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Prognostic stromal gene signatures in breast
cancer
Sofia Winslow1, Karin Leandersson2, Anders Edsjö3,4† and Christer Larsson1*†
Abstract

Introduction: Global gene expression analysis of tumor samples has been a valuable tool to subgroup tumors and
has the potential to be of prognostic and predictive value. However, tumors are heterogeneous, and homogenates
will consist of several different cell types. This study was designed to obtain more refined expression data representing
different compartments of the tumor.

Methods: Formalin-fixed paraffin-embedded stroma-rich triple-negative breast cancer tumors were laser-microdissected,
and RNA was extracted and processed to enable microarray hybridization. Genes enriched in stroma were identified
and used to generate signatures by identifying correlating genes in publicly available data sets. The prognostic
implications of the signature were analyzed.

Results: Comparison of the expression pattern from stromal and cancer cell compartments from three tumors revealed
a number of genes that were essentially specifically expressed in the respective compartments. The stroma-specific
genes indicated contribution from fibroblasts, endothelial cells, and immune/inflammatory cells. The gene set was
expanded by identifying correlating mRNAs using breast cancer mRNA expression data from The Cancer Genome Atlas.
By iterative analyses, 16 gene signatures of highly correlating genes were characterized. Based on the gene composition,
they seem to represent different cell types. In multivariate Cox proportional hazard models, two immune/inflammatory
signatures had opposing hazard ratios for breast cancer recurrence also after adjusting for clinicopathological variables
and molecular subgroup. The signature associated with poor prognosis consisted mainly of C1Q genes and the one
associated with good prognosis contained HLA genes. This association with prognosis was seen for other cancers as
well as in other breast cancer data sets.

Conclusions: Our data indicate that the molecular composition of the immune response in a tumor may be a
powerful predictor of cancer prognosis.
Introduction
Gene expression profiling has enabled novel classification
of breast cancer into different subgroups. At least five mo-
lecular subgroups (basal-like, normal-like, HER2-positive,
and luminal A and luminal B) have been identified [1,2]
and additional subclasses continue to be suggested [3-7].
Gene expression analyses of tumor samples are gener-

ally performed on whole tumor homogenates and
thereby represent a pattern that reflects the expression
from all cell types present in the tumor. The tumor
microenvironment, comprising a large variety of cells,
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such as fibroblasts, immune cells, and endothelial cells,
can constitute a significant part of the tumor and sub-
stantially contribute to observed expression patterns.
Cells in the microenvironment can influence cancer pro-
gression [8-11] and have been shown to predict tumor
outcome and therapy response in breast carcinomas
[12-14]. One way to obtain cancer cell and stromal
compartment-specific expression patterns is to isolate the
compartments by laser capture microdissection (LCM).
For routine histological diagnosis of surgically re-

moved tumors, formalin-fixed paraffin-embedded (FFPE)
tissue is normally used and thus a wide range of FFPE
tumors are available for gene expression analyses. How-
ever, fixation and embedding have a detrimental effect
on RNA quality, resulting in fragmentation and chemical
modifications and making it of less use for expression
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ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:christer.larsson@med.lu.se
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Winslow et al. Breast Cancer Research  (2015) 17:23 Page 2 of 13
analyses [15]. In this study, we have established a pro-
cedure for global-gene expression analysis using LCM
on FFPE triple-negative breast cancers. Isolation of stro-
mal and cancer cell compartments of the tumor with
subsequent analysis of the global mRNA expression re-
vealed compartment-specific gene expression. Expanding
the stroma-specific gene set by identifying genes with
correlating expression levels using tumor data from The
Cancer Genome Atlas (TCGA) database gave rise to 16
gene signatures of stromal genes with highly correlating
gene expression. Two signatures, consisting of genes re-
lated to an immune response, are of particular interest
since they are prognostic in multivariate Cox propor-
tional hazard models in several breast cancer data sets
and data sets of other cancers.

Methods
Tumor material
Tumor specimens, from subjects that had given in-
formed consent, were obtained from Skåne University
Hospital, Malmö. Ethical permission has been obtained
from the local Research Ethics Committee in Lund (Dnr
2009/658). Information about the tumors was obtained
from the pathology reports. All tumors were negative for
estrogen and progesterone receptors and had no ERBB2
(HER2) amplification. Tumors with sufficient amount of
cells in the stromal compartment to allow conclusive
microarray analyses were selected. Two of the tumors
used for microarray analysis were high-grade, grade III
(3 + 3 + 3 for tubule formation, nuclear pleomorphism,
and mitotic count, respectively), and one was low-grade,
NHG (Nottingham histological grade) grade I (1 + 3 + 1
according to the NHG grading system). Two of the tu-
mors were invasive ductal carcinomas, whereas one was
reported as a medullary carcinoma.

Tissue preparation
Five consecutive sections (5 μm) of each tumor were pre-
pared on a microtome and mounted onto polyethylene
terephtalate (PET) membrane slides (Leica Microsystems,
Wetzlar, Germany). When indicated, 30% ethanol was in-
cluded. Mounted tissue sections were allowed to dry for
30 minutes in room temperature prior to incubation in
−20°C for 24 hours for optimal adhesion. To preserve the
RNA quality in the archived FFPE tissue specimens, the
blocks used for biomarker analysis during the routine
prognostic procedure were stored in 4°C.

