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Populärvetenskaplig sammanfattning på svenska

Inom fysik försöker vi beskriva naturfenomen med matematiska modeller. Beroende på
vilket system som ska beskrivas är olika modeller relevanta. På väldigt långa avstånd är gra-
vitation den viktigaste kraften. Till exempel så beskrivs solsystemets dynamik av gravitation.
På de kortaste avstånd som människan lyckats studera är det istället den elektromagnetiska,
den svaga och den starka kraften som är viktigast. Till exempel så är det den elektromagne-
tiska kraften som binder negativt laddade elekroner vid positivt laddade atomkärnor, den
svaga kraften som leder till neutronsönderfall och den starka kraften som sammanbinder
kvarkar till neutroner och protoner.

Som tur är för naturvetenskapen så behöver vi nästan aldrig ta hänsyn till alla fyra kraf-
terna. I praktiken så beskriver fysiken istället fenomen med hjälp av modeller som fångar
det som är intressant för det system som studeras. Till exempel så beskrivs den kraft som
håller samman atomkärnor ofta med potentialer mellan protoner och neutroner. Den un-
derliggande fysiken domineras i det här fallet av den starka kraften men för att effektivt
beskriva systemet så används en annan modell. Detta är en approximation som är använd-
bar så länge växelverkan inte studeras vid alltför små avstånd. Generellt så kan man säga
att vilka krafter och vilka andra frihetsgrader som är viktiga beror på typiska avstånd i det
system som studeras.

Inom partikelfysik så studeras partiklar på korta avstånd där den elektromagnetiska, den
svaga och den starka kraften dominerar. Dessa krafter beskriver växelverkan mellan ele-
mentarpartiklar. Elementarpartiklar är partiklar som, enligt vår nuvarande kunskap, inte
går att dela upp i mindre beståndsdelar. Hur de olika krafterna påverkar elementarpartik-
larna beror på partiklarnas laddningar. Till exempel så har en elektron elektromagnetisk
och svag laddning, vilket ofta beskrivs som att elektronen växelverkar elektromagnetiskt
och svagt. Den gällande beskrivningen av elementarpartiklar och deras växelverkan via den
elektromagnetiska, svaga och starka kraften är Standardmodellen.

Ett mål inom partikelfysik är att beskriva alla fyra krafterna inom en och samma teori. Stan-
dardmodellen beskriver inte gravitation och måste således utökas för att nå detta mål. Det
finns också astronomiska observationer som tyder på att det finns mörk materia som inte
har någon naturlig förklaring inom Standardmodellen. För att nå vidare i strävan efter en
mer komplett modell så behövs det observationer som Standardmodellen inte kan beskriva.

Ett sätt att testa Standardmodellen är att kollidera partiklar vid allt högre energier i hopp
om att se spår av nya tunga partiklar. Ett annat sätt är att förbättra precisionen i teori och
experiment vid lägre energier. Hittills okända partiklar kan påverka värdet av fysikaliska
storheter vid låga energier genom kvanteffekter. En utmaning för sådan precisionsfysik är
att det inte finns analytiska metoder för att göra beräkningar som involverar den starka
kraften, som den beskrivs i Standardmodellen, vid låga energier.
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En mycket vanlig analytisk metod, som inte fungerar för den starka kraften vid låga ener-
gier, är störningsräkning. I störningsräkning så utgår vi från en modell där vi kan göra
beräkningar. Effekter som hindrar exakta beräkningar tas med som små störningar runt
denna modell. För att detta ska vara en bra approximation så måste störningen vara li-
ten, vilket inte är fallet för den starka växelverkan vid låga energier. Vid låga energier så är
den starka kraften så stark att alla partiklar som har stark laddning, så kallad färgladdning,
bildar bundna tillstånd. Dessa bundna tillstånd är färgneutrala, inga färgladdade tillstånd
observeras.

För att göra förutsägelser vid låg energi så kan man använda störningsräkning för bundna
tillstånd. Detta är en approximation som är användbar vid tillräckligt låga energier. I av-
handlingen används denna typ av störningsräkning för att göra precisionsberäkningar av en
del av myonens, en tyngre version av elektronen, växelverkan med magnetfält. Detta är en
mycket precist uppmätt storhet och det finns sedan länge en skillnad mellan förutsägelser
från Standardmodellen och det experimentella värdet. I våra beräkninar så försöker vi ta
hänsyn till fler effekter än tidigare och gör en uppskattning av värdet genom att jämföra
många olika modeller.

Ett annat sätt att göra beräkningar med den starka kraften vid låga energier är att göra
numeriska beräkningar. I dessa simuleringar så ersätts rumtiden med ett gitter i en ändlig
volym. Fysikaliska storheter som bestämms med denna metod har både statistiska och sys-
tematiska fel. För att uppskatta vissa systematiska fel så är återigen störningsräkning med
bundna tillstånd användbart. Då de systematiska felen domineras av lätta tillstånd så är det
möjligt för oss att använda kiral störningsräkning, en mycket väl underbyggd model, för
att göra dessa uppskattningar.

I avhandlingen använder vi kiral störningsräkning för att uppskatta systematiska fel för git-
terberäkningar relevanta för myonens växelverkan med magnetfält samt för svag växelver-
kan mellan bundna tillstånd, så kallade formfaktorer. Precis som med myonens växelverkan
med magnetfält så används formfaktorer för att testa Standardmodellen.
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Twisted Loops and Models for
Form-factors and the Muon g-

It is better to uncover a little than to cover a lot.
—Smart person

 Introduction

In this introduction, as in any kind of writing, it is important to consider for whom I am
writing. Since the actual research results are presented in the papers, I need not present
these here, just give background to them. Therefore, I have decided to write as if to get
myself from four, or maybe five, years ago up to speed on the topics. This was a time when
I was a fresh PhD student with six chapters of Ref. [] under my belt. My goal is to guide the
reader from the theory of quantum chromodynamics (QCD) in the Standard Model (SM),
describing interactions among quarks and gluons, to models of the low energy spectrum,
describing interactions among bound states, ending up with how such models are used in
the papers which constitute the main part of the thesis.

The work presented in the papers goes under the category of phenomenology. In the context
of particle physics, phenomenology is the bridge between mathematical models and exper-
iments. In other words, models are used to make predictions. The predictions presented
in this thesis come in two kinds. One is using models of low energy QCD for calculation
of (parts of ) an observable physical quantity. The other is estimates of error sources when
numerical simulations of QCD. In this case the actual physics is simulated elsewhere and
our calculations are used to estimate part of the unphysical behavior in the simulations. In
both these cases the practical work that we do is, to a large extent, algebraic manipulations
of fairly large expressions. We do this using the algebraic manipulation software FORM []
which, although not mentioned further in this introduction, has been an invaluable tool.

This introduction contains introductions to several topics which reflect the content of the





papers. First there is an introduction to the particles of the SM and unitary symmetry.
Then there is an introduction to quantum field theory (QFT) and perturbation theory
which is an important tool used in the papers. In the following section another important
tool in contemporary particle physics, effective field theory (EFT), is briefly introduced.
This is followed by an introduction to the symmetries of QCD and the low energy spec-
trum of QCD. In the section after that the combination of EFT ideas and the low energy
symmetries of QCD, chiral perturbation theory (χ PT), is introduced. The following sec-
tion introduces χ PT in the context of lattice QCD. The last section gives an introduction
to other models for low energy QCD, specifically in the context of the muon anomalous
magnetic moment, muon g − 2.

Before moving on to introduce the SM I want to mention that if you are reading this from
a popular science perspective I think it is appropriate to read section  up until around
equation (). I then recommend the introductory parts of sections ,  and .

 Particle physics and the Standard Model

The SM is our best description of the microscopic world. Microscopic is perhaps not the
right word since the size of a proton is around one fermi which is far from something
studied in a microscope. The proton is in turn composed of quarks and gluons. These
quarks and gluons are, to the best of our knowledge, not bound states but elementary
particles.

The particles in the SM can be divided into different categories in many ways. As a first step
we can separate fermions from bosons. Fermionic particles have the property that no two
fermions can occupy the same state, this is known as Pauli’s exclusion principle. Bosons
on the other hand do not mind sticking together. Fermion fields are often associated with
matter, the electron and the quarks are examples of fermions. Bosons are usually associated
with force carriers, like the photon or gluon. The Higgs particle is also a boson but it plays
a special role. The field associated with the Higgs boson gives mass to the other particles.

The forces in the SM are the electromagnetic (EM), the weak and the strong force. The
association between bosons and forces is that the forces are a result of exchanging the as-
sociated bosons. Electrically charged objects interact through the EM force by exchanging
photons. This can be formulated as that the photon couples to electric charge and thereby
mediates the EM force. The weak bosons, W ± and Z , couple to weak charge and mediate
the weak force and the strong force is mediated by eight gluons, G a , a = 1, . . . , 8, which
couple to the three strong charges called red, green and blue.

1 fermi = 1 fm = 10−15 meters





The behavior of the three forces is quite different. The photon is massless and carries no
charge. This gives a long ranged force. The weak bosons are massive and carry weak charge.
The mass of the bosons gives a short range force, explaining the weakness of the weak force
at long distances. The gluons are massless and carry color charge. The combination of being
massless and self interacting gives a radically different behavior from the other two forces.
While the EM and weak forces grows weaker at long distances, the strong force is constant
for long distances so that the energy between two color charges increases with distance.
An experimental consequence of this is that only color neutral objects are observed, this is
known as confinement.

The fermions in the SM are associated with matter. To describe most matter only a subset
of the fermions are needed. Ordinary matter is well described as being composed of atoms.
An atom is a positively charged nucleus surrounded by negatively charged electrons. The
electrons are kept in place by the EM force so the electron carries EM charge. The nucleus is
composed of nucleons; positively charged protons and neutral neutrons. The protons and
neutrons consist of quarks and gluons, the latter is what keeps the nucleons together. Since
quarks interact with gluons they must carry color charge. Moreover, the electric charge
of the proton comes from the electric charge of the quarks. The main quark content of
the nucleons is up and down quarks. This is enough to describe stable matter. However,
some atoms decay by a mechanism where a neutron is turned into a proton and an electron
and another particle is released. This other particle is called a neutrino. Neutron decay is
described by quarks, electrons and neutrinos interacting via the weak force. To summarize,
the fermions needed are the electron which carry EM and weak charge, the up and down
quarks which carry color, EM and weak charge and the electron neutrino which carries weak
charge. This collection of fermions make up the first generation of fermions. There are two
additional generations which have the exact same charges as the first generation. The only
difference is that the masses increase for every generation, possibly with the exception of
neutrinos whose masses are not well known. The masses and some properties of the quarks
in the SM are given in Table .

Most of this thesis concerns the strong force at low energies, hereafter referred to as low
energy QCD. Low energy is in this case less than about 1 GeV. At these energies QCD
describes color neutral particles which are bound states of quarks and gluons. The most
common color neutral particles are mesons, bound states formed from a quark and an
antiquark, and baryons, bound states formed from three quarks. Mesons are color neutral
since the constituents carry color and anticolor while baryons are color neutral since the
constituents carry a red, a green and a blue charge.

The interactions of the bound states should in principle follow from QCD. However, there
are no analytical methods to make quantitative predictions for these interactions. Instead,

A color neutral object carries a color and its anticolor or (anti) red, (anti) green and (anti) blue which
mixes to white. This is why color is a good analogy in this case.
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models are used. An important guiding principle when constructing models is that of
symmetry. Symmetries is the topic of the next section.

Table 1: Quark properties from [3]. Isospin symmetry is a symmetry transformation which treats the up and down
quarks the same. The isospin value in the table gives the isospin charge of the quarks determining how
they transform. A value of 0 means no transformation. Strangeness is a property of the strange quark.
Both of these numbers are used in the classification of bound states, see Table 2. The quark masses
cited are the M S ones.

flavor mass charge isospin strangeness
u 2.3+0.7

−0.5 MeV 2/3 1/2 0
d 4.8+0.5

−0.3 MeV −1/3 −1/2 0
c 1.275± 0.025 GeV 2/3 0 0
s 95± 5 MeV −1/3 0 −1
t 160+5

−4 GeV 2/3 0 0
b 4.18± 0.03 GeV −1/3 0 0

. Unitary symmetry

Symmetry is an important tool in physics. For example, we expect that two identical exper-
iments performed one hundred meters from each other should give the same result. This is
formalized as translation invariance which is a symmetry related to spacetime. In particle
physics there are also internal symmetries. This kind of symmetry corresponds to trans-
formations in an internal space, not in spacetime. An example is if all physical observables
are unaffected by rotating two degrees of freedom into each other. This is not a rotation
in spacetime but a rotation in a two-dimensional internal space. It is also possible to have
approximate internal symmetries where the theory acquires a real symmetry in some limit.
The limits can be things like turning off electromagnetism or setting some approximately
equal masses equal.

In QCD there is an approximate symmetry of this kind for the three lightest quarks. The
approximate symmetry becomes exact when the masses of the three lightest quarks are set
equal and the EM and weak interactions are turned off. These three quarks are enough
to form the lightest bound states of QCD. The approximate symmetry of QCD will have
consequences for the properties of the bound states. In this section we outline how the
approximate symmetry of QCD would manifest itself at the level of bound states.

