniques from linear algebra and multivariate polynomial solving are

utilized. This thesis further investigates simultaneous localization of cell phone

users and mapping of the radio environment in multi-floor environments, using

RSSI measurements and pressure sensors. Nonlinear optimization and filtering

techniques are used to do parameter estimation, and results in two buildings with

several floors indicates that these methods can be deployed with errors in the range

of 10-20m horizontally, with > 95% accuracy in floor detection.
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with inspiration and ample opportunities to progress our research in a direction to

my liking. When speaking to my fellow Ph.D. students around the world, often

they have to lighten their heart with grievances directed towards their supervisors.

Every time, I have counted myself lucky to have been Kalle’s Ph.D. student. Even

when he was head of department, his door was always open for a chat with me.

He has helped create a welcome and open work environment, where my own

interests have dominated my direction. If I have any complains, it is that he is

too smart; sometimes he solves an interesting problem during the bike ride home,

whereas I would have liked to have a little more time.

My co-authors, many of which are my colleagues at the Centre for Math-

ematical Sciences, deserve a big thank you. Many stimulating conversations and

learning experiences were happily provided. I would also like to especially men-

tion my co-authors from University of Freiburg, Prof. Christian Schindelhauer

and Dr. Johannes Wendeberg, and my co-authors from Combain Positioning

Solutions, for collaborating when our research interests aligned.

One of my most precious experiences during my time as a Ph.D. student was

teaching the introductory mathematical statistics classes. A big thanks to Lena

Zetterqvist, Maria Sandsten, Andreas Jakobsson, and the staff at Mathematical

Statistics for giving me that wonderful opportunity.

Thanks to my lovely friends at Skydive Skåne for helping me alleviate the
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Introduction

This thesis is focused on algorithms used in simultaneously locating events and

calibrating sensor arrays using time of arrival (TOA) measurements, time differ-

ence of arrival (TDOA) measurements, or derivations of these measurements. The

classical applications are in localization in radio and sound applications, which

this work provides several examples of. The focus is on minimal algorithms, i.e.

algorithms that use no more than the necessary number of receivers in the sensor

array, and no more than the necessary number of transmitting events. Apart from

often revealing understanding and theoretical aspects of the problem, minimal

problems also have interesting applications when dealing with larger measure-

ment sets containing severe outliers. Considerations are given to expand and de-

ploy the minimal sensor network calibration algorithms to deal with these bigger

measurement sets.

In this section, some of the underlying theory used in this thesis is introduced,

as well as a background of the active field of localization where this work fits in.

1 Background

Positioning and navigation has throughout the ages been a key instinct for survival

in the natural world. Today, the need for navigation is still an integral part of

modern life, present everywhere from finding your keys, to first responders being

able to locate where an emergency call was made from with accuracy. Positioning

of e.g. artillery using sound has been done in theory since at least 1741, [1],

although widespread applications and interest first became prevalent during the

20th century. In World War I the position of enemy artillery pieces was located

using passive microphones at predetermined positions, [2]. Models for sound

localization from a biological perspective were also begun to be studied during

the 20th century, [3].

The Global Navigation Satellite System (GNSS) emerged at the end of the

20th century from military applications, but soon found its way into many civil-

ian applications. The GNSS receivers use either the GPS, GLONASS, Galileo or

1



Introduction

BeiDou system to fix an absolute position, and applications are widespread. The

basics of positioning is trilateration using time-of-flight from three or more time

synchronized satellites, [4]. Root Mean Square Errors (RMSE) can be as low as

a couple of centimeters, with an initialization time of < 10s in good conditions.

However, in practice, the RMSE is often a couple of meters, and furthermore

works poorly or not at all indoors.

For indoor radio based localization, [5] provides an overview. The approaches

can be divided into four categories: i) Proximity based, which uses a binary

”there or not” approach. These are fast, easy to implement, but imprecise. ii)

Trilateration-like based. Here we find TOA and TDOA localization, as well as

methods working with Received Signal Strength (RSS). iii) Triangulation based,

or Angle of Arrival (AOA). iv) Pattern recognition based, or fingerprinting. These

use a previously collected database of measurements together with ground truth.

Any new measurement that needs to be positioned needs to have its position de-

rived from the database measurements.

All of these generally use prior calibration in the form of deployment of spe-

cialized hardware annotated with ground truth, or extensive ground truth data

collection. There have been several attempts to alleviate this problem. We de-

note this calibration-free, or uncalibrated, localization. In [6] and later [7], the

Cramér-Rao Lower Bound (CRLB) is derived for systems doing calibration-free

localization, using RSS, TOA or AOA signals between nodes. Noise is assumed

to be Gaussian on TOA and AOA measurements, and log-normal on RSS meas-

urements. Some of the nodes must have known locations, so-called anchors.

There are several systems using WiFi calibration-free localization that use ex-

tra sensors or other external modalities to help. In [8], good results around 2m ac-

curacy are obtained, but the method also uses Inertial-Measurement Units (IMU)

for pedometry and gyroscopes. In [9–12], systems are deployed with good res-

ults, but rely heavily on a floor map. Furthermore, IMUs for pedometry, mag-

netometers, and/or gyroscope measurements are used to do the calibration-free

localization.

As seen, many of the approaches for indoor radio based localization and calib-

ration use sensor fusion. In this thesis it is explored what can be done using only

TOA, TDOA, or RSS, and look at the theoretical minimal number receivers and

transmitters needed. Besides giving a deeper understanding of each modality, and

what is needed to do calibration, it is argued that this opens up for many on-the-

fly applications, and alleviates the need for specialized hardware. Furthermore,

2



1. Background

TOA and TDOA calibration-free localization can be applied to sound, and thus

any source of sound becomes a transmitter.

For sound based localization, most previous work has been focused on how to

locate one or more sources or source directions from a calibrated array of micro-

phones. A survey of the methods can be found in [13]. The problem of locating

one or several sound sources using a calibrated array of microphones also has inter-

esting applications, like tracking a sound source in real-time, or boosting a specific

source, [14]. It is not without challenges though, as (i) sound sources might not be

constantly emitting sounds, and the number of sources may change over time, (ii)

indoor environments are often reverberant, (iii) the microphone rig often brings

its own difficulties in capturing and modeling the signal, as the microphones are

often embedded in specific hardware, e.g. a robot or a special non-uniform micro-

phone array. For localization, there are two different approaches often used. The

first tries to calculate the time delays between microphones for interesting sound

events, and then use these time differences to do multilateration, cf. [15–18].

Common techniques for delay estimation include different variations on cross-

correlation or canonical correlation analysis, which then allows the sources to be

located in a second step using multilateration. A popular one is Generalized Cross

Correlation with Phase Transform (GCC-PHAT), presented in 1976, [19]. These

methods are often fast, but often deteriorate fast in environments with noise or

reverberation, due to many of the calculated time differences being outliers.

The second strategy takes a one-step approach, where TDOA measurements

and positions are considered more or less simultaneously with the sound signals

as input. An example is the steered response power phase transform (SRP-PHAT)

method, [20], that has for long time been a reference for real time sound source

tracking and localization, and has seen many successors, e.g. [21, 22].

Other uses for calibrated microphone arrays are to use echoes to reveal room

shapes, from known sounds and sound sources, [23]. Common for all of these

methods is the need for a calibrated rig of microphones. On-the-fly calibration

could again open up for many interesting applications without the need for a

pre-calibrated rig. For an overview of automatic microphone array calibration

techniques, spanning over several different types of position-related measurements

used, and the different necessities of synchronization, see [24].

3



Introduction

2 Fundamentals of TOA/TDOA localization

Here follows an overview of the fundamentals of TOA and TDOA localization.

The first part deals with the calibrated case, and the second part gives an overview

of the uncalibrated case and relevant prior work. Consider the case where the

receivers are calibrated, e.g. have known positions, and we have omnidirectional

sensors. For simplicity, we consider the signals to be sounds in this section, but

the theory applies to radio signals as well. We want to locate an incoming sound

event with index j, which has an emanating position sj, using the time stamps of

the event arriving at the sensors with index i and positions ri. The positions sj

and ri can be in either R2, i.e 2D, or R3 i.e. 3D. Higher dimensional cases can

be of theoretical interest, as well as different fields like the algebraically complete

C
d , and are indeed considered in many of the papers in this thesis, but here we

stick with 2D and 3D. It is here also assumed that i) the speed of the medium, v,

is known and constant, ii) the times of a sound event impinging on each sensor

can be measured, and iii) different events can be identified by the sensors, i.e.

the event j impinging on a sensor can be identified as coming from event j. In

practice, iii) can be done with events being separated in time, by using different

frequencies, or matching algorithms, cf. [13]. This is however not perfect, and

how to cope with poor or errenous measurements is briefly addressed in Section

3.

For the TOA scenario, the measurement is simply the time, tij, it takes for the

signal to travel from event j to sensor i. For the TDOA scenario, the time when

the event occurred originally at its source is unknown, and thus the measurement

becomes tij + oj, where oj is the time when the event occurred. By multiplying the

measurements with the known speed of the medium, v, we get the measurements

in distances,

dij,TOA = |ri − sj|,
dij,TDOA = |ri − sj|+ fj.

(1)

In the TOA case, it is simply the distance between sensor i and event position j. In

the TDOA case, the time oj when the event occurred has become a distance offset

fi. The physical interpretation for the offset constant may not be as clear, but

as we generally are interested in the positions, distances are more convenient to

work with. By normalizing the measurements as d̄ij = dij − d1j, the new constant

depending on j will be f̄j = |r1 − sj|, which has a clearer interpretation.

4



2. Fundamentals of TOA/TDOA localization

r1

r2

r3

d1,j
d2,j

d3,j

sj

Figure 1: TOA localization with known sensor positions ri, shown as squares.

The distance measurements dij tells us how far from ri the event should be. The

black circle is the event position to be located, sj.

For TOA localization, each measurement dij,TOA trivially gives a solution

space for the position of the event sj, as a sphere around ri. Several measurements

give the solution space as the intersection of all spheres, or for an overdetermined

solution, the point that in some sense is closest to all spheres. See Figure 1 for a

visualization.

For TDOA localization, each separate measurement dij,TDOA gives no inform-

ation of the position sj of the event, because of the additive constant fj in (1). But

the difference between two measurements from different sensors coming from the

same time event does,

dij,TDOA − dkj,TDOA = |ri − sj| − |rk − sj|. (2)

The difference in the measurements is the difference in distance for the event

to reach sensors i and k, and is what gives rise to the name Time Difference Of

Arrival. One such difference gives that the position of the emanating event sj

lies on one half of a hyperbola if in 2D, or one half of hyperboloid of two sheets

in 3D. These geometrical spaces can be defined from the exact property we are

looking for, that the difference in distance to two points, in this case r1 and r2, is

5



Introduction

constant. For more than two sensors, each difference of measurements like in (2)

that is not a linear combination on any other differences of measurements gives

rise to a new half hyperbola (or half hyperboloid of two sheets in 3D) that restricts

the solution space. Thus, for n sensors giving d TDOA measurements, we get the

n − 1 hyperbolas restricting the solution space for each pair of receivers. The

solution, i.e. position sj, lies on the intersection of these half hyperbolas.

In the case where we have more measurements than unknowns, and the meas-

urements are affected by noise, the solution spaces of half hyperbolas generally do

not all intersect. The best solution then becomes a function of the noise model

for the measurements. Perhaps some should be removed completely due to being

outliers, and the rest assumed to follow some noise model. See Section 3 for more

examples of this.

Many times, the TDOA is measured with the phase shift of the incoming

event. Assume that the signal has a wave length of λ. The two sensors receive the

signal, but detect a phase shift −π/2 ≤ α ≤ π/2 between the received signal at

sensor 1 and sensor 2. If the distance between two receivers is < λ/2, the phase

shift can trivially be translated as a distance difference, and we are back to the

situation in (2) and the same solution space as described in previous paragraphs.

But if the distance between the two sensors is ≥ λ/2, depending on the phase

shift α, several possible distance differences between the event and sensor 1, and

event and sensor 2, are possible. The possible distance differences Δ creating the

measured phase shift α are the correct distance difference in (2), ±λ/2 such that

the possible distance difference is ≤ the total distance between the two sensors,

||ri − rk||. The possible distance differences be written as

Δ =
{
δ = |ri − sj| − |rk − sj|+ cλ/2 : c ∈ Z, δ ≤ |ri − rk|

}
. (3)

Each such possible distance difference in Δ gives rise to one half of a hyperbola

in 2D, or half hyperboloid of two sheets in 3D. So for each pair of sensors where

at least one of the sensors has not already been used in a pair, we now get not

only one surface, but possibly several surfaces with feasible positions for sj. The

solution lies on the intersection of the surfaces coming from each pair of sensors.

See Figure 2 for a visualization.

When the event position is very far from the sensors, the incoming wave

impinging on the sensors is almost flat. The problem of determining the distance

to the event position then becomes ill-conditioned, as the wave front does not

6



2. Fundamentals of TOA/TDOA localization

x [m]
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Source
Microphones
TDOA hyberbolas

Figure 2: TDOA hyperbolas representing all feasible locations of a single source

received by three sensors. As |r2−r1| > λ/2, spatial aliasing yields another hyper-

bola of feasible locations. And yet, in this case, there exists only one intersection

between the hyperbolas obtained from different pairs, and so the estimate of the

source may still be obtained unambiguously.

change much if you move the event position a bit towards or away from the

sensors. However, determining the direction to the event position can still be

done. Thus, TOA/TDOA localization also requires algorithms relying on the far-

field assumption, e.g. that the sound event is far away from the sensors and thus

can be said to have one common direction to the sensor array.

2.1 Uncalibrated TOA/TDOA localization

The case where the sensor positions are not known is referred to as uncalibrated

TOA/TDOA localization, or simply TOA/TDOA calibration. In the process of

recovering both the sensor positions and event positions calibration occurs, as

both sj and ri are inferred from the measurements in (1).

Without any other measurements to anchor the system, a solution of posi-

tions sj and ri can always be rotated, translated and/or mirrored while still ful-

filling the measurements in (1), due to the measurements only using the positions

7



Introduction

for relative distances. These ambiguities in solutions, and other degrees of free-

dom that cannot be uniquely determined by more measurements, are referred

to as gauge freedom. The more common setting for uncalibrated localization is

TDOA, where the time a source signal is emitted is unknown. But the case of ar-

ray calibration when TOA measurements are available is also of importance in the

corresponding TDOA calibration, where a stratified approach of first determining

offsets fj in (1) and then solving the TOA calibration problem has been used, see

e.g. [25, 26].

It is often harder to infer geometrical interpretations for the solutions, com-

pared to the calibrated case. In paper C, some geometrical properties are derived

for TDOA calibration in the case when the event positions are far away from the

sensors, i.e. a far-field setting. The differences (2) of sensors 2,3 and 4 as k, and

sensor 1 as i should in the noiseless case lie on an ellipsoid in 3D, and an ellipse

in 2D.

Some previous work has been done in uncalibrated TOA/TDOA localization.

Several previous contributions dealing with sensor network calibration rely on

prior knowledge or extra assumptions about locations of the sensors to initialize

the problem, see [27–32]. Being able to do uncalibrated localization without

these extra assumptions opens up for a wider range of applications, and papers

A-E deal with cases of TOA/TDOA calibration without these assumptions.

In [33] a far-field approximation was utilized to solve the TOA and TDOA

case for 2D. TOA calibration using only measurements has been studied in [34],

where a closed-form solution to the minimal case of three transmitters and three

receivers in the plane are given. In general, there are three solutions for a given set

of measurements. Calibration of TDOA networks was studied in [25] and further

improved upon in [26], and provides closed-form solvers although the minimal

cases are still unsolved. In [35, 36], a TDOA setup is used for indoor navigation

based on non-linear optimization, but the methods can get stuck in local minima

and are dependent on initialization.

The problem relates to the study of sensor networks under rigid graph theory

[37, 38] where general graph structure is of interest. The TOA self-calibration

problem studied here corresponds to a special case - bipartite graphs [39].
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3 Minimal problems and RANSAC

One can ask how few measurements, (1), between sensors and events are needed

to be able to get a finite number of solutions to the positions of sensors and

events. Besides revealing interesting theoretical aspects of the problem at hand,

determining and solving the problem with a minimal number of measurements

has intriguing applications. The idea is that using a few number of measurements

has a higher probability of not using any outliers. This thesis will frequently

deal with constructing and applying such algorithms. Using only the necessary

number of measurements will be referred to as minimal problems, or minimal

cases.

Minimal problems have a long history in a wide area of applications. In

computer vision, the problem of estimating the fundamental matrix for stereo

images using uncalibrated cameras requires seven point correspondences between

the images, and has one or three real solutions. This was studied as early as

1855, [40].

Minimal problems have been studied extensively for computer vision and im-

age analysis applications, [41], where measurements often are quite accurate, or

outliers. This setup is well suited for the random sample consensus (RANSAC)

algorithm, [42], which simultaneously estimates parameters for a model and iden-

tifies a set of inliers. Although RANSAC has primarily been applied in computer

vision and image analysis, it has been used by the signal processing community

for calibrated audio localization, [14, 43, 44].

Briefly, RANSAC works as follows. Select randomly a minimal or close to

minimal number of measurements from the data set and fit a hypothesized model

using a minimal algorithm to the selected measurements. Count how many of

the total number of measurements that fit with the hypothesized model using

a threshold to see if it fits or not. If all points selected for model fitting were

inliers, there should be other measurements that are close to the model. Repeat the

random minimal sampling and parameter estimation until a big enough inlier set

has been found, and return the corresponding parameter and inlier set hypothesis.

The RANSAC method can be illustrated with an example - here we study the

problem of finding a circle with fixed radius r = 0.2. For this problem there are

two unknown parameters, the x and y coordinates of the circle center (u, v). The

measurement data (x1, y1), . . . , (xn, yn) contains both inliers, points for which

(xi − u)2
+ (yi − v)2 ≈ r2, (4)
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and outliers, i.e. points for which

|(xi − u)2
+ (yi − v)2 − r2| ≫ 0. (5)

Such a point set is illustrated in Figure 3. Notice the distribution of inliers and

outliers. For such a point set, a standard least squares or L1 optimization typically

fails at providing good estimates of the parameters.

First a hypothesize step, in which a minimal subset of the data is randomly

selected. In this case the minimal problem is to solve for the circle center given

two random points. This sub-problem typically has two solutions, i.e. there are

two circles that go through the selected points. For each of the solutions, one

calculates the number of inliers in the test step. For each measurement point one

calculates the residual,

ri(u, v) = (xi − u)2
+ (yi − v)2 − r2, (6)

and checks the number of inliers, i.e. those that have |ri(u, v)| < T , where T is

a pre-defined threshold. This process of hypothesize and test is repeated a fixed

number of iterations. The parameter (u, v) that gave the highest number of inliers

is chosen as initial estimate of the parameter estimation problem.

Two hypothesize and test iterations of the algorithm are illustrated in Figure 3.

In the figure, measurement points (x1, y1), . . . , (xn, yn) containing both inliers and

outliers to the circle fitting problem are shown as dots. In one of the iterations

of the RANSAC algorithm, two random points, shown as red stars, are selected.

This subset of data provides two hypothetical circles, for which the inlier count

(the number of points between the two red circles) is low. In the plot the circles

for |ri(u, v)| = T are shown as solid red lines for one of the two solutions and

as dashed lines for the other solution. For another iteration two random points

(shown as green stars) provide two solutions to (u, v). One of them gives a large

number of inliers.

An advantage to RANSAC is that for fast minimal solvers that are at the core,

for many applications one can efficiently get a good estimate of the model and

inlier set. A disadvantage to RANSAC is that there is no guarantee of optimality,

but rather a probabilistic reasoning that given enough iterations, a good minimal

inlier set will eventually be selected in a hypothesize step, giving decent parameter

estimates and inlier identification. Another disadvantage is that the score of how

good a parameter hypothesis is, is the cardinality of the inlier set, defined by the

10
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Figure 3: The figure illustrates measurement points (x1, y1), . . . , (xn, yn) contain-

ing both inliers and outliers to the circle fitting problem.

threshold. A large threshold will tend to make all hypotheses equally good, and a

small threshold will tend to make the estimated parameters unstable.

Several strategies have been used to try to remedy these shortcomings. In

[45, 46], a strategy for finding the optimal set of inliers using the thresholding

criterion is implemented. In [47], the prior probabilities of a measurement being

an inlier is used in computing the inlier set, as well as the quality of the inlier set

being a maximal likelihood estimation, instead of just the cardinality. In general

though, RANSAC is widely used within image analysis and computer vision as

is, [41].

Many of the minimal problems in this thesis involve the measurements in (1),

and by squaring the equations, we get

11
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d2
ij,TOA = |ri − sj|2, (7)
(
dij,TDOA − fj

)2
= |ri − sj|2. (8)

These equations are now multivariate polynomials in the unknowns in the

vectors ri, sj, and fj. In general, solving for the unknowns up to gauge free-

dom by directly applying polynomial solvers to these equations is out of reach

for state-of-the-art polynomial solvers. For instance, in the case of solving the

TOA calibration problem in 3D, presented in paper E, in general there needs to

be either 4 receivers and 6 transmitters, or 6 receivers and 4 transmitters, thus

including 30 unknowns. There are three unknowns for the rotation of a solution

that can never be fixed, and 3 for the translation of a solution, so after accounting

for that by for example fixing some of the unknowns, there are still 24 unknowns.

This is in general far too many unknowns for quadratic equations for polynomial

solvers to handle. Thus, the problem needs to be addressed in a different manner.

Nevertheless, often these problems can be reformulated and worked until they

can be solved for fewer unknowns in a polynomial system of equations.

4 Solving polynomial equations with the action matrix

method

This section presents some fundamentals of the theory of algebraic geometry, the

field of studying and solving systems of polynomial equations over C, or in general

any algebraically closed field. The action matrix method is further presented,

which is used in several papers of this thesis, and some recent advances of the

method. See [48] for a thorough explanation of the claims made here.

The problem at hand is to find solutions to

f1(x) = 0,

f2(x) = 0,

...

fn(x) = 0,

(9)

where fi(x) are multivariate polynomials of the unknowns x ∈ C.
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The ring of polynomials over the field of complex numbers is usually denoted

C[x]. Let V denote the solution set to (9). In algebraic geometry, V is called an

algebraic variety.

Let I = {∑n
i=1 hifi : hi ∈ C[x]}, i.e. the set of all sums of the polynomials

in (9), each multiplied with any polynomial. This is called the ideal generated

by f1, f2, . . . , fn. One aspect of why ideals are interesting to study is that they

generalize the system of polynomials at hand: x is a solution to (9) iff it is a zero

of I . One could also ask what the set of polynomials that vanish on V is. Clearly,

I is contained in this set. If the opposite holds, I is called radical. For example,

the polynomial equation in one variable x2 = 0 does not have a radical ideal as

I = {hx2 : h ∈ C[x]} does not contain x, a polynomial that vanishes on V. The

ideal generated by x = 0, however, is trivially radical.

We say that two polynomials f and g are equivalent modulo I , or f ∼ g , if

f −g ∈ I . This equivalence relation gives rise to a partition of C[x]. The quotient

space C[x]/I is the set holding the partitions, or equivalence classes. Let [·] be the

natural projection from a polynomial in C[x] to C[x]/I , i.e [f ] is the equivalence

class that has f in it.

One can also consider the equivalence classes of all polynomial functions that

are equal on V . Denote this set of equivalence classes by C(V ). A polynomial

function on V is a function from V to C that can be exactly described by a

polynomial at the points of V . If polynomials are equivalent modulo I , they

are trivially equal on V . The converse holds if I is radical. Thus, we get to

the conclusion that, for racial ideals I , C[x]/I and C(V ) are isomorphic. Here,

we generally only consider finite V , as minimal problems generally only have a

finite number of solutions. For V finite, any function on V to C is a polynomial

function, due to the unisolvence theorem for polynomials, which says that any

function on a finite set of points can be interpolated exactly by a polynomial.

Thus, any equivalence class in C(V ) can be represented by a vector in C
k with

k = |V | elements. As operations translate through, C(V ) and C
k are isomorphic.

The final conclusion is thus that, for finite algebraic varieties V and radical ideals

I , the quotient space C[x]/I and C
k are isomorphic.

4.1 The action matrix method

This section describes the fundamentals of the action matrix method (sometimes

referred to as the Gröbner basis method) for solving polynomial equations. This

is used for polynomial equations with a finite number of solutions, which is gen-
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erally the case with minimal problems. If V is finite, C[x]/I is finite dimensional,

and if I is radical, C[x]/I has the same dimension as |V |. Now consider the

operator Ta : C[x]/I → C[x]/I such that [f (x)] 7→ [a(x)f (x)]. This operation

is linear, and since C[x]/I is finite dimensional, we can select a linear basis for

C[x]/I and represent the Ta as a matrix multiplication. Denote this matrix as

Ma. The eigenvalues to MT
a are a(x) evaluated at V , and the eigenvectors are

the basis elements evaluated at V . To see this, consider any equivalence class

[r(x) = cT b], where b is a vector of polynomials forming a basis for C[x]/I , and

c is a vector of coefficients. Now, the operation Ta on [r(x) = cT b] can be written

as

[a(x) · cT b] = [(Mac)T b] = [cT MT
a b]. (10)

As this holds for any coefficients c, we get that [a(x)b] = [MT
a b]. This means

that

a(x)b = MT
a b + g(x) (11)

for some vector g(x) with elements gi(x) ∈ I . Evaluating this in points x ∈ V , we

get that

a(x)b = MT
a b, (12)

which means that the basis b evaluated at x consist of eigenvectors of MT
a , and

corresponding eigenvalues are a(x).

It remains how to calculate a basis for C[x]/I . We need to have a well defined

representative for each equivalence class [f ] ∈ C[x]/I . Generally this is done by

polynomial division over the polynomials in (9). For multivariate polynomials,

however, the remainder under division by the polynomials is not unique, and

depends on the order of the division. This is solved by calculating a Gröbner

basis for I . A Gröbner Basis is a set of generating polynomials for I that has

the property that polynomial division with the generating polynomial always has

a well defined remainder. Any element [f ] ∈ C[x]/I can thus be identified

with its remainder under division by the Gröbner basis. A Gröbner basis can be

calculated in finite time with Buchberger’s algorithm. Once a Gröbner basis has

been calculated, the basis for C[x]/I can for instance be chosen by the following
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definition of a Gröbner basis: The leading term of any polynomial in I is divisible

by the leading term of some polynomial in the Gröbner basis. The leading term

here is the monomial of the highest order, according to some monomial order,

with its coefficient. So if it is not in I , e.g. will have a remainder under polynomial

division, the leading term will not be divisible by any leading term in the Gröbner

basis of I . Then, we can use all the monomials that are not divisible by any leading

monomial in G as a basis.

4.1.1 Problems and advances for the action matrix method

Buchberger’s algorithm can compute a Gröbner basis for an ideal I in finite time,

but is numerically unstable in floating point arithmetic, due to propagated round-

off errors. In [49], emulated 128-bit precision arithmetic is used to make the

Gröbner basis calculation numerically stable, but renders the solution too slow

for many practical purposes. Some use a hand-tailored Gröbner basis for the

specific problem at hand, [50].

Byröd et al., [51], developed solvers using the strategy that a Gröbner basis is

not actually needed for constructing the action matrix. Not all equivalence classes

[f ] need to be represented in C[x]/I , but only [f ] that are in a(x)b \ b, where

B is the considered basis for C[x]/I . This give huge freedom on how to select a

basis, which done right, buys numerical stability.

The general strategy used for polynomial solving in this thesis, following [51],

is briefly explained below.

1. Select a monomial as multiplying polynomial, a(x).

2. Expand the equation system in (9) by multiplying the equations with new

monomials to create more equations. Formulate it as a matrix multiplica-

tion of coefficients times monomials.

3. Among all the monomials, select a suitable candidate for a basis b of C[x]/I .

The monomials in a(x)b \ b need to be reduced over I to be expressed in

terms of b. This is done with linear algebra techniques.

4. Form the action matrix Ma from the operation a(x)b = MT
a b.

5. Calulate b from the eigenvalues of MT
a and calculate the solutions from b.
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For this to be able to work, one generally needs to know how many solutions

a system of polynomial equations has. If the matrix MT
a does not have at least as

many eigenvalues as solutions, we cannot hope to recover the different solutions.

Thus, we need the candidate basis b to have a dimension that equals or is larger

than the number of solutions. Selecting a too large candidate basis does in general

not cause any problems besides a possible loss of performance, as all the recovered

hypothetical solutions can be tried in (9) to remove extra false solutions.