Staining
During method development, staining of the tissue sec-
tions with either a cresyl violet LCM staining kit
(Ambion, part of Thermo Fisher Scientific, Waltham,
MA, USA) or standard hematoxylin-and-eosin staining
was evaluated. For further analysis, cresyl violet staining
was used. Tissue sections were initially rinsed 2 × 1 mi-
nute with xylene for deparaffinization and rinsed in
100%, 75%, and 50% ethanol for 30 seconds. Rehydration
of the tissue with diethylpyrocarbonate (DEPC)-treated
water was performed prior to 40-second incubation in
staining solution, followed by additional rinsing with
DEPC-treated water for 30 seconds and dehydration
with 100% ethanol twice for 30 seconds. Sections were
thereafter dried in room temperature and immediately
used for LCM or stored at 4°C for up to 1 week.

Laser capture microdissection
LCM to isolate tumor compartments was performed on
a Leica LMD6500. After microdissection, the tissue was
collected in 0.5-mL polymerase chain reaction (PCR)
tube caps containing Allprep RNA/DNA FFPE kit lysis
buffer (Qiagen, Hilden, Germany) with Proteinase K.

RNA extraction and hybridization
RNA was extracted by using Allprep RNA/DNA FFPE
kit (Qiagen) and evaluated with Nanodrop and Bioanaly-
zer (Agilent Technologies, Santa Clara, CA, USA) in ac-
cordance with standard procedures, including calculation
of RNA integrity number (RIN) values as previously de-
scribed [16]. Isolated RNA samples with a 260/280 ratio of
at least 1.8 and RIN value of more than 2.0 were used for
amplification with SensationPlus FFPE Amplification and
WT labeling kit (Affymetrix, Santa Clara, CA, USA) in ac-
cordance with the protocol of the supplier. The resulting
ds-cDNA was hybridized to a Human Gene 1.0 ST array
(Affymetrix).

Data sets
TCGA expression data were downloaded November
2013 (breast cancer), January 2014 (kidney and lung can-
cer), and March 2014 (head and neck cancer) from the
TCGA database [17]. The data were log2-transformed
after the addition of 1 to each normalized value. Clinical
and follow-up data were downloaded in May 2014. The
basic patient characteristics of the TCGA breast cancer data
used for follow-up analyses can be found in Additional
file 1: Table S1. The NKI295 [18], Wang [19], and Trans-
Big [20] datasets were downloaded in an assembled form,
as described [21]. The original array data can be found at
[22] (NKI295) or on the National Center for Biotechnol-
ogy Information Gene Expression Omnibus website as
GSE2034 and GSE7390.

Data analysis
All analyses were done with R by using the limma, sur-
vival, and cluster packages. Breast cancer subtypes were
determined by using the nearest correlations with the
PAM50 centroids [23]. For analyses of gene signatures
from the Wang and TransBig data sets, probes with a
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mean log2 signal of more than 6 were included, and for
the NKI295 dataset a threshold of −0.3 was used.

Results
Isolation of RNA from laser capture-microdissected FFPE
breast tumors
To obtain RNA of sufficient quality from tumor com-
partments isolated with LCM, sectioning, mounting,
deparaffinization, and staining steps were performed
with the highest possible purity to avoid RNase contam-
ination. Adhesion of the tissue section to the membrane
slide was obtained with 30% ice-cold ethanol (Additional
file 2: Table S2) to avoid further degradation. As the
standard histological staining with hematoxylin and
eosin may influence the RNA integrity negatively [24],
cresyl violet was used for tissue staining. We obtained
similar RNA quality and amount from a cresyl violet-
stained section as from a non-stained section either with
or without rehydration (Additional file 3: Table S3 and
Additional file 4: Figure S1). Since cresyl violet staining
with rehydration was the only procedure that resulted in
both an acceptable RNA quality and adequate tissue
morphology, this was henceforth used as staining
procedure.
To collect epithelial and stromal compartments from

breast tumor tissue, five consecutive tissue sections
from triple-negative tumors were laser-microdissected
(Figure 1A-C). We found that collection of 25 to 28 mm2

from the cancer cell compartment yielded a sufficient
amount of RNA (Table 1A). However, isolation of stromal
Figure 1 RNA integrity from laser capture-microdissected malignant e
sections. Cresyl violet staining of a representative triple-negative breast tum
Electropherogram depicting RNA from microdissected cancer (D) and strom
section (F). RNA length is indicated on the x-axis, and the y-axis correspon
calculated according to a standardized algorithm by using various features
compartments with or without inflammation showed that
stroma with few inflammatory cells did not yield enough
material for downstream applications and limited us to
analyze only tumors with inflammatory stroma. Analysis
of three triple-negative tumors with inflammatory stroma
showed a similar relationship between dissected tissue
area and extracted RNA amount for both compartments
(Table 1B-D and Figure 1D-F).

Identification of stroma- and epithelium-specific gene
expression
Extracted and amplified samples were hybridized to an
Affymetrix Human Gene ST 1.0 array. To identify genes
that are selectively expressed in either the stromal or the
cancer cell compartment, the probe list was shrunk by
removing probes for which every sample had a log2 ex-
pression value below a threshold (less than 7) and by ap-
plying a variance filter, which removed probes with
variance of less than 0.15. The remaining 5,971 probes
were analyzed for difference in expression between stroma
and cancer cells by using the limma package in R.
Even if only three tumors were analyzed, this approach

identified 107 probes (Additional file 5: Table S4), with
an adjusted P value of less than 0.05, that had higher
levels in stroma and 48 probes (Additional file 6: Table S5)
that were higher in cancer cells with the same adjusted
P value (Additional file 7: Figure S2A-B). Several of the
genes enriched in the stroma compartment are genes
encoding matrix proteins, such as collagens (for ex-
ample, COL1A1) and decorin (DCN). There was also
pitheluim and surrounding stromal in breast cancer tumor
or section (A) with defined (B) and dissected (C) cancer cells.
al breast tumor (E) cells in comparison with RNA from total tissue

ds to the fluorescence units (FU). RNA integrity number (RIN) values are
correlated to RNA integrity. nt, nucleotides.