A way to study this is by formalizing the symmetry on the level of quarks by constructing
explicit symmetry transformations. These transformation properties lead to transformation
properties of the bound states which are consequences of the underlying symmetry. These
consequences can then be compared with experimental information. In this section we
focus on the eight lightest pseudoscalar mesons. Some of their properties are listed in
Table .
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Table 2: Light pseudoscalar meson properties from [3]. The charge, isospin and strangeness can be determined
from the quark content. In the last four rows the η and η′ are states with definite mass while η0 and
η8 have definite quark content. The two are related by a rotation, we say that η0 and η8 mix to form
η and η′. Since this difference has little effect on the results in the papers we identify η with η8 and η′

with η0 in the following.

meson quark content mass charge isospin strangeness
π± ud̄ /d ū 140 MeV ±1 1 0
π0 u ū−d d̄p

2
135 MeV 0 1 0

K ± u s̄/s ū 494 MeV ±1 0 ±1
K 0/K̄ 0 d s̄/d ū 498 MeV 0 0 +1/− 1
η 548 MeV 0 0 0
η′ 958 MeV 0 0 0
η8

u ū+d d̄−2s s̄p
6

0 0 0
η0

u ū+d d̄+s s̄p
3

0 0 0

To give the transformation properties of the quarks, q , and antiquarks, q̄ , we define the
following vectors

q =
�

u d s
�T , q̄ =

�

ū d̄ s̄
�

. ()

In QCD all the terms involving quarks can be written as q̄ i A j
i q j , where repeated indices

are summed over which is a convention used throughout this introduction. In the case of
equal masses, A is proportional to the identity matrix and all the terms can be written as
Aq̄ i qi . The theory is then symmetric under unitary transformations of q and q̄ given by

qi →U j
i q j

q̄ i → q̄ j U † i
j

q̄ i qi → q̄ i U † j
i U k

j qk = q̄ i qi . ()

Unitary matrices can be written as

U = exp
�

−i
8
∑

a=0

T a

2
φa
�

()





where φa are numbers and the nine matrices T a are

T 0 =
p

2
p

3





1 0 0
0 1 0
0 0 1



 , T 1 =





0 1 0
1 0 0
0 0 0



 , T 2 =





0 −i 0
i 0 0
0 0 0



 ,

T 3 =





1 0 0
0 −1 0
0 0 0



 , T 4 =





0 0 1
0 0 0
1 0 0



 , T 5 =





0 0 −i
0 0 0
i 0 0



 ,

T 6 =





0 0 0
0 0 1
0 1 0



 , T 7 =





0 0 0
0 0 −i
0 i 0



 , T 8 =
1
p

3





1 0 0
0 1 0
0 0 −2



 . ()

The eight matrices T 1, . . . , T 8 form a closed algebra under the commutator
�

T a , T b
�

= i f ab c T c . ()

This kind of algebra is called a Lie algebra. The matrix T 0 is proportional to the identity
and thus commutes with all the others. The traceless generators T 1, . . . , T 8 generate the Lie
group of unitary 3×3 matrices with determinant one, SU (3). The generator T 0 generates
the group U (1) acting on a three-dimensional vector space. The diagonal generators play
a special role, they can be used to classify the states of the vector space. For example the
electric charges of the quarks are the eigenvalues of Q = 1

2 T 3 + 1
2
p

3
T 8.

For each of the mesons in Table  there is an associated matrix B such that q̄ i B j
i q j gives

the quark content of that meson. With the caveat that a quark field qi is associated with a
q̄i quark in QFT, and vice versa, the matrices associated with each meson, written in terms
of the generators T a , are

π+ =
T 1 + iT 2

2
, π− =

T 1 − iT 2

2
, π0 =

T 3
p

2
,

K + =
T 4 + iT 5

2
, K − =

T 4 − iT 5

2
, K 0 =

T 6 + iT 7

2
,

K̄ 0 =
T 6 − iT 7

2
, η =

T 8
p

2
, η′ =

T 0
p

2
. ()

Applying a unitary transformation to q̄ iπ+ j
i q j gives, to lowest order in φa ,

q̄π+q →q̄π+q + i q̄φa �T a ,π+
�

q

=q̄π+q −
∑

B∈π±,π0,K ±,K 0,K̄ 0,η,η′
iφa q̄B q ()

Note the comment about η, η′, η0 and η8 in Table .
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The mesons transform into each other due to the underlying symmetry. If the underlying
symmetry was exact this means that there would be an exact symmetry also from these
rotations. The symmetry is broken by electromagnetism and the quark masses, as seen in
Table  but up to these effect all states are the same.

From Table  this symmetry looks badly broken. Both the masses and the charges differ
between the mesons. On the other hand, ignoring the η′ and comparing with the mass
of the nucleons which are about 1 GeV the largest mass differences are of the order of
30%. Perhaps SU (3) is a more likely candidate for an underlying symmetry than U (1)×
SU (3). While the η′ stands out by being heavy the pions stand out by being light. The
subgroup SU (2) of SU (3) which treats up and down quarks as identical particles, but does
not involve the strange quark, looks like the best candidate for an approximate symmetry.
Exploring approximate symmetries of QCD is a large part of this introduction. This is
done in the language of quantum field theory which is introduced next.

 Quantum field theory

There is a famous experiment called Young’s double slit experiment, which shows that
even single particles can behave like waves. In the experiment there is a single particle
source and a detector in the form of a sheet which can detect single particles. In between
these two, there is a screen with two holes. The source emits single particles and, from
experience of the everyday world, the expectation would be that each particle goes through
either one hole or the other. However, as more and more particles are released, one by
one, an interference pattern is detected. The single particles behave as a wave would. An
illustration of the experiment is given in Figure .

The interference pattern comes from that the particles do not travel a distinct path; in
some sense they pass through both holes. Attempts to measure which hole the particles
passes through destroys the interference pattern. The experimental result can be described
using quantum mechanics (QM). In this case, QM predicts the probability for a particle
to land in a given region of the detector. This probability is the square of a probability
amplitude, denoted amplitude from now on. The total amplitude for passing through
either slit is the sum of the amplitudes for passing through each slit separately. Summing
the two contributions and taking the square gives an interference pattern in the particle’s
probability to land in a specific region of the screen. It is the amplitude which is wave like.

One way of calculating the total amplitude is to sum over all possible paths from the source
to the detector with a weight assigned to each path. A given path is described by a coordinate
which depends on the time. Suppressing one space direction, a path, P , is described by

This whole section is inspired by [].





source

screen

detector
probability

density

Figure 1: Double slit experiment experimental setup and probability density. The left most red point is the
source. From the source, two possible paths through the double slit to a point on the detector are
shown. On the right hand side of the detector the probability density for a single particle is shown.
Given enough particles approximately this distribution is expected among the particles landing on the
screen. Nothing is to scale.

~xP (t ). A path always starts at the single particle source and ends on the detector. Choosing
a specific point on the detector, the sum of all weighted paths from the source to that point
gives the contribution to the amplitude from that point. The correct weight to assign to
this path is

wP =
1
N

exp
�

i
∫

d t L(xP (t ), ∂t xP (t ))
�

, ()

where L is a Lagrangian describing the dynamics of the particle, ∂t xP (t ) is the derivative
of xP (t ) and N is a normalization factor such that the total probability to end up in any
point is 1. The collection of all paths with fixed starting and end points is then

1
N

∑

P∈paths
wP =

1
N

∑

P∈paths
exp

�

i
∫

d t L(xP (t ), ∂t xP (t ))
�

()

which gives the total amplitude.

The reason for introducing this experiment here is that the same reasoning applies with
no screen in between the source and detector. Summing over all weighted paths between
two points gives the probability amplitude. This idea generalizes directly to quantum field
theory (QFT).

The QFT description is different in that the degrees of freedom are no longer a fixed number
of particles with a wave function each. Instead, to each point in spacetime we assign a value,
call itφ(x ) where x includes both spatial and temporal coordinates. φ is then called a field.





All φ particles are excitations in the same field. In QFT the quantities we are interested in
can be calculated from time ordered correlation functions of the field in different spacetime
points. An example is the two point function, related to the mass of the particle,

〈0|T {φ(x )φ(0)} |0〉 = 1
N

∫

Dφφ(x )φ(0) exp
�

i
∫

d 4 yL (φ(y ), ∂φ(y )
�

. ()

Here
∫

Dφ means sum over all possible field configurations and

exp
�

i
∫

d 4 yL (φ(y ), ∂φ(y ))
�

()

gives the weight to assign to each field configuration. L is the Lagrangian density de-
scribing the dynamics of the system, which we assume is a local functional of the field and
derivatives of the field. The Lagrangian and the Lagrangian density are related by

L =
∫

d 3xL ()

but in the following the Lagrangian density will be referred to as only the Lagrangian. The
normalization factor N is

N =
∫

Dφ exp
�

i
∫

d 4 yL (φ(y ), ∂φ(y ))
�

. ()

There are issues of convergence in the above. To discuss these we assume that the quantum
mechanical version of the path integral works. There is then still the problem that it is not
clear whether summing over all field configurations makes sense. To remedy the situation
we can introduce spacetime as a lattice, with lattice spacing a, instead of a continuum. This
means that each point is itself a well defined quantum mechanical system and we have a
countable number of these systems.

The systems couple through derivatives. Going to momentum space using a Fourier trans-
form the derivatives give energy and momentum. The effect of the lattice is to allow mo-
menta only up to a cutoff π/a. This is reasonable also from a physics perspective, provided
a is small enough. Physics at long distance scales does not depend on the precise dynamics
at short distance scales. See [] for more on this.

In a typical particle physics experiment it is not correlation functions which are measured.
Instead there is a, more or less, well defined incoming state and what is interesting is the
probability of ending up in a given outgoing state. The probabilities are, as in QM, given by

T {φ(t )φ(0)} = θ(t )φ(x )φ(0)± θ(−t )φ(0)φ(t ) where θ(t > 0) = 1, θ(t <) = 0 and the plus(minus)
sign is for bosons(fermions).
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the square of an amplitude. All possible amplitudes are collected in the S-matrix, defined
as

S f i = 〈 f |i 〉 , ()

where |i 〉 is the initial state and 〈 f | is the final state. S-matrix elements can be obtained
from correlation functions using the LSZ theorem, see [].

The path integral is one way to quantize a field theory. Another way is canonical quantiza-
tion. In canonical quantization the field φ is an operator obeying the equal time commut-
ation relations

[φ(x ),φ(y )]± = 0 ()
[Π(x ),Π(y )]± = 0

[φ(x ),Π(y )]± = iδ (3)(~x − ~y ),

where Π(x ) is the conjugate field to φ(x ) defined by

Π(x ) =
δL

δ∂0φ(x )
()

and [A, B ]± = AB ±B A. The minus sign is for bosons and the plus sign is for fermions.

The lattice introduced above makes sense also in canonical quantization. Each lattice point
is a quantum mechanical system with its own set of commutation relations.

. Perturbation theory

Perturbation theory is an important tool used in the papers. Here, we will give a very brief
introduction to perturbation theory using a toy example consisting of an ordinary integral.
The results from the toy example are then quickly translated into rules used in QFT for a
scalar field. Finally, there is a very short introduction to renormalization.

Toy example

Let’s start by defining

In =
∫ ∞

−∞
dφφn exp

�

−k2

2
φ2 − λφ4

�

, ()

where φ is an ordinary real valued variable being integrated over. A correlation function
would then be similar to

〈0|φn |0〉 =
In

I0
. ()
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For small λ this can be calculated as an expansion in λ. To do this let us rewrite In as

In =
∫

dφφn exp
�

−k2

2
φ2 − λφ4

�

=
∫

dφφn exp
�

−k2

2
φ2 − λφ4 + Jφ

�

�

�

�

�

�

J=0

=∂n
J

∫

dφ exp
�

−k2

2
φ2 − λφ4 + Jφ

�

�

�

�

�

�

J=0

=∂n
J exp

�

−λ∂4
J

�

∫

dφ exp
�

−k2

2
φ2 + Jφ

�

�

�

�

�

�

J=0
()

where J is just an ordinary real valued variable and ∂ J is shorthand for derivative with
respect to J . Making the change of variables

φ→φ+ J
k2

()

brings the integral into the form

In = ∂n
J exp

�

−λ∂ J
�

exp
�

− J
1

2k2
J
�
�

�

�

�

J=0
×C . ()

Calculating correlation functions in perturbation theory is now a breeze, we don’t even
need the constant C . Just take

〈0|φn |0〉 =
∂n

J exp
�

−λ∂ J
�

exp
�

− J 1
2k2 J

�

�

�

�

J=0

exp
�

−λ∂ J
�

exp
�

− J 1
2k2 J

�

�

�

�

J=0

, ()

expand to the desired order in λ and take derivatives.

There is a diagrammatic interpretation of the above result. For each factor in ∂n
J assign an

external point. For each factor −λ assign an internal vertex. Join the external points and
vertices in every possible way, every vertex must have exactly four lines connected to it and
every external point must have exactly one line connected to it. To each line assign a factor
− 1

k2 . A few examples are given in Figure .

The denominator contains only diagrams with no connection to external points. These can
be factored out of the numerator, further simplifying the calculation. In order to do this,
suppose that we are looking at diagrams with n vertices which are connected to external
points, possibly via other vertices. If there are no disconnected pieces this comes from a
term with

�

−λ∂4
J

�n
/n!. If there are m vertices contributing to disconnected diagrams the
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−3 λ
(k2)2

12 λ
(k2)3

24 λ
(k2)4

Figure 2: A few example diagrams and their values in the toy example. The first diagram contributes to



0|φ2|0
�

,
the second to 〈0|0〉 and the third to




0|φ4|0
�

.

total diagram comes from
�

−λ∂4
J

�n+m
/(n + m)!. Picking out n vertices for the connected

part without considering order can be done in (n + m)!/(n!m!) ways. Summing over the
diagrams with m = 0, 1, . . . gives

∞
∑

m=0

�

−λ∂4
J

�n+m
/(n +m)! =

�

−λ∂4
J

�n
/n! exp

�

−λ∂4
J

�

. ()

This expression is acting on exp
�

− J 1
2k2 J

�

but since no lines connect the disconnected and
connected parts we have the result

�

−λ∂4
J

�n
/n! exp

�

−λ∂4
J

�

exp
�

− J
1

2k2
J
�

=
�

−λ∂4
J

�n
/n! exp

�

− J
1

2k2
J
�

exp
�

−λ∂4
J

�

exp
�

− J
1

2k2
J
�

()

where the equal sign holds under the assumption that the two parts are not allowed to be
connected. The conclusion is that correlation functions consist of all diagrams where every
vertex is connected to an external point, possibly via other vertices.