Determination of the number of solutions to a polynomial system of equa-

tions have is done in this thesis with Macaulay2, [52], a software system for al-

gebraic geometry. By conjecture, the number of solutions for the polynomial

system is the same as for the polynomial system with random coefficients over

the field Zp, where p is a large prime number, [53]. The number of solutions for

this new system can be efficiently calculated with Macaulay using Gröbner basis

techniques.

Several contributions have added to this method to buy numerical stability

and computational efficiency to be able to solve a larger set of problems. In [54]

and later in [55], steps 2 and 3 above are further studied to efficiently calculate the

action matrix. In [56], symmetries in the initial polynomial systems of equations

are exploited in steps 2 and 5.

5 Overview of the papers

This section gives a brief overview of the papers included in this thesis, as well as

lists the author contributions.

Paper A

Simon Burgess, Yubin Kuang, and Kalle Åström, “TOA Sensor Network Self-

Calibration for Receiver and Transmitter Spaces with Difference in Dimen-

sion”, Elsevier Signal Processing, 2015.

In the first paper we solve the problem of finding both transmitter and receiver po-

sitions using only TOA measurements when there is a difference in dimensionality

between the affine subspaces spanned by receivers and transmitters. Using linear

techniques and requiring only minimal number of receivers and transmitters, an

algorithm is constructed for general dimension p for the lower dimensional sub-

space. Degenerate cases are determined and partially characterized. The algorithm
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is further extended to overdetermined cases. Utilizing the minimal solver, an al-

gorithm using the RANSAC paradigm has been constructed to simultaneously

solve the calibration problem and remove severe outliers. Simulated and real ex-

periments show good performance for the minimal solver and the RANSAC-like

algorithm under noisy measurements.

Author Contributions: KÅ suggested the topic of study. SB has worked and

helped developed the initial idea, written most of the code, done the experiments,

evaluations, developed the theoretical results, and writing for the journal version.

YK and KÅ has helped with the initial idea, feedback on the direction of the work,

and proof reading.

Paper B

Yubin Kuang, Erik Ask, Simon Burgess, and Kalle Åström, “Understanding TOA

and TDOA Network Calibration using Far Field Approximation as Initial Es-

timate”, International Conference on Pattern Recognition Applications and Meth-
ods, Algarve, Portugal, 2012.

In the second paper we present a study of the far field approximation to the prob-

lem of determining both the direction to a number of transmitters and the posi-

tions of the receivers, using TDOA or TOA measurements. In the far field approx-

imation we assume that the distance between receivers are small in comparison to

the distances to the transmitters from the receivers. The problem can be solved

uniquely with at least four receivers and at least six real or virtual transmitters.

The failure modes of the problem are studied and characterized. We also study to

what extent the solution can be obtained in these degenerate configurations. The

solution algorithm for the minimal case is extended to the overdetermined case

in a straightforward manner. We also implement and test algorithms for non-

linear optimization of the residuals. In experiments we explore how sensitive the

calibration is with respect to different degrees of far field approximations of the

transmitters and with respect to noise in the data.

Author Contributions: KÅ and YK conceived the study. SB, EA, YK, and

KÅ has jointly and in approximately equal shares written the code, designed and

run the experiments, contributed to the theoretical contributions of the paper,

and written the paper.
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Paper C

Simon Burgess, Yubin Kuang, Johannes Wendeberg, Kalle Åström, and Christian

Schindelhauer, “Minimal Solvers for Unsynchronized TDOA Sensor Network

Calibration using Far Field Approximation”, International Symposium on Al-
gorithms and Experiments for Sensor Systems, Wireless Networks and Distributed
Robotics, Sophia Antipolis, France, 2013.

In the third paper we extend the work of the second paper by presenting two

novel approaches for the problem of self-calibration of network nodes using only

TDOA when both receivers and transmitters are unsynchronized. We consider

the previously unsolved minimum problem of far field localization in three di-

mensions, which is to locate four receivers by the signals of nine unknown trans-

mitters, for which we assume that they originate from far away. The first approach

uses that the time differences between four receivers characterize an ellipsoid. The

second approach uses linear algebra techniques on the matrix of unsynchronized

TDOA measurements. This approach is easily extended to more than four re-

ceivers and nine transmitters. Both simulated and a real experiment support the

feasibility of the methods.

Author Contributions: SB and JW conceived and planned the study. SB

and YK developed the matrix factorization method, and implemented it. JW and

CS developed the ellipsoid method, and JW wrote the corresponding code. SB

and JW planned and executed the experiments, developed the theoretical results,

and wrote most of the paper with help from the other authors.

Paper D

Zhayida Simayijiang, Simon Burgess, Yubin Kuang, and Kalle Åström, “TOA-

Based Self-Calibration of Dual-Microphone Array”, IEEE Journal on Selected
Topics in Signal Processing, 2015.

In the fourth paper we study the TOA based self-calibration problem of several

dual microphone arrays for known and unknown rack distance, and also for af-

fine space with different dimensions for receiver and sender spaces. Particularly

we analyze the minimum cases and present minimum solvers for the case of mi-

crophones and speakers in 3D/3D, in 2D/3D, and in 3D/2D, with given or un-

known rack length. We identify for each of these minimal problems the number
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of solutions in general and develop efficient and numerically stable, non-iterative

solvers. We demonstrate that the proposed solvers are numerically stable in syn-

thetic experiments. We also demonstrate how the solvers can be used with the

RANSAC paradigm. We apply our method for several real data experiments,

using ultra-wide-band measurements and acoustic data.

Author Contributions: ZS and KÅ conceived and planned the study. The

authors have all approximately equally implemented the methods. The paper was

mainly written by ZS, but with extensive contributions from all other authors in

approximately equal proportions. SB designed, executed, and evaluated the real

life acoustic experiment.

Paper E

Yubin Kuang, Simon Burgess, Anna Torstensson, and Kalle Åström, “A Complete

Characterization and Solution to the Microphone Position Self-Calibration

Problem”, International Conference on Acoustics, Speech and Signal Processing,

Vancouver, Canada, 2013.

The fifth paper presents a solution to the problem of determining the positions

of receivers and transmitters given all receiver-transmitter distances. We show for

what cases such calibration problems are well-defined and derive closed-form,

efficient, and numerically stable algorithms for the minimal TOA based self-

calibration problems. Experiments on synthetic data show that the minimal solv-

ers are numerically stable and perform well on noisy data. The solvers are also

tested on two real datasets with good results.

Author Contributions: KÅ conceived and planned the study. YK and KÅ

implemented and tested most of the methods, with help from SB and AT. The pa-

per was mainly written by YK and KÅ, with contributions from the other authors.

SB designed, executed, and evaluated the real life experiments.

Paper F

Simon Burgess, Mikael Högström, Björn Lindquist, and Kalle Åström, “Smart-

phone Positioning in Multi-Floor Environments Without Calibration or Ad-

ded Infrastructure”, to appear in International Conference on Indoor Positioning
and Indoor Navigation (IPIN), Madrid, Spain, 2016.
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In the sixth paper we explore what can be done using existing WiFi-infrastructure

and RSSI from these to smartphones, not using any calibration of the signal en-

vironment or manually set WiFi positions. We expand on previous work by using

a multi-floor model taking into account dampening between floors, and optimize

a target function consisting of least squares residuals, to find positions for WiFis

and the smartphone measurement locations simultaneously. Pressure sensors are

used to do floor estimation. The method is tested inside two multi-story build-

ings, with 5 stories each, with promising results.

Author Contributions: SB, KÅ and BL conceived and planned the study. All

authors helped in approximately equal shares with implementing and testing of

the methods. The paper was mainly written by SB and MH, with contributions

from the other authors.

6 Topics for future research

The papers in this thesis mostly deal with calibration of sensor networks for re-

ceiver and transmitters when the measurements are already made. From this, one

could imagine several paths for future research.

• One interesting direction is to employ the methods for complete systems,

starting from signal acquisition. Indeed, this path has already been star-

ted. In [57], a complete system is described, starting from sound acquis-

ition, continuing with using GCC-PHAT to do TDOA estimation, and

finishing with calibrating the array and locating sources that have easily

identifiable TDOA-measurements. In [58], WiFi round-trip time meas-

urements are used to produce TOA measurements, which are then used to

do calibration-free indoor localization. A continuation of this work could

be to merge the calibration-free localization with a real-time application, to

let both the receivers and transmitters move continuously. Here, fast min-

imal algorithms could be of great use, focusing on the latest measurements

in a time series.

• It could be of great use for the research community to develop a set of

guidelines or algorithms to determine when it is suitable to use the RANSAC

paradigm and not. For instance to determine suitability of RANSAC from

distributions and ratio of outliers and inliers. It is well known that RANSAC

works well to get initial parameter estimation and outlier classification
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when the measurements’ outlier distribution is clearly different from a con-

centrated inlier distribution. To develop qualitative and quantitative meth-

ods to easily answer the suitability of RANSAC in comparison with, for

instance, l1-optimization or truncated l1-optimization could be of great

use.

• For indoor calibration-free localization using smartphones, COMBAIN

and the Centre for Mathematical Sciences in Lund are looking in to deploy-

ing large-scale systems, and in the future providing commercial uses. As the

methods in this thesis are mainly focused on one modality for calibration-

free localization, the need for sensor fusion and real-time localization is pre-

valent. Sensor fusion is an active and exciting field, cf. [59], and is needed

when dealing with large data sets from users with different platforms and

hardware.

• Developing systems that automatically do calibration and then utilizing

pre-existing research that do localization with calibrated sensor rigs could

help emphasizing the utility of calibration-free localization. Such systems

could also help to make calibration-free localization more robust and easier

to use.
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TOA Sensor Network Self-Calibration
for Receiver and Transmitter Spaces
with Difference in Dimension

Simon Burgess, Yubin Kuang, Kalle Åström

Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract

We study and solve the previously unstudied problem of finding both transmit-

ter and receiver positions using only time of arrival (TOA) measurements when

there is a difference in dimensionality between the affine subspaces spanned by

receivers and transmitters. Anchor-free TOA network calibration has uses both

in radio, radio strength and sound applications, such as calibrating ad hoc mi-

crophone arrays. Using linear techniques and requiring only minimal number

of receivers and transmitters, an algorithm is constructed for general dimension p
for the lower dimensional subspace. Degenerate cases are determined and partially

characterized as when receivers or transmitters inhabits a lower dimensional affine

subspace than was given as input. The algorithm is further extended to over-

determined cases in a straightforward manner. Utilizing the minimal solver, an

algorithm using the Random Sample Consensus (RANSAC) paradigm has been

constructed to simultaneously solve the calibration problem and remove severe

outliers, a common problem in TOA applications. Simulated experiments show

good performance for the minimal solver and the RANSAC-like algorithm under

noisy measurements. Two indoor environment experiments using microphones

and speakers gives a RMSE of 2.35 cm and 3.95 cm on receiver and transmitter

positions compared to computer vision reconstructions.

Key words: TOA, array calibration, minimal problem, ad hoc microphone

arrays.
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1 Introduction

Sound ranging or sound localization has been used since World War I to de-

termine the sound source using a number of microphones at known locations

and measuring the time difference of arrival of sounds. The same mathemat-

ical model is today used both for applications based on acoustics, radio, signal

strength or time-based information such as time of arrival (TOA) or time dif-

ferences of arrival (TDOA), or a combination thereof. Although such problems

have been studied extensively in the literature in the form of localization of e.g. a

sound source using a calibrated receiver array, see e.g. [1–3], or localizing a source

and refining an already good initial guess of a receiver array, see e.g. [4–6], the

problem of calibration of a sensor array with unknown node positions using only

measurements has received comparatively less attention.

In this paper we study and solve the previously unstudied sensor network cal-

ibration problem using only TOA measurements where there is a difference in

dimensionality between the affine subspaces spanned by transmitters and receiv-

ers. This is of both theoretical and practical importance. We provide theorems

to show when the problem, related to rigidity of bipartite graphs, is solvable.

Applications can be in indoor navigation where receivers often are moving in a

plane, e.g. a floor, whereas transmitters can be arbitrarily located in 3D, or for

calibrating ad hoc microphone or antenna arrays. The case of array calibration

when TOA measurements are available is also of importance in the corresponding

TDOA calibration, where a stratified approach of first determining offsets and

then solving the TOA calibration problem is a common approach, see e.g. [7, 8].

We prove that the TOA calibration problem for difference in dimension can

be solved in closed form using linear techniques and give a solution scheme for

general dimensionality p. Furthermore, the solver is extended to overdetermined

cases. Simulated and real experiments support the feasibility of the method. The

problem relates to the study of sensor networks under rigid graph theory [9, 10]

where general graph structure is of interest. The TOA self-calibration problem

studied here corresponds to a special case - bipartite graphs [11].

Several previous contributions dealing with sensor network calibration rely on

prior knowledge or extra assumptions about locations of the sensors to initialize

the problem, see e.g. [12–17]. Here we propose that being able to solve the self-

calibration problem without using more than the TOA measurements between

transmitters and receivers opens up for interesting applications, e.g. calibration of

radio and acoustic sensor networks on the fly, determining reflections of receivers

32



1. Introduction

and transmitters while moving in an unknown terrain.

In [18] and refined in [19] a far field approximation was utilized to solve the

TOA and TDOA case. Initialization of TOA calibration using only measure-

ments has been studied in [20, 21], where solutions to the minimal cases of three

transmitters and three receivers in the plane, or six transmitters and four receivers

in 3D are given. Here, minimal case means using the fewest possible number of

receivers and transmitters for the problem to have finite positive number of solu-

tions. Calibration of TDOA networks was studied in [7] and further improved

upon in [8]. In [22, 23], a TDOA setup is used for indoor navigation based on

non-linear optimization, but the methods can get stuck in local minima and are

dependent on initialization.

Of the above contributions, [7, 8, 18–21] can be said to solve a calibration

problem using only measurements with either minimal or close to minimal data.

Studying minimal cases for sensor network calibration are both of theoretical im-

portance and essential to develop fast stable algorithms suitable in random sample

consensus (RANSAC) [24] and other schemes. RANSAC schemes can be used

to weed out outliers in erroneously matched data which is a common problem

in TOA and TDOA applications. The difference in dimensionality problem we

study here is either a degenerate case for the papers above, or requires estimating

several extra variables because of the assumption that receivers and transmitters

lie in a same dimensional subspace. Thus the previous methods are ill suited or

cannot be applied to the problem we study here.

1.1 Problem Formulation

In this paper we study the so called TOA node self-calibration problem when

the dimension of the affine subspaces spanned by receivers and transmitters are

different. We assume that (i) the speed of the medium v is known, and thus all

time measurements are transformed to distances by multiplication by v, (ii) re-

ceivers can distinguish which TOA signal comes from which transmitter. This

can be done in practice by e.g. separating the signals temporally or by any other

signal characteristics such as frequency. For instance, if one has several speakers

emanating sounds at the same time but at different frequency bands, separation

can readily be done with Fourier transform, and TOA measurments can be cal-

culated by the difference of time of sounds emanating and sound onset in mi-

crophones. In radio received signal strength indication applications, which gives

distance measurements from base stations to a receiver, the separation is done by
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coding techniques.

Problem 1.1. Assume receiver coordinates ri, i = 1, . . . ,m are embedded in a

p-dimensional affine space Π and transmitter coordinates sj, j = 1, . . . , n are em-

bedded in a d2-dimensional, possibly infinite, space Π2, where Π ⊂ Π2. Given

absolute distance measurements dij = ||ri − sj||2, determine ri and sj.

Without loss of generality, receivers and transmitters can be interchanged.

The problem is somewhat related to the classical multidimensional scaling (MDS)

problem, with two major differences: i) We here only have distance measure-

ments between receivers and transmitters, whereas MDS has distances between

all points. ii) The underlying dimensions of the receiver and transmitter spaces

differ. We need to consider what we can expect of a solution. First of all, while

still fulfilling the distance measurements, a solution can be changed according to

r̄i = ri + t, s̄j = sj + t,
r̄i = Rri, s̄j = Rsj,

where R is a rotation and/or mirroring matrix and t is a translation. Assuming

a rotation so that the last coordinate of the receivers ri are 0, the problem has

undeterminable degrees of freedom (gauge freedom) of p from the translation and

p(p − 1)/2 from the rotation, which gives a total number of p + p(p − 1)/2.

Furthermore, for the transmitters sj one can only hope to determine the or-

thogonal projection onto Π and the distance to Π , as a rotation around Π will

keep the receivers constant but change the transmitters, without changing the

measurements. Therefore, for practical purposes one can assume that transmit-

ters are embedded in a p + 1 dimensional space. Assuming this is the case, each

transmitter can still be mirrored in Π without changing the distances.

We denote the problem as minimal if the number of solutions ri, sj for generic

distance measurements dij is finite, and at least one on a non-zero measure subset

of the measurement space R
m×n. A solution is considered to be the same as

another solution if and only if it only differs up to translation, rotation, mirroring

in coordinate axis and mirroring of each sj in Π .

There are many ways to account for these ambiguities. We choose to translate

and rotate the coordinate system so that: (i) The translation is locked by setting

r1 = 0. (ii) The mirroring is locked by setting sj’s last coordinate to positive. (iii)

The last coordinate of ri is 0. The extra coordinate for transmitter j will thus be
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sj’s last coordinate. The rest of the rotation ambiguity is left free, and fixed first

when comparing two solutions using [25].

2 Theory

Here follows a detailed description to the solver for the TOA node self-calibration

problem. We first develop a minimal algorithm, where the noiseless case is natur-

ally considered, as we have just enough measurements to solve the problem. Thus

there is no way to compensate for noisy measurements without assuming further

priors such as known bias. Let D =
[
dij

]

m×n
be the matrix with the distance

measurements, and D2 =

[

d2
ij

]

m×n
be the matrix with the distance measure-

ments squared. As d2
ij = (ri − sj)

T (ri − sj) = rT
i ri − 2rT

i sj + sT
j sj, the squared

distances can be written as

d2
ij =

[
1 −2rT

i rT
i ri

] [

sT
j sj sT

j 1
]T

= EiFj .

This leads to that D2 = EF where E is a matrix with Ei as the ith row and F
is a matrix with Fj as the jth column. This factorization was used in [7]. As the

last coordinate of ri only has zeros, the second last column of E will be zeros,

multiplying with the second last row of F . We can thus remove this row and

column from the expression, forming

d2
ij =

[
1 −2r̃T

i r̃T
i r̃i

] [

sT
j sj s̃T

j 1
]T

= ĒiF̄j ⇒
D2 = Ē F̄ ,

(1)

where r̃i, s̃j are ri, sj with the last coordinate removed, Ē is an m×
(
p + 2

)
matrix

and F̄ is an (p + 2) × n matrix. This tells us that the rank of D2 is at most p + 2.

We form the matrix S =
[
sij
]

(m−1)×n
, i = 1, . . . ,m − 1

sij = d2
i+1,j − d2

1,j

= (ri+1 − sj)
T (ri+1 − sj) − (r1 − sj)

T (r1 − sj)

= r̃T
i+1r̃i+1 − 2r̃T

i+1s̃j

=
[
−2r̃T

i+1 r̃T
i+1r̃i+1

] [

s̃T
j 1

]T
= ẼiF̃j ,

(2)
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as r1 = 0 and ri’s last coordinate is 0. By using the first receiver we have eliminated

the quadratic constraints on the transmitters, effectively forming equations in

our unknowns ri and sj which only depends on the p first coordinates, i.e. their

orthogonal projection in Π . The equations are also linear in sj.

We note that S = Ẽ F̃ , where Ẽ is an (m − 1) × (p + 1) matrix where the ith

row is Ẽi+1 and F̃ is an (p + 1) × n matrix where the jth column is F̃j. This tells

us that S is at most of rank p + 1.

2.1 Solving in Π

We seek a factorization S = Ẽ F̃ such that F̃ has a last row of ones, and the

quadratic constraints in each row of Ẽ is fulfilled (2). Assuming that S has rank

p + 1, we start by doing the compact singular value decomposition (svd)

S = U
︸︷︷︸

X0

ΣV T
︸ ︷︷ ︸

Y0

= X0Y0, (3)

where U , Σ and V are (m − 1) × (p + 1), (p + 1) × (p + 1) and n × (p + 1)

respectively. We continue by expanding

S = X0B−1
0

︸ ︷︷ ︸

X1

B0Y0
︸︷︷︸

Y1

= X1Y1, (4)

where B0’s last row is chosen so that Y1 will have a last row of ones. This is done

by solving a linear system of equations with p + 1 unknowns, which tells us that

we need p + 1 transmitters so that we can solve the system uniquely. This can

always be done as Y0 has full rank, implied by the assumption that S has rank

p + 1.

The other p rows of B0 are calculated with Gram-Schmidt orthogonalization

so that B0 is a unitary real matrix times a scalar. To do this, take the top p rows

to be p different rows of the identity matrix of dimension p + 1 so that all rows

are linearly independent, and then apply the Gram-Schmidt process starting from

the last row. Then the condition number of B0 will be 1 so that X0B−1
0 does not

lose unnecessary precision. Y1 does now have the right properties suggested by
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(2) but X1 does not. We continue by expanding

S = X1B1
︸︷︷︸

Ẽ

B−1
1 Y1

︸ ︷︷ ︸

F̃

= Ẽ F̃ , B1 =

[
A b
~0 1

]

, (5)

where A is a general invertible p × p matrix, b is a general p × 1 vector and ~0 is a

vector of zeros. This implies that B−1
1 has the same restrictions as B1 which gives

the most general form for preserving the last row of ones and rank in Y1 when

forming B−1
1 Y1. It remains to determine A and b.

This is done by enforcing the quadratic constraints of the rows of the left

matrix in (2) on X1B1. We denote row i of X1 as
[
vi vi,p+1

]
where vi is a vector

of length p and vi,p+1 is the last element. The constraints then become

viAAT vT
i = 4

(
vib + vi,p+1

)
. (6)

As AAT = ARRT A for any rotation and/or mirroring matrix R, and this R equates

exactly to a rotation/mirroring of ri and sj in Π , we need only to solve (6) for the

symmetric matrix C = AT A. This gives p + p(p + 1)/2 unknowns from b and

C , which tells us that we need 1+ p+ p(p+ 1)/2 receivers to be able to solve the

linear equations (6) in the unknowns C and b uniquely, as well as the system to

have full rank. The extra receiver comes from losing a row in S by subtracting the

fist row of D2 in (2).

When C and b have been determined, an A can be calculated from e.g.

cholesky factorization in C . Now the left and right hand factorization of S,

Ẽ = X1B1 and F̃ = B−1
1 Y1 can be calculated. r̃i+1 can then be calculated as

the first p elements of row i of Ẽ divided by −2, and s̃j are the first p elements

in respective column of F̃ , according to (2). The last coordinate sj can then be

recovered by using (1) and the last coordinate of ri is 0. A summary of the steps

can be seen in Algoritm 1.

2.2 Minimal cases

It can be seen from the following theorem that the algorithm solves a minimal

problem, defined in Section 1.1.

Theorem 2.1. When having m = 1 + p + p(p + 1)/2 receivers and n = p + 1

transmitters, Problem 1.1 is minimal. Furthermore there is only one solution up
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Algorithm 1 Minimal solver for the TOA calibration problem

Input: Dimension p of receiver space, TOA measurement matrix D =
[
dij

]
of

size m = 1 + p + p(p + 1)/2 by n = p + 1.

Output: Receiver and transmitter positions ri and sj.

Postconditions: (i) S has rank p + 1, (ii) linear system

viCvT
i = 4

(
vib + vi,p+1

)
has full rank, (iii) C is positive definite.

1: Set S :=
[

d2
i+1,j − d2

1,j

]

2: Calculate the svd S = UΣV T and set X0 to first p + 1 columns of U
and Y0 to first p + 1 rows of ΣV T

3: Calculate B0 such that B0Y0 has last row of 1’s and such that B0 is unitary

times a scalar

4: Set X1 := X0B−1
0 , Y1 := B0Y0, vi to the first p elements of row i of X1 and

vi,p+1 to the last.

5: Solve for the unknowns in the symmetric matrix C and vector b the m − 1

linear equations viCvT
i = 4

(
vib + vi,p+1

)

6: Calculate the cholesky decomposition C = AAT and set B1 :=

[
A b
~0 1

]

7: Set Ẽ := X1B1, F̃ := B−1
1 Y1, r̃i+1 to the p first elements in row i of Ẽ divided

by -2, and s̃j to the first p elements of column j of F̃
8: Solve for sj,z to the positive sign solution,

d2
1j =

[
s̃j sj,z

]T [
s̃j sj,z

]

9: Set r1 := ~0, ri :=
[
r̃i 0

]
and sj =

[
s̃j sj,z

]

to translation and rotation/mirroring in Π , and mirroring of the last transmitter
coordinate in Π .

Proof. Looking at the steps of Algorithm 1, we see that we do not lose any solu-

tions due to specific choices of parameters, except equivalent solutions up to gauge

freedom and mirroring in Π , according to Section 1.1. Thus, we have only one

solution, and the problem is minimal.

A common, but sometimes misleading, way of make likely that the problem

is minimal is by counting the degrees of freedom of the problem:

DOF(m, n) = pm + (p + 1)n − p − p(p − 1)/2. (7)
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The positive terms come from the coordinates of ri and sj respectively, and the

negative terms come from the gauge freedom in Section 1.1. We have mn meas-

urements, whereas the algorithm needs that m = 1+p+p(p+1)/2 and n = p+1,

giving mn = (1+ p+ p(p+ 1)/2)(p+ 1) measurements. Comparing the number

of measurements to the degrees of freedom, we see that they are equal. However,

this by itself is not a sufficient condition for minimality. Note that there are other

constellations of m, n where the mn matches the degrees of freedom in (7). For

instance, if p = 2, we have m = 4, n = 5, and for p = 3 we have three other

constellations. In general, while they may at first glance look like good candidate

constellations for a minimal case to solve the calibration problem, this is not the

case. When both m, n > p+ 1, the matrix compaction (2) tells us that the matrix

S does not have full rank, as Rank(S) = p + 1. Thus, some of the transformed

measurements in S can be derived from the others and are not left free. There are

in some sense fewer measurements than mn due to the constraints imposed by the

problem for these constellations.

Assuming that the receivers and transmitters are in a same dimensional sub-

space with dimension p+1, we can use the algorithm to just solve inΠ , skipping

step 8 and 9 in the algorithm. Comparing degrees of freedom to measurements

now suggests an overdetermined system. Solving this problem in 3D we need

10 receivers and 4 transmitters, which is on par with [7] that also utilizes linear

techniques. To solve the minimal problem in 3D, e.g. using 6 receivers and 4

transmitters, requires solving systems of polynomial equations [21].

2.3 Degenerate cases

There are special cases of constellations for receivers and transmitters where the

algorithm cannot produce a solution, for example if two transmitters are placed

on top of each other. Then the measurements of the corresponding transmit-

ters become duplicates, and we effectively have one transmitter less than needed.

These special cases, denoted degenerate cases, are characterized by the following

theorem.

Theorem 2.2. Degenerate cases for the minimal algorithm are when i) the assump-
tion that S is of full rank, i.e. p+ 1, does not hold, ii) step 5 gives a linear system that
does not have full rank, or iii) C is not of full rank.

i) happens if and only if X0 or Y0 in the svd in step 2 is rank deficient. Y0 is rank
deficient if and only if the projection onto Π of the transmitters, s̃j, lie in an even
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lower dimensional affine subspace than Π . X0 is rank deficient if receivers ri span a
lower dimensional subspace than Π .

Proof. Looking at the assumptions for the algorithm to work, the only ones are

the ones mentioned in (i), (ii) and that C should be positive definite. When C is

of full rank, but not positive definite, the special case after the proof characterizes

this. When C is not of full rank, there is no full rank matrix A such that C =

AT A, as in that case C would have full rank. Thus i), ii) and iii) constitute the

degenerate cases.

The matrix S is trivially rank deficient if and only if X0 or Y0 is. Y0 is rank

deficient if and only if F̃ is rank deficient, as F̃ is Y0 multiplied with invertible

matrices. F̃ is rank deficient if and only if ∃ a1, . . . , ap+1 ∈ R, not all = 0, such

that

p
∑

i=1

aiF̃i = ap+1
~1 (8)

as F̃ has a last row of ones. As each row i of F̃ , F̃i, consists of the ith coordinates

of s̃j, (8) is equivalent to that s̃j lie in an affine space with dimension < p.