Table 1 Collected RNA and RNA integrity number values of laser-microdissected breast tumor cells using Bioanalyzer
and Nanodrop analysis

Extracted RNA

Isolated tissue area Bioanalyzer Nanodrop

mm2 ng/μL RIN ng/μL 260/280

A)

Malignant epithelial cells 28 16.8 2.6 44.8 2.1

Benign epithelial cells 25 11.1 2.7 24.7 2.24

Stroma cells (including inflammatory cells) 18.2 10.2 2.3 16.2 2.26

Stroma cells 18.4 0.4 N/A 2.5 −26

Total tissue section ~200 200 2.3 282 2.07

B)

Epithelial cells 32.65 57.0 2.8 23.31 2.06

Stroma cells 26.5 27.0 2.4 15.59 1.97

Total tissue section ~200 266 3.0 230.5 2.05

C)

Epithelial cells 19.25 27.7 2.6 30.62 2.06

Stroma cells 92.35 10.5 2.1 25.33 1.89

Total tissue section ~200 28.8 2.3 48.53 1.59

D)

Epithelial cells 10.2 1.3 1.2 10.14 1.94

Stroma cells 15.0 7.8 2.1 21.77 1.63

Total tissue section ~200 5.6 2.2 14.51 1.54

RIN, RNA integrity number.
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enrichment of genes related to an immune response
such as chemokines (CXCL12 and CCL19) along with
their receptors (CXCR4 and CCR7), matrix metallopro-
teases (MMP2 and MMP9), the T cell-specific genes
CD4 and granzyme K (GZMK), and the B cell-specific
immunoglobulin genes such as both heavy (IGHA1,
IGHA2, IGHV1-5, and IGHM) and light (IGLJ3, IGLV6-
57, IGKC, IGKV1-5, and IGK@) chain-encoding genes.
This indicates that the analysis has worked technically
and that it identifies genes that are essentially stroma-
specific in their expression. On the other hand, several
of the genes in the cancer cell compartment are epithe-
lial, such as the cadherin family member desmoglein
(DSG2), intracellular junction protein desmoplakin (DSP),
the epithelium-specific transcription factors (ELF3 and 5),
keratin 7 (KRT7), claudin 4 and 7 (CLDN4 and 7), and in-
tegrin beta 8 (ITGB8).

Stroma-specific gene sets
The genes highly expressed in stroma most likely repre-
sent contributions from several different cell types that
may be at different maturation stages that are located
mainly in the stromal compartment. Therefore, the ex-
pression levels of these genes in a tumor homogenate
may potentially reflect the combination of these cell
types in the tumor. This raises the possibility to identify
gene signatures that can be used as an estimate of the
molecular and of the cellular composition of the stroma
in a tumor. However, the method we have used, LCM of
FFPE material followed by amplification and hybridiza-
tion, is not optimal for an accurate estimate of RNA
levels and will conceivably have low sensitivity. There-
fore, to expand the set of genes that may constitute spe-
cific stromal signatures, we used TCGA mRNA data
from 982 primary breast cancers and identified all genes
whose expression level correlated with a correlation co-
efficient above 0.85 with at least one of the original
genes identified as enriched in the stromal compartment
of the tumors in our analysis. This set was further ex-
panded by including genes that had a correlation coeffi-
cient above 0.89 with one of the genes in the expanded
set. This led to an enlarged set comprising 361 genes.
All of these genes were also found to be expressed at
higher levels in the stroma in the laser capture-
microdissected samples (Additional file 7: Figure S2C).
To define signatures of highly correlating genes, an it-
erative correlation analysis was performed yielding clus-
ters of genes, in which all genes in a cluster had an
average correlation coefficient above 0.90 with all other
genes in the set. Owing to the large amount of genes
typical of an immune or an inflammatory response, the
threshold was set to 0.91 for these genes. This step
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yielded 16 gene signatures which contained at least three
genes (Table 2 and Additional file 7: Figure S2C).
For each signature, an aggregated value was calculated

for each tumor by taking the arithmetic mean of the log2
expression of the genes in the set. The breast cancer tu-
mors in the TCGA database were thereafter clustered by
using the signature scores as variables (Figure 2A). There
was no obvious relationship between this clustering and
the breast cancer molecular subtype, determined by the
PAM50 centroids. However, the gene signatures were sep-
arated into three major groups: one with primarily matrix/
fibroblast-related genes (signatures 1 and 2), one with
endothelium-associated genes (signatures 4 and 5), and
one with genes typical for immune/inflammatory cells.
We thereafter compared the aggregated expression levels
for the signatures in the molecular subtypes (Figure 2B
demonstrates the signature with the largest number of
genes, all signatures are shown in Additional file 8:
Figure S3). Luminal B tumors were low in expression of
all stromal signatures, whereas basal-like tumors were low
in matrix/fibroblast and endothelial genes but high in im-
mune/inflammatory signatures. HER2-enriched tumors
were low in endothelial genes and luminal A in immune/
Table 2 Stromal gene signatures of highly correlating genes

1 2 3 4 5

COL1A2 DCN GIMAP5 CLEC14A PTPRB

COL3A1 GLT8D2 GIMAP4 CXorf36 TEK

COL5A2 LUM GIMAP7 ARHGEF15 ELTD1

FAP GIMAP6 CD34

COL1A1 GIMAP8 TIE1

COL5A1 ESAM

COL6A3 CDH5

ADAM12 ROBO4

DACT1 MYCT1

FBN1

POSTN

THBS2

CDH11

VCAN

9 10 11 12 13

TBC1D10C SLC7A7 CCL5 HLA-DOA C1QC

TMC8 CD86 NKG7 HLA-DPA1 C1QB

RASAL3 LILRB1 PRF1 HLA-DPB1 C1QA

CORO1A LAIR1 HLA-DRA TYROB

LAPTM5 HLA-DMB SPI1
inflammatory signatures. Thus, the tumor group associ-
ated with good prognosis (luminal A) was high in both
matrix and endothelial genes.