Perturbation theory in QFT

There are a few complications when going from the toy model to QFT but the diagrams
appear in the same way. To relate QFT to the toy example we introduce a source term
in the path integral and give a shorthand notation, Z , for the path integral with a source
term,

Z [ J ] =
∫

Dφ exp
�

i
∫

d 4x (L (φ(x ), ∂φ(x )) + J (x )φ(x ))
�

. ()
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Correlation functions can then be written using functional derivatives with respect to J ,
for example

〈0|T {φ(x )φ(0)} |〉 = δ J (x )δ J (0)
Z [ J ]
Z [0]

�

�

�

�

�

J=0
. ()

J is then interpreted as an external field which is a source for φ particles. Z [ J ] is called
the generating functional of correlation functions.

With the Lagrangian

L = 1
2
φ(x )

�

−∂2 −m2 + iε
�

φ(x )− λφ(x )4 ()

the derivation from the previous section goes through almost unaltered given that a Fourier
transform is performed. To use diagrams in QFT construct them in the same way as above
and translate according to

− 1
k2
→
∫

d 4k
(2π)4

i
k2 −m2 + iε

− λ→−iλδ (4)(p1 + p2 + p3 + p4) ()

where the δ function ensures momentum conservation at each vertex.

. Connection to measurements

The last stop in the QFT mini tour is the relation between parameters in the Lagrangian
and measured, physical, quantities. For this purpose, suppose someone set up a scattering
experiment for the fictitous φ particles described by the Lagrangian () but with m = 0.
All the momenta in the experiment are of order q , this is the scale at which the experiment
is performed. A measurement is performed which corresponds to a matrix element

MP = iλP . ()

The subscript P stands for physical since this is a measurement of something physical. It
can be regarded as a prediction to all orders in perturbation theory. The question which
will be answered in this section is how this measurement enters predictions at other scales.

If we calculate to first order in λ we only need to calculate the first diagram in Figure .
This tree diagram gives

Mtree = iλ = iλP , ()

δ J (x ) J (y ) is the functional derivative of J (y ) with respect to J (x ) given by δ J (x ) J (y ) =
δ

δ J (x ) J (y ) =
δ (4)(x − y ) where δ (4)(x − y ) is the four-dimensional delta function.

Ok, it works without as well but this suits my purposes.
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Figure 3: Diagrams needed for tree level and one loop calculations of φφ scattering. Vertices are marked with
a filled circle for clarity. The top left diagram is the tree level diagram which contributes with a single
factor of the coupling constant λ. The other three are one loop diagrams which contribute two factors
of the coupling constant λ.

where we have identified the Lagrangian parameter λ with the measured parameter λP .
To include effects of O (λ2) the loop diagrams in Figure  are needed. Calculating at an
arbitrary scale k , including these diagrams gives the general form of the matrix element as

Mloop(k ) = iλ+ iK λ2 log(Λ/k ) +C , ()

where K and C are two constants and Λ is the ultraviolet cutoff π/a. The Λ dependence
follows from that the integral needed in calculating the loop diagrams is of the schematic
form

∫ Λ

−Λ

d 4 p
(2π)4

i
p2

i
(k − p)2

()

This integral diverges for small p but this is not important for the point I am trying to make.
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which is proportional to the logarithm of Λ by dimensional analysis.

There are two issues withMloop(k ). First, setting λ = λP and k = q does not give the
prediction (). Second, Λ has appeared. The cutoff Λ was introduced in order to get
rid of high energy effects that we do not know anything about. Now it has appeared in a
prediction of φφ scattering. The solution to both problems is to set

Mloop(q ) = iλP . ()

Now there is no reference to Λ and we get the correct prediction! This gives

iλ+ iK λ2 log(Λ/q ) +C = iλP . ()

We can extract the parameter λ from the Lagrangian from this expression, up to corrections
of O (λ3),

λ(q ) = λp − iK λ2
p log(Λ/q )−C . ()

The coupling constant is no longer constant, it varies with the scale. Note that λP is defined
through a measurement at a specific scale and so really is constant. There is still reference
to Λ but this drops out inMloop(k ) which is

Mloop(k ) = iλP + iK λ2
P log(q/k ). ()

It is now possible to make predictions as long as k is not too different from q . In the case
where q and k are not of similar size there is a large logarithm which breaks the perturbative
expansion in λP .

To get rid of these, note that the right hand side of () does not depend on q while the left
hand side does. If we want to minimize the energy dependence in our predictions this is a
good place to start. Taking a derivative with respect to q on both sides gives a differential
equation for the coupling λ(q )

d λ
d q
−K

λ2

q
=

d λP
d q
= 0 ()

up to higher orders in λ. This equation is equivalent to taking one loop corrections as part
of the coupling and the resulting coupling should be used at tree level. The solution must
then satisfy λ(q ) = λP which gives

λ(k ) =
λP

1−K λP log(q/k )
. ()

Unless someone made a mistake!
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This expression is much more well behaved and still reproduces () upon expansion in
terms of λ. The coupling will still become large when the denominator goes to zero but the
scale dependence of predictions is minimized. Note that the sign of K determines whether
the coupling increases or decreases as k increases.

To summarize, the connection between parameters in the Lagrangian and measurements
changes order by order. In order to reproduce a change of scale in an experiment, loop
diagrams are needed and this redefines the parameters of the Lagrangian making them
energy dependent. This is called renormalization. The energy dependence must satisfy
differential equations coming from the fact that physical quantities must remain fixed when
changing scale.

 Effective field theory

An effective field theory is a field theory where only the relevant degrees of freedom are taken
into account. All other physics is encoded in the coupling constants of the theory. As long
as all energies in an experiment are O (mπ) the relevant degrees of freedom in QCD are the
pions. The effects of heavy particle propagation can be encoded in the pion couplings to
some approximation which should be valid up to O (mπ/mK ). If nature didn’t work this
way, it would be difficult to make progress in physics.

That effects of heavier states can be encoded in the couplings is essentially the same as
that the effects of heavy particles are local. This essentially follows from the uncertainty
principle, which tells us that in order to probe physics at small distances we need large
momentum transfer. For small momentum, positions remain uncertain. Heavy states must
be highly off shell for small momenta and can not propagate long distances and therefore
appear effectively local.

From the above discussion it is not clear why EFTs are interesting when the underlying
theory is known. In this thesis EFTs for low energy QCD are used since there is no known
analytic way of making quantitative predictions directly from QCD if the energy is low
enough. Perturbation theory in the strong coupling doesn’t work since the strong coupling
becomes large at low energies. With EFTs it is possible to make predictions without know-
ing exactly how quarks and gluons enter low energy QCD. In a more general sense EFTs
are often useful when there are widely separated scales in a problem, see [].

In constructing EFTs a guiding principle is Weinberg’s folk theorem which states that “If
one writes down the most general Lagrangian, including all terms consistent with assumed
symmetry principles and then calculates matrix elements with this Lagrangian to any given
order in perturbation theory, the result will simply be the most general possible S-matrix
consistent with analyticity, perturbative unitarity, cluster decomposition, and the assumed
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symmetry principles”[]. This statement was shown to be correct in the case of χ PT in [].

Now, if the folk theorem was all we had there would be an infinite set of operators in the
Lagrangian, each with a coupling constant which would have to be measured. This would
not be a predictive model. A way to organize the operators in the Lagrangian as well as the
Feynman diagrams was provided by Weinberg in the same paper as the folk theorem. This
organizing principle will be addressed below.

. Weinberg’s power counting

To discuss power counting let’s assume that we have written down the most general Lag-
rangian for a field, π, and it happens to be of the following schematic form

L = −π(∂2 +m2)π+
∞
∑

n=1
π2V2n

∂2n

Λ2n−2
H (π) ()

where H (π) is a polynomial in π/Λ with Λ a dimensionful constant which is there to get
the dimensions right, and V2n is a dimensionless coupling constant assumed to be O (1).
The form is schematic, the relevant part here is that all terms contain powers of derivatives
yielding factors of momenta which are compensated by powers of Λ.

Λ is related to the cutoff where degrees of freedom which are not explicitly included enter.
We assume that p ∼ m � Λ which would be the case if Λ represents a mass of a particle
which is large when compared with p and m. Moreover, we assume that no positive powers
of Λ can result from any part of calculating a diagram. The schematic form of the Lag-
rangian together with the assumptions tell us the relative importance of a given diagram.
For a given process every Feynman diagram has the same dimension of energy, we call this
d . Each power of momentum or mass, except for the first d , in the expression for a specific
diagram is compensated by a factor 1/Λ. In order to calculate the number of suppression
factors we rescale p and m by a factor t ,

p→ t p,
m→ t m. ()

A diagram which scales as t D then has a 1/ΛD−d suppression. To use this information to
classify diagrams we need to work out the scaling of a generic diagram in terms of its parts.

A diagram consists of external lines, vertices, propagators and loops. In a diagram every
propagator contributes t −2, every loop contributes t 4 and every vertex with coupling V2n ,

This has to do with how momentum integrals are regularized, the cutoff introduced above does not satisfy
this property, see section ..
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assumed O (1), contributes t 2n . In total a diagram with NI propagators, NL loops and N2n
vertices of type V2n scales with t D where

D = 4NL − 2NI +
∞
∑

n=1
N2n2n. ()

The number of vertices can be eliminated using the relations

NL =NI − (NV − 1)

NV =
∞
∑

n=0
N2n , ()

which follow from that every propagator contributes an integration over momentum and
every vertex has a delta function but one delta function is needed for overall momentum
conservation. This gives

D = 2+ 2NL +
∞
∑

n=0
N2n(2n − 2), ()

which means that the relative importance of diagrams can be determined by the number
of loops and the powers coming from vertices. Moreover, this information can be used to
organize the terms in the Lagrangian according to the number of derivatives and masses.
This means that for a given precision there are only a finite number of coupling constants
to determine and the theory is predictive.

The assumption V2n ∼ O (1)was vital for this to work. If for some reason a specific coupling
constant, V2i , happens to be very large the above argument falls apart. Assuming that the
couplings are of O (1) is the same as assuming that dimensional analysis works. In principle,
only measurement of the couplings can show if this is a valid assumption.

As a more general comment, it is also possible to construct predictive EFTs when all coup-
lings are not derivative couplings. One example is the SM EFT where higher-dimensional
operators are added to the SM. The expansion scheme of choice is then a combination of
an expansion in dimension as above and an expansion in the coupling constants of the SM.

. Renormalization in EFT

In renormalizing the φ4 interaction in section . it was possible to redefine λ in such a
way that predictions come out with no reference to the cutoff Λ. If we would instead have
had the interaction term

λ
∂2

Λ2
φ4 ()

This assumption can be used to estimate the size of unknown couplings, see for example []
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we would have obtained one loop matrix elements such as

M = iλ
q2

Λ2
+ i

λ2

16π2Λ4
C
�

Λ4 + q2Λ2 + q4 log(Λ/q )
�

, ()

where 1/16π2 is a generic loop suppression factor which was not important until now.
The first term from the loop diagrams is not suppressed by any factors of Λ. This is not a
violation of power counting since the cutoff regulator violates the assumptions by giving
positive powers of Λ. The factor 1/16π2 does not help because there are always q such
that q2/Λ2 < λC /16π2.

A regulator that does satisfy the assumptions is dimensional regularization. In this reg-
ulator loop integrals are evaluated in d dimensions instead of 4. Going from a cutoff
regulator to dimensional regularization is accomplished by

∫ Λ

−Λ

d 4 p
(2π)4

→
∫ ∞

−∞
µ2ε d d p
(2π)d

()

where 2ε = d − 4 and the factor µ2ε keeps the dimensions right. An example integral
would be

∫

µ2ε d d p
(2π)d

i
p2 −m2

= − m2

16π2

�

1
ε̄
− log

m2

µ2

�

+O (ε) ()

where 1/ε̄ = 1/ε− (1+ log 4π+ γE ) with γE the Euler–Mascheroni constant. The quad-
ratically divergent integral has a pole in in 1/ε = 2/(d − 4) and a logarithm containing
a scale. Generically in dimensional regularization any divergence shows up in this way.
Moreover, since this integral is quadratically divergent in  dimensions it is logarithmically
divergent in  dimensions and there would be poles for every d ≥ 2. However, since we
are only interested in d = 4 we see only that pole and the corresponding logarithm. To see
that this really is a regulator which suppresses contributions far away from µ see [].

With dimensional regularization the matrix element is schematically

M = iλ
q2

Λ2
+ i

λq4

16π2Λ4
D
�1
ε̄
+ log(µ2/q2)

�

, ()

with a new constant D . There is still one more point to address here, how to remove 1/ε.

In order to remove 1/ε we have to modify a coupling constant from an operator of the
form

κ
∂4

Λ4
φ4. ()

There are ways of using cutoff regularization but using dimensional regularization is easier.
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This is just what the power counting says, loops and extra derivatives in the Lagrangian are
of the same order in the power counting. The most common way to do this is to define

κ = κR +
E
ε̄

()

where κR is a numerical constant to be determined from experiment and E is such that 1/ε̄
cancels. This scheme is called modified minimal subtraction (M S ). The constant, κR , has
to be O (1) for power counting to be consistent, if this is the case there really is a suppression
by O (1)q4/Λ4.