The matrix X0 is rank deficient if and only if Ẽ is rank deficient, as Ẽ is X0

multiplied with invertible matrices. Ẽ is rank deficient if the first p columns do

not span a p-dimensional space. As column k contains the kth coordinates for ri,

this gives that ri spans a lower dimensional subspace than Π .

Note that the degenerate cases characterized in i) and iii) are inherent to the

problem, not the algorithm. If the receivers or transmitters lie in a lower dimen-

sional subspace than assumed, there are fewer degrees of freedoms to estimate

than assumed. If the matrix C is rank deficient, there exist no full rank linear

transformation A such that the constraints in (2) are fulfilled.

A special case, resulting in complex solutions, is when the resulting matrix C
in step 5 is not positive definite, but full rank. If this happens, then there exists

no real solution for A such that C = AAT . A will have to be complex, and can

be solved by eigenvalue decomposition C = QT DQ = QT
√

D
√

DQ = AAT ,

giving complex solutions ri and sj fulfilling the measurements in D. This can also

happen for the p+1th coordinate in sj, if the projection s̃j is larger than d2
1j, which

is used to calculate the last coordinate in step 8.
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2.4 More receivers and transmitters

When having more than 1 + p + p(p + 1)/2 receivers, p + 1 transmitters and

measurements dij possibly corrupted by noise, the algorithm can be expanded by

i) approximating S in (3) by the closest rank p + 1-matrix in Frobenius norm, by

setting the singular values after the p + 1 first to zero, ii) taking the linear least

squares solution to the system of equations resulting from (4) and (6) respectively.

This will not be an optimal solution in any formal sense, but will give a good solu-

tion which can serve e.g. as an initial estimate for further non-linear optimization

techniques.

The computational complexity has an upper bound of O(n2m+ nm2 + n3 +

m3), where the first three terms come from the svd in step 2, and the last one from

solving the m − 1 linear equations in step 5.

From here on the extended algorithm will be used. Note that when having

only the minimum numbers of receivers and transmitters, the extended and min-

imal solver are equivalent.

2.5 A RANSAC-like algorithm

Outliers in the measurements dij is a common problem in applications, usually

occuring from erroneous matching of event detections from e.g. microphones or

antennas. To handle this, we have developed a RANSAC-like scheme. RANSAC

was first used in image analysis [24]. The advantages of the proposed algorithm is

that it can estimate receiver and transmitter positions and at the same time weed

out outliers in the measurement set. In practice, RANSAC-schemes has been

used to great success in image analysis and computer vision, see [26] for several

examples.

At the core, the RANSAC-like algorithm presented here uses the minimal

solver presented in Section 2. Here, the minimality is crucial. The RANSAC-like

scheme needs to get a subset of all inliers for at least one of its iterations. The

fewer measurements it needs to fit an initial model, the higher the chance of that

model is fit with inliers.

Here follows the general outline of the algorithm 1. The algorithm given here

is for clarity the case when receivers are in 2D and transmitters in 3D, but it is

easily generalized. Given a set of measurements {dij}, we want to find receiver

1The algorithm and all code is available at
https://github.com/SimonEBurgess/TOA-self-calibration
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and transmitter positions and at the same time weed out outliers. Pick a minimal

subset of measurements, in this case corresponding to 6 receivers and 3 trans-

mitters. Fit a model using the minimal algorithm in Section 2. Now we have

positions for 6 receivers and 3 transmitters. From these 6 receivers, trilaterate all

the transmitter positions. Now we count the number of total inliers in the set of

measurements we have receiver and transmitter positions to match, defining dij as

an inlier if

|dij − ||ri − sj||2| ≤ ε (9)

for a given ε. If the initial minimal set of measurements were all inliers, and

the trilaterations for all transmitters were done robustly, this would give a good

estimation of 6 receiver, all transmitter positions and which of the measurements

we have receiver and transmitter positions for that are inliers. From here, we can

trilaterate the missing receivers, and if this is done robustly, it is now easy to use

(9) to classify any measurement as inlier or outlier.

Summarizing the assumptions made we have two problems: i) How do we

know the initial set of measurements are inliers? ii) How do we robustly trilat-

erate more receivers and transmitters in the presence of outliers? In RANSAC

approaches, the key argument for problem i) is that when having a large amount

of data and repeating the whole process many times, the probability of randomly

selecting an initial subset that are all inliers at least once, approches one for a given

percentage of outliers. Thus, we iterate the process of solving the minimal prob-

lem, trilaterating all transmitters and counting inliers. Each time we randomly

select the initial minimal set of measurements and then trilaterate up all transmit-

ters. Over all runs, we save the final result that has the most number of inliers.

Each of these iterations is called a main iteration. As we need to iterate the whole

process, this explains the need to have a fast minimal solver at the core. Problem

ii) is dealt with in a similar manner. For instance, when trilaterating a new receiver

from known transmitters, we do it several times using randomly selected minimal

number of measurements each time. Then we use the receiver position rk that

gives the most number of inliers on the set {dkj : j ∈ known transmitter index}.

As transmitters are trilaterated using only 6 receiver positions, even though

we try to find the transmitter position that fits the most number of the 6 meas-

urements, this might not work well if we have many outliers in these six meas-

urements. Fortunately we can detect this by seeing that for these indices {l},

we should have very few inliers in {dil : i = 1, 2, . . . ,m} when having com-

pleted the process of estimating all receiver and transmitter positions. Thus, after
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Algorithm 2 RANSAC-scheme for finding node positions and inliers

Input: Dimension p, TOA measurement matrix D =
[
dij

]
, nbrIterMain,

nbrIterTril , Tolerance for inlier classification ε, Max # outliers for not ret-

rilaterating transmitter nbrOutliersTol .
1: for i = 1 to nbrIterMain do

2: Randomize 1 + p + p(p + 1)/2, p + 1 different receiver and transmitter

indices. Run Algorithm 1 using the corresponding part of D.

3: If solution is real, use the obtained receivers to trilaterate the unknown

transmitters. For each new transmitter, iterate over every combination of

p + 1 receivers from the 1 + p + p(p + 1)/2 known. For each iteration,

use the p + 1 receivers to trilaterate the transmitter. Save the transmitter

position that gave the most inliers for the 1+p+p(p+1)/2 corresponding

measurements, according to (9).

4: Check number of inliers, using (9), for the part of D with known receivers

and transmitters. If the best so far, save receiver and transmitter positions.

5: end for

6: For each unknown receiver, trilaterate the position using random p+1 trans-

mitters. Do this nbrIterTril times. Save the receiver position that has most

inliers according to (9).

7: For each transmitter that has more outliers than nbrOutliersTol on the corres-

ponding measurements, retrilaterate it using random p+1 receivers. Retrilat-

erate the transmitter position nbrIterTril times. Save the transmitter positions

that has most inliers according to (9).

8: Check what measurements are inliers using (9).

all receiver and transmitter positions have been trilaterated, we re-trilaterate the

transmitters that correspond to few inliers using our previous scheme, now having

all the receivers.

The same problem is not present when trilaterating the receiver positions, as

we then have all the transmitter positions to trilaterate from. Some of the trans-

mitters might be wrong at this step, but as we search for each receiver iteratively

using only a minimal number of transmitters each time, this does not generally

cause any problems.
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3 Results

3.1 Simulated Experiments

For all experiments in this section, ground truth receivers ri,gt and transmitters sj,gt

are simulated, and from there a distance matrix Dgt = [dij] has been calculated.

Dgt , sometimes corrupted with noise, missing data and outliers, serves as input.

The receivers, residing in the subspace Π of dimension p, has been drawn

from a uniform distribution over a unit cube centered around the origin. The

transmitters sj,gt , residing in Π2 with dimension p + 1, have their distances from

the origin drawn from a uniform distribution U (0.1
√

p,
√

p) and then uniformly

distributed over the sphere with that radius.

To be able to evaluate the quality of the solution, ri, sj are rotated, mirrored

and translated so that
∑

i ||R(ri−t)−ri,gt ||22+
∑

j ||R(sj−t)−sj,gt ||22 is minimized,

where R and t is a rotation/mirroing and translation in Π respectively. Finding R
and t is done by using [25]. The relative error of the solution is then calculated as

||ri − ri,gt sj − sj,gt ||Fro/||ri,gt sj,gt ||Fro where || · ||Fro denotes the Frobenius norm.

All experiments were run on a desktop computer using Intel Core 2 Duo CPU

with two 2.8 GHz processors, implemented in Matlab.

For the minimal solver, 1000 experiments were run for p = 2, 3, 4 each.

Histograms of relative errors can be seen in Figure 1. The mean computational

time of the algorithm over these runs was 3.0 ms.

In Figure 2 the mean relative errors of 1000 runs, p = 2, for different number

of receivers and transmitters, are plotted against the standard deviation of additive

white Gaussian noise on the measurements Dgt . The errors are only calculated for

the real solutions, as the complex ones do not have a physical meaning, though

they fulfill the measurements D if not overdetermined, and approximately ful-

fill them if overdetermined. Complex solutions correspond to the special cases

described in Section 2.3.

To see the validity of using the minimal solver to weed out outliers and simul-

taneously find an effective solution to the calibration problem, the RANSAC-like

algorithm in Section 2.5 was run on measurements Dgt . For each experiment,

each measurement has a independent chance of being replaced by outliers or miss-

ing data. A measurement dij that was replaced by an outlier, was redrawn from

a uniform distribution U (0,
√

p). As it is generally harder to do an effective re-

construction from partly erroneous data than partly missing data, the chance of a

measurement being removed as missing data is kept to a moderate 1% over all ex-
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Figure 1: Histograms of relative errors for the minimal solver. Here p is the

dimension of the affine space the receivers span.

periments. The dimension of the subspace receivers is set to p = 2. In Figure 3a,

histograms relative reconstruction can be seen for different percentage of missing

data, for 100 runs each. 10 receivers and 15 transmitters were used, and para-

meters are set to 300 main iterations, 50 iterations for trilaterating each receiver,

inlier tolerance classifier ε of 0.005 and a tolerance of 3 outliers per column to

not retrilaterate transmitters at the end. In Table 1, the average relative frequency

of erroneously classified measurements as outliers or inliers can be seen, together

with outlier false negative and false positive. Average execution time was 1.1s.

The same experiment was made but with additive Gaussian noise added to the

measurements, with a standard deviation of 10−4. The histograms showing the

relative errors can be seen in Figure 3b, and mean and maximum relative errors

can be seen in the top part of Table 2.

For the same experiments with noisy data, we have implemented and run a

Gauss-Newton optimizer, [27], to do local minimization of the sum of squared

residuals. Over all measurements classified as inliers,
∑(

dij − ||ri − sj||2
)2

was

locally minimized. To initialize the local optimizer, the calculated receiver and

transmitter positions from the RANSAC-like solver were used. The histograms of
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Figure 2: Relative errors for 1000 simulations each plotted against additive Gaus-

sian noise, with different number of receivers (r) and transmitters (s) with p = 2.

Box plot shows the percentage of complex solutions.

the relative errors can be seen in Figure 3c, and the maximum and mean relative

errors can be seen in the bottom part of Table 2.

To have a basis for comparison to the RANSAC-like algorithm, we have im-

plemented an iterated l1-optimizer, [28], to minimize
∑∣

∣dij − ||ri − sj||2
∣
∣ over

all measurements, including outliers.We let the optimizer run on the same 100

experiments as above, but with random initializations of ri and sj, randomized

over the domain of the ground truth. The optimizer runs until approximate local

convergence, and then starts with another random guess. This process continues

until the time spent on the optimizer exceeds the time spent on the RANSAC-like

solver for the same experiment. The best optimized solution is then saved. Over

all the 100 experiments, the average number of random initializations optimized

for each experiment was 13 runs. The results can be seen in Figure 4.

The failure rate for the RANSAC-algorithm is 0% in all cases. Theoretically,

300 runs of the main loop in the RANSAC-algorithm might not be enough to

find a minimal case that could be used to trilaterate all transmitters, or altern-

atively, this might not be possible at all for the measurement matrix D in this
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Figure 3: Histograms of relative errors for 100 simulations using the RANSAC-

solver, for different number of outliers in measurements D = [dij]. 10 receiver

and 15 transmitters were used. Measurements also has 1% missing data. (a) is

without noise, (b) is with additive Gaussian noise with standard deviation 10−4,

and (c) is the same experiments as in (b) but with residuals dij −||ri − sj||2 locally

minimized with Gauss-Newton.

given constellation, due to having too many outliers and missing data in an un-

fortunate constellation. For example, if all measurements in a column are missing

data, one cannot hope to reconstruct the transmitter position corresponding to

that column. However, a partial reconstruction of the node positions can be done

in this case.

3.2 Real Data

Using seven Shure SV100 microphones and four Roxcore portable speakers, all

connected to a Fast Track Ultra 8R sound card in an indoor environment, see

Figure 5 (a), TOA measurements were obtained by matching sounds from dif-

ferent speakers to sound flanks recorded from different microphones. Another

experiment was conducted, this time using T-bone MM1 measurement micro-

phones, and new microphone and speaker positions. See Fig. 5 (b). The sounds

in both experiments were separated temporally so that the matching of which

sound came from which speaker could be done. Matching was done using the

beginning of emitted sounds, thus ignoring reflections as there exist a direct path

between speakers and microphones. Microphones were placed on a table, i.e. a

plane, and speakers throughout the room, so that p = 2. The signal-to-noise ratio

varied between 10-40 dB. A sample signal of a sound onset can be seen in Fig. 6.

To have a basis for comparison, a computer vision reconstruction of micro-
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Outliers Erroneously classified False outlier False inlier Noise

4% 0.040% 0% 0.040% No

8% 0.073% 0.013% 0.060% No

12% 0.113% 0.020% 0.093% No

4% 1.04% 0.980% 0.060% Yes

8% 1.28% 1.17% 0.107% Yes

12% 1.19% 0.980% 0.213% Yes

Table 1: Over 100 experiments, the average % outliers in the measurements dij

are tabulated against average of % i) measurements erroneously classified as inliers

when outliers or vice versa, ii) measurements erroneously classified as outlier, iii)

measurements erroneously classified as inlier, and iv) indicator if measurements

have additive Gaussian noise of standard deviation 10−4. All experiments also has

an average 1% missing data.

phones and speakers were made, based on cell phone images of the experimental

setup. The computer vision solution is then up to rotation, translation and scale.

By running the extended algorithm, see Section 2.4, for p = 2 and aligning the

solutions with the computer vision solutions, we got a root mean square error of

2.35 cm and 3.95 cm for the experiments using the Shure SV100 microphones

and T-bone MM1 microphones respectively. See Figures 5 for a visualization.

4 Discussion

Looking at Figure 1, the results of the minimal solver of Algorithm 1 shows that

the algorithm has good numerical performance. It is also fast, making it well

suited for the RANSAC-like algorithm in Section 2.5.

The RANSAC-like algorithm shows good reconstruction results over all shown

rate of outliers, seen in Figure 3a. The worst case scenario have relative error below

3%. As measurements are not corrupted by noise here, an empirical upper bound

histogram for the reconstruction can be seen in Figure 1 for p = 2. The main

deviation from this, the bump around the relative error 10−2.5, can be explained

by one or more transmitters trilaterated from the initial 6 receivers has used one

or more outliers from the data, that is similar to the correct measurement that

should have been there. Only six measurements are available to trilaterate each

new transmitter, whereas the minimal case is three measurements. Thus, there are
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Outliers Max relative error Mean relative error optimized

4% 7.71% 1.77% No

8% 23.2% 1.88% No

12% 35.3% 2.35% No

4% 3.36% 0.20% Yes

8% 23.4% 0.56% Yes

12% 31.2% 0.99% Yes

Table 2: Over 100 experiments with additive Gaussian noise of standard deviation

10−4, the average % outliers in the measurements dij are tabulated against the

relative errors of the reconstruction of receiver and transmitter positions, in % of

i) max relative error , ii) mean relative error, iii) and iii) indicator if receiver and

transmitter positions have been locally nonlinearly optimized. All experiments

also has an average 1% missing data.

very few measurements at this stage to use in the internal trilateration RANSAC-

approach. Furthermore, the final check when all receiver positions are available,

counting the number of inliers of the 15 measurements belonging to the erro-

neous transmitter, does not tell us to retrilaterate the transmitter, as there is still a

fair amount of inliers as the transmitter position is still fairly good.

Looking at the top part of Table 1, the erroneously classified measurements

are few. Furthermore, some erroneous inliers are to be expected, as the outlier

measurements are roughly randomized in the domain of measurement amplitude.

Thus, we expect some of the outliers to be close to the correct value, and should

perhaps not be said to be an outlier at all, but rather noisy measurements. The er-

roneous outliers again mostly coincide with cases where one or more transmitters

have been reconstructed with errors like in the discussion above.

In the presence of outliers, moderate noise and missing data simultaneously,

the RANSAC-like algorithm show fairly good reconstructions, as can be seen in

Fiugre 3b. Looking at the lower part of Table 1, the erroneously classified meas-

urements are still few. The measurements erroneously classified as outliers has

increased somewhat in comparison with the noiseless case. This is to be expected

as the minimal solvers for both the initial subset of 6 receivers and 3 transmit-

ters and for the trilaterations only use minimal number of measurements, i.e. the

solution fits the selected subset of measurements exactly, even though they are

noisy.
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Figure 4: Histograms of relative errors for l1 locally optimized solutions for 100

experiments, with several random initializations for each experiment. The time

spent optimizing on each experiment is slightly exceeding the time spent on the

RANSAC-like solver.

After locally minimizing the sum of squared residuals of the measurements

classified as inliers,
∑(

dij − ||ri − sj||2
)2

, a fair improvement of the reconstruc-

tions is made, see Figure 3c. The improvement can be explained by that the

RANSAC-solver does not give a formally optimal solution, as it in each iteration

fits receiver and transmitter positions only to a minimal subset of data. Figure

3b-3c show that the RANSAC-solver gives a good initial solution and a good

classification of inliers, so that further local optimization can be done.

Comparing Figure 4 and 3b, we can see that the RANSAC-like algorithm

performs much better than the best local l1 optimization solution. Although the l1
optimizer should be fairly robust to a few outliers, it can not reliably handle many

outliers and the many local minima of the target function
∑∣

∣dij − ||ri − sj||2
∣
∣.

All experiments for the RANSAC-like algorithm uses 1% missing measure-

ments. This shows that the method can handle missing data, but the real problem

at hand is to identify outliers in the data and make a good receiver and transmitter

position reconstruction.
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Figure 5: (a-b) Two experiments with speakers and microphones. Speakers are

emphasized with circles and microphones with rectangles. Speakers are facing the

microphone constellations. (b-c) The reconstructed solution using the algorithm

(red) versus a reconstruction done with computer vision techniques (blue). Speak-

ers are x and microphones are +.

5 Conclusions

In this paper we have solved the previously unsolved TOA calibration problem

when receivers and transmitters are in different dimensional affine subspaces, for

general dimensions. The primary interesting cases are when the lower dimen-

sional subspace is on a line or in a plane, whereas higher dimensional solutions

is for now of theoretical interest. The difference in dimensionality problem is an

important degenerate case for previous papers focusing on the TOA calibration

problem, and also for the TDOA calibration problem where a stratified approach

of first determining offsets and then solving the TOA problem is a common ap-

proach. We solve the minimal case which is shown to be 1 + p + p(p + 1)/2

receivers inhabiting a subspace of dimension p, and p + 1 transmitters inhabiting
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Figure 6: Typical microphone signal onset, taken from experiment shown in Fig.

5 (b)

a higher dimensional subspace. Only one solution exists up to gauge freedom and

mirroring of transmitters in the subspace. We determine the degenerate cases and

they are partially characterized. As a by-product we show how to solve the non-

minimal TOA calibration problem for same dimensional case in general dimen-

sions with linear techniques. The minimal algorithm is extended in a straightfor-

ward manner to be able to handle more than a minimal configuration of receivers

and transmitters, and can serve as an initial estimate for non-linear optimization.

A RANSAC-like algorithm has also been developed to show the feasibility of us-

ing the minimal algorithm for robust estimation and outlier removal in the TOA

node self-calibration problem.

Simulated experiments support the feasibility of the algorithms. The minimal

solver is numerically stable and the extended solver for overdetermined cases are

tolerant to noise. Experiments on the RANSAC-like algorithm show small relative

errors together with a strong ability to correctly classify measurements as outliers

or inliers. Real indoor experiments using microphones and speakers in an acoustic

sensor network support that the extension of the minimal algorithm can be used

with good results to determine microphone and speaker positions.
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[8] Y. Kuang and K. Åström, “Stratified sensor network self-calibration from

tdoa measurements,” in Proc. of the European Signal Processing Conference,
2013.

[9] Leonard Asimow and Ben Roth, “The rigidity of graphs, ii,” Journal of
Mathematical Analysis and Applications, vol. 68, no. 1, pp. 171–190, 1979.

[10] T. Eren, OK Goldenberg, W. Whiteley, Y.R. Yang, A.S. Morse, BDO An-

derson, and PN Belhumeur, “Rigidity, computation, and randomization in

network localization,” in Proc. of Conference of the IEEE Communications
Society, 2004.

[11] E.D. Bolker and B. Roth, “When is a bipartite graph a rigid framework,”

Pacific Journal of Mathematics, vol. 90, no. 1, pp. 27–44, 1980.

[12] S. T. Birchfield and A. Subramanya, “Microphone array position calibra-

tion by basis-point classical multidimensional scaling,” Speech and Audio
Processing, IEEE Transactions on, vol. 13, no. 5, pp. 1025–1034, 2005.

[13] D. Niculescu and B. Nath, “Ad hoc positioning system (aps),” in Proc. of
Global Telecommunications Conference, 2001.

[14] E. Elnahrawy, Xl. Li, and R. Martin, “The limits of localization using signal

strength,” in Proc. of Sensor and Ad Hoc Communications and Networks,
2004.

[15] V. C. Raykar, I. V. Kozintsev, and R. Lienhart, “Position calibration of

microphones and loudspeakers in distributed computing platforms,” Speech
and Audio Processing, IEEE Transactions on, vol. 13, no. 1, pp. 70–83, 2005.

[16] M. Crocco, A. Del Bue, and V. Murino, “A bilinear approach to the position

self-calibration of multiple sensors,” Signal Processing, IEEE Transactions on,

vol. 60, no. 2, pp. 660–673, 2012.

[17] J.C. Chen, R.E. Hudson, and K. Yao, “Maximum-likelihood source loc-

alization and unknown sensor location estimation for wideband signals in

the near-field,” Signal Processing, IEEE Transactions on, vol. 50, no. 8, pp.

1843–1854, 2002.

[18] S. Thrun, “Affine structure from sound,” in Proc. of Conference on Neural
Information Processing Systems, 2005.

54



References

[19] Y. Kuang, E. Ask, S. Burgess, and K. Åström, “Understanding toa and
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Understanding TOA and TDOA
Network Calibration using Far Field
Approximation as Initial Estimate

Yubin Kuang, Erik Ask, Simon Burgess and Kalle Åström

Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract

This paper presents a study of the so called far field approximation to the prob-

lem of determining both the direction to a number of transmittors and the relative

motion of a single antenna using relative distance measurements. The same prob-

lem is present in calibration of microphone and wifi-transmittor arrays. In the far

field approximation we assume that the relative motion of the antenna is small

in comparison to the distances to the base stations. The problem can be solved

uniquely with at least three motions of the antenna and at least six real or virtual

transmittors. The failure modes of the problem is determined to be (i) when the

antenna motion is planar or (ii) when the transmittor directions lie on a cone.

We also study to what extent the solution can be obtained in these degenerate

configurations. The solution algorithm for the minimal case can be extended to

the overdetermined case in a straightforward manner. We also implement and

test algorithms for non-linear optimization of the residuals. In experiments we

explore how sensitive the calibration is with respect to different degrees of far field

approximations of the transmittors and with respect to noise in the data.

Key words: TOA, TDOA, calibration, sensor networks, self-localization.
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1 Introduction

Navigation covers a broad application area ranging from traditional needs in the

terrestrial, aerial and naval transport sectors to personal objectives of finding your

way to school if you are visually impaired, to the nearest fire exit in case of an

emergency, or to specific goods in your local supermarket. Many potential ap-

plications are however presently hindered by performance limitations of existing

positioning techniques and navigation systems.

Radio based positioning rely on either signal strength, direction of arrival

(DOA) or time-based information such as time of arrival (TOA) or time differ-

ences of arrival (TDOA), or a combination thereof.

The identical mathematical problem occurs also in microphone arrays for

audio sensing. Using multiple microphones it is possible to locate a particular

sound-source and using beamforming to enhance sound quality of the speaker.

Although TOA and TDOA problems have been studied extensively in the

literature in the form of localization of e.g. a sound source using a calibrated

detector array, the problem of calibration of a sensor array using only measure-

ment, i.e. the initialization problem for sensor network calibration, has received

much less attention. One technique used for sensor network calibration is to

manually measure the inter-distance between pairs of microphones and use multi-

dimensional scaling to compute microphone locations, [1]. Another option is to

use GPS, [2], or to use additional transmittors (radio or audio), close to each

receiver, [3–5]. Sensor network calibration is treated in [6]. In [7] it is shown

how to estimate additional microphones, once an initial estimate of the position

of some microphones are known. In [8] the far field approximation is used to

initialize the calibration of sensor networks. However the experiments and theory

was only tested for the planar case and no study of the failure modes were given.

Initialization of TOA networks has been studied in [9], where solutions to the

minimal case of three transmittors and three receivers in the plane is given. The

minimal case in 3D is determined to be four receivers and six transmittors for

TOA, but this is not solved. Initialization of TDOA networks is studied in [10],

where solutions were give to two non-minimal cases of ten transmittors and five

receivers, whereas the minimal solution for far field approximation in this paper

are six transmittors and four receivers.

In this paper we study far field approximation as an initialization to the cal-

ibration problem. We use a similar factorization as [8] but in three dimensions,

and show that far field approximation is at least four measurement positions, i.e.
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three motions, and measurements to at least six real or virtual transmittors. In

this paper we describe the failure modes of the algorithm and show what can be

done when such configurations are present. We further propose two optimization

strategies for more thorough calibration and evaluate them in regards to accuracy

and convergence rate. Several test cases are simulated in which we validate far

field approximation, accuracy of the proposed algorithms, optimization schemes

and performance under noisy measurements.

2 Determining Pose

In the following treatment, we make no difference between real and virtual trans-

mittors or base stations. Assume that the base station is stationary at position

b =
(
bx by bz

)
and that the antenna is at position z =

(
zx zy zz

)
. By

measuring the signal with known base band frequency one obtains a complex

constant, whos phase depends on the distance d = |b − z| between the antenna

and the base station.

By tracking the phase during small relative motions of the antenna, it is feas-

ible to determine the relative distance drel (t) = d (t)+ C̃ , where C̃ is an unknown

constant for each base station. This is the so called TDOA setup. Furthermore if

during measurements the relative motion is small in comparison with the distance

d between the antenna z and the base station b it is reasonable to approximate the

distance d = |b− z| ≈ |b− z0|+ (z− z0)T n = zT n+ (|b − z0| − zT
0 n)

︸ ︷︷ ︸

C̄

. Here z0

is the initial position of the antenna and n is the direction from the base station

towards the antenna, now assumed to be constant with unit length. By setting

C = C̃ + C̄ one obtains the far field approximation

drel (n, z) ≈ zT n + C .

In this paper we are interested in the following far field time difference of

arrival (FFTDOA) type problem that arise from this approximate relative distance

measurement.

Problem 2.1. Given measurements Di,j , i = 1, . . . ,m and j = 1, . . . , k from

the antenna at m different positions to k base stations, determine both the po-

sitions z1, . . . , zm of the antenna during the relative motion and the directions

n1 . . . nk from the base stations so that

Di,j = zT
i nj − Cj,
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||nj ||2 = 1

where Cj is a constant distance offset for each base station.

Lemma 2.1. A problem with m measurements to k base stations with unknown
constant Cj can without loss of generality be converted to a problem with m − 1

measurements to k base stations with known constant.

Proof. Note that because of the unknown constant Cj the problem does not

change in character by modification D̄i,j = Di,j − Kj. For simplicity we set

D̄i,j = Di,j − D1,j. By also setting z1 =
(
0 0 0

)T
, we get Cj = 0. This

is equivalent to choosing the origin of the unknown coordinate system to the first

point.

For simplicity we will in the sequel assume that Cj = 0 and assume that the

one measurement has already been used to resolve the ambiguity. Denote by D
the matrix after removing that said point. This converts the FFTDOA problem

into a FFTOA problem, i.e.