Prognostic value of gene signatures
To assess whether the identified signatures of highly cor-
related genes may have prognostic implications, univari-
ate Cox proportional hazard regression analyses were
performed for the tumors from the TCGA database that
had follow-up data (Table 3). The standardized mean of
log2 expression levels of all the genes in a set were com-
puted and used for the analyses. None of the gene signa-
tures, except gene set 5, which is a signature with
endothelial-related genes, was associated with risk of re-
currence. The hazard ratio (HR) of signature 5 was 0.714.
In a full multivariate model, using all gene sets, some

signatures had P values of less than 0.05 (not shown), in-
dicating that a multivariate model may be more appro-
priate. Therefore, we performed both forwards and
backwards selection to identify an optimal model. The
P value of the likelihood ratio test of the model was used
as an indicator of the quality of the model. This resulted
in an optimal model that contained four signatures. A
6 7 8

CD48 SLAMF1 BTK PARVG

PTPN7 TBX21 NCKAP1L NCF4

IL2RG CD96 DOCK2 FERMT3

ACAP1 GZMA CD4 WAS

CD247 GZMK FYB CYTH4

CD27 ITK PLEK MYO1F

CD2 PYHIN1 KLHL6 HCLS1

CD3D SAMD3 EVI2B ARHGAP9

CD3E SCML4 LCP2 CD37

CD5 SH2D1A CD53

CXCR3 SLAMF6 PTPRC

LY9 TRAT1 IL10RA

SIT1 ZNF831 SPN

SLA2 TIGIT SNX20

UBASH3A CD3G CCR5

LCK CXCR6 SASH3

SIRPG IKZF1

14 15 16

FCRL5 PTPRCAP LST1

POU2AF1 S1PR4 AIF1

CD79A GZMM TNFAIP8L2

P TNFRSF17 ZAP70

LOC96610

ADAM6



Figure 2 Expression levels of gene signatures in breast cancer tumors. (A) The means of the log2 expression levels of the genes in each
signature were calculated for 982 breast cancers by using data from The Cancer Genome Atlas project. The tumors were subjected to non-supervised
hierarchical clustering based on the signatures. Subtypes, determined by PAM50 centroids, are indicated in color. (B) The mean log2 expression levels
of the genes in the signatures with the largest number of genes representing (ECM) genes (signature 1), endothelial genes (signature 4), and immune/
inflammatory genes (signature 6) are shown for the indicated breast cancer subgroups. Asterisk indicates that the value is lower than in the groups
without asterisk; P <10−7 (analysis of variance followed by Tukey’s honest significance test) except signature 4 (HER2 versus luminal A, P= 0.0016) and for
signature 6 (luminal A versus HER2, P= 0.030; luminal B versus HER2, P= 0.000018; and luminal B versus normal, P= 0.0000062).
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multivariate analysis with these signatures indicated that
two (1 and 13) were associated with an increased and two
(5 and 12) with a decreased risk for new tumor event
(Table 4A). To analyze whether the HRs may be due to
confounding effects of other parameters, we included
tumor size, node stage, and estrogen receptor status in the
model and stratified for stage (Table 4B). We also analyzed
a model in which stratification was done for PAM50 sub-
type (Table 4C). This showed that the gene sets, as well as
node stage and estrogen receptor status, are independent
prognostic markers. The only exception was signature 5,
which had a P value of more than 0.05 upon stratification
for PAM50 subtype.
Gene signatures 12 and 13 both have an inflamma-

tory/immune profile with set 12 containing HLA genes
and set 13 C1Q genes. These were the most influential
signatures in the multivariate Cox model and their op-
posing HRs indicate that the characteristic of the im-
mune response in a tumor has prognostic value.
Multivariate analyses with only these sets demonstrated
significant HRs for both sets in models both without or
with adjustments for the clinicopathological parameters
and PAM50 subtype (Table 4D-F).

Stromal gene signatures in other tumors
The analyses indicate that the profile of an immune/in-
flammatory response in the tumor has a prognostic value.
To analyze whether this is general and also applies to
other tumors, we used RNA HiSeq data from four other
cancer forms available in the TCGA database (Figure 3A).
For both renal clear cell carcinoma, with new tumor event
as the end point, and lung squamous cell carcinoma, with
death as the end point, a similar pattern with no signifi-
cant roles of the gene signatures as isolated variables, but
with opposing HRs in a multivariate model, was detected.
A similar but not significant tendency was seen for lung
adenocarcinoma and head and neck squamous cell
carcinoma.