Note that it is not possible to resum logarithms in the way done in section . in this theory.
The reason is that κ was needed to renormalize λ. There will then not be a differential
equation for λ alone. The corresponding equation will instead result in relations between
couplings with different numbers of derivatives. As a result the logarithms with power n
in an n loop expansion can be obtained from calculating only one loop diagrams, see [].

As a final comment on dimensional regularization it might seem strange that the integral
is not cut off but instead is extended to infinity, albeit in d dimensions. The high energy
modes in this integral would have to be highly off shell and so, by the uncertainty principle,
appear local. Local terms can be absorbed in the coupling constants. This highlights the
fact that the coupling constants are renormalization scheme dependent.

 QCD and symmetries

With this short introduction to QFT and EFT we turn to the object under study, low
energy QCD. As was noted in section  the degrees of freedom in low energy QCD are
not the quarks and gluons but bound states. Using the EFT idea we want to develop a
low energy theory for QCD. Symmetries play a central role in this analysis so a first step is
to introduce QCD and the symmetries of QCD. However, to analyze the symmetries we
must first introduce the QCD Lagrangian.

The Lagrangian for a single free quark is

L f r e e = q̄
�

iγµ∂µ −m
�

q ()

where q̄ and q have four components. The matrices γµ are 4 × 4 matrices in this space
and satisfy {γµ,γ ν} = 2ηµν I where ηµν is the Minkowski metric and I is the 4×4 identity
matrix. m is proportional to the identity matrix.

In the φ4 example above we renormalized by settingM = iλP at some scale, this is called momentum
subtraction. This is very different from the subtraction scheme introduced here where the pole is subtracted.
In the end both should predictM = iλP .
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The Lagrangian of QCD for a single flavor is given by

LQ C D = q̄ j
�

iγµDµk
j −mδ k

j

�

qk −
1
4

F aµνF a
µν ()

where

F a
µν = ∂µG a

ν − ∂νG
a
µ + gs f ab c G b

µG c
ν ,

Dµqi =

 

δ j
i ∂µ − i gs G

a
µ

T a j
i

2

!

q j , ()

gs is the strong coupling constant and T a are the matrices from (). a, b , c are gluon color
indices in the range 1, . . . 8 and i , j , k are quark color indices in the range 1, 2, 3. Any
repeated index is summed over. G a

µ are the eight gluons.

This Lagrangian is invariant under the transformations

q (x )→U (x )q (x )

q̄ (x )→ q̄ (x )U †(x )

Gµ(x ) =
T a

2
G a
µ(x )→U (x )Gµ(x )U

†(x )− i
gs

�

∂µU (x )
�

U †(x ) ()

where

U (x ) = exp
�

−iφa(x )
T a

2

�

()

with φa(x ) parameterizing the local transformation and the color indices have been sup-
pressed. Note that the parameters of the transformation is spacetime dependent. The
Lagrangian has a local symmetry, or a gauge symmetry. Spacetime independent transform-
ations are called global transformations and invariance under such a transformation is called
a global symmetry. The SU (3) group corresponding to the local transformation is called
SU (3)C where C stands for color.

The QCD Lagrangian is written in terms of quarks and gluons. Due to confinement these
are never directly observed. The observed states of QCD are color neutral bound states.
The most common bound states are mesons and baryons. These are the degrees of freedom
at low energies. Since the states are color neutral, any Lagrangian written in terms of these
states is compatible with SU (3)C . This means that color symmetry does not provide much
useful input for a low energy EFT for QCD. There are, however, global symmetries which
do give useful constraints.
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. Global symmetries

The low lying bound states in QCD are composed of up, down and strange quarks. These
are the quarks which are most important at low energies. In this section the global sym-
metries of the QCD Lagrangian are described. Since the gluon part of the Lagrangian is
symmetric under these symmetry transformations, it is not written explicitly.

The QCD Lagrangian for the three light quarks is

LQ C D =
∑

i=1,2,3
q̄ i �iγµ∂µ −mi

�

qi , ()

where i is a flavor index as in section ., not a color index, and

q =
�

u d s
�T , q̄ =

�

ū d̄ s̄
�

. ()

The Lagrangian is the sum over three free quark fields with masses mu , md , ms . A symmetry
of this Lagrangian is given by

q → exp(−iθ)q , q̄ → q̄ exp(iθ). ()

This change of phase is a U (1) symmetry. The Lagrangian is also symmetric under parity,
time reversal and Lorentz transformations. To go further we make the assumption that
the masses of the three lightest quarks can be treated as small and thus neglected as a first
approximation. Any symmetry found in this limit is an approximate symmetry.

It is far from obvious that the concept of almost symmetric makes sense. To relate to
it, think of a regular polygon which becomes more and more circle like as the number of
vertices increases. There is a better and better approximate rotation symmetry. Importantly,
in the limit where the number of vertices goes to infinity the polygon becomes a circle. The
approximation is useful since the polygons can be used to approximate, for example, the
area of the circle. For QCD the roles are reversed, QCD with quark masses is less symmetric
than massless QCD. The similarity with the circle example is that there are still insights to
be gained. The Lagrangian for massless QCD is

L (0)Q C D =
∑

i=1,2,3
q̄ i iγµ∂µqi . ()

There is now a global SU (3) symmetry under the transformations

qi → exp
�

−iθa T a

2

� j

i
q j , q̄ i → q̄ j exp

�

iθa T a

2

�i

j
. ()

The symmetry transforms the three quark flavors into each other as in section . and has
nothing to do with the color indices of SU (3)C . There is actually a larger symmetry than
SU (3)×U (1) when left and right handed fields are considered.
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The left and right handed quark fields are defined by

qL =
1− γ 5

2
q , qR =

1+ γ 5

2
q

q̄L = q̄
1+ γ 5

2
, q̄R = q̄

1− γ 5

2
()

where γ 5 is a 4 × 4 matrix in spinor space which anti commutes with all the γµ. The
fifth γ matrix is hermitian (γ 5)† = γ 5. The right and left handed fields live in different
representations of the Lorentz group, they transform differently under rotations. The two
are related by parity, PψR = ψL. The right and left handed fields separate in the massless
limit

L (0)Q C D =
∑

i=u,d ,s
q̄ i

Liγµ∂µqi L + q̄ i
R iγµ∂µqi R . ()

This Lagrangian has the symmetry

SU (3)L × SU (3)R ×U (1)L ×U (1)R ()

together with parity, time reversal and Lorentz invariance. We now turn to consequences
of the symmetries.

. Noether’s theorem

The invariance of the Lagrangian under a global symmetry gives that the action

S (φ) =
∫

d 4xL (φ) ()

is also invariant. If the symmetry is parameterized in terms of a variable α we write this as

δSα(φ) = 0. ()

If we now let α depend on x , the change in the action must be proportional to the derivative
of α(x ).

δSα(x )(φ) = −
∫

d 4x∂µα(x ) j
µ(x ) ()

for some current jµ(x ). However, the left hand side of this equation is zero when φ are
solutions to the classical equations of motion which are derived from the action principle

δS (φ) = 0 ()

If there was no global symmetry to begin with there would be terms not involving derivatives of α(x ) on
the right hand side.
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where any change in φ is now allowed. Integrating by parts in the right hand side of ()
and noting that we can choose α(x ) arbitrarily, we conclude that

∂µ jµ(x ) = 0. ()

The quantity jµ is called a conserved current. To each such conserved current there is a
time independent charge,

Q =
∫

d 3x j 0(x ). ()

The time independence isn’t enforced but follows from (),

∂0

∫

d 3x j 0(x ) =
∫

d 3x∂i j i (x ) =
∫

d Si j i (x ) = 0 ()

where the divergence theorem has been used in the second equality and the current is
assumed to vanish on the boundary.

Moving now to QCD and performing local versions of SU (3)L×SU (3)R×U (1)L×U (1)R
in this manner gives the conserved currents

La
µ = q̄Lγµ

T a

2
qL, Ra

µ = q̄Rγµ
T a

2
qR , ()

where a = 0 corresponds to U (1)L and U (1)R . In the canonical quantization picture there
is a connection between the conserved charges and the symmetry transformations on the
fields given by

exp(−iαa
LQ a

L )qL(x ) exp(iαa
LQ a

L ) = exp(−iαa
L

T a

2
)qL(x ), ()

with a similar expression for q̄L. This follows from applying the commutation relations ()
to show that

[Q a
L , qL] =

T a

2
qL. ()

This connection makes it possible to discuss transformation properties of vacuum.

Transformations of the vacuum can be found if we require that arbitrary correlation func-
tions should be invariant under the symmetry transformation of the fields. For this to hold,
the vacuum transformation must undo the transformations of the field which gives that the
vacuum must transform as

|0〉 → exp(−iαa
LQ a

L ) |0〉 . ()
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For the vacuum to be invariant under the symmetry, the charge must annihilate the vacuum

Q a
L |0〉 = 0. ()

The vacuum must carry zero charge.

The conserved currents essentially follow from the symmetries of massless QCD. When
constructing a low energy theory guided by symmetries the low energy theory should also
provide corresponding conserved currents in the massless limit. Of course, since the particle
content is different the current will be different but there should still be a corresponding
conservation law.

There is a caveat to the above reasoning. While there are  conserved currents in the
classical field theory this is no longer true in the quantum field theory. This will be discussed
in the next section.

. Ward identities

In QFT we are interested in symmetry constraints on correlation functions. These can be
studied using the path integral,

I =
∫

DqDq̄ exp
�

i SQ C D
�

, ()

where DqDq̄ is short hand for Πq=u,d ,s DqDq̄ ,.

The way to analyze symmetries in this case is to use a change of variables. The change of
variables corresponding to a local version of SU (3)L is

qL→ exp
�

−iθa
L(x )

T a

2

�

qL, q̄L→ q̄L exp
�

iθa
L(x )

T a

2

�

. ()

Performing this change of variables and expanding to first order in θa
L(x ) gives

I =
∫

DqDq̄
�

1+
∫

d 4xθa
L(x )∂

µLa
µ(x )

�

exp
�

i SQ C D )
�

= I +
∫

DqDq̄
�
∫

d 4xθa
L(x )∂

µLa
µ(x )

�

exp
�

i SQ C D )
�

()

canceling I on both sides and removing the integral over x since θa
L(x ) is arbitrary gives

0 = ∂µx

∫

DqDq̄La
µ(x ) exp

�

i SQ C D )
�

. ()





Noether’s theorem holds inside the path integral for this current. There are similar identities
for other correlation functions which can be derived in the same way. This kind of identity
is usually referred to as a Ward identity.

The derivation presented above is valid under the assumption that the path integral measure
is invariant under the local change of variables. It is in the case above, but it is not for the
change of variables

qL→ exp (−iθ(x )) qL, q̄L→ q̄L exp (iθ(x ))
qR → exp (iθ(x )) qR , q̄R → q̄R exp (−iθ(x )) , ()

that is a combination of U (1)L×U (1)R whereθL = −θR = θ. This combination of U (1)L×
U (1)R is a symmetry at the classical level but not at the quantum level. The symmetry is
called an anomalous symmetry. The left and right handed currents from U (1)L×U (1)R are
therefore no longer conserved separately. There is still a conserved current corresponding
to θL = θR = θ. The symmetry group is called U (1)V , where V stands for vector. The
corresponding conserved current is Vµ = Lµ + Rµ.

The symmetry group of massless QCD at the quantum level is SU (3)L×SU (3)R×U (1)V ,
parity, time reversal and Lorentz invariance. The symmetry group SU (3)L × SU (3)R is
usually called chiral symmetry since it treats left and right handed fields differently. The
association of this symmetry with the massless limit justifies the name chiral limit for the
massless limit. It is also common to refer to the group where the left and right handed fields
transform with the same angle as SU (3)V and the other transformations, where the left and
right handed fields transform oppositely as SU (3)A, with A for axial. This is an abuse of
notation since SU (3)A is not really a group. The commutator of two axial generators is a
vector generator, [T a

L −T a
R , T b

L −T b
R ] = i f ab c (T c

L +T c
R ), so there is no closed Lie algebra.

To get closer to the real world we need to include masses for the quarks and interactions
with electroweak gauge bosons. These are effects that potentially break the symmetry group.
This can be done using the external field method which will be introduced next.

. Ward identities with external fields

As stated above the quark masses and couplings to electroweak bosons need to be included.
Note that the goal is not to include more dynamical degrees of freedom, like a propagating
W . The idea is rather to include interactions with the bosons to compute the strong part
of matrix elements.

A quick way to remember this is that switching left and right on the left hand side gives back the same
expression, this means that the right hand side must satisfy the same and therefore has to be zero or a vector
generator.
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In the SM the W couples to La
µ. To introduce this interaction we start from the generating

functional

Z [l a
µ ] =

∫

DqDq̄ exp
�

(i SQ C D ) +
∫

d 4x l a
µ (x )L

µ
a (x )

�

()

where

La
µ = q̄Lγµ

T a

2
qL ()

from () and l a
µ are external fields. The new term breaks the Ward identity (), and the

information how this is done should be transferred to the low energy theory. Performing
the same change of variables as in the previous section gives the identity

0 =
∫

DqDq̄
�

∂µLa
µ(x )− i l b

µ (x ) f
ab c Lc

µ(x )
�

exp
�

i SQ C D )
�

. ()

This relation should then be fulfilled in the low energy theory with whatever corresponds
to La

µ(x ).