Problem 2.2. Given measurements Di,j, i = 1, . . . ,m, j = 1, . . . , k from the

antenna at m different positions to k base stations, determine both the both the

positions zi of the antenna during the relative motion and the direction from the

base stations nj so that

Di,j = zT
i nj.

||nj ||2 = 1

Lemma 2.2. The matrix D with elements Di,j is of rank at most 3.

Proof. The measurement equations are Di,j = zT
i nj. By setting

Z =








zT
1

zT
2
...

zT
m








and

N =
(
n1 n2 . . . nk

)

we see that D = ZN . Both Z and N have at most rank 3, therfore the same holds

for D.
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Assuming that k and m are large enough and assuming that the motion zi

and the base stations nj are in general enough constellation the matrix D will

have rank 3. If so it is possible to reconstruct both Z and N up to an unknown

linear transformation. This can be done using singular value decomposition, D =

USV T . Even with noisy measurements, the closest rank 3 approximation in the

L2 norm can be found using the first 3 columns of U and V . By setting Z̃ = U3

and Ñ = S3V T
3 we get all possible solutions by N = AÑ , with A a general full

rank 3 × 3 matrix. Changing A corresponds to rotating, affinely stretching and

possibly mirroring the coordinate system. The true reconstruction also fulfills

nT
j nj = 1, which gives constraints on A of type

nT
j AT Anj = 1,

which after substitution B = AT A becomes linear

nT
j Bnj = 1

in the unknown elements of B. Since symmetric 3 × 3 matrices have 6 degrees of

freedom we need at least 6 base stations to determine the matrix uniquely. Once

B has been determined A can be determined by Cholesky factorization. This gives

the transformation A up to an unknown rotation and possible mirroring of the

coordinate system. We summarize the above in the following theorem.

Theorem 2.1. The minimal case for reconstructing m positions zi and k orientations
nj from relative distance measurements Di,j as formulated in Problem 2.2 is m = 4

and k = 6.

Accordingly, we present Algorithm 1 for the minimal case of the problem.

Note that using minimal information m = 4 and k = 6 results in estimates that

fulfill the measurements exactly (up to machine precision) even if the measure-

ments are disturbed by noise.

2.1 Failure Modes of the Algorithm

It is interesting and enlightening to know the failure modes of the algorithm. This

is captured by the following theorem.

Theorem 2.2. The minimal case for reconstructing m orientations nj and k positions
zi from relative distance measurements Di,j as formulated in Problem 2.2 is for m = 4
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Algorithm 1 Minimal algorithm for the FFTDOA problem

Input: Measurement matrix D of size 4 × 6.

1: Set D̄i,j = Di,j − D1,j

2: Remove the first row of D̄
3: Calculate a singular value decomposition D̄ = USV T .

4: Set Z̃ to first 3 columns of U and Ñ to first three columns of SV T .

5: Solve for the six unknowns in the symmetric matrix B using the 6 linear

constraints ñT
j Bñj = 1.

6: Calculate A by Cholesky factorization of B, so that AT A = B.

7: Transform motion according to Z = Z̃A−1 and structure according to N =

AÑ .

and k = 6. As long as the orientations nj do not lie on a common quadratic cone
nT

j Ωnj = 0 and the measurement positions zi do not lie on a plane, there will not be
more than one solution to the problem of determining both structure nj and motion zi

up to an unknown translation, orientation and reflection of the coordinate system.

Proof. The algorithm can fail if the measurement matrix D has rank 2 or lower.

This could e.g. happen if either all measurement positions zi lie in a plane or if all

directions nj lie in a plane (or both). The algorithm can also fail if there are two

solutions to the matrix B in nT
j Bnj = 1. But then the difference Ω = B1 − B of

these two solutions is a three by three matrix for which

nT
j Ωnj = 0,

which in turn implies that the directions nj lie on a common conic as represented

by the matrix Ω .

Yet another type of failure mode of the algorithm is if the data is corrupted

by noise or far field approximation is not vaild, so that the matrix B obtained

is not positive definite. Then the algorithms fails because there is no Cholesky

factorization of B into AT A. If B is unique, there are no real solution to the

problem in this case.

2.2 Analysis of Failure Modes

If the rank of the matrix D is 2, this could be because the points zi lie on a plane

or that nj lie on a plane.
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In this case of coplanar zi it is still possible to estimate the planar coordinates

Z = U2A and N = AS2V T
2 up to an unknown 2 × 2 matrix A representing a

choice of affine coordinate system. Here we do get inequality constraints that

∣
∣
∣
∣
A

(
nj,x

nj,y

)∣
∣
∣
∣
≤ 1.

Each such A is a potential solution. It is possible to extend with a third coordinate

in the normal direction according to

nj,z = ±
√

1 − n2
j,x − n2

j,y.

Another possibility is that the directions nj lie on a plane. In this case it is

possible to reconstruct two of the coordinates for both the positions zi and the

directions nj. Since the normals are assumed to lie in a plane, we can exploit the

equality constraints nT
j AT Anj = 1 similar to the rank 3 case. In this particular

case we only need three directions nj, i.e. the minimal case is for m = 3 and

k = 3. This gives the full reconstruction of both points and directions up to

an unknown choice of Euclidean coordinate system and unknown choice of z-

coordinate for the points zi.

If the rank is 1, this could be because the directions are parallel. In this

case. Similar to the discussions above we can obtain one of the coordinates of the

positions zi, but this is trivial since the measurements Di,j are such coordinates by

definition.

If the rank is 1 because the points lie on a line, we obtain a one-parameter

family of reconstructions based on Z = U1a and N = aS1V T
1 , where a is an

unknown constant that has to fulfill a ≤ 1/l , where l = maxj |S1V1,j|. For each

such a it is possible to extend the directions nj so that they have length one, but

there are several such choices.

2.3 Overdetermined Cases

When more measurements are available than the minimal case discussed in the

previous section, we need to solve an overdetermined system in least-square sense

or with robust error measures e.g. L1-norm. Here we focus on the following

least-square formulation for the pose problem:
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Problem 2.3. Given measurements Di,j, i = 1, . . . , m and j = 1, . . . , k from

the antenna at m different positions to k base stations, determine both the relative

motion of the antenna zi and the direction to the base stations nj so that

minZ ,N ||D − Z T N ||2Frob (1)

s.t. ||nj||2 = 1, j = 1, . . . , k.

where ||.||Frob denotes the Frobenius norm.

For the over-determined cases, that is m > 4 and k ≥ 6 or m ≥ 4 and k > 6,

it is possible to modify Algorithm 1 to obtain an efficient but not necessarily

optimal algorithm that finds a reconstruction that fits the data quite good using

the following three modifications (i) the best rank 3 approximation can still be

found in step 4-5 using the singular value decomposition, (ii) the estimate of

B in step 6 can be performed in a least squares sense and (iii) re-normalize the

columns of N to length 1. This results in a reconstruction that differs from the

measurements, but both steps are relatively robust to noise. The problem of B
not being positive semi-definite can be attacked by non-linear optimization. Here

we try to optimize A so that
∑k

j=1(nT
j AT Anj − 1)2 is minimized. This can be

achieved e.g. by initializing with A = I and then using non-linear optimization

of the error function.

Clearly, we lose any guarantee on the optimality of the solution when we en-

force the constraints as in step (iii). However, the solution can serve as a good ini-

tialization for subsequent optimization algorithms we present in this section. We

discuss how to use alternating optimization and Levenberg-Marquardt algorithm

(LMA) to obtain better solution. The first algorithm starts with an initial feasible

solution for Z and N, and then it alternates between optimizing Z given N and

vice versa. The latter is essentially a method combining Gauss-Newton algorithm

and a gradient descent that improve the solution locally. For both methods, we

need to treat the constraints on the direction vectors properly to ensure conver-

gence.

2.3.1 Alternating Optimization

In order to find the local minima of Problem 2.3, we can use a coordinate descent

scheme. Specifically, we would like to iteratively optimize the cost function in

Problem 2.3 with respect to Z given N , and then find the optimal feasible N
with fixed Z . If we initialize N such that it satisfies the norm constraints, we can

easily see that the alternating procedure is converging (Algorithm 2).
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Algorithm 2 Alternating optimization for the FFUTOA problem

Input: Measurement matrix D with m > 4 and k ≥ 6 or m ≥ 4 and k > 6,

1: Construct D̄ and initialize Z and N as in Algorithm 1

2: Fix N , find optimal Z

3: Fix Z, solve the constrained minimization for each nj, j = 1, ..., k
4: Repeat (2) and (3) until convergence or predefined number of iterations is

reached

To enable the alternating optimization, we need to solve two separate optimiz-

ation problems. The first one is to find the optimal Z given N . This is the classic

least squares problem and is known to be convex and can be solved efficiently.

On the other hand, solving for optimal nj given Z is not always convex due to

the additional constraints on the nj ’s. In this case, we seek the local minima for

each nj as a constrained minimization problem. We solve the small constrained

problems (3 variables each) independently with interior point method. Alternat-

ively, we can solve the constrained optimization as solving polynomial equations.

This can be related to the fact that for a given Z , level sets of the cost function

with respect to nj are surfaces of a ellipsoid in R
3 (the centers are in this case

the solution from singular value decomposition). The norm 1 constraints on nj

geometrically means that the feasible solutions lie on the unit sphere centered at

origin. Therefore, the optimal solution of nj is one of the points that the ellipsoid

is tangent to the unit sphere, which can be found by solving polynomial equa-

tions. While there could exist multiple solutions, we can choose the one with

minimum euclidean distances to the center of the ellipsoid. Unlike interior point

solver, we always find the global optimum. However, in practice, we found that

in the alternating procedure, interior point method and polynomial solving give

similar performance.

2.3.2 Levenberg-Marquardt Algorithm

It is well-known that alternating optimization as a coordinate descent scheme con-

verges slowly in practice. Alternatively, we can solve the minimization problem

by iteratively finding the best descent direction for N and Z simultaneously. The

difficulty here is again the constraints on the direction vectors nj. The key idea

here is to re-parameterize the orientation vectors. Given a direction vector n hav-

ing unit length, any direction vectors can be represented by n · exp(S), where S
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Algorithm 3 Levenberg-Marquardt optimization for the FFUTOA problem

Input: Measurement matrix D (over-determined), initialize y and construct d̄ as

in Algorithm 1,

1: Compute the Jacobian of d̄ with respect to y, J =

(∂D̄11
∂y , . . . ,

∂D̄ij

∂y , . . . ,
∂D̄(m−1)k

∂y )

2: CalculateΔy = (J T J + λ · diag(J T J ))−1J TΔd̄, whereΔd̄ is the residue and

λ a damping factor.

3: y = y +Δy

4: repeat (1),(2) and (3) until convergence or predefined number of iterations is

reached

is a 3 × 3 skew-symmetric matrix. This is due to the fact that the exponential

map of any such matrix is a rotation matrix. In this case, if we use the (current)

orientation n as axis direction, any local change of the orientation on the sphere

can be easily parameterized via the exponential map. Therefore, the gradient of

Dij with respect to nj can be expressed without any constraints. We can then

construct the Jacobian for the Levenberg-Marquardt algorithm to compute the

optimal descent direction. In the following, we use y to denote the vector formed

by stacking variables in Z and N , d̄ is the vectorized version of D̄ based on the

ordering of g .

3 Experimental Validation

In this section, we present comprehensive experimental results for simulated data.

We focus on the performance of the minimal solver, verification of the far field ap-

proximation as well as the comparisons between solvers for overdetermined cases.

3.1 Minimal Solver Accuracy

The numerical performance of the algorithm was evaluated by generating prob-

lems where the far field approximation is true and not degenerate. In essence

this constitutes generating directions nj and relative distance measurements Di,j

and culling cases where the three largest singular values of the measurement mat-

rix aren’t above a threshold or the directions lie on a conic. The error is then

evaluated as the average norm-difference of the estimated reciever positions. The
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Figure 1: Performance on minimal case solver. Bars show failure rate (left y-axis)

and curve shows the norm of the error in position as a function of distance (right

y-axis). Note that bar height has linear scale.

reciever positions were selected as the corners of a tetrahedron with arc-length

one. The average error of 10000 such tests was 6.8 · 10−15, close to machine

epsilon.

3.2 Far Field Approximation Accuracy

3.2.1 Minimal Case

To evaluate the performance of the assumption that senders can be viewed as hav-

ing a single common direction to receivers, data was generated using 3D positions

for both senders and receivers at different relative distances in-between receivers

and senders to receivers. The constellation of receivers is again the tetrahedron

and senders are randomly placed on a sphere surrounding it. A graph showing

the error, as defined in section 3.1, as a function of radius of the sphere (that is

relative distance), as well as the failure rate of the solver is shown in Figure 1.

A failure constitutes a case in which the B matrix in algorithm 1 is not positive

definite. As can be seen this is infrequent even at small relative distances in when

69



Paper B

10
2

10
4

10
6

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Relative Distance

E
rr

o
r 

in
 P

o
s
it
io

n

Non minimal Solver performance

 

 

r4 − s8

r4 − s10

r5 − s10

r6 − s15

r10 − s30

F
a
ilu

re
 R

a
te

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 2: Performance on non-minimal cases. Bars show failure rates, line is error

as a function of distance in loglog scale. Size of test-cases are noted in figure with

rx-sy denoting x recievers and y senders. This plot is best viewed in color. Note

the scale difference to the graph in Figure 1.

one would not expect a far field approximation to work. As can be expected the

approximation gets better when the relative distance increases.

3.2.2 Initialization for Overdetermined Cases

As described in section 2.3, Algorithm 1 can with some modifications be used

on overdetermined cases without guarantees on optimality of the solution. In

these situations the solutions serves as an initial guess of some other optimization

method. The additional information should however give some numerical sta-

bility and it is interesting to evaluate the algorithm for initial guess estimates in

overdetermined cases. To do this the synthetic dataset is augmented with addi-

tional randomly placed senders and receivers. The four first receivers are again the

tetrahedron and the rest are randomly uniformly distributed within the unit cube.

Senders are again placed on a sphere around the receivers. Results for different

problem sizes are shown in Figure 2. One immediately notices that the failure

ratio drops, in many cases to zero. One can also see that adding more data will
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Figure 3: Convergence of alternating optimization and LMA on simulated

TDOA measurements with gaussian white noise (σ = 0.1). Here m = 10 and

k = 10.

(in general) result in smaller errors, for the cases shown here up to one order of

magnitude smaller than a min case.

3.3 Overdetermined Cases

We also investigate the performance of the two schemes for over-determined cases.

In all experiments below, we initialize both the alternating optimization and LMA

based on the minimal solver modified for over-determined case. The simulated

data is of a true far field approximation with gaussian white noise, i.e. measure-

ments are simulated as Di,j = zinj + εi,j where εi,j ∈ N (0,σ) i.i.d. In Figure 3,

we can see that alternating optimization and LMA all decrease the reconstruction

errors compared to the minimal solver. On the other hand, from figure 3, LMA

converges much faster than alternating scheme (20 vs. 150) and obtains relatively

lower reconstruction errors. This verifies the superiority of LMA over coordinate

descent. This observation is consistent over different m and k as well as a variety
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Figure 4: Performance on non-minimal cases with simulated TDOA measure-

ments with gaussian white noise. The mean error in position of the receivers are

plotted against the noise standard deviation. Here m=5 and k=10, and the relative

distance to receivers and senders are 107 (left) and 102 (right). Failure rates for

the initialization are also shown for completeness.

of noise levels. Note that here for all the experiments, we set the damping factor

λ to 1.

It it also of interest to view the complete system when the measurements Di,j

does not fulfill the far field approximation and when disturbed by noise. The rel-

ative distances of the simulated senders and receivers are set to 102 for a mediocre

far field approximation and 107 for a good far field approximation. TDOA meas-

urements Di,j are then simulated, perturbed with gaussian white noise. Figure 4

shows the results. The pictures show that the initialization method is fairly good,

but in many cases the LMA brings down the position error. The system is also

fairly robust to noise.

4 Conclusions

In this paper we study the far field approximation to the calibration of TDOA

and TOA sensor networks. The far field approximation of the problem results in

a factorization algorithm with constraints. The failure modes of the algorithm is

studied and particular emphasis is made on what can be said when any of these

failure conditions are met. The experimental validation gives a strong indication

that a far field approximation is a feasible approach both for getting direct estim-

ates as well as initial estimates for other solvers. Even considering that there are
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cases when the algorithm fails, obtained solutions are good even at small relative

distances. This validation is done on 3D problems and confirms findings in [8]

where evaluation was done in 2D.

Further we analyze two optimization schemes and what difficulties may arise

when employing them. Both of these schemes are experimentally evaluated and

confirmed to successfully optimize the initial guess on a problem fulfilling the

far field assumptions, although at quite different convergence rates. The faster

of the two is also employed on cases when senders are given true locations and

measurements are subject to noise with good results.

It would be interesting in future work to study to what extent it can be shown

that the local optimum obtained to the problem can be proven to be global op-

timum. To integrate the solvers with robust norms is also worth studying to

handle situations with outliers. It would also be interesting to verify the al-

gorithms on real measured data and investigate the possibilities of using our al-

gorithms in a RANSAC approach to remove potential outliers that may occur in

real life settings.
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Abstract

We present two novel approaches for the problem of self-calibration of network

nodes using only TDOA when both receivers and transmitters are unsynchron-

ized. We consider the previously unsolved minimum problem of far field localiz-

ation in three dimensions, which is to locate four receivers by the signals of nine

unknown transmitters, for which we assume that they originate from far away.

The first approach uses that the time differences between four receivers charac-

terize an ellipsoid. The second approach uses linear algebra techniques on the

matrix of unsynchronized TDOA measurements. This approach is easily exten-

ded to more than four receivers and nine transmitters. In extensive experiments,

the algorithms are shown to be robust to moderate Gaussian measurement noise

and the far field assumption is reasonable if the distance between transmitters and

receivers is at least four times the distance between the receivers. In an indoor

experiment using sound we reconstruct the microphone positions up to a mean

error of 5 cm.
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1 Introduction

In this paper we study the problem of node localization using only Unsynchron-

ized Time difference Of Arrival (UTOA) measurements between nodes, where

either receivers or transmitters are far away from the other group. The problem

arises naturally in microphone arrays for audio sensing. Is it possible to calcu-

late both multiple microphone positions as well as the timings and directions of

the sound sources, if the microphones are unsynchronized, i.e. do not use the

same clock, just from sounds emanating from far away at unknown locations and

times? An example application could be to locate several cell phones just by en-

vironmental sounds, where cell phone positions and sound directions are to be

recovered without synchronizing the phones first.

1.1 Related Work

Although time of arrival (TOA) and time difference of arrival (TDOA) problems

have been studied extensively in the literature in the form of localization of e.g.

a sound source using a calibrated array, see e.g. [1–4], the problem of calibration

of a sensor array from only measurements, i.e. the node localization problem, has

received less attention.

In [5] and refined in [6] a far field approximation was utilized to solve the

TOA and TDOA case, with the minimal number of four receivers and six un-

synchronized far field transmitters in 3D. Under the assumption that signals and

receivers are distributed in the unit disk, the distance between receivers can be

approximated by evaluation of the range of time differences [7–9] or by statistical

analysis of their distribution [10, 11], although these approaches depend on the

availability of a large number of signals. Calibration of TOA networks using only

measurements has been studied in [12, 13], where solutions to the minimal cases

of three transmitters and three receivers in the plane, or six transmitters and four

receivers in 3D are given. Calibration of TDOA networks is studied in [14] and

further improved upon in [15], where the non-minimal case of eight transmitters

and five receivers is solved. In [16, 17] a TDOA setup is used for indoor navig-

ation based on non-linear optimization, but the methods can get stuck in local

minima and are dependent on initialization.

The problem of node localization using only UTOA measurements from

unsynchronized receivers and transmitters in a far field setting has been con-

sidered in [18], however the approach requires at least five receivers, which is more
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than the minimum case. Minimal algorithms are of importance in RANSAC

schemes [19] to weed out outliers in noisy data which is a common problem in

TOA/TDOA/UTOA applications. The problem has been addressed in a different

manner estimating ellipse coefficients in [20], but no analysis of degenerate cases

has been done and the algorithm is only described for the planar case.

In this paper we expand on previous work and propose two novel algorithms

for parameter estimation of a receiver array, the Ellipsoid method in 3D and the

Matrix Factorization method for UTOA measurements, that both consider the

minimum case of four receivers and nine transmitters in three dimensions. We

compare the methods on simulated and real data where we demonstrate their

numerical stability. The methods are also evaluated on overdetermined cases using

more than four receivers and nine transmitters.

2 Problem Setting

In the following treatment, we make no difference between real and virtual trans-

mitters. Assume that the transmitters are stationary at position bj ∈ R
3, j =

1, . . . , k and that the receivers are at positions ri ∈ R
3, i = 1, . . . ,m. By meas-

uring how long time the signals take to reach the receiver and knowing the speed

of the signals, distances δij = ‖ri − bj‖ can be measured, ‖ · ‖ denoting the

Euclidean norm. These are TOA measurements.

When neither receivers or transmitters are synchronized, for instance external

sound sources recorded on different computers, the measurements will be of the

form δij = ‖ri − bj‖ + fi + g̃j where fi, g̃j are unknown offsets for receivers and

transmitters respectively. We denote measurements of this kind Unsynchronized

Time difference Of Arrival (UTOA) measurements. Furthermore, if the trans-

mitters are so far from the receivers that a transmitter can be considered to have a

common direction to the receivers, the measurements can be approximated by

δij = ‖ri−bj‖+fi+g̃j ≈ ‖r1−bj‖+(ri−r1)T nj+fi+g̃j = rT
i nj+ḡj+fi+g̃j (1)

where ḡj = ‖r1−bj‖−rT
1 nj and nj is the direction of unit length from transmitter

j to the receivers. By setting gj = ḡj + g̃j we get the far field approximation

δij ≈ rT
i nj + fi + gj.

When the approximation is good, we will call δij Far Field UTOA (FFUTOA)

measurements.
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2.1 The FFUTOA Calibration Problem

We assume that (i) the speed of signals v is known, and thus all time measure-

ments are transformed to distances by multiplication by v and (ii) receivers can

distinguish which TOA signal comes from which sender. This can be done in

practice by e.g. separating the signals temporally or by frequency.

Problem 2.1. Given mk FFUTOA measurements δij ∈ R, i = 1, . . . ,m, j =

1, . . . , k, taken from m receivers and k transmitters, estimate receiver positions

ri ∈ R
3, directions nj ∈ R

3 from transmitter j to receivers, receiver and transmit-

ter offsets fi ∈ R, gj ∈ R such that

δij = rT
i nj + fi + gj , and ‖nj‖ = 1 . (2)

Note that the problem is symmetric in receivers and transmitters, i.e. if each

receiver instead could be viewed as having a common direction to all transmitters,

the same problem can be solved for transmitter positions and receiver directions.

We denote f = [f1, . . . , fm]T , g = [g1, . . . , gk], r = [r1, . . . , rm] and n =

[n1, . . . ,nk].
The problem of determining full transmitter positions bj instead of directions

nj, see (1), seems harder than using the far field approximation as in Problem 2.1.

The measurements are now bilinearly dependent on ri and nj. Algorithms that

explicitly consider the far field assumption are also required, as the problem of

determining general positions of transmitters when the far field approximation is

in effect, is an ill-conditioned problem.

We denote the problem as minimal if the number of solutions for generic

distance measurements δij is finite and positive, disregarding solutions that are

the same up to gauge freedom.

2.2 Gauge Freedom

The unknown parameters (r,n, f, g) have certain degrees of freedom that does

not change the measurements, called gauge freedom. Any translation t, rotation

matrix R and offset change K can be applied to the solution according to

ri,trans = ri + t, gj,trans = gj − tT nj

ri,rot = Rri, nj,rot = Rnj

fi,offs = fi + K , gj,offs = gj − K

without changing the measurements δij. Thus, we can only hope to reconstruct

the unknowns up to these seven degrees of freedom.
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φ3 φ4

r2

b

λb
λ4

φb

d2

d4d3

r4

r3

ab
a3 a4

r1

Figure 1: Scheme of the Ellipsoid method. Three distances d2, d3, d4, and three

angles φ3, φ4, and θ define a tetrahedron of four receivers r1, r2, r3, r4. Trans-

mitter b is assumed to be far away from the receivers. Its signal arrives from the

angles φb, λb.

3 The Ellipsoid Method in Three-Dimensional Space

We propose the Ellipsoid TDOA method which solves the FFUTOA calibration

problem for four receivers using at least nine transmitters. The time differences of

signals from distant emitters form an ellipsoid which characterizes the distances

and angles between four receivers. An elegant representation can be derived from

the knowledge that an ellipsoid corresponds to a covariance matrix. Once this

covariance matrix is known, one can extract the parameters that generate the el-

lipsoid from the matrix, i.e. the configuration of four receivers.

3.1 Definition of the Covariance Ellipsoid

A rigid tetrahedron of four receivers is defined by three distances d2 = ‖r1 − r2‖,

d3 = ‖r1 − r3‖, d4 = ‖r1 − r4‖, two height angles φ3 = ∠r2r1r3 , φ4 = ∠r2r1r4
,

and the azimuth angle λ4 = ∠a3r1a4
, see Fig. 1. Furthermore we define θ =

∠r3r1r4
.

83



Paper C

A signal arrives from the angles φb = ∠r2r1b and λb = ∠a3r1ab
, uniquely

determining the direction. The signal angles with respect to two receivers are

γ2 = ∠r2r1b, γ3 = ∠r3r1b, and γ4 = ∠r4r1b. Omitting the signal index, these

angles are defined by the UTOA measures according to the cosine law as

x = δ1 − δ2 = d2 cos(γ2) , y = δ1 − δ3 = d3 cos(γ3) ,

and z = δ1 − δ4 = d4 cos(γ4) .
(3)

The auxiliary points a3, a4, and ab are projections of r3, r4, and b respectively,

onto the plane orthogonal to r1 − r2 through r1.

In the following we derive the covariance matrix for time differences in the

Eqns. (3) assuming uniform signal source positions. This matrix characterizes

a covariance ellipsoid, [21], describing the ellipsoid which the time differences

reside on. If this matrix is known, the distances and angles between the receivers

can be directly read from the matrix. We state the following definition.

Definition 3.1. The Σ-ellipsoid for covariance matrix Σ is the ellipsoid with

center μ where for all points x holds

dMah(x,μ,Σ) =

√

(x − μ)TΣ−1(x − μ) = 1 .

The metric dMah(x,μ,Σ) is the Mahalanobis distance. For Σ-ellipsoids the

following holds.

Lemma 3.1. The covariance of points uniformly distributed over aΣ-ellipsoid in R
3

is Σ̂ =
1
3Σ. In the two-dimensional case the covariance is Σ̂ =

1
2Σ.

Lemma 3.1 can be verified by integration over all points of the Σ-ellipsoid

and calculating the covariance. Given the definition of the covariance ellipsoid we

propose the following theorem.

Theorem 3.1. The time differences (x, y, z) of distant signals arriving at four receiv-
ers r1, r2, r3, r4 in space R3 form a 3Σ̂-ellipsoid with covariance matrix

Σ̂ =
1

3





d2
2 d2d3 cos(φ3) d2d4 cos(φ4)

d2d3 cos(φ3) d2
3 d3d4 cos(θ)

d2d4 cos(φ4) d3d4 cos(θ) d2
4



 .
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Proof. The proof is directly based on the definition of a covariance ellipsoid. The

first thing to show is that the matrix Σ̂ is actually a covariance matrix, therefore is

positive semi-definite. For simplicity we assume that the receivers are synchron-

ized, therefore the mean μ is zero. In case they are not, synchronize the receivers

by regression as described in the next Section 3.2.

Now, consider the continuous distribution of synchronized time differences

over uniformly distributed directions of origin. Such a uniform distribution of

signal origins b̂ in space R3 can be created by points

b̂ = R ·
(
r cos(λ), r sin(λ), ℓ

)T
,

where λ ∈ [0, 2π] and ℓ ∈ [−1, 1] are uniformly independently distributed

random variables, and r =
√

1 − ℓ2. The density function of the distribution is

h(λ, ℓ) = g(λ)f (ℓ) =
1

4π . Without loss of generality, the tetrahedron is aligned

such that r1 is the origin, r2 is parallel to the ẑ-axis, and r3 resides on the x̂/ẑ-

plane. Assuming that the sphere is large, i.e. the signals b̂ originate from far away,

the angles of the signals are

λb = λ and cos(φb) = ℓ . (4)

By using spherical trigonometry and the Eqns. (3) we calculate the time differ-

ences x̂ = [x, y, z]T with respect to the tetrahedron angles as follows

x = d2 cos(γ2) = d2

(

cos(φb)
)

y = d3 cos(γ3) = d3

(

cos(φ3) cos(φb) + sin(φ3) sin(φb) cos(λb)
)

(5)

z = d4 cos(γ4) = d4

(

cos(φ4) cos(φb) + sin(φ4) sin(φb) cos(λb − λ4)
)

.