Table 3 Univariate Cox proportional hazard analysis of
breast cancers using standardized mean values for the
gene sets as variables and new tumor event as end point

HR 95% CI P value

Gene signature 1 1.13 0.821-1.55 0.454

Gene signature 2 1.03 0.759-1,41 0.835

Gene signature 3 0.776 0.578-1.04 0.0922

Gene signature 4 0.816 0.615-1.08 0.157

Gene signature 5 0.714 0.547-0.932 0.0132

Gene signature 6 0.852 0.630-1.15 0.297

Gene signature 7 0.951 0.706-1.28 0.742

Gene signature 8 1.05 0.784-1.42 0.728

Gene signature 9 0.956 0.708-1.29 0.768

Gene signature 10 1.13 0.834-1.54 0.426

Gene signature 11 0.898 0.659-1.22 0.495

Gene signature 12 0.852 0.639-1.14 0.276

Gene signature 13 1.18 0.874-1.59 0.283

Gene signature 14 0.864 0.632-1.18 0.360

Gene signature 15 0.888 0.653-1.21 0.447

Gene signature 16 1.04 0.768-1.40 0.806

CI, confidence interval; HR, hazard ratio.

Table 4 Mulivariate Cox proportional hazard model using
standardized mean values for the gene signatures as
variables

HR 95% CI P value

A) Multivariate model, not stratified

Gene signature 1 1.790 1.205-2.659 0.00392

Gene signature 5 0.6210 0.4201-0.9177 0.0168

Gene signature 12 0.3085 0.1592-0.5977 0.000492

Gene signature 13 3.327 1.743-6.353 0.000270

B) Multivariate model stratified for stage

Gene signature 1 1.870 1.20-2.91 0.00535

Gene signature 5 0.5847 0.371-0.922 0.0209

Gene signature 12 0.2685 0.115-0.630 0.00250

Gene signature 13 3.238 1.47-7.13 0.00353

Tumor size 1.158 0.384-3.49 0.794

Node status 3.603 1.33-9.74 0.0115

Estrogen receptor 2.928 1.40-6.14 0.00446

C) Multivariate model stratified for PAM50 subtype

Gene signature 1 2.099 1.35-3.27 0.00103

Gene signature 5 0.6650 0.437-1.01 0.0569

Gene signature 12 0.3118 0.147-0.662 0.00242

Gene signature 13 3.026 1.52-6.01 0.00158

Node status 4.578 2.07-10.1 0.000175

D) Multivariate model, not stratified

Gene signature 12 0.3016 0.1686-0.5394 0.0000532

Gene signature 13 3.406 1.860-6.235 0.0000713

E) Multivariate model stratified for stage

Gene signature 12 0.2573 0.128-0.518 0.000140

Gene signature 13 3.451 1.77-6.73 0.000278

Tumor size 0.9399 0.311-2.84 0.913

Node status 3.905 1.43-10.7 0.00785

Estrogen receptor 2.842 1.37-5.89 0.00498

F) Multivariate model stratified for PAM50 subtype

Gene signature 12 0.3576 0.1873-0.6827 0.00183

Gene signature 13 2.759 1.470-5.179 0.00159

Node status 4.533 2.563-9.994 0.000179

In B and E, variables included tumor size (>20 versus ≤20 mm), node status
(positive versus negative), and estrogen receptor status (negative versus
positive) and the model was stratified for stage. In C and F, the model was
stratified for PAM50 subtype. CI, confidence interval; HR, hazard ratio.
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We also analyzed the signatures in three other breast
cancer data sets, in which the expression had been ana-
lyzed with microarray technology (Figure 3B). Here, a
threshold of mean log2 expression level for the probes
was applied, excluding a few genes from calculation of
the gene signature values. For two of the three data sets
(NKI295 [18] and TransBig [20]) analyzed, significant as-
sociations with opposing HRs was seen in analogy with
the breast cancer TCGA data. In the third set (Wang
[19]), a similar but, for the C1Q signature, not signifi-
cant association was observed.

An immune/inflammatory score
The observed prognostic values of the C1Q and HLA
signatures raises the possibility that a prognostic score,
based on the ratio of the two signatures, could be calcu-
lated. Therefore, we defined a C1Q-HLA score as the
difference in mean log2 expression of the two signatures.
When Kaplan-Meier curves for the TCGA tumors were
constructed on the basis of quantiles of this score, it is
evident that the top 1/3 is clearly at higher risk than the
bottom 1/3 for recurrence. In the latter group, there
were hardly any new tumor events within five years after
the initial treatment (Figure 4A).
We also evaluated the molecular subgroups. For HER2-

enriched, luminal A, and normal-like tumors, the number
of events were too few for relevant analysis, but for basal-
like and luminal B tumors, Kaplan-Meier curves based on
the C1Q-HLA score above or below the median were
constructed (Figure 4B and C). We also evaluated the
C1Q-HLA score together with lymph node status in a
multivariate Cox proportional hazard model using the
basal and luminal B tumors (HR and P values are shown in
Figure 4). All of these analyses gave P values below 0.05 for
the score as prognostic indicator, except the log-rank test
in luminal B tumors, in which the P value was 0.070. Taken
together, the analyses indicate that a C1Q-HLA score is of
prognostic value also in these isolated subgroups.



Figure 3 Hazard ratio of the C1Q and HLA signatures in different tumor forms and other breast cancer data sets. Lines represent confidence
intervals (95%) from uni- and multivariate Cox proportional hazard analyses using the C1Q and HLA gene signatures as variables of different tumors
using The Cancer Genome Atlas data (A) or three other breast cancer data sets (B). End points are death, new tumor event (NTE), distant metastasis-free
survival (DMFS), or recurrence-free survival (RFS). The numbers of cases and events for each data set, within parentheses, are shown for each data set.
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Other immune/inflammatory genes
The opposing HRs obtained with the HLA and C1Q sig-
natures in several cancer data sets indicate that the profile
of the inflammatory components in a tumor has prognos-
tic importance. To screen for other inflammatory genes
Figure 4 Kaplan-Meier curves based on the C1Q-HLA score. A score w
value of the HLA signature for each of 504 tumors with survival data from
grouped in three quantiles of the C1Q-HLA score, and Kaplan-Meier curves
grouped on the basis of the C1Q-HLA score above or below the median. C
C1Q-HLA score was used as a continuous variable together with lymph no
that may provide prognostic information, we analyzed all
immune/inflammation-related genes obtained in the ex-
panded stromal gene set pairwise with both the C1Q and
the HLA signatures in multivariate Cox proportional haz-
ard models (Tables 5 and 6). Using a cutoff of 0.01 for the
as calculated as the mean value of the C1Q signature minus the mean
The Cancer Genome Atlas database. (A) All breast cancers were
were generated. Basal-like (B) and luminal B (C) breast cancers were
ox indicates the hazard ratio (HR) and P values obtained when the
de status in a multivariate Cox proportional hazard model.