The information in () can be transferred to constraints on the generating functional.
Specifically, by demanding

Z [l a
µ ] = Z [l a

µ + ∂µθa
L(x )− iθb

L l c
µ(x ) f

ab c ] ()

and expanding both sides to first order in θL gives (). It is more convenient to write ()
in terms of lµ = l a

µ
T a

2 which gives

Z [lµ] = Z [UL(x )lµU †
L (x ) + i

�

∂µUL(x )
�

U †
L (x )] ()

where UL(x ) is an SU (3)L matrix. Transformations will henceforth be written in this form,
rather than the infinitesimal form used up until now.

This equivalent formulation of the Ward identities follows from that the right hand side of
() is invariant under the substitutions

q →UL(x )q ,

q̄ → q̄U †
L (x ),

lµ→UL(x )lµU †
L (x ) + (∂

µUL(x ))U
†

L (x ). ()

The left hand side of () is not invariant but should produce the same physics as the right
hand side which is invariant, giving (). To see the relation to the Ward identities on the
right hand side, change variables of the quarks in a way which undoes the quark substitu-
tion. Such a change of variables is precisely what gives Ward identities but now there is no
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transformation on the quarks. The Ward identities must be contained in the change in the
external fields which is what () says.

From a low energy perspective the virtue of the formulation in () is that there is no
mention of the high energy degrees of freedom. Imposing () in the low energy theory
is the same as imposing the symmetries and symmetry breakings of SU (3)L present in
the high energy theory. The method is called the external field method and it works for
including other symmetry breaking effects as well, such as the mass term.

The mass term in QCD has the form

Lmas s = −q̄ i m j
i q j ()

where

m =





mu 0 0
0 md 0
0 0 ms



 . ()

It is conventional to introduce a scalar external field, s , through which the mass term can
be introduced. The relevant part of the QCD Lagrangian is

Ls = −q̄ i
L s † j

i qR j − q̄ i
R s j

i qLj . ()

Quark masses are introduced by setting s = m.

The external scalar field breaks SU (3)L × SU (3)R symmetry. However, the added term is
invariant under the substitutions

qL→UL(x )qL, q̄L→ q̄LU †
L (x )

qR →UR (x )qR , q̄R → q̄R U †
R (x )

s →UR (x )sU †
L (x ), s †→UL(x )s

†U †
R (x ). ()

The corresponding constraint on the generating functional is then

Z [s ] = Z [UR (x )sU †
L (x )], ()

where the transformation on s † is understood.

Checking how a specific term would have to transform in order to be invariant under
a symmetry is called a spurion analysis. Table  includes all the external fields that are
needed in low energy QCD and how these transform. There is also an external field, p,
which couples to the pseudoscalar term q̄γ5q , included even though there are no such
terms in QCD. However, Ward identities relate this field to the others and these are useful.
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Table 3: Transformation properties of the external fields. UL(x ) is a local transformation in SU (3)L and UR (x ) is
a local transformation in SU (3)R . Note that all the external fields are 3× 3 matrices.

Term inL external field transformed external field
q̄Lγµ l µqL l µ UL(x )l µU †

L (x ) + i (∂µUL(x ))U
†

L (x )
q̄Rγµ r µqR r µ UR (x )r µU †

R (x ) + i (∂µUR (x ))U
†

R (x )
q̄R s qL s UR (x )sU †

L (x )
q̄Rγ5 pqL p UR (x )pUL(x )

As mentioned above, the transformation properties of the external fields are needed to
determine the correct low energy theory.

So far we have described the global continuous symmetries of massless QCD and how to
include symmetry breaking terms. It is time to see if the spectrum of QCD can be explained
in terms of these symmetry considerations.

. The QCD spectrum and SU (3)L × SU (3)R

If the quark masses can be seen as a small perturbation on top of an underlying SU (3)L ×
SU (3)R symmetry, the spectrum should show traces of the underlying symmetry, similarly
to the SU (3) symmetry in section .. Massless QCD on the other hand produces two
SU (3) groups. The consequence of this is that for each parity odd bound state in the
spectrum there should be a parity even bound state with the same quantum numbers, up
to symmetry breaking effects.

The reasoning, following [], is as follows. Denote a single particle hadron state with
definite parity by |h〉. If we apply the combination of charges Q a

A =Q a
L −Q a

R , for some a,
to this state we get a state of opposite parity given by

Q a
A |h〉 . ()

Applying the Hamiltonian to this state, to calculate the energy, and noticing that Q a
A com-

mutes with the Hamiltonian due to the symmetry, gives

H Q a
A |h〉 = EhQ a

A |h〉 . ()

The state has the same energy as the hadron state alone. Taking the hadron to be at rest
the conclusion is that for each state there should be a state of opposite parity with the same
mass.

This parity doubling is not present in the QCD spectrum. There is still a way to save the
massless approximation as a good place to start for low energy QCD. If we assume that the
lightest pseudoscalar multiplet becomes massless in the massless limit and that Q a

A creates
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such states at rest. Note that the lightest pseudoscalar octet and the operator Q a
A share the

same quantum numbers. Denoting the state created by Q a
A by πa we get

H Q a
A |h〉 = Eh

�

�hπa� . ()

Energy conservation requires that πa is massless.

The assumption that

Q a
A |0〉 6= 0 ()

means that although the action is invariant under the symmetry, the vacuum is not. This
is known as spontaneous symmetry breaking. The massless states created by Q a

A are called
Goldstone bosons. There is one such Goldstone boson for each charge corresponding to a
broken generator. The lightest pseudoscalar octet would then be pseudo Goldstone bosons.
That is, Goldstone bosons due to the breaking of an approximate symmetry.

Since the pseudo Goldstone bosons are Goldstone bosons in the limit of massless quarks,
their masses have to be proportional to the quark masses through some proportionality
constant. Looking at the quark masses in Table  and the masses of the lightest pseudoscalar
mesons in Table  what is needed is m2

i j̄ ∝ mi +m j for mi j̄ the mass of a meson with flavor
content i j̄ and mi ( j ) the quark mass for an i ( j ) quark. In words, the squared masses of
the lightest pseudoscalar mesons must be proportional to the quark masses through some
dimensionful constant.

Given that the symmetry is broken the axial charges create Goldstone bosons,

Q a
A |0〉 =

�

�φa� . ()

Such Goldstone bosons must be annihilated by the charges and the charges can be seen as
the zero component of the axial current at zero momentum. Combining this with Lorentz
invariance gives

¬

0|Aa
µ(0)|φ

b (p)
¶

= i pµF0δ
ab , ()

where F0 is the Goldstone boson decay constant in the chiral limit. As is shown in for
example [], one possible way to break the symmetry in this way is if

〈0|q̄ q |0〉 = 〈0|q̄LqR |0〉+ 〈0|q̄R qL|0〉 = v 6= 0. ()

In this case 〈0|q̄ q |0〉 is called an order parameter for the spontaneous symmetry breaking.
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. The spectrum of low energy QCD and spontaneous symmetry breaking

The above analysis is rather more complicated than saying that the SU (3) present in the
QCD spectrum comes from setting the light quark masses equal. Spontaneous symmetry
breaking does have some explanatory benefits, however.

One virtue of spontaneous symmetry breaking is that it gives an explanation to why the
lightest meson states are so much lighter than the lightest baryon states. Pions are made
of pairs of up and down quarks while the proton and neutron are made out of three such
particles. A naive expectation would be that the mass ratio should be around 2 : 3. Instead
the pions have masses around 135 MeV and the nucleons have masses around 1 GeV. This
unexpected behavior is explained if most of the mass of the nucleons are from QCD binding
energy while the pion mass is forced to be proportional to the quark mass due to symmetry.

This perspective would also explain why the SU (3)V symmetry is a good approximation.
If most of the mass of the more massive particles originate from dynamical effects and the
SU (3)V symmetric part with mu = md = ms , then the symmetry breaking part is causing
only the differences in the spectrum. With only SU (2) symmetry it is especially clear
since the nucleon masses are about  GeV and the mass difference is about  MeV. The
relevant scale to compare the quark mass differences with would then be ΛQ C D which is a
few hundred MeV []. Another reasonable scale to compare with is the average contribution
to the nucleon masses per quark, which should be related to SU (3)V . This is about 330
MeV. Predictions based on SU (2) symmetry should then be expected to hold at around
the percent level, whereas predictions from SU (3) symmetry should be good to about %
[].

Using a low energy model which incorporates the symmetry breaking effects, it is be possible
to improve the predictions in powers of m/ΛQ C D , which is the next topic.

 Chiral perturbation theory

“A chiral symmetry can only hold if the baryon masses are neglected altogether;
it is automatically a bad approximation.”

—Sidney Coleman’s PhD thesis from  []

The goal in constructing a low energy theory of QCD is to produce the correct correlation
functions. Written in terms of the generating functional, the goal is

ZQCD[v, a, s , p] = Z(low energy)[v, a, s , p], ()

Electromagnetism would also play a role.
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where v, a, s , p are the vector, axial vector, scalar and pseudoscalar external fields respect-
ively. The left hand side of () contains all the information about low energy QCD but
we can not access it with analytical techniques. One way to make predictions in low en-
ergy QCD is to construct an EFT which approximates the right hand side of () to some
precision.

To do this we will assume that the SU (3)L× SU (3)R symmetry of massless QCD is spon-
taneously broken to SU (3)V . The squared masses of the lightest pseudoscalar mesons
would be linearly proportional to the quark masses, while the baryon states could still be
massive in the massless limit. The theory described below, starting from this assumption, is
χ PT [, ]. The success of χ PT is in itself an indication that this spontaneous symmetry
breaking takes place. However, as with any effective field theory there is a limited range of
validity.

The validity range of χ PT should be dictated by the lightest particles which are not in-
cluded in the low energy theory; the σ and the ρ. While the σ is lighter it is also broader.
The σ might also be a ππ bound state. Moreover, model calculations suggest that the
most important effects on the χ PT coupling constants come from the ρ meson []. This
indicates that χ PT should be valid up to somewhere around the ρ mass, but in the end
the range of validity depends on the process being studied. The question might then arise
why these particles are not included so that the range of validity is increased. It turns out
that it is difficult to find a unique theory with these states, see section .

To build a theory which is invariant under SU (3)L×SU (3)R , with the eight lightest mesons
as degrees of freedom, we need to know how they transform. This is the first task below.
Then the lowest order χ PT Lagrangian is developed. The next section after that discusses
the nature of χ PT predictions.

. Transformation properties of the fields

From Table  we know the external field transformation properties. The goal now is to
use this information to build a Lagrangian for χ PT which reproduces low energy QCD.
However, to do this the transformation properties of the light pseudoscalar octet must be
determined. The formalism to determine this, referred to as the CCWZ formalism, was
introduced in [, ]. The presentation here closely follows []. We start with a toy
example.

The range of validity for the SM is being explored at the LHC and other experiments around the world.
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CCWZ toy example

Assume that we have a field theory with three scalar fields φ1,φ2,φ3 and that the Lag-
rangian can be written in terms of ~φ · ~φ where

~φ =





φ1
φ2
φ3



 . ()

There is then an O(3) rotational symmetry in the Lagrangian. Suppose further that the
potential of the theory enforces ~φ · ~φ = v . At least one of the fields is forced to have a
non zero value in vacuum. Any choice of non zero fields which satisfy ~φ · ~φ = v is ok, the
particular choice will not affect the physics. Making the choice φ3 =

p
v means that the

only remnant of the rotation symmetry are rotations around the 3-axis. We denote elements
of this unbroken subgroup by h . The charges corresponding to the other generators do
not annihilate the vacuum. By Goldstone’s theorem, two broken generators leads to two
massless particles. The question is, how to parameterize these?

The fields which satisfy ~φ · ~φ = v form a sphere and the condition φ3 =
p

v is a specific
point on the sphere. Fluctuations in the radial direction are massive since the potential
has degenerate minima on the sphere. The massless excitations lie on the sphere. The
coordinates on the sphere should be a way to describe the massless states.

Any point on the sphere, and therefore any field configuration for the massless fields, can
be described by

~φ = u





0
0
v



 = exp (i Jsπs )





0
0
v



 ()

where u is a group element of O(3) and Js are the generators of O(3). A possible choice
of parameterization of the massless excitation is given by x -dependent coordinates πs (x ).
There are three generators and therefore three coordinates which means that there would be
degeneracy in the description of the sphere. A simpler choice follows from the observation
that any point on the sphere can be reached using only the broken generators,

u(x ) = exp(i J1π1(x ) + i J2π2(x )). ()

This is the prescription from [, ] in this case.

This parameterization is unique close to the identity which is all that is needed in perturbation theory.
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To see how this field transforms under g ∈ G , note that the field configurations u(x ) and
u(x )h are equivalent when h is a rotation around the three axis. This follows from

h





0
0
v



 =





0
0
v



 . ()

Under a symmetry transformation with g ∈G , ~φ transforms as ~φ→ g ~φ. The transform-
ation on u is then u(x ) → g u(x ). The matrix g u(x ) is no longer in the form of ().
However, since every point on the sphere can be reached by transformations of the form
of () and g is just a rotation, it must be possible to write g u(x ) in terms of broken
generators times a transformation h ∈ H ,

g u(x ) = u ′(x )h . ()

Multiplying with the inverse of h on both sides gives the transformed matrix u ′(x ) in
terms of g , u(x ) and h . Importantly, multiplying with h−1 on the right does not change
the field configuration since the field configuration is invariant under right multiplication
with h ∈ H . This gives the transformation

u(x )→ u ′(x ) = g u(x )h−1( g , u(x )). ()

The transformation h is called a compensator field since it makes sure that the matrix
u ′(x ) is in the form (). The compensator field depends on both g and u(x ) since
transformations on a sphere are complicated objects.