Note that the angles γ2, γ3, γ4, are not uniformly distributed in the three-

dimensional case, in contrast to the planar case. We express θ as

cos(θ) = sin(φ3) sin(φ4) cos(λ4) + cos(φ3) cos(φ4) . (6)

Using the uniform distribution of signals (4) and the time differences x̂ from

Eqns. (5) that follow, we show by integration that the time differences characterize

a covariance matrix as stated in Theorem 3.1:

Σ̂ =

2π∫

0

1∫

−1

x̂ x̂T h(γ, ℓ) dℓ dλ = h(γ, ℓ)

2π∫

0

1∫

−1





x2 xy xz
xy y2 yz
xz yz z2



 dℓ dλ
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(4)−(6)
=

1

3





d2
2 d2d3 cos(φ3) d2d4 cos(φ4)

d2d3 cos(φ3) d2
3 d3d4 cos(θ)

d2d4 cos(φ4) d3d4 cos(θ) d2
4



 . (7)

Due to the quadratic form is Σ̂ positive semidefinite. Furthermore, the matrix is

definite, which follows from the fact that the time differences are bounded.

The next step is to verify that the time differences are actually characterized

by the matrix. The distribution of signal directions (λb,φb) is irrelevant for this

step, and for application of the algorithm. However, as the points b̂ in Eq. (4)

cover the complete sphere, all signal directions are considered. Calculating the

Mahalanobis distance by inserting x̂ and Σ̂ yields

dMah

(
x̂,~0, 3Σ̂

)
=

√

x̂T
(
3Σ̂

)
−1

x̂ = 1 ,

revealing that all time difference points have constant Mahalanobis distance from

the origin, therefore reside on an ellipsoid, which is according to Lemma 3.1 the

3Σ̂-ellipsoid.

3.2 Transformation of the Covariance Matrix

We now describe the transformation of parameters from a regression polynomial

to the parameters of the covariance matrix. Under the assumption of a zero-

mean ellipsoid, i.e. the receivers are synchronized, an ellipsoid is described by a

polynomial equation

ax2
+ by2

+ cz2
+ dxy + exz + fyz = 1 . (8)

Regression of at least m ≥ 6 signals in the equation system






x2
1 y2

1 z2
1 x1y1 x1z1 y1z1

...
...

...
...

...
...

x2
m y2

m z2
m xmym xmzm ymzm






︸ ︷︷ ︸

Q

(a, b, c, d , e, f )T

︸ ︷︷ ︸
u

= ~1

and solving a least squares scheme for u =
(
QT Q

)
−1(

QT~1
)

yields ellipsoid

parameters a to f .
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An ellipsoid in space R3 can be represented by the matrix form xTΣ−1x =

1 , where x = [x, y, z]T is a vector andΣ is a symmetric positive definite matrix

Σ =





σ2
1 ω1 ω2

ω1 σ2
2 ω3

ω2 ω3 σ2
3



 .

Substitution and conversion of the parameter set yields the parameters of the

covariance matrix

σ2
1 = (f 2 − 4bc) / Z ω1 = (2cd − ef ) / Z

σ2
2 = (e2 − 4ac) / Z ω2 = (2be − df ) / Z

σ2
3 = (d2 − 4ab) / Z ω3 = (2af − de) / Z

(9)

where Z = be2 + cd2 + af 2 − 4abc − def .

In case the receivers are not synchronized, the ellipsoid is shifted to zero-mean

by converting the general ellipsoid polynomial equation to a translation-invariant

form. In three dimensions the general form is

ax2
+ by2

+ cz2
+ dxy + exz + fyz + gx + hy + jz = 1 , (10)

for which the parameters a to j are calculated by regression of at least nine signals.

The parameters are converted to the following translation-invariant form

â(x − û)2
+ b̂(y − v̂)2

+ ĉ(z − ŵ)2

+ d̂ (x − û)(y − v̂) + ê(x − û)(z − ŵ) + f̂ (y − v̂)(z − ŵ) = 1.
(11)

Calculation of â to f̂ and û, v̂, ŵ from the coefficients of Eq. (10) can be done

in a computer algebra software by expansion of Eq. (11) and substitution of the

constant term. The coefficients â to f̂ are converted for the covariance matrix

using Eqns. (9). The coefficient vector (û, v̂, ŵ)T equals the center point of the

ellipse and the synchronization offset of the receivers.

According to Theorem 3.1, the distances and angles in the tetrahedron of re-

ceivers are now directly characterized by the coefficients of the covariance matrix.

The distances and angles are calculated by

d2 =
√

3σ1 , cos(φ3) =
ω1
σ1σ2

,

d3 =
√

3σ2 , cos(φ4) =
ω2
σ1σ3

,

d4 =
√

3σ3 , cos(θ) =
ω3

σ2σ3
.
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3.3 Degenerate Cases

When measurements δij are corrupted by noise, or the far field assumption is viol-

ated, the solution of parameters in (10) might not yield an ellipsoid, but another

type of quadric surface. For four receivers and nine transmitters, this constitutes

a case of given measurements where there is no exact real solution to (2), as such

time differences must lie on an ellipsoid by Theorem 3.1. Instead of using the

regression scheme, one can obtain an approximation based on Theorem 3.1 by

covariance estimation of the given time differences (x, y, z), denoted Σ∗. Using

Σ̂ =
1
3Σ

∗, distance and angle parameters can be estimated as in Section 3.2.

Other degenerate cases are when the ellipsoid is collapsed to a ellipse sur-

face, or when transformed time differences in (11) lie on two intersecting quadric

surfaces, thus giving infinite number of solutions.

4 Matrix Factorization Method

The matrix factorization method uses linear techniques to solve Problem 2.1 for

receiver positions, transmitter directions and offsets. At least four receivers and

nine transmitters are needed. Without loss of generality we assume that the solu-

tion is partially normalized for gauge freedom as the first receiver r1 = 0 and

f1 = 0, see Section 2.2.

Using the FFUTOA measurements δij, collected in the matrix D̃ = [δij]m×k

we immediately obtain the unknowns gj since δ1j = rT
1 nj + f1 + gj = gj, since

r1 = 0 and f1 = 0. We then subtract the first row containing gj from all other

rows of D̃ and remove the first row of zeros to obtain a new matrix that fulfill

D2 =
[
rT f

]
[

n
~1

]

(12)

where ~1 is a vector of ones. D2 is a product of two matrices of rank ≤ 4 and is

thus itself of rank ≤ 4. This is used in [18]. Here we further reduce the rank of

the factorization by subtracting the first column of D2 from all the other columns

and remove the first row of columns. Both steps manipulating D̃ can be done
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using the compaction matrices Cm of size (m − 1) × m and Ck of size k × (k − 1):

Cm =








−1 1 0 . . . 0

−1 0 1 . . . 0
...

...
...

. . .
...

−1 0 0 . . . 1







, Ck =










−1 −1 . . . −1

1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1










. (13)

Then we have

D = CmD̃Ck =
[
r̃T f

]
[

ñ
~0

]

= r̃T ñ, (14)

where r̃ equals r with the first receiver removed as r1 = 0, and ñ is a 3 × (k − 1)

matrix with the jth column ñj = nj+1 − n1. Now we have a rank-3 factorization,

thus requiring at least four receivers and four transmitters. After applying SVD

to D = USVT we obtain the rank-3 factorization such that D = r̄T n̄ where

r̄ = U3S3 and n̄ = VT
3 . U3, S3 and V3 are the truncated parts of the SVD cor-

responding to the three largest singular values. This factorization of D is unique

up to an unknown transformation H i.e. D = r̄T H−1Hn̄. We will find ñj = Hn̄

i.e. nj+1 − n1 = Hn̄j by using the constraints that

ñT
j ñj = (nj+1 − n1)T (nj+1 − n1) = 2 − 2nT

j+1n1

= 2 − 2(Hn̄j + n1)T n1 = −2n̄T
j HT n1 = n̄T

j HT Hn̄j .
(15)

We apply a change of variables with a 3 × 3 symmetric C = HT H and a 3 × 1

vector v = HT n1. From (15), we have the following equation for transmitter j:

n̄T
j Cn̄j + 2n̄T

j v = 0. (16)

These equations are linear in the elements of C and v which have in total 9 vari-

ables. In general, with 8 such equations (thus 9 transmitters), we can solve this

homogeneous linear equation system uniquely up to scale.

We can extract the solutions for C and v from the solution to the linear equa-

tion which is valid up to an unknown scaling factor and sign. We can determine

the sign by using that C is positive definite and compute H by applying Cholesky

factorization C = HT H. As HT H = HT RT RH for a rotation/mirroring matrix

R, this will give H uniquely up to R. But as R corresponds to rotating/mirroring
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Algorithm 1 Minimal solver for the FFUTOA calibration problem

Input: FFUTOA measurement matrix D̃ of size (m = 4) × (k = 9).

Output: Receiver positions r, transmitter directions n, receiver offsets f and

transmitter offsets g.

Postconditions: (i) D must have rank 3, (ii) the linear equations (16) must only

have a null space of dimension one, (iii) C must be positive definite.

1: Set gj := D̃1j and D := CmD̃Ck where Cl ,Cm is the compaction matrices in

(13)

2: Calculate the SVD D = USVT and set r̄ to first three columns of US and n̄

to first three rows of VT

3: For the unknowns in the symmetric matrix C and vector v, get the solution

space for the equations n̄T
j Cn̄j + 2n̄T

j v = 0 where n̄j is the jth column of n̄

4: Set the sign of the solution C, v such that C11 > 0

5: Calculate the Cholesky decomposition C = HT H

6: Lock the scale of the solutions H, v so that ‖H−T v‖ = 1

7: Set n1 := H−T v, nj+1 := Hn̄j + n1 and r := H−T r̂

the coordinate system, R is a gauge freedom according to Section 2.2 and can be

set to the identity matrix.

We can find the scale by using the constraint ‖n1‖ = ‖H−T v‖ = 1. Note

that fixing the scale in this way will also guarantee that nT
j nj = (HT n̄j+n1)T (HT n̄j+

n1) = n̄T
j HT Hn̄j + 2n̄T

j HT n1
︸ ︷︷ ︸

=0 by (15)

+nT
1 n1 = nT

1 n1 = 1. Summarizing these steps

yields Algorithm 1.

4.1 Degenerate Cases

Theorem 4.1. Degenerate cases for the minimal algorithm are when i) The trans-
formed measurement matrix D has Rank(D) ≤ 2 or ii) The difference of the trans-
mitter directions nj − n1 lie on the intersection of two or more quadric surfaces with
constant term 0.

Case i) happens iff receivers or transmitter directions lie in a plane. For ii), the
case when the transmitter directions nj lie on the intersection of two or more a quadric
surfaces is a special case.

Proof. The only time the algorithm fails is when the prerequisites are not fulfilled.
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This happens iff i) Rank(D) ≤ 2 or ii) the linear equations (16) have a null space

of dimension two or more.

For case i), step 2 will extract data from the SVD that are not uniquely de-

termined from the measurements, but has several degrees of freedom. This will

result in a reconstruction of r,n that fulfills the measurements, but is not unique,

as there are an infinite number of solutions.

Rank(D) ≤ 2 iff either receivers r or difference of transmitter directions

nj − n1 in (14) are embedded in a lower dimensional subspace than assumed.

Remembering that receiver positions can be translated as in Section 2.2, this is

equivalent to receivers or transmitter directions being embedded in a plane.

For case (ii), there are at least two non linearly dependent solutions to (16).

The solutions can be seen as constants for a quadric surface with radius 0 that n̄j

should lie on, i.e.

n̄T
j C1n̄j + n̄T

j D1 = 0, n̄T
j C2n̄j + n̄T

j D2 = 0,

where [C1 D1] 6= λ[C2 D2] for all λ ∈ R\{0} and Ci symmetric. As nj+1−n1 =

Hn̄j, this is equivalent to

(
nj − n1

)T
H−T C1H−1

(
nj − n1

)
+

(
nj − n1

)T
H−T D1 = 0,

(
nj − n1

)T
H−T C2H−1

(
nj − n1

)
+

(
nj − n1

)T
H−T D2 = 0,

(17)

which is equivalent of the difference of the receiver directions nj−n1 lying on two

or more quadric surfaces with constant term 0. As a special case, if the transmitter

directions nj lie on two or more different quadric surfaces, then the differences

nj − n1 will fulfill (17).

Note that the degenerate cases characterized in i) is inherent to the problem,

not the algorithm. There are fewer degrees of freedom to estimate than assumed,

and thus there is not a unique solution. If both receivers and transmitter directions

lie in the same plane, a similar algorithm for 2D based on the same factorization

steps and equations can readily be constructed.

A special case is when C is not positive definite. Then there exists no real

factorization C = HT H. There exists complex factorizations, e.g. obtained using

eigenvalue decomposition C = QT DQ = QT
√

D
T√

DQ = HT H, which

results in complex solutions. These cases equate exactly to the cases where the

ellipsoid method does not get an ellipsoid from solving (10), as these are the cases

where there are no exact real solutions to the given measurements.
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5 Extension to Overdetermined Cases and Noise

Both algorithms solve a minimal case, meaning that there are only a finite positive

number of solutions to (2) given arbitrary measurements in general enough posi-

tion. This can be seen from the fact that the matrix factorization algorithm does

not lose any solutions from the solution space by any particular choice in any of

the steps. Thus there one solution discounting gauge freedom. Another way of

seeing it is by counting degrees of freedom. When using m = 4 receivers and

k = 9 transmitters, the number of measurements mk = 36 equals to the number

of unknowns, 4m + 3k − 7 = 36 accounting for gauge freedom.

When having more than four receivers, more than nine transmitters and the

measurements dij are not true FFUTOA measurements, due to noise or that the

far field assumption does not hold, both methods can be extended in a straight-

forward manner.

For the ellipsoid method, two modifications are made. (i) When having more

than nine receivers, the least squares solution to (11) can be calculated. (ii) When

having more than four receivers, subproblems using only four receivers at a time

are solved. With overlap of receivers used in the different subproblems, all dis-

tances between receivers can be calculated and multidimensional scaling [22] can

be used to get the full coordinates of all receivers.

For the matrix factorization method, the three following modifications are

made. (i) In step 2, the best rank 3 approximation can still be obtained by SVD,

although D is not necessarily rank 3. (ii) The system of equations in step 3

will in general only have the trivial solution, but is approximated to rank 8 by

SVD to still attain the expected one dimensional solution set. (iii) ‖nj‖ is only

approximately 1, so nj is normalized to be of length 1.

From here on, the extended methods will be used. Note that when only min-

imal number of measurements are available, the extended methods are equivalent

to the minimal ones.

6 Experimental Validation

To be able to evaluate the quality of a solution, receivers positions ri are com-

pared to ground truth receiver positions ri,gt . Receivers are rotated, mirrored and

translated so that
∑

i ‖R(ri − t) − ri,gt‖2 is minimized, where R and t is a rota-

tion/mirroring and translation respectively. Finding R and t is done by using [23].
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(b) Far field test, 5 receivers, 15 transmitters.

Figure 2: Mean relative error of reconstructed receiver positions for 100 runs,

plotted against the approximate distance from receivers to transmitters. (a) Bars

are ±1 standard deviation for the different transmitter distances.

For all experiments, relative errors are then defined as ‖r − rgt‖Fro/‖rgt‖Fro where

‖ · ‖Fro is the Frobenius norm. All algorithms were implemented and run on a

standard desktop computer in Scilab.

6.1 Simulations

For all simulations, offsets fi and gj are drawn from i.i.d. uniform distributions

over [0, 10]. To evaluate the assumption that transmitters have a common dir-

ection to the receivers, transmitter positions bj were uniformly distributed over

a sphere of radius d . To be able to control how much further away transmitters

were from receivers than the inter distance between receivers, four receivers were

placed at a tetrahedron around the origin with side length 1m. As signal sources

are often easily obtained in applications, 15 transmitters were used. UTOA Meas-

urements were constructed as δij = ‖ri −bj‖+ fi +gj. The mean relative error for

100 runs each plotted against the transmitter distance d to the origin can be seen

for different radii d in Fig. 2a for the minimal four receivers and in Fig. 2b for

five receivers. The extra receiver was uniformly distributed in the cube of which

the tetrahedron of the four first receivers were inscribed to.

Fig. 2a shows that using only four receivers, both algorithms can get under

5% relative error with having transmitter approximately four times further away
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(b) 5 receivers, 15 transmitters.

Figure 3: Measurements with additive Gaussian white noise. The standard devi-

ation is plotted against the mean relative error of reconstructed receiver positions

for 100 runs.

than the inter distance between receivers. For the experiment in Fig. 2b, we

compare the results to the method in [18] as we now have the five receivers for the

method to be applicable. The results indicate the ellipsoid method being slightly

worse on short distances and the matrix factorization method being generally

more accurate. Mean execution time was 8.0 ms, 2.1 ms and 30 ms for the

ellipsoid method, matrix factorization method and the method in [18] each.

To test the robustness of the methods, white Gaussian noise was added to

the measurements. The same setup as for the far field experiments was used,

with transmitter distance of 107 from the receivers. In Fig. 3 relative error of

reconstructed receiver positions are plotted against the standard deviation of the

noise. The results indicate the ellipsoid method being slightly better with higher

noise level when using the minimum four receivers, and the matrix factorization

outperforming both the ellipsoid and the method in [18] using five receivers.

The numerical performance of the minimal algorithms were evaluated by gen-

erating problems where the measurement matrix D̃ are FFUTOA (2). Receivers

are drawn from i.i.d. uniform distributions in a cube of unit volume centered

around the origin. Nine transmitter directions and four receivers were simulated.

The error distribution for 1000 such experiments can be seen in Fig. 4a. Mean

execution time for the ellipsoid method and the matrix factorization method was

3.2 and 1.9 ms respectively.
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(a) Minimal solver numerical performance. (b) Experimental setup

Figure 4: (a) Numerical performance of minimal solver in 1000 simulated experi-

ments. (b) Setup for indoor experiment using microphones and distinct manually

made sounds.

6.2 Real Data

The same data as in [18] was used, where the measurements dij were obtained

from an experimental setup using eight SHURE SV100 microphones as receivers

and random distinct manually made sounds as transmitters. The microphones

were connected to a M-Audio Fast Track Ultra 8R audio interface. The 19 sound

sources were approximately 30 m away from the receivers. Microphones were set

in the corners of a cuboid of roughly 100 × 105 × 60 cm3. A picture of the

experiment setup can be seen in Fig. 4b. The microphone offsets were created

by adding uniformly i.i.d. silences between 0-1 s long to the beginning of each

sound track, effectively starting the recordings at different unknown times. The

beginning of each sound were matched by a heuristic cross correlation algorithm

to create TDOA measurements.

As we have more than five microphones, the algorithms were also compared

using the method in [18]. The mean reconstruction error on the microphone po-

sitions were 15 cm, 5 cm and 14 cm for the ellipsoid method, matrix factorization

method and the method in [18] respectively. Most of the error are in the floor-

to-roof direction. This can be explained by the sounds all being made close to

ground level and thus the transmitter directions will be close to being in a plane,

giving poor resolution in floor-to-roof direction.
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7 Conclusions

We have presented two methods for solving the previously unsolved problem

of sensor network calibration using only a minimal number of unsynchronized

TDOA measurements in a far field setting. The assumption of far field signals is

important, as the problem of trying to determine exact positions for transmitters

is ill conditioned when the far field assumption is close to true.

Simulated experiments support the feasibility of the methods, and show that

the minimal algorithms are numerically stable and fast, making them suitable in

RANSAC schemes to weed out outliers. They also handle additive Gaussian noise

well. The far field assumption gives good results as long as transmitter-receiver

distances are four times larger than inter-receiver distances.

A comparison between the two methods, running on the minimal case of four

receivers and nine transmitters, indicates the matrix factorization method being

slightly faster and having better worst case precision than the ellipsoid method.

The ellipsoid method however has a more plausible way of handling the case when

the measurements are such that no exact real solutions exist, as per Section 3.3

and 4.1. The ellipsoid method estimates the covariance of the time differences for

parameter estimation, whereas the matrix factorization finds a complex solution.

When having more than the minimum amount of four receivers and nine

transmitters, the matrix factorization is easily extended to handle more than the

minimal number of receivers and transmitters, and usually exhibit better average

case performance than both the ellipsoid method and the method in [18], ap-

plicable when five or more receivers are available. The ellipsoid method is easily

extended to handle more than the minimal nine transmitters, but not easily ex-

tended to handle more than the minimal four receivers. Although none of the

methods are formally optimal in any sense, they are in closed form, fast, and can

serve as initializations for further nonlinear optimization if need be. Both meth-

ods are significantly faster than the method in [18], and the matrix factorization

method performs better in reconstructing the receiver positions.

In a real world experiment in an indoor environment, both methods perform

well and the matrix factorization method reconstructs microphone positions with

an average of 5 cm error from the previous 14 cm in [18].

Future work of interest is developing a method for calibration of UTOA net-

works not using the far field assumption, thus being able to solve problems when

the far field assumption is far from true.
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TOA Based Self-Calibration of Dual
Microphone Array
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Abstract

In this paper we study the TOA (time-of-arrival) based self-calibration problem

of dual microphone array for known and unknown rack distance, and also for

affine space with different dimensions for receiver and sender spaces. Particularly

we analyze the minimum cases and present minimum solvers for the case of mi-

crophones and speakers in 3D/3D, in 2D/3D, and in 3D/2D, with given or un-

known rack length. We identify for each of these minimal problems the number

of solutions in general and develop efficient and numerically stable, non-iterative

solvers. Solving these problems are of both theoretical and practical interest. This

includes understanding what the minimal problems are and how and when they

can be solved. The solvers can be used to initialize local optimization algorithms

for finding the maximum likelihood estimate of the parameters. The solvers can

also be used for robust estimation of the parameters in the presence of outliers,

using e.g. RANSAC algorithms. We demonstrate that the proposed solvers are

numerically stable in synthetic experiments. We also demonstrate how the solvers

can be used with the RANSAC paradigm. We also apply our method for several

real data experiments, using ultra-wide-band measurements and using acoustic

data.

Key words: Time-of-Arrival, Dual Microphone Array, Self-Calibration,

Minimal Solver.
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1 Introduction

The problem of sensor (or microphone) localization has broad interest in general.

Time-of-arrival (TOA) and time-difference-of-arrival (TDOA) measurements are

used in applications ranging from radio based positioning to beam-forming and

audio sensing. In a more general setting, this is an inverse problem, where one

tries to determine positions xi using distance measurements di,j = |xi−xj|, [1]. As

such these problems are applicable to a large range of applications such as (i) node

determination using signal strength measurements of e.g. wifi or bluetooth, (ii)

node localization using ultra-wide-band distance measurements, (iii) node loc-

alization using phase based radio measurements or (iv) node localization using

acoustic measurements. In this more general setting there are also applications to

node calibration of sensor networks, and also to 3D atom positioning determin-

ation using NMR [2]. Although such problems have been studied extensively in

the literature in the form of localization of e.g. a sound source using a calibrated

detector array, see e.g. [3–6], the problem of calibration of a sensor array using

only measurement, the initialization problem for sensor network calibration, has

received comparatively less attention, see [7, 8]

Antenna self-calibration techniques remain of great importance to many ap-

plication beyond the microphone arrays. Several previous contributions address-

ing the self-calibration problem rely on prior knowledge or extra assumptions

of locations of the sensors to initialize the problem. Some techniques are to

manually measure the inter-distance between pairs of microphones and use multi-

dimensional scaling [9] to compute receiver locations, [10], to use GPS [11] to get

approximate locations, to use additional speakers close to the receivers [12–14],

or to use a partially calibrated receiver array [15]. Being able to solve the self-

calibration problem without using more than the TOA measurements between

speakers and receivers open up for interesting applications. Iterative methods

exist for TOA or TDOA based self-calibration [16, 17]. However, such meth-

ods are dependent on initialization and can get stuck in local minima. For a

general graph structure, one can relax the TOA-based calibration problem as a

semi-definite program [18]. Initialization of TOA sensor networks using only

measurements has been studied in [19, 20], where solutions to the minimal cases

of three senders and three receivers in the plane, or six senders and four receivers

in 3D are given. Initialization of TDOA networks is studied in [21] and refined

in [22] where a solution to non-minimal case of 9 receivers and 4 speakers in

3D was derived. In [23] a far field approximation was utilized to calibrate both
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Figure 1: The problem of inferring structure from distance measurements, is rel-

evant for measurements using audio and radio. The top part of the image con-

tains one of the microphones (The t.bone MM1) and one of the speakers used for

acoustic experiments. The bottom part of the image contains one ultra-wide-band

tag and a ultra-wide-band equipped mobile phone used for radio experiments.

TOA and TDOA networks. In [17, 24], algorithms for far-field unsynchronized

receivers were also proposed. In the far-field approximation, it is assumed that the

distances between the speakers and receivers is considerably larger than between

receivers. [19–24] attempt to solve the self-calibration problem with either min-

imal or close to minimal data. Studying minimal cases is both of theoretical im-

portance and essential to develop fast stable algorithms suitable in random sample

consensus (RANSAC) [25] schemes. RANSAC has the advantage of doing para-

meter estimation and at the same time weed out outliers in noisy or incorrectly

matched data, which is a common problem in TOA/TDOA applications.

In this paper we focus on the previously unsolved problem of finding positions

of a set of receivers and speakers, where pairs of receivers are set on a rigid rack,

using only time-of-arrival (TOA) measurements between receivers and speakers

with unknown positions, see Fig.2. We show in what constellations of receivers

and speakers the self-calibration problem has a solution, and present numerically

stable closed form solvers for these minimal cases. Applications can be in robotics

and SLAM, where a robot is equipped with stereo microphones in a rigid con-

stellation, moving through an environment with a number of fixed loudspeakers

in unknown positions. To here be able to lock in part of the map, i.e. find

107



Paper D

loudspeaker positions, and simultaneously figure out movement is a crucial step

in SLAM, cf. [26]. This corresponds to the dual receiver rack self-calibration we

study here. Minimal algorithms can further be used in a RANSAC setting to weed

out outliers and identify parts of the measurement set which is good. An altern-

ative could be that there is a set of fixed microphones in unknown position in the

room and that the robot has a pair of loudspeakers attached to it. Recently mo-

bile devices e.g. iPhone 5s also come equipped with dual microphones. Thus, an

application could be to figure out movement of the mobile devices, using TDOA

measurements from unknown sources. Solving the corresponding TDOA calib-

ration problem often involves a two step process: First, figuring out the offsets

and then solving the TOA calibration problem, see e.g. [22, 27]. Another ap-

plication is that of ultra-wide-band distance measurements, e g such that measure

distances to tags, see Figure 9. Here the tag calibration and the movement of a

rack of two such receivers could be determined using the distance measurements

only. The dual receiver rack self-calibration we study here also has the advantage

of needing fewer measurements than the corresponding self-calibration problems

for unconstrained receivers, and is thus better suited in RANSAC schemes where

the setting applies. In addition, the constraint that the microphones are on a rack

of the same length is explicitly enforced.

2 The TOA-based Microphone-rack Calibration

Problem

We study the TOA-based mic-rack calibration problem for dual microphone ar-

rays. A dual microphone array is a rigid array with two receivers and we set all

racks to have same length c between receivers. The problem setting can be seen

in Fig.2, where the microphone-racks can either be different, or one rack mov-

ing between measurement positions. We describe the problem of locating signal

emitters and receivers, where pairs of receivers are fixed on a rack. It is considered

further if the receicver distance on the rack is given (‘calibrated’ rack) or must be

found. Measuring the absolute distance between every signal and receiver con-

strains the possible locations, which also known as Time-of-Arrival (TOA).