Table 5 Hazard ratios and P values for indicated genes
obtained in multivariate Cox proportional hazard models
together with the HLA signature

Gene HLA signature (gene set 12) Gene of interest

HR P value HR P value

C1QC 0.329 0.0000279 3.18 0.0000202

C1QB 0.336 0.000103 3.00 0.000114

C1QA 0.401 0.000285 2.53 0.000412

ITGB2 0.455 0.000206 2.26 0.000426

LAIR1 0.352 0.000324 2.86 0.000526

SPI1 0.419 0.000374 2.43 0.000571

FERMT3 0.423 0.000306 2.45 0.000676

LILRB1 0.378 0.000439 2.71 0.000744

TNFAIP8L2 0.461 0.000403 2.21 0.000873

CYTH4 0.389 0.000401 2.63 0.000967

MYO1F 0.344 0.000611 2.92 0.00134

LRRC25 0.435 0.000809 2.43 0.00135

DOK2 0.421 0.000708 2.45 0.00150

CD68 0.625 0.00450 1.67 0.00230

LAPTM5 0.451 0.00120 2.25 0.00232

SLC7A7 0.457 0.00137 2.25 0.00265

NCF4 0.433 0.00152 2.28 0.00276

LILRB2 0.481 0.00217 2.12 0.00373

MS4A6A 0.311 0.00220 3.04 0.00414

CD86 0.450 0.00250 2.23 0.00527

CD53 0.386 0.00270 2.49 0.00623

C3AR1 0.469 0.00490 2.12 0.00778

FAM78A 0.486 0.00366 2.02 0.00813

LILRB4 0.510 0.00483 1.91 0.00862

FCER1G 0.508 0.00552 1.96 0.00880

FGD2 0.565 0.00383 1.74 0.00923

HR, hazard ratio.
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P value of the gene in the Cox models resulted in 26 genes
with an HR of more than 1 in a multivariate model with
the HLA signature and 53 genes with an HR of less than 1
in a model with the C1Q set. To further analyze these
genes, a correlation matrix was generated by using the ex-
pression data from TCGA tumors (Figure 5). A pattern
can be discerned: genes that are associated with higher
risk in general are more correlated with each other than
with genes that are associated with lower risk, and vice
versa.

Discussion
The tumor stroma is composed of several non-malignant
cell types that together build up the tumor microenviron-
ment which may promote both tumor progression and
metastasis [8,10,11,25]. In this study, we have used LCM
for isolation of epithelial and stromal compartments of
FFPE triple-negative breast tumors to enable analysis of
compartment-specific gene expression. The usage of FFPE
tumors is advantageous because of the large amount of
routinely stored tumors, but gene expression analysis of
this material has been challenging because of chemical
modifications and degradation of the RNA [26].
Methodology development has improved the possibil-

ities of accurate analysis of whole transcript expression
from FFPE material. Studies thus far have mainly been
technically oriented [27,28], but also tumor grade-,
prognostic-, and subtype-specific expression for identifi-
cation of novel gene expression profiles has been ana-
lyzed [29-33].
In this study, we have optimized the RNA preparatory

steps and used an amplification and labeling system spe-
cifically developed for analysis of degraded RNA, along
with a microarray containing probes detecting sites
across the whole transcript. The genes we thereby could
detect as enriched in the stroma compartment could to
a large extent be identified as typical for immune cells,
such as the Ig genes, and extracellular matrix, conceiv-
ably emanating from fibroblasts. This indicates that the
method, despite the limited quality and quantity of the
material, is able to capture compartment-specific expres-
sion patterns.
We obtained a set of 107 genes expressed at substan-

tially higher levels in stroma. By expanding this set using
correlation analysis of TCGA tumor data and successive
iterations, we could define 16 gene signatures with high
intra-set correlation. All of the genes identified in the
expansion were also found in our data to be expressed
at higher levels in the stromal compartments, supporting
that they are all related to stroma.
The gene signatures conceivably represent a combin-

ation of different stromal cell types or different matur-
ation stages of the same cell type. Sets 1 and 2 mainly
contain genes typical of extracellular matrix such as
DCN, LUM, VCAN, and collagens. These genes have
been seen to be highly expressed in stroma in other
studies [10,11,34,35]. We also find FAP, a typical myofi-
broblast marker, as well as POSTN, which is synthesized
by fibroblasts in set 1. It is likely that sets 1 and 2 could
be used as indicators of the amount of fibroblasts and
stroma in a tumor.
Sets 4 and 5 contain genes typical of endothelial tissue,

both actual angiogenic regulators TIE1/TIE2 (TEK),
ARHGEF15, ROBO4, and ELTD1 and other endothelial
markers such as CD34, CLEC14A, and ESAM. Several
(7/12) of the genes in gene sets 4 and 5 were identified
in the angiogenesis signature obtained from 1,250 tu-
mors from different cancer types [36].
The remaining gene sets contain genes typical of im-

mune and inflammatory cells, such as T cell-associated
CD3 (CD3G, CD3D and CD3E), CD4, ZAP70, GIMAP