The jargon which is sometimes used to describe this situation is that the symmetry of the
theory is given by a group G = O(3), but only a subgroup H = O(2) is realized in the
ground state. We parameterize the field configurations using u(x ) which gives the same
field configuration as u(x )h for all h ∈ H . Each field configuration is in this way associated
with the set u(x )h for all h ∈ H , written u(x )H . Such sets are called left cosets and the
set of all such sets is denoted G/H . The specific choice u(x ) given here is a choice of
representative from u(x )H . In this case G/H describes a sphere. Note that any point on
the sphere is a potential vacuum configuration. The choice of vacuum should not affect the
physics. The specific field configuration in a single point should not matter. This means
that we should expect interactions which depend on the differences in field configurations
between different points in spacetime. In a local Lagrangian such differences enter through
derivatives. This implies that the Goldstone bosons should couple through derivatives.

It is also possible to use right cosets.
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CCWZ for QCD

In QCD the symmetry SU (3)L×SU (3)R is broken to SU (3)V . A general transformation
g ∈ SU (3)L × SU (3)R can be written in block diagonal form as

g =
�

UR 0
0 UL

�

=
�

exp(i T a
R

2 θ
a
R ) 0

0 exp(i T a
L

2 θ
a
L)

�

()

the unbroken subgroup is

h =
�

UV 0
0 UV

�

()

where UV = UL = UR when θL = θR = θ. The Goldstone modes can be parameterized
through the broken generators as

�

u(x ) 0
0 u(x )†

�

=
�

exp(i T a
R

2 π
a(x )) 0

0 exp(−i T a
L

2 π
a(x ))

�

, ()

which follows from setting θR = −θL = π(x ).

From the preceeding section we get the transformation behavior
�

u(x ) 0
0 u(x )†

�

→
�

UR 0
0 UL

��

u(x ) 0
0 u(x )†

��

U −1
V 0
0 U −1

V

�

. ()

The transformation law for u(x ) is then

u(x )→ u ′(x ) =UR u(x )h−1(UR , u(x )) = h(UL, u(x ))u(x )U †
L , ()

where, in a slight abuse of notation, we have set h =UV . The unbroken subgroup transform
the left and right handed fields in the same way. For this reason we get h(UR , u(x )) =
h(UL, u(x )). We can use this fact to construct another parameterization of the pions as

U (x ) = u(x )u(x ) = exp
�

iT aπa� ()

This field transforms as

U (x )→U ′(x ) =UR U (x )U †
L ()

and as long as no other fields are introduced which transform with h , this is sufficient for
building the low energy Lagrangian.

While the geometrical structure in this case is not as clear as in the case of O(3)→ O(2),
the fields πa(x ) are coordinates of the coset space SU (3)L × SU (3)R/SU (3)V . The space
is isomorphic to SU (3), which explains why we can parameterize the field configurations
in terms of an SU (3) matrix.
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. Lowest order Lagrangian

From the previous section we know that the eight lightest pseudoscalar mesons can be
collected in a spacetime dependent SU (3) matrix, U , which transforms as U →UR U U †

L
under SU (3)L× SU (3)R . In section . we described how the generators can be associated
to the particles. With this knowledge we parameterize the mesons as

U = exp
�

i
p

2
M
F0

�

, M =







1p
2
π0 + 1p

6
η π+ K +

π− − 1p
2
π0 + 1p

6
η K 0

K − K̄ 0 − 2p
6
η






. ()

where the pion decay constant in the chiral limit, F0, has been inserted to yield a dimen-
sionless argument for the exponential. The matrix M is traceless. If this was not the case
the trace of M would correspond to the η′. Due to the anomaly, η′ is heavy and this is the
reason why M is traceless.

Using the matrix U and the external fields we should now construct a theory which has
the same constraints on the generating functional as QCD. To enforce these constraints
we demand that the Lagrangian should satisfy local invariance under separate SU (3)L ×
SU (3)R transformations. Furthermore, the invariance should follow from including the
same external fields as in QCD transforming in the same way as in QCD.

To accomplish this we start by finding the possible building blocks constructed from U
and the external fields. In order to take derivatives on U , or any field transforming like U ,
we define a covariant derivative by

DµU ≡ ∂µU − i rµU + i lµU . ()

With the transformations of lµ and rµ this satisfies DµU → UR DµU U †
L . We can also

have pieces involving only the external fields lµ and rµ,

f R
µν ≡ ∂µ rν − ∂ν rµ − i [rµ, rν ]

f L
µν ≡ ∂µ lν − ∂ν lµ − i [lµ, lν ], ()

these are called the field strengths and transform as f R
µν →UR f R

µνU
†

R and f L
µν →UL f L

µνU
†

L .
It is possible to construct covariant derivatives for the field strengths which satisfy Dβ f R

µν →
UR Dβ f R

µνU
†

R with a similar expression for the left handed field strength. The external fields
s and p are often introduced in the combination

χ = 2B0(s + i p). ()

This combination transforms as χ →URχU †
L .





Using these building blocks the most general effective Lagrangian can be constructed.
Weinberg’s power counting tells us that if every term in the Lagrangian has at least two
powers of momentum, or some quantity which we assign as the same order of magnitude
as the momentum, we can order the effective Lagrangian in powers of momentum. To see
if this is the case we need to state how the external fields should be counted in a momentum
expansion. The standard counting is

U ∼ p0, DµU ∼ p1, rµ, lµ ∼ p1, χ ∼ p2. ()

The use of rµ, lµ ∼ p1 is consistent with that these show up in the derivatives. As an
underlying reason they should be small in the counting as they are symmetry breaking
effects. χ ∼ p2 follows from the observation that the mesons are linear in the quark masses
so that this term should give the meson masses which are O (p2) on shell.

Any term which is O (p0)must involve only the meson field U . The simplest combination
would be

¬

U U †
¶

()

where 〈. . .〉 denotes the trace of . . . in flavor space. This term, however, is a constant since
U is unitary. At O (p) there is also no term possible, The attempt

¬

U DµU †
¶

()

is zero which follows from that det U = 1. There are no terms at O (p0) or O (p). This
means that the condition that the effective Lagrangian starts at O (p2) for Weinberg’s power
counting to work is fulfilled.

At O (p2) there are several possibilities,
¬

DµU (DµU )†
¶

,
¬

χU †
¶

,
¬

Uχ †
¶

,
¬

f R
µν

¶

,
¬

f L
µν

¶

. ()

The last two are not Lorentz invariant and vanish. The first term is one of three terms which
look different but are the same upon expansion. The terms involving χ must appear in the
combination




Uχ † +χU †
�

. This follows from parity. Under parity U and χ become
U † and χ †, respectively. The O (p2) Lagrangian is then

L2 =
F 2

0
4

¬

DµU (DµU )†
¶

+
F 2

0
4

¬

Uχ † +χU †
¶

, ()

where the factors of F0 are needed to get the dimensions right and the 1/4 are there to give
canonically normalized kinetic terms. F0 is the pion decay constant and B0, hiding inside
χ , is related to the scalar quark condensate.
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Inserting quark masses in the isospin limit, mu = md = m̂, using s = diag(m̂, m̂, ms ) and
expanding U to find mass terms gives the meson masses as

m2
π = 2B0m̂

m2
K = B0 (m̂ +ms )

m2
η =

2B0
3
(m̂ + 2ms ) . ()

The meson masses squared are linear in the quark masses. The correct dimension is obtained
since B0 is dimensionful. The reason for going to the isospin limit is that otherwise π0 and
η mix, giving more complicated expressions. The quantity B0 is related to the symmetry
breaking in the sense that

δs ZQ C D [v, a, s , p]|v=0,a=0,s=0, p=0 = 〈0|q̄ q |0〉 ,

δs Zχ P T [v, a, s , p]|v=0,a=0,s=0, p=0 = −3F 2
0 B0 +O (p

4). ()

As a final note on the construction of χ PT , it is common to assume that the external
fields l µ, rµ are traceless, since this is enough for considering possible interactions in the
SM. However, in order to consider single components of the electromagnetic field the
trace must be included. We needed to do this in papers  and . It turns out that the trace
does not couple to mesons until O (p6).

. Predictions and renormalization

The derivation of L4 follows similar lines although the complexity increases. At O (p2)
there are two quantities, apart from the quark masses, that need to be determined from
experiment, F0 and B0. Constants appearing in the chiral Lagrangian are called low energy
constants (LECs). At O (p4) there are 10 LECs, usually denoted Li in the three flavor case.
Note that not every coupling constant is needed for every prediction, most processes require
at least some of the 10 couplings for O (p4) accuracy. It is also good to keep in mind that
while the constants are called low energy constants, they really parameterize high energy
physics, as discussed in section .

The O (p4) LECs also serve to renormalize one loop contributions where vertices are O (p2).
As discussed in section . the renormalization scheme of choice is dimensional regulariza-
tion and M S , poles and some finite parts from loops are absorbed in higher order coupling
constants. The remaining part of the LECs are expected to be suppressed with a factor
O
�

1/Λ2
�

when compared with coupling constants inL2.

A coupling to the electromagnetic field is included via rµ = lµ = e Aµ × diag(2/3,−1/3,−1/3).
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The predictions of χ PT are then twofold. First, the same coupling constants are used in
all processes. Second, the light pseudoscalar mesons propagate and interact. This gives rise
to both logarithms and constant parts. Both of these predictions essentially follow from
approximate symmetries of QCD.

Now that standard χ PT has been introduced, we move on to modifications needed for
using χ PT to estimate corrections for quantities calculated using lattice QCD.

 Lattice QCD

Correlation functions in QFT can be calculated as

〈0|T {φ(x , t )φ(x , 0)} |0〉 = 1
N

∫

Dφφ(x , t )φ(x , 0) exp (i S ) . ()

One way to do this would be to select the most important field configurations and sum
over only these. However, due to the i in the exponential, it is difficult to find the most
important configurations. Contributions from different configurations cancel due to phase
differences, which is not something which can be judged easily from a single configuration.
A solution to this problem is to switch from Minkowski space to Euclidean space

〈0|φ(x , t )φ(x , 0)|0〉E =
1
N

∫

Dφφ(x , t )φ(0, 0) exp (−SE ) ()

where SE is the same as S except for the change t → i t . As long as SE stays positive
the most important field configurations are the ones where SE is small. The correlation
function can now be calculated using techniques from statistical mechanics.

The correlation functions calculated in Minkowski and Euclidean space are not the same
but they are related. Inserting a complete set of states in the Minkowski correlation function
and Fourier transforming at p = 0, which is the same as integrating over x , gives

∫

d x
∑

n
〈0|φ(x , t )|n〉 〈n|φ(x , 0)|0〉

=
∫

d x
∑

n
〈0| exp(−i H t )φ(x , 0) exp(i H t )|n〉 〈n|φ(x , 0)|0〉

=
∑

n
cn exp(i mn t ) ()

where in the first equality we have used that the Hamiltonian is the generator of time trans-
lation and in the second equality that at zero momentum the eigenvalues of the Hamilto-
nian are the masses. Changing t → i t gives the Euclidean correlation function as

∫

d x 〈0|φ(x , t )φ(x , 0)|0〉E =
∑

n
cn exp(−mn t ). ()
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This follows since the same Hamiltonian shows up in both cases. Calculating correlation
functions in Euclidean space gives information about the states in Minkowski space.

In QCD, a similar analysis goes through with some complications. One is that quarks are
fermions, not really numbers that can be sampled. This can be dealt with by integrating
out the quarks from the generating functional.

Z =
∫

DG DqDq̄ exp
�

−
∫

d 4x q̄
�

γµDµ +m
�

q − S g l uon

�

=
∫

DG DqDq̄ exp
�

−q̄M q − S g l uon
�

=
∫

DG det M exp
�

−S g l uon
�

=
∫

DG exp
�

−S g l uon + lndet M
�

()

where the second equal sign defines the Dirac operator M . Note that it depends on the
gluon field configuration.

Meson masses can be accessed through correlation functions as
¬

0|ū(t )γ 5d (t )d̄ (0)γ 5u(0)|0
¶

=
∑

n

¬

0|ū(0)γ 5d (0) exp(−H t )|n
¶¬

n|d̄ (0)γ 5u(0)|0
¶

=
∑

n
cn exp(−mn t ). ()

Where all the states n must have the same quantum numbers as ūγ 5d . This can be evalu-
ated as

¬

0|ū(t )γ 5d (t )d̄ (0)γ 5u(0)|0
¶

=
∫

DG DqDq̄ ū(t )γ 5d (t )d̄ (0)γ 5u(0) exp
�

−
∫

d 4x q̄
�

γµDµ +m
�

q − S g l uon

�

=
∫

DG
¬

M −1
u(0,t )γ

5M −1
d (t ,0)γ

5
¶

det M exp
�

−S g l uon
�

()

where 〈. . .〉 is a trace over color and spin. The matrix M really deserves a bit more attention.
Every field q contains  spinors and  colors. There are as many such fields as there are
flavors. Each of these also depend on x , y, z , t . The matrix M is a collection of all these
different labels into a matrix. The notation Mu means that the flavor should be kept fixed
in the trace. The notation M(0,t ) means that the left index should be chosen so that time is
zero and the right index such that time is t .

Lattice QCD is a way to do the above in practice. Spacetime is divided into a lattice in a
finite volume. The lattice is a regulator for high energy modes as described in section . In
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this case there is then a finite, but very large, number of variables. Importance sampling
can then be used to determine the most important field configurations.