We assume that (i) the speed of the medium, v, is known, and thus all time

measurements are transformed to distances by multiplication by v, (ii) receivers

can distinguish which TOA signal comes from which transmitter. This can be

done in practice by e.g. separating the signals temporally or by frequency. The

108



2. The TOA-based Microphone-rack Calibration

Problem

s1

s2

r1

r2

r3

r4

r5

r6

c

Figure 2: Sketch of setting. Rigid pair of receivers with unknown positions get

TOA signals from unknown sender positions. The paper addresses the problem of

recovering the displacement of a set of microphones and sound source positions

based on the TOA measurements between microphones and sources. In partic-

ular, microphones are organized in couples, with a fixed distance c between each

microphone of the couple. Here r1, . . . , r6 are receivers and s1, s2 transmitters,

respectively.

TOA dual rack calibration problem can then be defined as follows.

Let m be the number of microphone racks, kr be the dimension of affine space

of microphone racks, n be the number of sound sources and ks be the dimension

of affine space of sound sources. Let ri , i = 1, . . . , 2m, be the spatial coordinates

of 2m receivers (e.g. microphones) and sj , j = 1, . . . , n, be the spatial coordinates

of n speakers (e.g. sound events), and c = ||r2k − r2k−1||2, for k = 1, . . . ,m, is

fixed length of the rack. We have two problems of concern:

Problem 2.1. (Calibrated) Given absolute distance measurements dij = ||ri − sj||2
and a fixed known length between receiver pairs on the same rack c, determine

receiver positions ri and transmitter positions sj.

Problem 2.2. (Uncalibrated) Given absolute distance measurements
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dij = ||ri − sj||2, determine receiver positions ri and transmitter positions sj, as

well the constant length of the receiver racks c.

One can only hope to recover a solution up to rotation/mirroring and trans-

lation of coordinate system, as any such transformation applied to a solution ri, sj

result in the same measurements dij.

In the following, we called the problem with known/unknown rack length c
as calibrated/uncalibrated mic-rack self-calibration problem.

2.1 Identifying Minimal Problems

Depending on the number of receiver racks and speakers, we first characterize

when such problems are well-defined i.e. when there is a finite positive number of

solutions to the problem. We are particularly interested in the minimal problems

where minimal numbers of receiver racks and speakers are required to solve the

problem. One way to identify such minimal problems is to study the degrees of

freedom of the problems F and the number of measurements M . The necessary

condition for a problem to be minimal is that F = M (comparing number of

measurements to the degrees of freedom, we see if they are equal). For instance,

for the case where the m receiver racks and the n speakers both span a 3D affine

space, we have F = 6m + 3n − 6 (here −6 takes care of the gauge freedom i.e.

rotation and translation ambiguity in the reconstruction). The condition that

F = M is the necessary condition, but not sufficient condition for identifiability

of the problem, which can be seen in 2 racks on 2D and 4 speakers on 3D case,

see Section 3.2.3. There are in some sense fewer measurements than 2mn + m
due to the constraints imposed by the problem for these constellations.

If we denote kd = min(kr, ks), then qd = kd (kd+1)/2 is the gauge freedom of

the d -dimensional space (we can only determine the positions up to an unknown

rigid transforms i.e. rotation and translation). Specifically, we have for calibrated

cases (known rack length c):

2krm + ksn − qd = 2mn + m. (1)

and uncalibrated cases (unknown rack length c):

2krm + ksn − qd = 2mn + m − 1. (2)

Based on (1) and (2), we have identified the following potential minimal prob-

lems: we have M = 2mn + m and M = 2mn + m − 1 for calibrated and un-

calibrated cases, respectively. By finding m, n such that F = M , we can identify
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m\n 2 3 4 5

2 - G2,3 (G3,3,Gu
2,3,Gu

3,2) Gu
3,3

3 G2,3 G3,2 - -

4 Gu
2,3 Gu

3,2 - -

Table 1: Here m and n represents number of racks and speakers respectively.

Gkm,kn denotes the corresponding case in the table has degrees of freedom equal to

number of unknowns for calibrated dual microphone racks in dimension km and

sounds in dimension kn. Gu
km,kn

denotes the uncalibrated case of Gkm,kn . For ease

of readability, different colors used for different dimensions, which are black for

3D-3D cases, red for 2D-3D cases, blue for 3D-2D cases. Note: case of 1 rack

and 1 speaker (calibrated) is minimal case and it corresponds to TOA trilateration

in 2D, which is not put into the table.

potential minimal cases. With this type of analysis, we have identified a set of po-

tential minimal problems. These cases are summarized in Table 1, however, this

by itself is not a sufficient condition for minimality. The cases in Table 1 are only

based on calculations of degrees of freedom and number of constraints. Some of

the ‘minimal cases’ might not be solvable. A further investigation of the different

problems is needed.

2.2 Problem Formulation

The goal is to derive a low-degree polynomial equations system with few un-

knowns. We start by deriving a set of new equations. Since the distance measure-

ments are assumed to be real and positive one does not lose any information by

squaring them, i.e.

d2
ij = (ri − sj)

T (ri − sj) = rT
i ri + sT

j sj − 2rT
i sj.

The problem is significantly easier to analyze and solve by forming new equations

according to the following linear combinations of d2
ij . Given the TOA measure-

ments between receivers and the speakers, we have 2mn equations in the following

four types:

(A) 1 equation d2
11 = (r1 − s1)T (r1 − s1).
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(B) n − 1 equations of type d2
1j − d2

11 = sT
j sj − sT

1 s1 − 2rT
1 (sj − s1), for

j = 2, . . . , n.

(C) 2m − 1 equations of type d2
i1 − d2

11 = rT
i ri − rT

1 r1 − 2(ri − r1)T s1, for

i = 2, . . . , 2m.

(D) (2m−1)(n−1) equations of type d2
ij−d2

i1−d2
1j+d2

11 = −2(ri−r1)T (sj−s1),

for i = 2, . . . , 2m, j = 2, . . . , n.

And we also could have following equations for known or unknown rack distance,

respectively:

(E) m equations of type c2
2k−1,2k = (r2k−1 − r2k)T (r2k−1 − r2k), for k =

1, . . . ,m.

(E′) m− 1 equations of type ||r1 − r2|| − ||r2k−1 − r2k|| = 0, for k = 2, . . . ,m

Using these equations, we now describe methods to solve the polynomial systems

for different minimal problems. The main steps of the method includes:

• Choosing parametrizations and rewriting equations.

• Factorization.

• Solving for the unknown transformation.

3 Solving Minimal Problems

The solution strategy is to use a factorization step first to reconstruct the posi-

tions up to an unknown affine transformation L and b. By collecting terms, the

equations of type (D) can be written in matrix form D̃ = rT s with ri − r1 as

columns of r and −2
(
sj − s1

)
as columns of s. The rank of D̃ depends on the

dimensionality of the affine span of the receivers and the speakers respectively. For

instance, if we assume that both of the racks and the speakers are in 3D, then the

matrix D̃ also has rank 3. By factorizing D̃ which is of rank 3 using e.g. singu-

lar value decomposition, we can compute the vectors to all receivers and speakers

from unknown initial/reference positions (r1 and s1) up to an unknown full-rank

3 × 3 transformation L such that D̃ = r̃T L−1Ls̃ = rT s. Depending on how one

fixes the gauge freedom, the unknown b enters the equations in different ways.
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By a good choice of parametrization of the problems it can be shown that the

equations of Types C, E (or E′) are linear in the unknowns and the equations of

Types A and B can be used to form polynomial equations.

3.1 3D-racks and 3D-Speakers

In this section, we solve the minimal problems for the cases where both racks and

speakers are in 3D.

To solve for the unknown transformation and reference positions, we now

utilize the nonlinear constraints in equations of Type A, B and C. First we can fix

the gauge freedom by choosing the location r1 at the origin and also parameterize

s1 as Lb where b is a 3 × 1 vector. Given that r = L−T r̃ and s = Ls̃. This gives

ri = L−T r̃i, i = 2 . . . 2m

sj = L(̃s∗j + b), j = 2 . . . n,
(3)

where s̃∗j = s̃j/(−2). Using the parametrization above and also letting H =

(LT L)−1 the equations of type (A), (B), (C) and (E) become

d2
11 = bT H−1b, (4)

d2
1j − d2

11 = s̃∗T
j H−1s̃∗j + 2bT H−1s̃∗j , (5)

d2
i1 − d2

11 = r̃T
i Hr̃i − 2bT r̃i, (6)

c2
2k−1,2k =







r̃T
2 Hr̃2, k = 1

r̃T
2k−1Hr̃2k−1 − 2r̃T

2k−1Hr̃2k+

+r̃T
2kHr̃2k, k > 1.

(7)

3.1.1 Case of 2 racks and 4 speakers (calibrated)

There are in total 9 unknowns (6 and 3 unknowns for H and b, respectively).

By utilizing H−1 = adj(H)/ det(H), where adj(H) is the adjoint of H, we can

multiply equations in (4)-(5) by det(H) to rewrite them as polynomials equations.

There are three linear equations of type C and two linear equation of type E. Since

we have 5 linear equations, by linear elimination we can parameterize H and b

in terms of 9 − 5 = 4 unknowns x = (x1, x2, x3, x4), therefor they become
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H = H(x1, x2, x3, x4), b = b(x1, x2, x3, x4). After multiplying det(H) on both

sides of Type (A) and (B) equations, we now obtain polynomial system with four

equations:

det(H)d2
11 = bT adj(H)b (8)

det(H)(d2
12 − d2

11) = s̃∗T
2 adj(H)̃s∗2 + 2bT adj(H)̃s∗2 (9)

det(H)(d2
13 − d2

11) = s̃∗T
3 adj(H)̃s∗3 + 2bT adj(H)̃s∗3 (10)

det(H)(d2
14 − d2

11) = s̃∗T
4 adj(H)̃s∗4 + 2bT adj(H)̃s∗4 (11)

in the four unknowns. While multiplying det(H) introduces false solutions, we

utilize the same saturation technique as in [20] to remove such solutions. Using

algebraic geometric tools, we verify that this system has in general 12 solutions.

We then solve this system with efficient polynomials solvers based on [28]. After

solving for H, L can be calculated with Cholesky factorization. L is thus only

determined up to a matrix R where RT R = I , which coincides with the gauge

freedom of rotating and/or mirroring our solution. Some of the solutions ob-

tained are complex. Some solutions, although real, give invalid matrices H that

are not positive definite which does not have a real decomposition into (LT L)−1

and does not produce real solutions.

3.1.2 Case of 2 racks and 5 speakers (uncalibrated)

For this case, there are 9 equations (1 of Type A, 4 of Type B, 3 of Type C and 1

of Type E′) and 9 unknowns (6 and 3 unknowns for H and b, respectively). We

follow a similar solution scheme as for the case of 2 racks and 4 speakers case. By

linear elimination using the 4 linear constraints of type C and E, we can express

H and b in terms of 9 − 4 = 5 unknowns x = (x1, x2, x3, x4, x5). The remaining

five constraints (1 of Type A, and 4 of Type B) gives a polynomial system with 28

solutions after a saturation procedure similar to the previous case. Again we use

the scheme in [28] to produce a numerically stable and efficient solution.

3.2 2D-racks and 3D-speakers

In this section, we solve the minimal problems for cases where the racks in 2D

and speakers are in 3D.
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r1

r2

r3 r4

r5
r6
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s2

r1
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r3 r4

r5
r6

s1 s2
y

x

Figure 3: Three microphone racks are on 2D plane and two speakers are on 3D

space, and get projection of speaker positions on 2D plane.

3.2.1 Case of 3 racks and 2 speakers (calibrated)

As shown in Figure. 3, we get orthogonal projection of s1 and s2 on the plane

which microphone racks lie. We set

r =






r11 r12 r13 r14 r15 r16

0 r22 r23 r24 r25 r26

0 0 0 0 0 0






s =






0 0

s21 s22

s31 s32






By factorizing D̃ which is of rank 1 in this case, we can compute all receivers

and speakers from unknown initial/reference positions up to the unknown trans-

formation L = l , which is now only an unknown constant. We now utilize the

nonlinear constraints in equations of Type A, B, C and E.

We know that one can reconstruct for r and s with factorization up to un-

known transformation l such that D̃ = r̃T 1
l l s̃ = rT s, we put r̃ = [0 D̃T ] and
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s̃ = [0 1]. We fix the gauge freedom by choosing the location r1 = [r11, 0, 0]T ,

ri = [r1i, r2i, 0]T , i = 2, . . . , 6 and sj = [0, s2j , s3j]
T , j = 1, 2, and also denote

second row of r and s as r and s, respectively. This gives

ri =
1

l
r̃i, i = 2, . . . , 6

sj = l (̃sj + b)/(−2), j = 1, 2.
(12)

The equations of type (A), (B), (C) and (E) then become

d2
11 = r2

11 +
l2b2

4
+ s231, (13)

d2
12 − d2

11 =
l2

4
s̃2
2 +

l2b

2
s̃2 + s232 − s231, (14)

d2
i1 − d2

11 = r2
1i +

1

l2
r̃i + b̃ri − r2

11, i = 2, . . . , 6 (15)

c2
2k−1,2k =







r2
11 + r2

12 +
1
l2 r̃2

2 − 2r11r12, k = 1

r2
1,2k−1 +

1
l2 r̃2k−1 + r2

1,2k +
1
l2 r̃2k−

−2r1,2k−1r1,2k − 2
l2 r̃2k−1r̃2k, k = 2, 3.

(16)

There are in total 10 unknowns (1 for l , 1 for b, 6 for r1i and 2 for s3j). We

have 10 equations (1 of Type A, 1 of Type B, 5 of Type C and 3 of Type E). By

using the parametrization x = [h, b, v1, v2, v3, v4, v5, v6, u12, u34, u56]T , where

h =
1
l2 , vi = r2

1i, i = 1, . . . , 6 and u2k−1,2k = r1,2k−1r1,2k, k = 1, 2, 3. We have

8 linear equations from (15) and (16), thus we can express all the unknowns in x

linearly in terms of [h, b, v1]:

A =















r̃2
2 r̃2 −1 1 0 0 0 0 0 0 0

r̃2
3 r̃3 −1 0 1 0 0 0 0 0 0

r̃2
4 r̃4 −1 0 0 1 0 0 0 0 0

r̃2
5 r̃5 −1 0 0 0 1 0 0 0 0

r̃2
6 r̃6 −1 0 0 0 0 1 0 0 0

r̃2
2 0 1 1 0 0 0 0 −2 0 0

r̃2
4 − 2r̃3r̃4 + r̃2

3 0 0 0 1 1 0 0 0 −2 0

r̃2
5 − 2r̃5r̃6 + r̃2

6 0 0 0 0 0 1 1 0 0 −2














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Algorithm 1 Solver for 3 racks and 2 speaker, 2D-3D, calibrated case

Input: Distances matrix D.

Output: Microphone and sound position.

1: Square all distances in D.

2: Form the four types of distance squared differences.

3: Use dij to determine r̃ and s̃.

4: Get linear equations in x = [h, b, v1, v2, v3, v4, v5, v6, u12, u34, u56]T .

5: Set equations type C and also equations from rack constraints.

6: Express [v2, v3, v4, v5, v6, u12, u34, u56] linearly in terms of [h, b, v1].

7: Form quadratic equations u2
12 = v1v2, u2

34 = v3v4, u2
56 = v5v6.

8: Solve polynomial equations using action matrix techniques. (We get two

possible solutions, maybe only one is feasible.)

9: for each solution do

10: Backtrack and calculate all unknown parameters.

11: Test the signs of the pairs of r for each rack.

12: end for

Let A = [A1 A2] where A1 is first 3 columns and A2 is last 8 columns of A

and denote first 3 elements of x as x1 = [h, b, v1] and last 8 elements as x2, then

we can construct the following equations:

[A1 A2][x1 x2]T
= A1x1 + A2x2 = B (17)

We could have a solution x2 = A−1
2 B − A−1

2 A1x1. We then proceed to solve

the three equations

u2
2k−1,2k = r2

1,2k−1r2
1,2k, k = 1, 2, 3. (18)

in the three unknowns [h, b, v1] using the techniques in [28]. Resubstitution gives

us the coordinated of r and s. In general there are 2 solutions.

3.2.2 Case of 4 racks and 2 speakers (uncalibrated)

Similar to the previous calibrated case, we now have 12 equations (1 of Type

A, 1 of Type B, 7 of Type C and 3 of Type E′). We again need to select ten

columns of A such that A2 has full rank and low condition number. We solve the
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problem in the same manner as the calibrated 3 racks and 2 speakers case. For the

corresponding polynomial system, there is in general 6 solutions.

3.2.3 Case of 2 racks and 4 speakers (uncalibrated)

This case is actually under-determined even though it satisfies F = M . One

way to explain this is the following. Adding one transmitter seems to give 4

measurements and 3 unknowns (unknown speaker positions in 3D), thus one

obtains an additional constraint which could indicate that we can use that to solve

the rack length c. But in fact we only get 3 (linearly independent) measurements

due to the rank constraints on D̃. Thus it is unsolvable.

3.2.4 Case of 2 racks and 3 speakers (calibrated)

We can here parameterize the two racks to be on the z-plane. Then we know that

the matrix D̃ is of rank-2, and H is a symmetric 2 by 2 matrix, and b is a 2 by

1 matrix. There are three linear equations of type C and two linear equations of

type E and 5 unknowns (3 for H and 2 for b). Thus we can solve for H and

b linearly and resolve for the positions of r and the projection of s onto the z
plane. Then we solve the z coordinates for the speakers simply using the distance

measurements.

3.3 3D-racks and 2D-speakers

In this section, we solve the minimal problems for cases where the racks are in 3D

and speakers are in 2D.

3.3.1 Case of 3 racks and 3 speakers (calibrated)

As Figure 4 shows, we carefully choose the gauge freedom so that microphone

racks and speaker positions are of the following form:

r =






0 r12 r13 r14 r15 r16

0 0 r23 r24 r25 r26

r31 r32 r33 r34 r35 r36





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r1
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r3 r4

r5
r6

s1

s2

r1

r2

r3 r4

r5
r6

y
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s3

z

s1

s2
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Figure 4: Three microphone racks are in 3D and three speakers in a 2D plane.

The projections of microphone positions on the 2D plane are used.

s =






s11 s12 s13

s21 s22 s23

0 0 0




 .

The solution strategy follows a similar technique as 2D-3D case, but this time

D̃ has rank 2, and we have different characterization of r̃ and s̃ as r̃ = [02×1 D̃T ]

and s̃ = [02×1 1]. If we fix the translational part of the gauge freedom by

choosing the location r1 = [0, 0, r31]T , r2 = [r12, 0, r32]T and also denote first

two rows of r and s as r and s, respectively, then we get our equation system in a

similar way.

Then ri and sj gives ith and jth column of r and s, respectively.

ri = L−T r̃i, i = 2, 3 . . . 6,

sj = L(̃sj + b)/(−2), j = 1, 2, 3.
(19)

Using this parametrization and also let H = (LT L)−1, the equations of type

(A), (B), (C) and (E) can then be simplified as
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d2
11 = r2

31 +
bT H−1b

4
, (20)

d2
1j − d2

11 =
s̃T
j H−1s̃j + 2bT H−1s̃j

4
j = 2, 3 (21)

d2
i1 − d2

11 = r̃T
i Hr̃i + bT r̃i + r2

3i − r2
31, i = 2, . . . , 6 (22)

c2
2k−1,2k =







r2
31 + r̃T

12Hr̃12 + r2
32 − 2r31r32, k = 1

(̃rT
1,2kHr̃1,2k + r̃T

2,2kHr̃2,2k)+

+(̃rT
1,2k−1Hr̃1,2k−1 + r̃T

2,2k−1Hr̃2,2k−1)−
−2(̃rT

1,2kHr̃1,2k−1 + r̃T
2,2kHr̃2,2k−1)+

+r2
3,2k + r2

3,2k−1 − 2r3,2k−1r3,2k. k = 2, 3

(23)

For this case, there are 11 equations (1 of Type A, 2 of Type B, 5 of Type C

and 3 of Type E) with 8 of them linear, and 11 unknowns (6 for z-coordinate

of receivers and 5 unknowns for H and b). We use the same technique which is

used in Section. 3.2.1. Using algebraic geometry tools, we verify that there are in

general 16 solutions. By using the parametrization

x = [H11,H12,H22, b1, b2, v1, v2, v3, v4, v5, v6, u12, u34, u56] (24)

vi = r2
3i, i = 1, . . . , 6 (25)

u2k−1,2k = r3,2k−1r3,2k, k = 1, 2, 3. (26)

We have 8 linear equations from (22) and (23), thus we can express all the un-

knowns in terms of [H11,H12,H22, b1, b2, v1], similar to Section 3.2.1. We then

proceed to solve equations (20), (21), and the three equations

u2
2k−1,2k = r2

3,2k−1r2
3,2k, k = 1, 2, 3. (27)

in the unknowns [H11,H12,H22, b1, b2] using the techniques in [28].

3.3.2 Case of 4 racks and 3 speakers (uncalibrated)

We have 13 equations (1 of Type A, 2 of Type B, 7 of Type C and 3 of Type E′)

and 13 unknowns (8 for z-coordinate of receivers and 5 unknowns for H and b).
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Figure 5: Histogram of relative errors for the solvers without additive Gaussian

noise in 100 runs of solvers.

We follow the same strategy to parametrize the problem as the calibrated 3 racks

and 3 speakers case. This problem is much more difficult and has in general 29

solutions.

3.3.3 Case of 2 racks and 4 speakers (uncalibrated)

We have 8 equations (1 of Type A, 3 of Type B, 3 of Type C and 1 of Type E′)

and 9 unknowns (4 for z-coordinates of receivers and 5 unknowns for H and b).

We do not have enough information to solve the case.

4 Using Minimal Solvers for Overdetermined Problems

The study of minimal configurations that are solvable are interesting from a theor-

etical viewpoint. By solving and understanding these minimal problems one ob-

tains a better understanding of the geometrical problems and can identify possible

failure cases for the estimation problem. The minimal solvers are also interesting

from a practical viewpoints. Two main applications are (i) to obtain initial estim-

ates for iterative methods for optimizing likelihood function and (ii) to remove

outliers using sample and test algorithms such as RANSAC, cf. [25].
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Figure 6: Mean of log10 relative errors for 100 runs, plotted against the standard

deviation of the additive Gaussian noise.

4.1 Local optimization methods for estimating parameters for the
overdetermined case

Assume as before that m is the number of microphone racks, kr be the dimension

of affine space of microphone racks, n be the number of sound sources and ks be

the dimension of affine space of sound sources. The unknown parameters are the

spatial coordinates of the 2m receivers (e.g. microphones) ri , i = 1, . . . , 2m, and

the spatial coordinates of n speakers (e.g. sound events), sj , j = 1, . . . , n and

possibly the unknown but constant distance between the receivers on the rack, c.
In order to keep the presentation clear we will here only study the case where the

rack length c is known. We are thus assuming that ||r2k − r2k−1|| = c, for k =

1, . . . ,m. For brevity we will use z to denote the unknown parameter, i.e. z =

(r1, . . . rm, s1, . . . , sn). The measurements are the distance measurements dij =

||ri − sj||2 + eij . Here eij are used to denote the measurement errors. Assuming

that these are independent, the maximum likelihood estimate of the parameter is

found by maximizing

max
z

f (z) = max
z

∏

i,j

p(dij|ri, sj).
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Figure 7: Box plot of mean reconstruction error. Legend is same with Figure.

6. It shows the shape of the distribution, its central value, and variability. This

plot displays the full range of variation (from min to max), the likely range of

variation, and the median, and also shows outliers.

One common choice for modeling the probability density functions p is to

use the Gaussian distribution. By taking the negative logarithm this optimization

problem becomes

min
z

fl2(z) =
∑

i,j

(dij − |ri − sj)|2).

The function fl2 typically has many local minima. The fact that there are sev-

eral solutions to some of the minimal problems as demonstrated above, is in fact

a proof that there are such problems with several local minima. It is generally

difficult to obtain good initial estimates of the parameters. However, once such

initial estimates are obtained, it is relatively straightforward to improve the estim-

ate by performing local optimization of fl2 using e.g. Gauss-Newton method or

any other local optimization method.

A disadvantage of optimizing fl2 is that the solution is not only sensitive to
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the initial estimate, but also sensitive to outliers in the data. Assuming Gaussian

distribution is an implicit assumption that the probability of outliers is extremely

small. For problems where there are more outliers it is often a better approach

to assume a different distribution. One popular method is to minimize the one-

norm, i.e. to minimize

min
z

fl1(z) =
∑

i,j

|dij − |ri − sj)||.

This gives methods that are less sensitive to outliers. It is however still sensitive to

the initial estimate of the parameter. Again this is because the function fl1 also has

many local minima.

In all of these cases it is possible to use the solutions from the minimal solvers

to obtain initial estimates for non-linear optimization techniques.

4.2 Random sampling and case

Hypothesize and test ideas such as Random Sampling Consensus (RANSAC) can

be quite effective for finding good parameter values in the presence of outliers.

The main idea of the algorithm is to make a number of iterations, where in each

iteration a minimal subset of the data is chosen. Even in the presence of outliers

there might be a fair chance that the subset is outlier-free. This probability is

higher the smaller the subset is. An algorithm for solving for the parameters using

minimal data is then used. This estimated parameters are then tested on the

remaining data. These tests can typically be done sequentially, so that each step

is relatively robust to outliers and such that each test is computationally efficient.

The idea here is that a good set of parameters will fit to a large portion of the

remaining data.

5 Experiments

To be able to evaluate the quality of a solution, receivers and transmitter positions

ri and sj are compared to ground truth positions ri,gt and sj,gt . Positions are ro-

tated, mirrored and translated so that the points are aligned using [29]. For com-

paring with computer vision reconstruction, the alignment of points is also done

over scale. Relative errors are defined as ‖[r − rgt s − sgt ]‖F/‖[rgt sgt]‖F , where

‖ · ‖F is the Frobenius norm. For the additive noise dij = dij + ε, ε ∈ N (0,σ),
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we use the Gaussian distribution.

Simulations were run for 100 times where ground truth receivers and trans-

mitters where drawn uniformly over a unit cube around the origin. Half of the

receivers were then fitted to a rack distance of 0.2 from their respective pairs, and

measurements dij were created from ground truth. Relative errors for the solv-

ers with and without additive Gaussian noise on the measurements can be seen in

Figure 5 and Figure 6, respectively. Looking at Figure 5, the results of the minimal

solver show that the algorithms has good numerical performance. For indicating

whether a distribution is skewed and whether there are any unusual observations

(outliers) in the mean error, we add standard deviation bar and outliers to the

mean reconstruction error, which is showed in Fig. 7. The central rectangle spans

the first quartile to the third quartile, a segment inside the rectangle shows the

median and ”whiskers” above and below the box show the locations of the min-

imum and maximum mean errors.

For testing the case of senders and receivers in 3D with a calibrated rack dis-

tance, an indoor experiment was carried out. A set of real data was obtained using

four T-bone MM-1 microphones and four Roxcore portable speakers, connected

to a Fast Track Ultra 8R sound card in an indoor environment, with speakers and

microphones placed in an approximate 1.5 × 1.5 × 1.5 m3 volume (Fig.8a).

TOA measurements were obtained by matching sounds from different speak-

ers to sound flanks recorded from different microphones. The footprint of the

matching was selected to be small as to avoid degeneration from reverberation

effects. Synchronization was achieved by sharing the same local clock by having

everything connected to the same sound card. The sounds were separated tem-

porally so that the matching of which sound came from which speaker could be

done. Matching was done using the beginning of emitted sounds, thus ignoring

reflections as there exist a direct path between speakers and microphones. A re-

construction of the scene was made using computer vision techniques to be used

as ground truth.

The reconstruction (Fig.8b) when compared to the vision-based reconstruc-

tion has an RMSE of 4.2 cm and 5.6 cm for microphones and speakers respect-

ively. From Table 2, we can see that many minimal configuration have multiple

solutions, the corrected solutions are always within the solutions we obtain, and

there are false solutions. For these false solutions, we first remove the complex

ones and further remove more by verifying using measurements from an addi-

tional microphone, seen in Fig. 8a as the microphone with a green dot on.
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Figure 8: Real microphone and speaker calibration setup. (a) the setup of micro-

phones and speakers in an office. Blue square is for microphone position, and

pair of mircophones are fixed on the same length rack which is shown as red line,

and blue circle is for sound position. (b) the reconstructed sensor positions using

TOA measurements (red) aligned with the positions estimated based on computer

vision (blue).