Table 6 Hazard ratios and P values for indicated genes
obtained in multivariate Cox proportional hazard models
together with the C1Q signature

Gene C1Q signature (gene set 13) Gene of interest

HR P value HR P value

HLA-DPA1 3.44 0.00000869 0.289 0.00000287

GZMH 2.73 0.0000271 0.332 0.00000330

GZMA 2.55 0.0000673 0.369 0.0000203

GZMK 2.19 0.000210 0.419 0.0000234

CD74 4.33 0.0000469 0.229 0.0000469

HLA-DPB1 3.07 0.0000821 0.326 0.0000752

THEMIS 2.05 0.000598 0.429 0.000129

HLA-DRA 3.31 0.000176 0.311 0.000131

KIAA0748 2.12 0.000601 0.439 0.000171

ITK 2.15 0.000603 0.443 0.000236

FGL2 2.25 0.000732 0.435 0.000342

SCML4 1.98 0.00113 0.471 0.000357

HLA-DMA 3.15 0.000406 0.318 0.000364

SLA2 2.32 0.000697 0.424 0.000556

CD3D 2.14 0.00129 0.470 0.000860

SAMD3 1.98 0.00164 0.491 0.000870

HLA-DMB 3.00 0.000690 0.345 0.000938

SPN 2.32 0.000923 0.428 0.00101

CD8A 1.91 0.00285 0.513 0.00115

GPR171 1.94 0.00228 0.485 0.00125

CRTAM 2.18 0.00104 0.441 0.00131

CD96 2.07 0.00184 0.474 0.00139

SH2D1A 1.93 0.00238 0.504 0.00165

FASLG 1.99 0.00206 0.491 0.00172

RASAL3 2.53 0.00113 0.393 0.00176

CCL5 2.09 0.00244 0.479 0.00195

TRAT1 1.81 0.00377 0.524 0.00218

KLRK1 1.90 0.00358 0.514 0.00219

HCST 2.85 0.00158 0.366 0.00224

CD2 2.07 0.00232 0.486 0.00236

PRKCB 1.94 0.00321 0.504 0.00280

ZNF831 1.76 0.00457 0.535 0.00284

LCP2 2.40 0.00216 0.438 0.00293

KCNA3 1.67 0.00747 0.559 0.00318

PTPN7 2.59 0.00187 0.395 0.00319

CD52 1.99 0.00297 0.495 0.00331

CXCR6 1.99 0.00376 0.512 0.00342

GZMM 1.88 0.00395 0.516 0.00344

PSTPIP1 2.40 0.00293 0.441 0.00376

CCR5 2.26 0.00315 0.460 0.00394

CD3E 2.00 0.00415 0.511 0.00423

IL12RB1 2.64 0.00256 0.399 0.00443

Table 6 Hazard ratios and P values for indicated genes
obtained in multivariate Cox proportional hazard models
together with the C1Q signature (Continued)

PYHIN1 1.85 0.00526 0.534 0.00461

SLAMF6 1.88 0.00484 0.533 0.00468

HLA-DOA 2.02 0.00442 0.505 0.00511

CD3G 1.76 0.00627 0.553 0.00559

IKZF1 2.02 0.00482 0.491 0.00703

CD27 1.75 0.00737 0.570 0.00834

GMFG 2.34 0.00472 0.434 0.00868

LST1 2.81 0.00446 0.377 0.00868

TBC1D10C 2.05 0.00665 0.504 0.00967

C16orf54 1.92 0.00683 0.507 0.00993

CD247 1.92 0.00776 0.536 0.00998

HR, hazard ratio.
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and granzymes (GZMA/GZMK and GZMM), major
histocompatibility complex (MHC) II-encoding HLAs,
and more general lymphocyte-associated genes such as
LAIR1 and LST1.
Cox proportional hazard analyses revealed only limited

value of the gene signatures in univariate models, which
suggest that neither the amount of stroma nor the extent
of vascularization or the magnitude of inflammatory
components has prognostic information as isolated vari-
ables. However, in a multivariate model, four of the gene
signatures were significant. Sets 1 and 13 are associated
with an increased risk for new tumor event, whereas
gene sets 5 and 12 negatively influenced the HR.
A typical fibroblast marker (FAP) was identified in

gene set 1 together with fibroblast-expressed extracellu-
lar matrix-associated genes, such as collagens, whereas
gene set 13 contained complement factor C1Q. FAP has
been identified as a prognostic marker in various cancer
studies, including breast and lung cancer, and has been
suggested to be a potential target in solid tumors
[37-40]. Complement initiator C1q proteins can be de-
rived from various stromal cells and has, in addition to its
role in immune complex recognition, been found to have
a proangiogenic effect in wound healing [41,42] and to
drive carcinogenesis [43]. Complement activation has, on
the other hand, been considered to have tumor suppres-
sive properties, and C1q can induce apoptosis in prostate
cancer cells [44,45], indicating a complex and probably
context-dependent role of C1Q in tumor development.
The gene sets with negative HR contain several MHC-

II-encoding HLA genes (gene set 12) and angiogenesis-
regulating genes, such as TEK and ELTD1 (gene set 5).
ELTD1 expression has previously been shown to be asso-
ciated with an improved outcome [36] which may ex-
plain why this signature negatively influences the hazard.
Furthermore, higher levels of HLA-DR have been shown