Using importance sampling to estimate a physical observable leads to a statistical uncer-
tainty. In lattice QCD there are also systematic uncertainties. Some of the papers deal
with estimating such systematic uncertainties using χ PT . The systematic uncertainties
considered are

• Finite volume

• Twisted boundary conditions

• Unphysical quark masses

• Different masses for sea and valence quarks

• Finite lattice spacing for staggered quarks

χ PT is useful in estimating these error sources since they are dominated by light states and
the underlying effects can be systematically included. Calculating physical observables to
high enough precision on the other hand, requires taking effects from heavier states into
account which is done in lattice QCD simulations.

. Discretizing QCD

In section  SU (3)C gauge invariance was introduced. The quark fields were allowed to
transform in a spacetime dependent way under gauge transformations. The gluons then
transformed in a way which canceled the quark transformations rendering an invariant
Lagrangian. When discretizing QCD it is beneficial to look at this from a slightly different
perspective.

The transformations of quark fields under a gauge transformation take place in an internal
space. For simplicity, let us call the transformations rotations in an internal space. The
spacetime dependence of gauge transformations means that each spacetime point has its
own internal space which is rotated independently of the rotations in all other spacetime
points. In order to take derivatives, quark fields in different spacetime points are compared.
For a gauge invariant theory, the rotations applied in each spacetime point can not have
physical consequences. The covariant derivative is introduced in order to be able to compare
different spacetime points in a way which is independent of the rotations. The role of
the gluons, and their transformations, is then to enable comparison of quarks at different

A particular type of formulation of lattice quarks, see rest of section .
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spacetime points in a gauge invariant way. With this short detour we can discuss how to
discretize QCD.

We now treat spacetime as a lattice and define the quark fields only on the points of the
lattice. The next step is to define a discretized version of the Dirac operator M . The Dirac
operator contains derivatives and in order to take derivatives on the lattice, fields at different
points are compared. Derivatives, and therefore gluons, are then associated with the links
connecting different points. In the following we will assume that the kinetic term for the
gluons is somehow discretized. In this case the most straightforward way of discretizing the
quark part of the QCD action is

S =
∑

x
q̄ (x )

�

γµ∆
µ(U ) +m

�

q (x ) ()

where the sum is over all points in spacetime and

∆µ(U )q (x ) =
1

2a

�

Uµ(x )q (x + aµ̂)−U †(x − µ̂)q (x − aµ̂)
�

()

with Uµ(x ) the gluon link field, a the lattice spacing and m the bare quark mass. This action
has the correct continuum limit and has chiral symmetry when m = 0. The propagator in
the massless limit is

a
i
∑

µ γµ sin(pµa)
()

which has  poles. This means that there are  quarks present on the lattice. This problem
is known as fermion doubling.

One solution to this problem, proposed by Kenneth Wilson, is based on that physical pre-
dictions are extracted from lattice QCD in the continuum limit, where the lattice spacing
goes to zero, a→ 0. Wilson added an extra term term which doesn’t effect the continuum
limit but gives the doubler quarks masses proportional to 1/a. These would then decouple
in the continuum limit. Unfortunately, this term breaks chiral symmetry. Chiral symmetry
protects the fermion masses from additive shifts from quantum effects. The pions can still
be made light, but this requires tuning of the bare parameters.

There are other ways of dealing with doublers. However, there is a theorem showing that,
under certain assumptions, the doublers can not be removed without breaking chiral sym-
metry. One way to deal with the doubling problem, the rooted staggered quark formula-
tion, is introduced below. This formulation does not have full chiral symmetry but there
is a symmetry which protects the quark masses from additive mass shifts from quantum
effects. From a χ PT perspective, it is easier to develop the concept of partially quenched
(PQ) QCD before discussing staggered quarks so we now turn to PQQCD.
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. Partially quenched QCD

“Physical results from unphysical simulations”
—Title of []

Quarks are included in lattice ensembles by integrating them out which gives a determin-
ant of the Dirac operator, M . When evaluating correlation functions, inverses of the Dirac
operator are calculated. Although unnatural from a physics perspective, there is nothing
stopping that the Dirac operators used in the different cases be different. This is the idea
behind PQQCD where the masses are taken different in the two evaluations. This is useful
since light quarks are expensive to simulate and it also gives an extra handle on the system-
atic errors. In order to get quantitative results from PQ simulations, the errors introduced
must be quantified. This can be done using PQ χ PT . Using this technique it is possible
to get physical results from unphysical simulations [].

Continuum description

The lattice is not needed to show how PQQCD can be formulated. Suppose that the quark
part of the Lagrangian is

L P Q
q ua r k = q̄v Mv qv + ˜̄qv M̃v q̃v + q̄s M s qs ()

where qv and qs are fermionic Dirac fields and q̃v is a bosonic Dirac field. Integrating out
the three Dirac fields as in () gives

Z =
∫

DG
det Mv

det M̃v
det(M s ) exp

�

−S g l uon
�

. ()

Setting M̃v = Mv then gives that the fraction of determinants is equal to one. This gives
that the fermionic and bosonic quarks with subscript v have the same mass. Effectively
only the fermionic quark field qs is needed in the generation of ensembles. When later
evaluating correlation functions these can be taken with qv instead which gives powers of
M −1

v in ().

The above example introduces a bosonic Dirac field in order to get a determinant in the
denominator. This violates spin-statistics and thus the theory is sick. The sickness doesn’t
disqualify it from a statistical mechanics treatment, it just means that this is no longer a
good QFT. There exists a subspace in {mv , ms } where the theory is no longer sick. With
the help PQχ PT , it is possible to estimate the effect of the sickness and compensate for it.
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Partially quenched χPT

There are, at least, three ways of implementing PQχ PT , the supersymmetric method,
the replica method and the quark flow method. The supersymmetric method draws upon
the description above with fermionic and bosonic quarks yielding fermionic and bosonic
mesons. It was developed in the quenched case in [, ] and for the partially quenched
case in [, , ]. The replica method has only fermionic quarks but keeps a variable
number of valence quarks. Sea quark contributions correspond to summing over all quarks
and partial quenching is achieved by setting the number of valence quarks to zero in such
sums []. Here, I will briefly describe the third method since this is the method we have
used in the papers.

For the quark flow method we start from SU (3) χ PT with the difference that the trace of
M is not integrated out,

U = exp
�

i
p

2
M
F0

�

, M =





U π+ K +

π− D K 0

K − K̄ 0 S



 . ()

The mesons on the diagonal are single flavor neutral mesons, for example U stands for a
ū u meson. In order to enforce that the trace of M , corresponding to the η′, should be
heavy a mass term is introduced inL2 as

L2 =
F 2

4

¬

DµU (DµU )†
¶

+
F 2

4

¬

Uχ † +χU †
¶

+
m2

0
3
〈U +D + S〉2 . ()

η′ is removed from the model by letting m0→∞ at a later stage []. Note that the LECs
are the same in PQχ PT as in χ PT , since these are defined in the chiral limit.

The virtue of this parameterization is that the indices on M can be interpreted directly as
flavor indices [, ]. Every meson is a single flavor anti-flavor combination. In Feynman
diagrams these can be written using a double line notation as in Figure . In these diagrams
each line corresponds to a quark and each double line corresponds to a single meson. In
diagrams of this sort there will be lines which are connected to some external line and
there will be lines which go in a loop. Lines that connect to external lines have their flavor
determined by the external flavors. These lines describe valence quarks. Lines that form
loops can take on any flavor, giving a sum over flavor. These lines describe sea quarks. PQ
is then implemented by giving different masses to mesons depending on the valence and
sea properties of the quark constituents.

The mass term for the η′ in the Lagrangian gives a slight complication. Diagrammatically
the mass term gives rise to a disconnected vertex between flavor neutral mesons, see Figure .

In the quenched approximation QCD is simulated without sea quarks.
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Figure 4: Examples of diagrams in double line notation for meson mass correction. Each line corresponds to a
quark and each double line corresponds to a meson. The dashed loop indicates a sea quark contribu-
tion whereas the other diagrams contain only valence quark contributions. The disconnected pieces
in the last two diagrams indicate the second term of the diagonal propagator in (138).

These diagrams can be resummed giving a slightly complicated propagator for the neutral
mesons as

DAB =
iδAB

p2 −m2
A
+

i m2
0

3
(p2 −m2

U )(p
2 −m2

D )(p
2 −m2

S )
(p2 −m2

A)(p2 −m2
B )(p2 −m2

η)(p2 −m2
π0)(p2 −m2

η′)
, ()

where A and B signify flavor neutral mesons, sea or valence, mU , mD , mS are masses for
the flavor neutral sea mesons and mπ, mη, mη′ are masses for sea mesons. The mass of the
η′ is proportional to m0. Taking the limit m0→∞ effectively removes η′ from the theory.
Note that there are double poles present when A = B unless there are cancellations with
the numerator. We can now move on to the effects of staggered quarks.

. Staggered quarks

One partial solution to the doubling problem of lattice quarks is to use staggered quarks.
This formulation is equivalent to using naive quarks but in a way where the -fold degen-
eracy is lifted to a -fold degeneracy, see []. This is done by constructing a change of
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Figure 5: Disconnected propagator contributions due to the vertex from the η′ mass term. The dashed loops are
sea quark loops. The sum over all such contributions gives the second term in the diagonal propagator
in (138).

variables which gives an action which is diagonal in spinor space. That is,

L = q̄ (x )
�

γµ∂µ + Ispinorm
�

q (x ) = χ̄ (x )Ispinor
�

αµ(x )∂
µ +m

�

χ (x ), ()

where Ispinor is the identity matrix in spinor space and αµ(x ) are functions from the trans-
formations. Due to the diagonal structure of the Dirac operator the spinor components
are equivalent and do not mix in this basis. The propagator for the fields χ then reads

〈χ (x )χ̄ (y )〉 = s (x , y )Ispinor. ()

All the components of the spinor are equivalent and only one component has to be simu-
lated, this is the staggered quark formulation. It is then possible to reassemble the staggered
quarks into -fold degenerate Dirac spinors by considering a 24 block on the lattice. The 
quarks corresponding to a single flavor are usually referred to as  tastes. This implementa-
tion of Dirac spinors yields intricate symmetry properties for the action, see []. For more
information on the most common implementation of staggered quarks in contemporary
lattice QCD, see [].

In order to deal with the -fold degeneracy the th root of the determinant is taken in
(). A motivation is that in the continuum theory each quark contributes a determin-
ant, here there is only one determinant for  quarks and taking the th root should then
reduce the number of quarks to one. That this procedure works as intended is not proven
non-perturbatively. However, the procedure seems to produce good physical results and
attempts to disprove it have been refuted. For the interested reader I refer to [].

Rooted staggered χPT

χ PT for a single flavor staggered quark was derived in []. That result was generalized to
multiple flavors in []. Before getting into describing staggered χ PT I want to emphasize
what it is that we want to describe. As noted in section  χ PT is an expansion in masses
and momenta. Here we want to add an additional expansion parameter which is the lattice
spacing. To illustrate how this is done we will focus on the single flavor, or  taste case.
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According to section  on EFT the symmetries of the underlying theory must be identified.
To start we note that the continuum limit of the staggered lattice action is the QCD action
with  quarks of the same mass. The action in the continuum limit, suppressing the gluon
part, is then

Scontinuum =
∫

d 4x
�

Q̄ i �γµDµ −m
�

δ j
i Q j

�

()

i , j = 1, . . . , 4 in taste space. This action has an SU (4) taste symmetry, analogous to the
SU (3) symmetry in QCD with mu = md = ms . In analogy with SU (3) χ PT we then
expect there to be  degenerate pseudoscalars, referred to as pions below, in the low energy
theory. As stated above, the lattice spacing will be treated as a small parameter which may
reduce the symmetry group and break the degeneracy of the pions.

The reduction of the symmetry group SU (4) due to the finite lattice spacing can be taken
into account using an effective action, valid for p � Λ ∼ 1/a, with higher-dimensional
operators with coefficients proportional to the lattice spacing. These higher-dimensional
operators come from integrating out modes near the cut-off. These modes must respect the
symmetries of the lattice action. In this case, there are no operators of dimension five that
are consistent with all the lattice symmetries. The action including the leading correction
in a is then

Seff = S4 + a2S6, ()

where S4 and S6 contain operators of dimension 4 and 6, respectively. The symmetries of
this action were analyzed in [].

Presenting the full analysis of S6 is not interesting in this context. However, I want to point
out that any term which breaks SU (4) symmetry would have something like

Q̄ i A j
i Q j ()

where i , j are taste indices and A is a matrix in taste space which is not proportional to
the unit matrix. These terms do occur in S6 and break the SU (4) symmetry down to the
lattice symmetry, except for a continuous translation symmetry.

A naive expectation on the low energy effective theory is then that it should have the same
symmetry as Se f f , no more and no less. At O (a2) this turns out, however, not to be the
case. In particular the low energy effective theory has an SO(4) symmetry at this order.
The effective Lagrangian is, ignoring vector and axial source terms,

L2 =
F 2

4

¬

∂µU (∂µU )†
¶

− F 2

2
B0m

¬

U † +U †
¶

+
m2

0
3
〈U +D + S〉2 +L b r eak

2 . ()

This is an EFT technique and we should expect effects of O
� p
Λ

�

, heavy quarks must be treated differently.
This might be interpreted as that low energy modes are somewhat less sensitive to the lattice spacing.
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The matrices U are U (4) matrices, since we have kept the η′ like state, transforming ana-
logously to the SU (3) matrices in section .. The LagrangianL b r eak

2 is

L b r eak
2 =a2C1 Tr

�

ξ5U ξ5U †
�

+a2C2
1
2

Tr
�

U 2 − ξ5U ξ5U + h. c.
�

+a2C3
1
2

Tr (ξνU ξνU + h. c.)