Dimension Cases Nb. of solutions

3D-3D
2R/4S Calibrated 38

2R/5S Uncalibrated 28

2D-3D

3R/2S Calibrated 2

4R/2S Uncalibrated 6

2R/4S Uncalibrated unsolvable

2R/3S Calibrated

3D-2D

3R/3S Calibrated 16

4R/3S Uncalibrated 29

2R/4S Uncalibrated underdetermined

Table 2: Number of solutions for all minimal cases of dual microphone array

problem. Here R and S stands for rack and sender, respectively.
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5.1 Overdetermined case with noise and outliers

To test how to use the new algorithms for overdetermined cases with outliers we

have generated a bank (A) of test cases. For this test we have used 3 2-rigs moving

in a plane and 40 sound sources. The sound sources are randomly genrated in a

cube of size 2 × 2 × 2, centered at the origin. The rigs are randomly generated

in the plane z = 0, such that the rig distance has length 1. In total we generated

100 such random cases. For each case we calculate the distiances from each sound

source to each microphone. We have thus 6× 40 distance measurements for each

case. In each case we randomly chose x% of the measurements to be outliers.

To each of the measurements we added a random measurement error (Gaussian

distribution with mean zero and standard deviation 0.001) if the measurement is

considered to be an inlier and a larger error (rectangular distribution between 0.4

and 1.2) if the measurement is consedered to be an outlier.

To test the algorithms for the case of no outliers, a similar bank (B) of test sets

were constructed without any outliers.

We test three algorithms for estimating the parameters,

z = (r1, . . . rm, s1, . . . , sn).

1. Random initial estimate of z, followed by non-linear least squares optimiza-

tion of the residuals. We repeat this process k times and choose the solution

zopt with the lowest fl2(zopt ).

2. Random initial estimate of z, followed by non-linear l1 optimization of the

residuals. We repeat this process k times and choose the solution zopt with

the lowest fl1 (zopt).

3. A single run of RANSAC algorithm using the minimal solver, followed by

non-linear optimization using the measurements that were considered to

be inliers by the RANSAC-algorithm.

We evaluate the performance of the algorithm by studying the estimates of

the microphone rigs r = (r1, . . . rm). We measure this error as

d (r, (̃r)) =

√
∑

i

|ri − r̃i|2.

If the error is smaller than a threshold (here chosen as 0.05), then the estimate is

considered to have succeeded otherwise not.
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Outlier Percentage Random+l2 Random + l1 RANSAC + l2
0 10 17 100

5 0 7 93

10 0 16 87

Table 3: The table shows the success rate in percent of recovering the mic-rig

positions for three algorithms for different fraction of outliers i the measurements.

In table 3 the performance for the three algorithm is shown on three data-

sets of problems, without outliers, with 5 % of outliers and with 10 % outliers

respectively. Here, the RANSAC appraoch shows much better results in recov-

ering the mic-rig positions in the presence of outliers. A further bonus is that

each measurement gets a classification as either inlier or outlier using the minmial

solvers and RANSAC, thus giving a good hypothesis for which measurments are

inliers.

A final real example was made using ”Spoonphone” ultra-wide-band (UWB)

tags and mobile phones as measuring devices, see bottom part of figure 1. The

problem is symmetric in terms of tags and phones. Thus we could consider a

phone with two UWB units or two such phones mounted on a moving platform

moving in an environment with several tags. Alternatively we could consider pairs

of UWB tags with known inter-tag distance and a moving phone.

In this experiment we chose the latter setup and placed 3 pairs of tag with

known inter-tag distance of 1 meter on the floor. We then measured the distances

to these 6 tags at a number of positions using the mobile phone. The measured

distances from the 6 tags to a subset of the measurement positions are given in

table 4.

By using a minimal solver (3 dual-rig case moving in a plane to 2 points

in general position), we obtain an initial estimate of the tags and of the phone

motion. The remaining phone-positions are obtained using trilateration. The

final estimate, shown in figure 9 is found by non-linear least squares optimization.

6 Conclusion

We consider the problems with varying setups as (i) if the internal distances

between the microphone nodes are known a priori or not. (ii) if the microphone

racks lies in an affine space with different dimension than the sound sources. A
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1 2 3 4 5 6 7

1 2.07 1.43 1.14 0.936 0.669 1.87 0.875

2 2.29 1.96 1.33 1.6 0.911 1.83 0.874

3 1.5 1.56 2.02 2.02 1.83 1.61 1.02

4 1.77 1.25 1.29 1.08 1.02 1.69 0.798

5 1.73 1.6 1.59 - 1.23 1.72 0.782

6 - 1.32 1.98 1.83 1.72 1.72 1.22

Table 4: The table shows the measured distances, using ultra-wide-band tech-

niques, from the 6 tags to a subset of the measurement positions.

set of minimal configurations (i.e. minimal number of microphones and sources)

are derived for which the problem is solvable. Such minimal configuration de-

pend on the subspace in which microphone and source lay (3D-3D, 2D-3D,

3D-2D), and on the knowledge of the distance between each microphone couple.

For each minimal configuration a non-iterative solving strategy is devised, based

on rank constraints of a modified matrix of TOAs, and subsequent polynomial

system. Synthetic experiments are carried out for a subset of configurations to

assess the reconstruction accuracy vs Gaussian noise on measurements, showing

good results. One of the solver is further used on data sets containing outliers in

a RANSAC setting, showing good results and the feasibility of using these min-

imal solvers as a part in finding speaker and mic-rack positions in the presence of

severe outliers, a common problem in TOA and TDOA measurements. A real ex-

periment using ultra-wideband shows a reasonable solution. Finally a real sound

experiment is carried out for one minimal configuration. Results are good with

5cm RMSE error.

It is difficult to give comparison evaluation, since this work assumes a par-

ticular microphone array setup that each pair of microphones are sat on the rack

which has same length, but similar setup not found in other literature. It is also

hard to compare performance with the case of single microphones distribution

if each pair of microphones not distributed at same inter-distance. In our solver

we used extra equations comparing to [20] which are the equations (E) or (F).

In our settings we have assumption that there is fixed length between each pair

of microphones, as if a robot or receiver with a dual-pair of microphones have

when moving between measurement positions. If one could solve the above setup

for not fixed rack length, i.e. each pair of microphones does not necessarly have
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Figure 9: a) Image showing the position of the 6 ultra-wide-band tags on the floor.

The known inter-tag distances are shown as blue lines. b) 3D positions (blue) of

the six ultra-wideband tags and the motion (red) of the ultra-wideband equipped

phone as estimated from the distance measurements.

same rack length, then it would be possible to compare it with single microphone

distribution problem, here we have even number of microphones. This could be

the different view of solving calibration problem for considering microphones by

pair.

The addressed problem is more specialized than the general TOA problem

which was discussed in [20], presenting a closed-form minimum solution. How-

ever, we specify the problem further and it reduces the required numbers of signals

and receivers even more. We see this problem as a building block for TDOA based

self-calibration problem of dual microphone racks, and we believe it can be used

to further analyze problem within radio, Wi-Fi and ultrasound.
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“An automatic system for microphone self-localization using ambient

sound,” in European Signal Processing Conference (Eusipco 2014), 2014.

131



Paper D
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toa and tdoa network calibration using far field approximation as initial

estimate,” in ICPRAM. 2012, pp. 590–596, SciTePress.

[24] Simon Burgess, Yubin Kuang, Johannes Wendeberg, Kalle Åström, and
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Abstract

This paper presents a complete characterization and solution to microphone po-

sition self-calibration problem for time-of-arrival (TOA) measurements. This is

the problem of determining the positions of receivers and transmitters given all

receiver-transmitter distances. Such calibration problems arise in applications

such as calibration of radio antenna networks, audio or ultra-sound arrays and

WiFi transmitter arrays. We show for what cases such calibration problems are

well-defined and derive efficient and numerically stable algorithms for the min-

imal TOA based self-calibration problems. The proposed algorithms are non-

iterative and require no assumptions on the sensor positions. Experiments on

synthetic data show that the minimal solvers are numerically stable and perform

well on noisy data. The solvers are also tested on two real datasets with good

results.

Key words: Time-of-Arrival, Network Calibration, Microphone

Self-Calibration, Minimal Solver.
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1 Introduction

The problem of sensor network self-calibration is essential to localization and nav-

igation. In this paper we focus on the time-of-arrival (TOA) based self-calibration

problem, i.e. the problem of determining the positions of a number of receivers

and transmitters given all receiver-transmitter distances. This problem has cer-

tain similarities to the problem of determining a set of points given all inter-point

distances, which is usually solved using multi-dimensional scaling [1]. Such prob-

lems are of general interest in visualization and analysis of large datasets and for

many geometric problems. It also relates to the study of sensor networks un-

der rigid graph theory [2, 3] where general graph structure is of interest. The

TOA-based self-calibration problem studied here corresponds to a special case -

bipartite graph [4]. It is important for network calibration using e.g. microphone

arrays, given recordings of sounds emitted at unknown locations, to microphones

at unknown positions, determine both sound emission positions and microphone

locations.

Such problems could be solved using alternative techniques, such as manually

measuring all distances between microphones or using computer vision. Examples

of such approaches are given in [5–10]. Here we argue that efficient solution to

the TOA-based self-calibration problem opens up new technological possibilities

e.g. calibration of a sensor network on the fly, determining of reflections of re-

ceivers and transmitters while moving in an unknown terrain etc. The solution

of the problem is also of great theoretical interest and the solution techniques are

interesting per se.

Iterative methods exist for TOA or time-difference-of-arrival (TDOA) based

self-calibration [11, 12]. However, such methods can get stuck in local minima

which are dependent on initialization. Non-iterative methods for initializing net-

work self-calibration have received less attention. For general graph structure, one

can relax the TOA-based calibration problem as a semi-definite program [13]. For

bipartite graph, initialization of TOA-based bipartite networks studied in [14],

where solutions to the minimal case of 3 transmitters and 3 receivers in the plane

is given. Initialization of time-difference-of-arrival (TDOA) networks is studied

in [15] where a solution to non-minimal case of 10 receivers and 4 transmitters

in 3D for TOA problem was also derived. In [16, 17] a solution is given to the

TOA based self-calibration problem, if one may additionally assume that one of

the receivers coincide with the position of one of the transmitters. In [18] and

refined in [19] a far field approximation was utilized to initialize both TOA and
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TDOA problems. In [20, 21], algorithms for far-field unsynchronized receivers

were also proposed. All these previous works attempt to solve the problem with

either minimal or close to minimal data. Studying these minimal cases is both of

theoretical importance and essential to develop fast stable algorithms suitable in

RANSAC [22] and other solution schemes.

In this paper, we completely characterize the TOA based self-calibration prob-

lem in three dimensions. It is shown that such problems are well-defined for m
receivers and n transmitters if and only if m ≥ 4, n ≥ 4, m+n ≥ 10. We present

efficient, numerically stable and non-iterative algorithms for such problems. In

particular, we study the minimal problem of (m = 6, n = 4) (or (m = 4, n = 6)

which is identical because of symmetry). We show that this problem has in general

38 solutions and present an algorithm for determining these 38 solutions given

an arbitrary 4 × 6 matrix of distance measurements. Furthermore we study the

the problem of (m = 5, n = 5). We show that each 5 × 5 matrix must fulfill one

constraint. But as long as this one constraint is fulfilled the problem is minimal

and has 42 solutions. Also for this problem we provide a fast and numerically

efficient algorithm. To the best our knowledge, our algorithms are the first to

give practical numerical solution for minimal TOA calibration problems in 3D.

We also extend the solution scheme to overdetermined cases and sketch how the

technique could be extended to other dimensions.

2 The TOA-based Calibration Problem

Let ri , i = 1, . . . ,m and sj , j = 1, . . . , n be the spatial coordinates of m
receivers (e.g. microphones) and n transmitters (e.g. sound events), respectively.

For measured time of arrival tij from transmitter ri and receiver sj, we have vtij =
||ri − sj||2 where v is the speed of measured signals. We assume that v is known

and constant, and that we at each receiver can distinguish which transmitter j
each event is originating from. This can be done e.g. if the signals are temporally

separated or by using different frequencies. We will in the sequel work with the

distance measurements dij = vtij. The TOA calibration problem can then be

defined as follows.

Problem 2.1. (Time-of-Arrival Self-Calibration) Given absolute distance meas-

urements dij determine receiver positions ri , i = 1, . . . ,m and transmitter posi-

tions sj, j = 1, . . . , n such that dij = ||ri − sj||2.
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Note that for such problems, one can only reconstruct locations of receivers

and transmitters up to euclidean transformation and mirroring, henceforth re-

ferred to as the gauge freedom. In the following discussion, we assume that the

dimensionality of the affine space spanned by ri and sj is the same and it is de-

noted as K , typical values in practice is K = 3 for transmitters and receivers in

general 3D positions. The minimal configurations for different dimensions have

previously been determined in [4, 14]. It is relatively straightforward to calculate

the number of degrees of freedom in the measurements, mn and the number of

degrees of freedom in the manifold of unknown parameters, e.g. 3n+ 3m− 6 for

TOA in 3D. To be more precise one has to study the equations using algebraic

geometry, to make certain that there are no anomalies in the set of equations.

2.1 Analysis of the TOA-based Calibration Problem

In this section, we analyze the minimal cases for TOA-based self-calibration prob-

lem. Here we define a minimal case to a problem as the case that consists of the

minimal set of constraints or equations such that the problem generally has finite

and > 0 number of solutions. We start by deriving new sets of equations.

Since the distance measurements are assumed to be real and positive one does

not lose any information by squaring them, i.e.

d2
ij = (ri − sj)

T (ri − sj) = rT
i ri + sT

j sj − 2rT
i sj. (1)

Notice that these are now polynomial equations in the unknowns. The problem

is significantly easier to analyze and solve by forming new equations according to

the following linear combinations of d2
ij :







d2
11 d2

12 − d2
11 . . . d2

1n − d2
11

d2
21 − d2

11

. . . D̃

d2
m2 − d2

11







, (2)

where D̃ is a (m − 1)(n − 1) matrix with entries as d̃ij = d2
i,j − d2

i1 − d2
1j + d2

11,

with i = 2, . . .m and j = 2, . . . , n.

These new mn equations are equivalent to the mn equations formed by d2
ij .

The new ones are in fact an invertible linear combinations of the old ones.

These equations are of four types:

(A) 1 equation d2
11 = (r1 − s1)T (r1 − s1).
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(B) n − 1 equations of type d2
1j − d2

11 = sT
j sj − sT

1 s1 − 2rT
1 (sj − s1), for

j = 2, . . . n.

(C) m − 1 equations of type d2
i1 − d2

11 = rT
i ri − rT

1 r1 − 2(ri − r1)T s1, for

i = 2, . . .m.

(D) (m−1)(n−1) equations of type d2
ij −d2

i1−d2
1j+d2

11 = −2(ri−r1)T (sj−s1),

for i = 2, . . .m, j = 2, . . . n.

Without loss of generality we may assume that m ≥ n. It turns out that the

characterization of the problem depends on the affine span of the transmitters and

the receivers. For simplicity we will in the following concentrate on 3D problems

and will assume that the affine span of both the transmitters and of the receivers

are of dimension 3. Notice, however, that much of the argumentation and theory

is straightforward to generalize to other dimensions. A brief sketch on what can

be said in other dimensions is given in Section 2.4.

The solution strategy is to use the equations of type D first and use factoriz-

ation techniques to solve for r’s and s’s up to a translation vector b (3 degrees of

freedom) and an affine deformation L (6 degrees of freedom up to an unknown

rotation). By a clever choice of parametrization of the problem it can be shown

that the equations of Type C are linear in the unknowns and the equations of

Types A and B can be used to form polynomial equations. We will then show

that such problems are well defined and can be solved if m ≥ 4, n ≥ 4 and

m + n ≥ 10. The interesting minimal cases are thus m = 6, n = 4 (and m = 4 ,

n = 6) as well as m = 5 , n = 5. It was shown in [4] that these corresponding to

rigid cases for bipartite graphs in 3D.

The factorization step can be understood as follows. Let Ri =
[
(ri − r1)

]

and Sj =
[
−2(sj − s1)

]
. The equations of type D can be written as D̃ = RT S

with Ri as columns of R and Sj as columns of S . The ranks of R and S depends

on the dimensionality of the affine span of the receivers and the transmitters re-

spectively. As we assume that both of these are 3, then the matrix D̃ also has

rank 3. This also implies that in order to solve the problem, it is required that

m ≥ 4 and n ≥ 4 . By factorizing D̃ which is of rank 3 using e.g. singular value

decomposition, we can compute the vectors to all receivers and transmitters from

unknown initial/reference positions (r1 and s1) up to an unknown full-rank 3×3

transformation L such that D̃ = R̃T L−1LS̃ = RT S.

To solve for the unknown transformation and reference positions, we now

utilize the nonlinear constraints in equations of Type A, B and C. First we can
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fix the translational part of the gauge freedom by choosing the location r1 at the

origin. Given that R = L−T R̃ and S = LS̃, we can parameterize s1 as Lb where

b is a 3 × 1 vector. This gives

r1 = 0, s1 = Lb

ri = L−T R̃i, i = 2 . . .m

sj = L(S̃∗j + b), j = 2 . . . n,

(3)

where S̃∗j = S̃j/(−2). Using this parametrization the equations of type (A), (B)

and (C) become

d2
11 = (r1 − s1)T (r1 − s1) = sT

1 s1

= bT LT Lb, (4)

d2
1j − d2

11 = sT
j sj − sT

1 s1

= S̃∗T
j LT LS̃∗j + 2bT LT LS̃∗j , (5)

d2
i1 − d2

11 = rT
i ri − 2rT

i s1

= R̃T
i (LT L)−1R̃i − 2bT R̃i. (6)

Observe that all the constraints involve only LT L (and its inverse) and b.

By representing (LT L)−1 with a symmetric matrix H parameterized with 6 un-

knowns, the constraints in (4), (5) and (6) can then be simplified as

d2
11 = bT H−1b, (7)

d2
1j − d2

11 = S̃∗T
j H−1S̃∗j + 2bT H−1S̃∗j , (8)

d2
i1 − d2

11 = R̃T
i HR̃i − 2bT R̃i. (9)

With this parameterization, there are in total 9 unknowns (6 and 3 unknowns

for H and b, respectively). By utilizing H−1 = adj(H)/ det(H), where adj(H) is

the adjoint of H, we can multiply equations in (7) and (8) by det(H) to rewrite

them as polynomials equations. In this case, we have (n + m − 1) equations,

among which the (m − 1) equations in (9) are linear, the (n − 1) equations in (8)

are polynomial equations of degree 3 and Equation (7) is of degree 4. Thus we

need n + m − 1 ≥ 9 or n + m ≥ 10 in order to solve for the 9 unknowns. Since

both m ≥ 4 and n ≥ 4 there are two minimal cases 6r/4s (4r/6s) and 5r/5s.
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2.2 Solving the Polynomial System

For the minimal case of 6 receivers and 4 transmitters, there are 5 linear equations

of type C. By linear elimination we can express H and b in terms of 9 − 5 = 4

unknowns x = (x1, x2, x3, x4). We now obtain four equations

det(H)d2
11 = bT adj(H)b (10)

det(H)(d2
12 − d2

11) = S̃∗T
2 adj(H)S̃∗2 + 2bT adj(H)S̃∗2 (11)

det(H)(d2
13 − d2

11) = S̃∗T
3 adj(H)S̃∗3 + 2bT adj(H)S̃∗3 (12)

det(H)(d2
14 − d2

11) = S̃∗T
4 adj(H)S̃∗4 + 2bT adj(H)S̃∗4 (13)

in the four unknowns. Here both H and b depend on x. Using tools from

algebraic geometry it can be shown that the solution set to equations (9-12) in

general consists of a set of dimension 1 (a curve) of ’false’ solutions that fulfill

det(H ) = 0 and 38 points. This is done by running the system of equations in

Macaulay2 [23] over the field of Zp, where p is a large prime number and with

coefficients initialized randomly. To remove the one-dimensional curve of false

solutions we employ a saturation technique as follows. We rewrite the equations

using an additional unknown z and an additional equation det(H) = z, i.e.

zd2
11 = bT adj(H)b (14)

z(d2
12 − d2

11) = S̃∗T
2 adj(H)S̃∗2 + 2bT adj(H)S̃∗2 (15)

z(d2
13 − d2

11) = S̃∗T
3 adj(H)S̃∗3 + 2bT adj(H)S̃∗3 (16)

z(d2
14 − d2

11) = S̃∗T
4 adj(H)S̃∗4 + 2bT adj(H)S̃∗4 (17)

det(H) = z (18)

We then multiply all equations with monomials in x up to degree 3 and keep the

highest degree of z as 1. By doing this one can construct 315 equations involving

330 monomials which do not contain z and 70 monomials that do contain z.

These equations can be represented by a sparse coefficient matrix M = [M0 Mz]

of size 315 × 400, where the coefficients corresponding to monomials without

z are in M0 and those corresponding to monomials with z are in Mz. After

multiplication with QT , where QR = M0 is the QR-factorization of M0, we

obtain

QT M = [R QT Mz].

Here the last 51 rows of R is zero and thus the last 51 equations can all be written

zfk(x) = 0. After division with z, we obtain 51 equations of degree 4 in x. It can

be shown that this solution set to these equations consist of 38 points.
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We then use these equations for solving for the 38 solutions using a tech-

nique described in [24]. This again involves multiplying the 51 equations with

monomials, generating corresponding coefficient matrix, row manipulation in or-

der to generate a 38 × 38 matrix, whose eigenvalues and eigenvectors contain the

solution to the system of polynomial equations. For each such solution, we then

calculate H and b and then generate the solutions for ri and sj according to (3),

finding L−1 by e.g. cholesky factorization of H. L is thus only determined up to

a matrix R where RT R = I , which coincides with the gauge freedom of rotating

and/or mirroring our solution. The 4r/6s case can be solved in the same way by

first transposing the measurement matrix.

The case of 5 receivers and 5 transmitters is interesting. It is an overde-

termined case in the sense that there are 25 measurements and 24 degrees of

freedom in the solutions set. There is thus one constraint that has to be satis-

fied, i.e. the constraint that the 4 × 4 matrix D̃ has determinant zero. However

for all such data, the problem of determining H and b is minimal. There are

m + n − 1 = 9 equations (1 of Type A, 4 of Type B and 4 of Type C) and 9

unknowns. We follow a similar solution scheme as for the (6r/4s) case. By linear

elimination using the 4 linear constraints of type C, we can express H and b in

terms of 9 − 4 = 5 unknowns x = (x1, x2, x3, x4, x5). The remaining five con-

straints (1 of Type A, and 4 of Type B) give a polynomial system with 42 solutions

after a saturation procedure similar to the previous case. Again we use the action

matrix approach to produce a numerically stable and efficient solution scheme.

2.3 Overdetermined cases

For overdetermined cases (m ≥ 4, n ≥ 4,m + n > 10), the solver can be based

on solving a minimal case, extending with trilateration, followed by non-linear

optimization to obtain the maximum likelihood estimate. An alternative is to

find the best rank 3 approximation of D̃, solution of H and b using algebraic

methods, and then again followed by non-linear optimization. An advantage

with the former approach is that it can more easily be modified using RANSAC

to remove potential outliers in the measurement matrix D.

2.4 Higher and lower dimensional cases

The ideas presented here can relatively easy to generalized to other dimensions.

The one-dimensional case is trivial. Only one measurement is needed to solve
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for the problem. In two dimensions the same approach can be used to show that

one needs m ≥ 3, n ≥ 3,m + n ≥ 6, which indicate only one minimal problem

3s/3r. This was in fact solved with a different approach by Stewenius and Nister

in [14] . The problem has in general 4 solutions. For dimension 4, the analysis

gives m ≥ 5, n ≥ 5,m+n ≥ 15, which gives minimal cases 5s/10r, 6s/9r, 7s/8r,

3 Experiments

We test our proposed algorithms on both synthetic and real data. The recovered

sensor positions are up to unknown rotation and translation. We first determ-

ine the rotation and translation with least square fitting over the ground truth

positions and then compute the errors. For synthetic data, we simulate the pos-

itions of receivers and transmitters as 3D points with independent Gaussian dis-

tribution of zero mean and identity covariance matrix. The 6r/4s solver always

produce 38 solutions although some of these could be complex. Similarily the

5r/5s always produce 42 solutions. There are two steps in the algorithm where

the solution could become non-real. First a solution to the system of polynomial

equation could be non-real and secondly even if this solution is real the matrix

H although real, could be indefinite in which case the Cholesky factorization be-

comes non-real. In Fig.1 (Left) is shown a histogram over 5000 simulations. As

can be seen in the figure, for both solvers, there are usually between 14 and 24

real solutions to the system of polynomial equations, whereas only a few (most

often less than 6) of these produce positive definite matrices H), so that there

is typically less than 6 real and thus valid solutions. This number is however

data dependent. For noise-free synthetic data, we can see in Fig.1 (Right) that

both the 6r/4s solver and 5r/5s solver are numerically stable. We also tested

both solvers on data under different noise level and we observe that the solvers

gives fairly good solutions under reasonable level of noise (Fig.2, left, solid lines).

Using the solutions from the minimal solvers as initial solutions, we also apply

nonlinear optimization step where we minimize
∑

ij

(
dij − (||ri − sj||2)

)2
(Fig.2,

dash lines). We also test the solvers on over-determined cases with fixed noise

level, m = 10 and varying n (Fig.2, right). We can see that as n increases, both

solvers gives better initial solutions for the reconstruction. The current imple-

mentation for both solvers run at around 1 second on a Macbook Air (1.8 GHz

Intel Core i5 and 8 GB memory). The solvers are available for download at

http://www2.maths.lth.se/vision/downloads/.
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Figure 1: Minimal solver performance on 5000 noise-free random synthetic TOA

problems. Left: Distribution of the number of real and valid solutions each run

produces, showing the relative frequency of number of real and valid solutions

among the 38 (or 42) solutions. Right: the error distribution (RMSE) of recon-

structed positions of microphone and sound sources.

For real experiments, we have used a publicly available dataset [16] for com-

parison as well as our own TOA measurements. In the dataset [16], the distances

between the 8 microphones and 21 sounds are estimated based on the time-of-

arrival measurements. The first microphone is assumed to be at the same location

as first sound. For our algorithm, no such assumption is needed. To verify this,

we simply remove the distance measurements corresponding to the first micro-

phone and first sound, which gives us a 7 × 20 matrix. For this reduced set of

measurements, the root mean square errors (RMSE) of our reconstructed posi-

tions of microphones and sound sources after non-linear iterative optimization

are 0.0083m and 0.0108m, respectively. This is similar to the accuracy [16] that

achieves (0.0091m for microphones and 0.0111m for sound sources) with the ad-

ditional assumption. For the full set of data (8 microphones and 21 sounds), our

solvers also gives similar errors as in [16]. Another set of real data was obtained

using seven T-bone MM-1 microphones and five Roxcore portable speakers, con-

nected to a Fast Track Ultra 8R sound card in an indoor environment, with speak-

ers and microphones placed in an approximate 1.5×1.5×1.5 m3 volume (Fig.3,

Left). TOA measurements were obtained by heuristically matching sounds from

different speakers to sound flanks recorded from different microphones. For this

set of measurement, we also reconstructed the scene using computer vision based
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Figure 2: Performance on noisy synthetic data - average errors (RMSE) of re-

constructed positions of receivers and transmitters Left: minimal solvers (4r/6s

and 5r/5s) under varying noise levels. Right: 10 receivers and varying number of

transmitters under Gaussian noise with standard deviation 2 × 10−3.

algorithms as ground truth. The reconstruction (Fig.3, Right) when compared

to the vision-based reconstruction has RMSE 0.0088m and 0.0131m for micro-

phones and speakers respectively.

4 Relation to Prior Work

The most related works to ours are [16, 17], where the same factorization step is

described. However, instead of solving the original problem, they solve a problem

with an additional assumption that one receiver and one transmitter have identical

positions. This work does not need this constraint, and thus can solve a wider

set of problems. Close to our setting are also [14], where the minimal TOA

calibration problem in 2D is solved, using three receivers and transmitters each,

[15] which solves as a by-product the TOA calibration problem in 3D with a non-

minimal configuration of 10 receivers and 4 transmitters and [19] which solves

the TOA calibration problem assuming a far field approximation with a minimal

configuration of 3 receivers and 6 transmitters. Thus no previous work has solved

the minimal cases for general TOA-based self-calibration in 3D.
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Figure 3: Real microphone and speaker calibration setup, Left: the setup of mi-

crophones and speakers in an office, Right: the reconstructed sensor positions

using TOA measurements (red) aligned with the positions estimated based on

computer vision (blue).