Figure 5 Correlation matrix of expression levels of genes found to provide altered hazard together with either the C1Q or the HLA
signatures. The correlation coefficients were calculated by using the log2 expression levels of the genes that were found to be associated with
either a higher (red bar) or a lower (green bar) hazard in a multivariate Cox analysis together with the HLA or C1Q signature, respectively. The
Cancer Genome Atlas breast cancer data were used for the analysis. The genes are listed in Tables 5 and 6. HR, hazard ratio.
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to predict better prognosis of invasive ductal carcinomas
[46]. The signatures were also significant when lymph
node status was included and when stratifying for mo-
lecular subtype, indicating that they are independent
prognostic markers.
A more limited Cox model based on only the immune

gene signatures 12 and 13, with or without lymph node
status and stratification for subtype in the model, could
also predict recurrence. The opposing effects by these
signatures on the risk indicate that the composition of
the immune response in the tumor is of importance for
the progression. This conclusion is further supported by
the fact that the signatures are predictive in a multivari-
ate Cox model in several other tumor forms and other
breast cancer data sets. It suggests that the importance
of specific components of the immune response for pro-
gression of the disease may be a general phenomenon
applicable to several cancer forms.
The prognostic signatures contain mainly C1Q and

HLA genes, respectively. C1Q genes have been shown to
be produced by a number of cells, including monocytes,
macrophages, and dendritic cells [42]. However, the ex-
pression of C1Q has previously been reported to be
highest in immature immune cells that are known to re-
flect a state of immune paralysis in cancer immunology
[47,48]. Therefore, higher expression levels of these
genes could potentially reflect a higher ratio of imma-
ture, non-functional antigen-presenting cells in the
tumor. Likewise, higher expression levels of HLA genes
may be indicative of a more active immune response.
This assumption is further supported by the screen
(Table 5) for immune genes that are associated with a
higher risk for recurrence in a multivariate model with
the HLA signature. Here, we found many genes typical
for negative immune signaling. These include inhibitory
co-receptors that are negative regulators of immune re-
sponses (LAIR1, LILRB1, LILRB2, and LILRB4) and
macrophage genes (CD68, ITGB2, and CD86). On the
other hand, genes that were associated with a lower risk
in a multivariate model with the C1Q signature (Table 6)
represented genes coding for proteins involved in a cyto-
toxic immune response (for example, GZMH, GZMA,
GZMK, CD3D, CD3E, CD3G, CD247 (CD3ζ), CD8A,
CD27, CD52, CD96, PYHIN1, SLAMF6, and IL12RB1).
The number of genes with both high correlation of their
expression and similar prognostic value indicates that it
may be possible to identify fairly large gene sets that
could be used as markers for the profile of an intra-
tumor immune response. It thereby highlights potential
factors determining this profile.
The results support the idea that the molecular profile

of an immune response, rather than the amount of im-
mune or inflammatory cells, is an important prognostic
marker in breast cancer and in other cancer forms. Such
a hypothesis is further supported by other results, in-
cluding the finding that the amount of a specific set of
CD4+ T cells, namely follicular helper T cells, predicts
breast cancer survival [49].
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Conclusions
We have developed a methodological procedure for isola-
tion and characterization of compartment-specific genes
by using LCM on FFPE triple-negative breast cancers.
Through expansion of the gene list with data from TCGA
of correlating genes, we could identify two immune/in-
flammatory signatures with prognostic information. The
results further underscore the importance of the compos-
ition rather than the extent of the immune response as a
prognostic indicator in cancer. It also provides novel sig-
natures that are stable indicators of prognosis and valid
for some other cancer types as well and highlights genes
that may be of particular importance when analyzing the
composition of an immune response in a tumor.
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Additional file 1: Table S1. Basic patient and tumor characteristics of
the breast cancer. The Cancer Genome Atlas (TCGA) cohort used for the
follow-up analyses is shown.

Additional file 2: Table S2. RNA integrity and concentrations after
membrane mounting.

Additional file 3: Table S3. RNA integrity after cresyl violet staining.

Additional file 4: Figure S1. RNA integrity is maintained after cresyl
violet staining. Electropherogram profiles of RNA from total non-mounted
tissue (A), cresyl violet-stained mounted tissue with (B) and without
(C) aqueous rinsing steps are shown. RNA length is indicated on the
x-axis, and the y-axis corresponds to the fluorescence units. RNA integrity
number (RIN) values are calculated according to a standardized algorithm
by using various features correlated to RNA integrity.

Additional file 5: Table S4. Genes enriched in stroma compartment,
identified using the limma package in R. The magnitude of enrichment is
indicated by the difference in log2 expression (logFC).

Additional file 6: Table S5. Genes enriched in cancer cell
compartment, identified by using the limma package in R. The
magnitude of enrichment is indicated by the difference in log2
expression (logFC).

Additional file 7: Figure S2. Identification of compartment-enriched
genes and stroma gene sets. With the lmfit function in the limma package
of R, probes that were enriched in either compartment were identified with
an adjusted P value of less than 0.05 as cutoff. The scatter plots (A, B) show
expression values for all probes of genes for which one probe was enriched
in stroma (red) or cancer cell (blue) compartment. The black circles in (A)
indicate genes for which no probe was significantly enriched in either
compartment. (C) The expanded gene set (361 genes) are shown in red
(original genes enriched in stroma) and blue (genes found after expansion
with The Cancer Genome Atlas (TCGA) data). The multiplication sign
denotes the genes in the final signatures.

Additional file 8: Figure S3. Expression levels of gene signatures in
breast cancer tumors. The mean of the log2 expression levels of the
genes in each signature was calculated for 982 breast cancers using data
from The Cancer Genome Atlas (TCGA) project. The aggregated values of
each signature are shown for the indicated breast cancer subgroups.
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