5 Conclusions

In this paper, we completely characterize the TOA base self-calibration problem in

three dimensions. It is shown that such problems are well-defined for m receivers

and n transmitters if and only if m ≥ 4, m ≥ 4, m+n ≥ 10. We present practical

and non-iterative solution algorithms for such problems. In particular, we present

algorithms for solving the (m = 6, n = 4) case (38 solutions) and the (m =

5, n = 5) (42 solutions). For overdetermined cases we present two alternative

approaches. The solution technique is general and can in principle be applied

to higher dimensional problems. In the paper we show the applicability of the

techniques to both simulated and real data. In the future it would be interesting

to study how such algorithms could be used to further analyze problems within

radio, Wi-Fi and ultrasound.

Ackgnowledgements

The research leading to these results has received funding from the strategic re-

search projects ELLIIT and eSSENCE, and Swedish Foundation for Strategic

Research projects ENGROSS and VINST(grant no. RIT08-0043).

148



References

[1] G. Young and A.S. Householder, “Discussion of a set of points in terms of

their mutual distances,” Psychometrika, vol. 3, no. 1, pp. 19–22, 1941.

[2] Leonard Asimow and Ben Roth, “The rigidity of graphs, ii,” Journal of
Mathematical Analysis and Applications, vol. 68, no. 1, pp. 171–190, 1979.

[3] T. Eren, OK Goldenberg, W. Whiteley, Y.R. Yang, A.S. Morse, BDO An-

derson, and PN Belhumeur, “Rigidity, computation, and randomization in

network localization,” in INFOCOM 2004. Twenty-third AnnualJoint Con-
ference of the IEEE Computer and Communications Societies. IEEE, 2004,

vol. 4, pp. 2673–2684.

[4] E.D. Bolker and B. Roth, “When is a bipartite graph a rigid framework,”

Pacific J. Math, vol. 90, no. 1, pp. 27–44, 1980.

[5] S. T. Birchfield and A.. Subramanya, “Microphone array position calibra-

tion by basis-point classical multidimensional scaling,” IEEE transactions on
Speech and Audio Processing, vol. 13, no. 5, 2005.

[6] D. Niculescu and B. Nath, “Ad hoc positioning system (aps),” in

GLOBECOM-01, 2001.

[7] E. Elnahrawy, Xl. Li, and R. Martin, “The limits of localization using signal

strength,” in SECON-04, 2004.

[8] V. C. Raykar, I. V. Kozintsev, and R. Lienhart, “Position calibration of

microphones and loudspeakers in distributed computing platforms,” IEEE
transactions on Speech and Audio Processing, vol. 13, no. 1, 2005.

[9] J. Sallai, G. Balogh, M. Maroti, and A. Ledeczi, “Acoustic ranging in

resource-constrained sensor networks,” in eCOTS-04, 2004.

[10] J. C. Chen, R. E. Hudson, and K. Yao, “Maximum likelihood source local-

ization and unknown sensor location estimation for wideband signals in the

near-field,” IEEE transactions on Signal Processing, vol. 50, 2002.

149



Paper E

[11] N.B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller, “Anchor-free

distributed localization in sensor networks,” in Proceedings of the 1st inter-
national conference on Embedded networked sensor systems. ACM, 2003, pp.

340–341.

[12] R. Biswas and S. Thrun, “A passive approach to sensor network localiza-

tion,” in IROS 2004, 2004.

[13] P. Biswas, T.C. Lian, T.C. Wang, and Y. Ye, “Semidefinite programming

based algorithms for sensor network localization,” ACM Transactions on
Sensor Networks (TOSN), vol. 2, no. 2, pp. 188–220, 2006.
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Abstract

Indoor positioning for smartphone users has received a lot of attention in recent

years. While many solutions have been developed, most rely on a need for pre-

deployment of infrastructure or collecting ground truth data to train on. In this

paper we see what can be done using existing WiFi-infrastructure and Received

Signal Strength from these to smartphones, not using any calibration of the signal

environment or manually set WiFi positions. We expand on previous work by

using a multi-floor model taking into account dampening between floors, and

optimize a target function consisting of least squares residuals, to find positions

for WiFis and the smartphone measurement locations simultaneously. Pressure

sensors are used to do floor estimation. The method was tested inside two multi-

story buildings, with 5 stories each, with median errors of smartphone positions

of 12.5m and 16.4m and with WiFi median position errors of 7.16m and 19.4m

respectively. Correct floor detection was achieved for 96% of all smartphone

positions.
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1 Introduction

Positioning and navigation has throughout the ages been a key instinct for sur-

vival in the natural world. Today, the need for navigation is still an integral part

of modern life, present everywhere from finding your keys, to first responders be-

ing able to locate where an emergency call was made from with accuracy. The

solution of how to do localization and/or mapping depends on algorithms, hard-

ware, environment and the desired precision. A general solution or framework

seems to be far away. Outdoors, the Global Navigation Satellite System (GNSS)

works well for many applications. Where GNSS signals are compromised, like in

close proximity to many tall buildings or indoors, the GNSS generally does not

perform well or at all. To alleviate this problem, indoor positioning for users of

smart devices such as computers, tablets or phones has attracted a lot of attention

in the past few years.

We present a method for simultaneously mapping the signal environment

and positioning one or several users from offline data, in multi-story environ-

ments. Data used are Received Signal Strength Index (RSSI) from nearby WiFi

and Bluetooth devices, a now ubiquitous part of many indoor environments,

where GNSS is most commonly not available, or available with limited accur-

acy. For floor detection, data from pressure sensors is used. The users do not

need to provide additional information where they are, but only walk around in

the considered environment. No prior calibration of the access points positions

or parameters is needed. This approach lends itself well for crowdsourcing fu-

ture data. When the simultaneous localization of the smart devices and mapping

of the signal environment has been done by the methods we present, real-time

localization using a trilateration-like approach can readily be done, cf. [1, 2].

Previous approaches for RSSI localization most commonly use a supervised

learning approach, where a setup phase of users manually providing location data

[2–5], manually installing beacons with known parameters and locations, using

floor maps or dead reckoning, cf. [6].

Some previous papers use an unsupervised approach for 2D RSSI localizatin,

i.e. finding how a user has moved without prior calibration and mapping the

radio environment, but they rely on inertial measurement units such as acceler-

ometer, gyro and magnetometer as well, and/or a annotated floor plan [7–11].

This generally puts heavy constraints on the user holding their phones in a pre-

determined controlled position, and that sampling frequency should be low and

consistent. Another approach for self-calibration is [12], but needs a fair amount
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of the access points to be manually calibrated. Other require specialized hardware

deployed, [13, 14].

An approach similar to ours is [15], but whereas they use hand-tailored, sim-

ulated, GPS signals to fixate the signal environment map, we use only the sparse

GPS signals that can be found in or just outside the location. Furthermore, they

do not consider the multi-story scenario. As we have been unable to obtain the

data sets used in [15], we furthermore provide several data sets with real sparse

GPS signals for future benchmarking 1. We also present models and algorithms

for positioning in multi-floor environments, a highly relevant topic for indoor

localization considering the 2015 U.S. Federal Communications Commission

rules for mobile carriers, [16], which states that an accuracy of 50m horizont-

ally and 3m vertically in 67% of the cases is needed. As outlined in our poster

abstract, [17], floor detection of smartphone measurement positions using only

the RSSI and sparse GPS values seems to need a supervised or semi-supervised

approach. To alleviate this, we use atmospheric pressure sensors to do automatic

floor detection in this paper. We aim to in the future combine the approaches of

using RSSI and pressure sensors to be able to use crowd sourced data both with

and without pressure sensors. In contrast to previous methods, cf. [18], we do

not know what floor the WiFis are located or have fingerprints gathered in a cal-

ibration step, when using pressure sensors to do automatic floor detection. We do

however for now rely on the user to specify the floor at the beginning of a session.

2 Data

Data is collected using Nexus 6 phones, see Fig. 1, using the Combain CPS App

available on Google Play, [19]. The data collected consists of individual scans.

Each scan has one or more Received Signal Strength Index (RSSI) measurements

to the access points in the vicinity. Access points are most commonly WiFis but

can also be Bluetooth beacons. A scan also contains an associated time, a pressure

value from the barometer and possibly also a GPS location along with an accuracy

for the GPS. In the app the user can also specify on which floor he is and if he is

inside or not, to be used as ground truth. There is also a possibility to add ground

truth positions via a map for measuring the performance of algorithms.

Before exporting the data to the algorithm, access points scanned less than

5 times and scans with less than 3 WiFis are filtered out, to alleviate scan and

1Data is available at https://github.com/SimonEBurgess/WiFi-SLAM
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Figure 1: Two Nexus 6 mobile phones used to collect the data. The data used to

do simultaneous localization of the smartphone and mapping of the radio envir-

onment consists of scans of the RSSI values and pressure readings

access point positions being identifiable. Any access points that can be identified

as being non-stationary are removed. This could be e.g. smart devices set to work

as access points.

Combain also has an algorithm using a crowdsourced database with positions

for access points and scan positions, with a median accuracy of 20m-40m, used

for initialization of positions.

3 Methods

Our goal is to build an objective function F to minimize, where the arguments

to the objective function include scan positions, access point positions and access

point parameters, thus simultaneously locating scan positions, access point pos-

itions and parameters. This section is comprised out of three parts; the model

used for the signal propagation, the description of the target function to optimize

over, and how floor detection is made.
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3.1 The model

We model the obtained RSSI measurements, p∗ij, between access point i and scan

j, as following the path loss model, with the additional term of adding a linear

dampening depending on the number of floors the signal passed through,

Pij = Ci − 10γi log10(dij) + nijCfloor + Xij. (1)

Here Pij is the model for the obtained RSSI value in dBm, Ci is the measured

power at one meter from an access point, dij is the distance in meters between

access point i and scan j, γi is the path loss exponent, which is 2 for free space

power attenuation, > 2 for power dampening over distances, and < 2 if the signal

is enhanced by the environment, nij is the number of floors separating access

point i and scan j, Cfloor is the floor dampening constant for passing through

one floor, and Xij is assumed to be i.i.d. Gaussian noise with zero mean. Let

sj = [sx,jsy,jsz,j]T be the 3D position of scan j, i.e. the position at a certain time

of a moving receiver device where a scan of the access points is made. Let ti =

[tx,ity,itz,i]T be the 3D position of access point i. The distance dij is then

dij =

√

(sj − ti)T (sj − ti). (2)

3.2 An optimization scheme

Below the different terms in the target function are described, to finally present

the full optimization problem.

From the power model we form the sum of squared residuals,

Fpow =

∑

i,j

(

Pij − p∗ij

)2
. (3)

When small, the modeled and measured RSSI values will be close.

We use a set of GPS measurements in the x-y plane, gj, for a subset JGPS of

the receiver indices j. GPS measurements are most commonly obtained outside

and at the entrance of the buildings, and close to windows. The accuracy in

meters for the horizontal plane, λj, is used. A GPS lock in the vertical direction is

commonly also obtained, but this has been found too unreliable to use for vertical

positioning. The term in the target function pertaining to the GPS measurements
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is

FGPS =

∑

j∈JGPS

1

λj

(
gj −

[
sx,jsy,j

])T (
gj −

[
sx,jsy,j

])
. (4)

This term is what locks in the map. Without any absolute GPS-location locks,

scan and access point positions could be translated, rotated and mirrored without

affecting the term using the RSSI measurements in (3).

From the data, the time stamps of each scan is also available, as well as the

ID of the receiver. It is reasonable to assume that receiver positions pertaining

to the same device, close in time, should be close spatially. To that purpose, the

next term in the target function approximately sums the squared acceleration of

every device that has made scans close in time. Let j = {j1 j2 j3} be a set of three

scan indices that comes from the same receiver device, and has the three indices

consecutively in time, and less than ten seconds apart. Let Jacc be the set of all

such triplets j. The next term Facc is

Facc =

∑

j∈Jacc

(sj1 − 2sj2 + sj3)T (sj1 − 2sj2 + sj3). (5)

Due to the crude model of the signal environment, and that the GPS locks

in the vertical directions are unreliable, the full 3D problem of optimizing over

all position coordinates [sx,jsy,jsz,j]T and [tx,jty,jtz,j]T continuously will not yield

accurate results. Thus, we limit the vertical position components sz,j and tz,j to

be on one of several discrete floors. When a user changes floors in a building,

the user commonly do this at certain static locations. It is unlikely that there are

several staircases or elevators close to each other. Thus, another term is added,

FΔ, that should be small if floor changes are made close to each other. Let j1, j2
be a indices of a pair of consecutive scans from the same user that have different

z-coordinates, and JΔ be the set containing all the pairs of such scan indices. The

term FΔ is then constructed as

FΔ =

∑

j1,j2∈JΔ

f (
(
sxy,j1 − sxy,j2

)T (
sxy,j1 − sxy,j2

)
), (6)

where sxy,j =
[
sx,jsy,j

]
, f (·) is a identity function if

[
sx,j1sy,j1

]
are within 15m of

[
sx,j2 sy,j2

]
, and constant 0 otherwise. Thus, a small Ffloor will have scan positions
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from users changing floors close to each other in the x-y-plane, but not affected if

the floor change is far away from other floor changes.

Our full target function F using (3), (4), (5), and (6) is constructed as

F = Fpow + λ1FGPS + λ2Facc + λ3FΔ, (7)

where λ1, λ2, λ3 are scaling parameters > 0 that determines how important each

part is in the target function.

The target function F is to be optimized over the scan positions [sx,jsy,jsz,j], ac-

cess point positions [tx,ity,itz,i], access point parameters Ci,γi, and floor dampen-

ing Cfloor . Of these, the z-axis coordinates sz,j, tz,i are discrete heights for each

floor, and the rest are in R. Thus, we have a mix of continuous and discrete vari-

ables. Holding the floor positions constant, we use a Levenberg-Marquardt like

algorithm, [20], to find a local optimum of (7).

It remains to find good initializations. For x- and y- positons, the Combain

database is used to get rough coordinates in the vicinity of the building. The

parameters for the access points are all initialized as Ci = −37dB and γi = 2.5.

Floor dampening is initialized as Cfloor = −15dBm.

To optimize over all permutations of discrete floor positions for scans and

access points is not feasible. Thus, an estimate of floor levels needs to be done. In

[17] a clustering approach looking at similarities between the RSSI measurements

in each scan is used, but is found to be insufficient as the only means to find floor

level.

3.3 Floor estimation

We here describe how the smartphone pressure sensor is used to estimate the floor

each scan position is on. Each device used in a data set generally produce scans

close to each other in time, see Section 2. Here we look at the pressure from these

consecutive scans to determine floor changes.

Air pressure is commonly used in conjunction with meteorological data to de-

termine height in e.g. altimeters in airplanes. As access to real time meteorological

data is not feasible in the current use case, air pressure can not be used to explicitly

determine exact height, and the precision of such altimeter data is generally not

exact enough for the problem of determining floor level. It is possible, however,

to study the change in air pressure to try and determine when a floor change takes

place.
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Figure 2: The measured pressure compared to the ground truth floor for consec-

utive scans for one device.

In Fig. 2, the air pressure over time is compared to when the user has ascended

or descended one or several floors. It is clear that fast pressure changes are often

the result of a floor change. When the user ascends a stair the pressure drops and

vice versa. The signal is quite noisy, and may contain pressure changes like the

one around sample index 120 in Fig. 2, which could be the result of winds, the

user opening and closing a door in a confined space or some other source. Thus

we need a method to determine which changes in pressure actually should signal

a floor change.

The pressure signal is convolved with the derivative of a Gaussian kernel to

detect strong changes in pressure. See Fig. 3. Each such strong change is then

considered to be a possible floor change. To compensate for drift due to weather

changes, a linear trend removal is done between possible floor changes where

sufficient time has passed. See Fig. 4. As the floor spacing is unknown, the

signal is not discretized yet, instead an early estimate of the change in altitude is

calculated by comparing the median pressures of neighbouring intervals.

For a naive approach of which height the user has been on at each sample,

consecutive height changes are added. See Fig. 5. When these results are com-

pared to the ground truth in Fig. 2 b), it is clear that some drift has occurred.

When the user first arrives at floor 5, this is estimated to be very close to the

height that was on the 4th floor at the beginning of the session.

The spacing between each floor, h, is assumed to be uniform in each separate

162



3. Methods

sample index

0 100 200 300 400 500 600

re
s
p
o
n
s
e
 s

tr
e
n
g
th

-1

-0.5

0

0.5

1

1.5

2

 -7.7 m

 -4.1 m -4.7 m

  6.3 m

 -2.7 m

  6.3 m  7.7 m

-13.8 m

    3 m   2.9 m
    4 m   3.4 m

 -3.6 m

Figure 3: Result of pressure signal convolved with the derivative of a Gaussian

kernel. A threshold was added after studying several scenarios. Any pressure

change stronger than that threshold is hypothesized to be a floor change. Note

that the delta height was not obtained from the response strength but is included

for clarity.

building. It is determined from the difference in heights, di by solving

h∗ = argmin
h∈[2.5 5]

∑

|di − round (di/h) · h| . (8)

Once the floor spacing has been estimated, every difference in height is dis-

cretized into a number of floor changes. Note that we assume here that the user

in the beginning of the session enters the starting floor number. We expect to

be able to do this initialization automatically in the future; combining the GPS

accuracy and positions one should be able to determine when in the data set a

user enters a building.

In Fig. 6 the resulting floor estimations are visualized along with ground

truth. There is a faulty detection at sample indices 120-130. The user went
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Figure 4: A pressure signal with a clear trend due to weather changes (blue). The

trend is removed with a linear regression for separate sub intervals, detected using

the hypothesized floor changes.

outside for some time which led to noise in the signal. The noise might have

come from the doors opening and closing, wind outside, uneven ground or other

sources. Whatever the cause in this case, we have found that outdoor pressure

readings generally contain a lot more noise than indoor readings. It is therefore

desirable to detect when a user travels outside and simply disregard all pressure

changes that take place while outdoors. To determine when the user is outdoors

we studied the current accuracy of the GPS signal to the phone that was used to

perform the readings. The GPS accuracy has a strong connection to the signal

strength from the GPS satellites, if the receiver has LOS or a multipath compon-

ent to the GPS satellites, the number of satellites observed, and the dilution of

precision. The GPS accuracy should thus be improved when outdoors.
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Figure 5: A first estimate of heights of the scan positions using pressure sensor

data

The GPS accuracy also contains noise and we therefore smooth the signal

with a Gaussian kernel before comparing it to a threshold that was empirically

selected. When the filtered signal is below the threshold we determine that the

user has been outdoors. This method will signal some false positives if the user

is indoors, but in a place where GPS signals can permeate efficiently, e.g. in the

vicinity of large windows. One way to deal with this issue is to check the interval

length and GPS positions of the hypothesized outdoor part and dismissing it if

it is not long enough in time or distance. Another way is to study the interval

between two height changes and perform a majority vote among scan indices to

decide whether the interval is indoors or outdoors. We use a combination of these

methods to get a final result, see Fig. 7.

When the floors of the scan positions has been initiated, the floors of access

points are then set to the same as the floor of the scan with the strongest RSSI

value to it.

The floor detection method above suffers from the issue of an erroneous de-

tection in the beginning sometimes will propagate to the scans that come after.

E.g. an erroneous detection of a floor increase in the beginning sometimes makes
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Figure 6: The calculated floors (blue) compared to the ground truth (red) for each

scan position for consecutive scans

all the scans afterwards to be detected as one floor higher than they are. To alle-

viate this, a final step is proposed where the optimization in Section 3.2 and floor

detection are iterated. This floor estimation is described below.

1. Use pressure sensor where available to get a floor estimate using the meth-

ods above in this section.

2. Optimize over all positions and access point paramaters using the estimated

floors and the methods in Section 3.2.

3. For each floor, check for 5x5m2 tiles where scans are similar to each other

inside the tiles. These tiles will become representative of that floor.

4. For each interval, each scan in that interval will compare how similar it is

to each tile. If similar enough, it will cast a vote for that tile, and by that

cast a vote to which floor it belongs to.

5. Majority vote determines which floor each interval belongs to. This gives

what floor each scan belongs to.

6. Floors of access points are set to the same as the floor of the scan with the

strongest RSSI value to it.

166



4. Results

0 100 200 300 400 500 600
0

50

100

150

GPSacc

Filtered GPSacc (Gaussian length:20)

Limit

outdoorDetect*100

Figure 7: For each scan index, the high level green curve shows the scan indices

detected as outdoors, using the GPS accuracy (red) and the smoothed GPS accur-

acy (blue). The ground truth outdoors are located between scan index 110 and

150.

Steps 2-6 are iterated until convergence, which is for our two data sets once

and twice. The final floor estimates of scans and access points is then used together

with the optimization in Section 3.2 to produce the final results. Although we do

not have such data here, scans that do not belong to any pressure interval, or do

not have pressure data, can also be set to a floor by this method, as long as the

data has some partial sequential pressure readings.

4 Results

The method has been tested in two buildings on the Lund University Campus.

The buildings are called Centre for Mathematical Sciences (M.C) and E-house.

M.C. is an approximately 130x35m building mixed with mainly lecture halls

in the lower floors and office space in the upper floors with the office spaces on

the sides of a long corridor. The data was collected in five separate sessions and

contains 3070 scans in total. 606 different access points were seen by the scans,

with 107 of them were manually found inside. However, more are expected to be
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inside. The 107 found are used as ground truth positions for access points.

E-house is an approximately 150x100m building mixed with office, class

rooms and laboratories, consisting of five floors plus one cellar floor. The data

was collected in four separate sessions and contains 2770 scans in total. 793 dif-

ferent access points were seen by the scans, with 21 of them were manually found

inside. However, more are expected to be inside. The 21 found are used as ground

truth positions for access points.

A Nexus 6 smartphone was used as a receiver, running the Combain CPS

app, generating a scan usually once every 3-10 seconds. Ground truth was added

manually by the users in the app while performing the scans, at about 0.5-1%

of the scan points by selecting the current position on a satellite map. It should

be noted that this method does not produce a perfect ground truth due to both

the difficulty of selecting a perfect position on a crude map as well as the possible

errors of the map itself. We estimate that the user precision is a couple of meters.

The users entered ground truth floor at every floor change to allow us to compare

it to the floor estimations. Different users performed the different sessions.

Table 1: Floor Estimation Results

Building Correct floor Ratio

M.C. 2913/3070 94.9%

E-house 2706/2770 97.7%

It should be noted that when a user enters ground truth of floor changes in

the app, some users may enter the change while entering the staircase, some users

in the middle and some users when exiting. Some users may even forget to make

the change until they have taken a few steps away from the stairs. This should

be taken into consideration when judging the scores of Table 1. A more fair view

of the results can be achieved by studying a plot comparing ground truth and

estimates of floors as depicted in Fig. 8 and 9b.

By studying Fig. 8 and 9a it can be determined that the floor estimations

work very well for M.C. but performs a lot worse in E-house. The poor results of

E-house are due to a false positive floor change detection early in the first session.

That error carries over to all subsequent scans of that session, until there is a new

session where the user once again enters ground truth floor as initialization value.

By running Step 2-6 in Section 3.3 two times, the floor detection converged to

the results in Table 1, visualized in Fig. 9b.
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Figure 8: Results for floor detection for all sessions in M.C. Ground truth floors

for the scans is in red. Estimated floor is in blue. Beginnings of new sessions are

marked by a red star in the plot.

Table 2: The horizontal distance error of smartphone and access point positions

WiFi error Scan errors

Building Mean Median Mean Median

M.C. 11.2 m 7.16 m 13.0m 12.5 m

E-house 21.9 m 19.4 m 21.5 m 16.4 m

For the final results the known positions of each access point has been com-

pared to its estimate and the available ground truth scan positions have been com-

pared to the estimated scan positions. In order to remove any positive bias, ground

truth scan positions with GPS accuracy < 10m is removed. This mainly coincides

with removing any comparison to ground truth positions gathered by the user

while moving outside. The parameters in (7) are set to λ1 = 10, λ2 = 2, λ3 = 10.

These are chosen heuristiaclly, manually trained on a different data set for 2D used

in our technical report, [17].

In Table 2, the mean and median error in the horizontal direction for scan

and access point positions can be seen.
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(a) Initial floor detection results
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(b) Final floor detection results

Figure 9: Floor detection results in M.C. Ground truth floors for the scans is in

red. Estimated floor is in blue. Beginnings of new sessions are marked by a red

star in the plot. a) shows initial results for floor detection, before running Step

2-6 in Section 3.3 b) shows final results for floor detection.

In Fig. 10 and 11 the scans from all sessions are displayed in 3D plots. Note

that it is almost possible to visually determine the quality of the estimations by

comparing the tracks in the building. In M.C. you can easily determine where

hallways are on the top three floors while in E-house, which did not have as

high quality results, does not have nearly as neatly defined paths. We hypothesize

that, when access to more crowdsourced data, the quality will improve due to the

amount of data that will be produced. This assumption is based on our observa-

tions of the effects of increasing the amount of data to perform the calculations

on. This can be seen if comparing Fig. 10 and 12 where the former has data from

five sessions and the latter only from a subset of that data. In Fig. 12 the tracks

are even outdoors on floors 2 to 5 more often than not while in Fig. 10 they

are much more confined inside the walls of the building. We hypothesize that

more data in E-House will also increase performance, as the bulding has a more

elaborate floor plan than M.C. Also note that in no way has the building outline

been used in the calculations, although this is a possibility for the future. For this

smaller data set in M.C. we have horizontal errors as follows: Mean WiFi error of

17.6m, median WiFi error 15.5m, mean scan error of 15.4m, and median scan

error of 13.4m. Compared to the results for M.C. in Table 2, where the full data

set is used, it is notably worse.
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Figure 10: 3D plot of all calculated smartphone positions in and around M.C.

Smartphone positions, i.e. scan positions, are blue dots, with the lines connecting

scans that are close in time to each other to show trajectories of users moving. The

building outline is only added for visualization purposes, and has not been used

in the method. Note how one can spot where the stairs are located in between

floors.

5 Conclusions

We have presented a method for simultaneously mapping the radio environment

and positioning several smartphones in multi-story buildings. There is no com-

munication between the phones, and the localization is done offline using the data

collected from all users, simultaneously optimizing model parameters of the scan

positions, WiFi positions, and WiFi parameters. No prior calibration of the radio

environment, the floor plan, or added infrastructure has been used. Only signal

strength from preexisting WiFi and Bluetooth beacons in the buildings have been

used, together with pressure sensors in the smartphones.
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Figure 11: 3D plot of all calculated smartphone positions in and around E-house.

Scan positions, i.e. smartphone positions, are blue dots, with the lines connecting

scans that are close in time to each other to show trajectories of users moving. The

building outline is only added for visualization purposes, and has not been used

in the method. Note that the cellar movement has been detected.

Comparing with our previous poster abstract, [17], we determine the floor

level by using the pressure sensors instead of manually entering the floor level.

The target function for the optimization also include terms for clustering floor

changes, i.e. staircase and elevator positions, and dealing with virtual access points

having the same physical access points. The mean error in the x-y-plane of the

smartphones has increased from 15.2m in our technical report to 21.9m in the

E-House, whereas in the M.C. building the mean error x-y-plane has dropped

from 13.5 in our technical report to 11.2m. The difference in performance is

most likely due to different data sets. The previous data sets only had three floors

for both respective buildings, whereas we here present data sets with five floors.

New data sets have been used as pressure data is a crucial part of our algorithms

to automatically detect floor level.

In a similar approach in [15], a median error of 7m for the smartphone is

calculated for a large building. They do however only consider single-story build-

ings, and use manually added GPS signals inside the building. The floor detection
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Figure 12: 3D plot of only using a smaller subset of the data in and around M.C.

Scan positions, i.e. smartphone positions, are blue dots, with the lines connecting

scans that are close in time to each other to show trajectories of users moving. The

building outline is only added for visualization purposes, and has not been used

in the method. Note the deteriorating paths, compared to Fig. 10 where all data

is used.

has an overall accuracy of 96% compared with the ground truth gathered by users,

compared to the FCC rules for mobile carriers, [16], which states that an accuracy

of 3m vertically in 67% of the cases is needed.

Future work includes merging data gathered from phone both with pressure

sensors and without, and reliably automatically detecting ground floor using GPS

positioning. Furthermore, a genetic algorithm for the mixed continuous and dis-

crete optimization problem would be of great use. It could help minimize the risk

of local optima, alleviate the dependency on initialization and to evaluate how

effective the target function is.
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