+a2C4
1
2

Tr
�

ξ5νU ξ5νU + h. c.
�

+a2C5
1
2

Tr
�

ξνU ξνU
† − ξν5U ξν5U †

�

+a2C6 Tr
�

ξµνU ξνµU †
�

. ()

Where the 16 matrices in the set S a = {ξ5, iξµ5, iξµν (µ < ν),ξµ, I } are generators of U (4).
Note that these are in taste space. The fact that all indices match up implies an SO(4) taste
symmetry. Writing

U = exp
�

i
φ

F

�

, φ =
16
∑

a=1
φa S a ()

a calculation of the masses shows that pions associated with the same group of generators
are degenerate, giving five groups of mesons. In contrast the U (4) symmetry falls into
eight groups in the lattice formulation []. When including N f flavors the matrix U is
a U (4N f ) matrix. Only the taste singlet flavor singlet meson gets a mass term from the
anomaly and is integrated out.

The description of Sχ PT above has not yet touched on the subject of rooting. The whole
idea with rooting is to remove unwanted sea quark degrees of freedom, the valence quarks
do not enter the functional determinant. In section . the quark flow method was used to
sum over sea quarks. Using the same technique together with staggered χ PT it is possible
to simply divide by  for every sea quark sum. From this perspective, the effect of rooting
is not to remove three out of  quarks but rather to weight each sea quark by a factor 1/4.

. Finite volume and twisted boundary conditions

Lattice QCD simulations necessarily take place in a finite volume. In order to avoid
boundary effects, simulations are performed with boundary conditions which eliminate

If taste indices would be summed with lorentz indices this would imply that we had an invariance under
simultaneous taste and Lorentz transformations.
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the boundary. One example is the use of periodic boundary conditions where, for spatial
extent L and working in one dimension for notational convenience, the fields must satisfy

φ(x + L) =φ(x ). ()

Fourier transforming both sides gives that the momentum of the field must satisfy

p = n
2π
L

, n ∈ Z. ()

For L = 5 fm, which is rather large for lattice QCD simulations, momentum is quantized in
steps of about  MeV. Whether the steps are to be considered large is process dependent.
For quantities such as hadronic vacuum polarization used for calculating muon g − 2 or
hadronic form-factors relevant for the determination of CKM elements the steps are large,
see paper  and .

One way around the problem is to use twisted boundary conditions defined by

φ(x + L) =φ(x ) exp(iθ) ()

for an arbitrary angle θ. Fourier transforming this expression yields

p = n
2π
L
+
θ

L
, n ∈ Z. ()

In this way arbitrary momenta can be considered. Only complex fields can be twisted in
this way since φ† =φ enforces θ = 0.

An alternative way to describe twisted boundary conditions is to redefine new fields which
satisfy periodic boundary conditions. Such a field is

φ̃(x ) =φ(x ) exp
�

−θ x
L

�

. ()

Any derivative acting on φ(x ) will give the result

∂xφ(x ) = ∂x

�

φ̃(x ) exp
�

θ
x
L

��

= exp
�

θ
x
L

�

�

∂x + i
θ

L

�

φ̃(x ). ()

Considering the case when all terms in the Lagrangian are real, which is enough for our
purposes, all exponentials of θ vanish. The remnant of the twisted boundary conditions is
that derivatives are shifted. This is exactly how the external fields enter covariant derivatives
and the twisted boundary condition can be interpreted as a constant external field [].

From a χ PT perspective finite volume changes every loop integral into a sum over allowed
momenta [],

∫ d d p
(2π)d

→
∫

V

d d p
(2π)d

=
∫ d d−3 p
(2π)d−3

1
L3

∑

p∈allowed momenta
. ()
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The integral is in d dimensions since it will still have to be regularized. The sums can
be evaluated with the help of the Poisson summation formula. Using notation where f (k )
stands for some integrand in a loop calculation, for example f (k ) = i/(k2−m2), and where
ĝ is the Fourier transform of g, the sum, in one dimension for simplicity, is evaluated as

1
L

∑

n∈Z
f
�

2π
L

n +
θ

L

�

=
1
L

∑

n∈Z
g (n)

=
1
L

∑

l ∈Z
ĝ (l )

=
1
L

∑

l ∈Z

∫

d y f
�

2π
L

y +
θ

L

�

exp (−2πi l y )

=
∑

l ∈Z

∫

d k
2π

f (k ) exp (−i l kL) exp(iθl ) ()

where the Poisson summation formula was used in the second equality and where the last
equality is from a change of variables, 2π

L y + θL = k . The sum over l has the striking feature
that l = 0 corresponds to the infinite volume expression. It is then possible to sum over
l 6= 0 to isolate the finite volume effects.

In QCD it is the quark fields which can be twisted. A quark field with twist angle θ leads
to an anti-quark field with twist angle −θ. Mesons get their twist angle from the quarks.
A meson φq̄ q ′ , where q̄ q ′ indicates the quark content, satisfies

φq̄ q ′(x + L) =φq̄ q ′(x ) exp(i (θq ′ −θq )), ()

where θq ′ and θq are the twists of the q ′ and q quark fields, respectively. For flavor neutral
mesons it is not possible to enforce twisted boundary conditions. One effect that we found
in paper  is that the meson masses become momentum dependent when twisted boundary
conditions are considered. The momentum dependence of the masses were needed in order
to fulfill Ward identities related to form-factors.

. Connected and disconnected diagrams

Flavor neutral mesons do not twist. In cases where arbitrary momentum for a flavor neutral
meson is needed it is possible to use symmetry to relate flavor neutral processes to flavor
charged ones, using the Wigner Eckhart theorem. There is a little problem with using the
Wigner Eckhart theorem in this way. The assumed symmetry is broken by the twisted
boundary conditions. Moreover, in lattice QCD there are both connected and disconnec-
ted contributions to flavor neutral external states. For flavor charged external states there
are only connected contributions. This is explained further in Figure . The evaluation of
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Figure 6: Example of a connected and a disconnected diagram. The lines are valence quark lines and the back-
ground color indicates a sea of quarks and gluons which interact with the valence quarks. Correlation
functions between flavor charged operators such as ūd give only connected diagrams. Flavor neutral
operators with different flavor content such as the pair ū u and d̄ d give only disconnected diagrams.
Flavor neutral operators with the same quark content like a pair of ū u give both types of diagrams.
Twisted boundary conditions can not be used to adjust the momentum of neutral operators. Using the
Wigner-Eckhart theorem to relate flavor neutral and flavor charged correlation functions only catches
the connected contributions.

the disconnected parts can not be done using twisted boundary conditions. Whether this is
a problem or not depends on the accuracy required. In paper , we used χ PT to estimate
the ratio between connected and disconnected diagrams for the electromagnetic two point
function at NNLO, extending a previous analysis in [].

 Models for low energy QCD and the muon g − 2

“You can plan a pretty picnic. But you can’t predict the weather”
—Ms. Jackson by Outkast

The muon anomalous magnetic moment, muon g −2, describes the strength of the muon’s
interaction with external magnetic fields. The energy of a muon from interacting with a
magnetic field is E = ~m · ~B , where ~B is the magnetic field and ~m is the magnetic moment of
the muon. The value of ~m is proportional to ~L+ g ~S , where ~L is the angular momentum of
the muon, ~S is the spin of the muon and g is the gyromagnetic ratio. The understanding of
g has been an important part in the development of quantum mechanics. The progression
can be summarized as





• Classical mechanics g = 0

• Quantum mechanics g = 2 from experiment

• Relativistic quantum mechanics g = 2 understood from theory

• Quantum field theory g = 2(1 + aµ), where aµ parameterizes deviations from 2,
understood from theory

The quantity which is most often quoted in the literature is the relative deviation from 2,

aµ ≡
g − 2

2
. ()

The muon g − 2 continues to be an important quantity for testing our understanding of
nature, as it is ever more precisely measured and calculated. There appears to be a discrep-
ancy between SM prediction and experimental measurement of this quantity. The world
average of the measured value is []

aexp
µ = 116592091(54)(33)× 10−11 ()

where the first error is statistical and the second is systematic. The SM prediction from the
same source is

aSM
µ = 116591803(1)(41)(26)× 10−11 ()

where the errors are from the electroweak, lowest order hadronic and higher order hadronic
contributions, respectively. The discrepancy between the SM prediction and experiment is
about 3.6σ . The hadronic contributions contribute the most to the uncertainty in the SM
prediction.

The hadronic vacuum polarization contribution can be calculated from e+e− → hadrons
using dispersion relations, see the introduction to paper . Calculations using lattice QCD
are also competitive. Predictions of the hadronic light by light (HLbL) contributions have,
at least until recently, had to rely on modeling of low energy QCD. In this context model-
ing does not refer to the model χ PT but instead to more phenomenologically motivated
models taking for example ρ mesons as active degrees of freedom. Calculations using lat-
tice QCD are also becoming available although it is a very difficult problem in that context
as well.

The reason why χ PT is not a good enough model in this case is that while it produces
perfectly finite predictions for the light by light scattering part, these finite parts integrate
to an infinite contribution, which can not be remedied by renormalization, when attaching
the muon line.

At least up to two loops in χ PT .
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One of the main obstacles in developing phenomenological models is that it is difficult to
retain some notion of power counting. In χ PT , meson masses and momenta are in the
numerators and compensated for by 1/4πF from loop integrals or by suppressed couplings.
A general feature for many ways of including matter fields is that terms with 1/m2

V shows
up. If momenta are larger than mV , which is desirable for models extending χ PT , this
leads to problems in the power counting.

Another issue is that the existence of a good looking power counting scheme doesn’t mean
that the model captures the correct physics. One common approach which doesn’t rely
on power counting is to look at which additional states, beyond the lightest pseudoscalar
mesons, that are the most important and include these. Something like phenomenological
power counting. Which states that are most important for low energy phenomenology is
not clear a priori. One way that this has been studied is to see if the LECs of χ PT can be
predicted using a subset of all resonances in low energy QCD.

. Resonance saturation

The LECs of χ PT can be estimated using models for the lightest mesons not included in
χ PT . In Ref. [] the strong interactions of low lying meson resonances with spin ≤ 1
with the eight lightest pseudoscalar mesons were considered. What was found was that the
lowest lying resonances to a large extent saturate the measured values of the LECs. This
provides a basis for building models which is known as lowest meson dominance (LMD).
This concept goes back further to the idea of vector meson dominance (VMD) which states
that the ρmeson dominates the coupling between pions and photons. Importantly, in the
case of HLbL the vector meson ρ and, to some extent, the axial vector meson a1 contribute
to the relevant LECs. It is this line of thinking which led the authors of [] to try include
the a1 meson in order to account for the pion polarizability.

While this line of reasoning provides a good start it does not pin down a unique model.
There are many ways of adding additional mesons to the leading order χ PT Lagrangian.
Many of these ways are equivalent at tree level but differ when loops are considered. This
will be discussed briefly in the next section.

. Description of resonances

Chiral symmetry considerations gives good low energy predictions through χ PT . One
way of including matter fields in a way which is consistent with chiral symmetry is to have
the fields in the adjoint representation

ρµ = ρ
a
µT a . ()
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The CCWZ formalism then prescribes that the field should transform as

ρµ→ hρµh† ()

where h is the compensator field from section .. The propagator for the ρmeson in such
a formalism is

1
p2 −m2

ρ

�

gµν −
pµ pν
m2
ρ

�

. ()

The factor 1/m2
ρ will upset the power counting. An indication of this is that the limit

mρ→ 0 is ill defined.

Another way, which we used in paper , is to describe the vector mesons using an anti-
symmetric tensor field

ρµν = ρ
a
µνT

a , ()

which transforms as in () with ρµ replaced by ρµν . The propagator is longer in this
method but shares the property of containing inverse powers of m2

ρ.

One way to include vector mesons which leads to successful power counting is hidden
local symmetry (HLS)[], see also []. This model assumes that along with SU (3)L ×
SU (3)R there is an additional SU (3)G symmetry. This symmetry group has quarks in the
fundamental representation just like SU (3)L×SU (3)R but the left and right handed quarks
are transformed with the same parameter. Moreover, the symmetry is assumed to be local.
The symmetry breaking pattern is then SU (3)L× SU (3)R × SU (3)G → SU (3)V where in
SU (3)V all three groups transform with the same parameter. This leads to  Goldstone
bosons,  pseudoscalars and  scalars. Due to the local SU (3)G symmetry there must be
massless vector gauge bosons in the unbroken phase. In the broken phase the scalars are
eaten by the gauge fields which become massive and are identified as the lightest vector
mesons, the lightest of these are ρ mesons. This leads to VMD as well as predictions for
universality of the ρ coupling to pions from symmetry considerations.

The ρ meson propagator in this model in Rξ gauge is

1
p2 −m2

ρ

�

gµν − (1−α)
pµ pν

p2 −αm2
ρ

�

, ()

which is well behaved in the limit mρ→ 0, see []. The reason why power counting works
in HLS is the underlying local symmetry. However appealing this might be that does not
make HLS the answer in low energy QCD model building. In the end, predictions must
come out right and with HLS, as well as the other models, some do and some don’t, see
paper .
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In principle, all approaches which implement Weinberg’s folk theorem should be equival-
ent. All of the models presented above are equivalent at tree level. Including loop effects
and higher-dimensional operators the theories differ but this should be a truncation effect.
Including all operators and all diagrams should give the same answer regardless of how the
theory is implemented.

. Additional constraints

In order to pin down a good model there are a lot of auxiliary constraints. One that is
often imposed is that the model should reproduce the high energy behavior of QCD. To
do this an operator product expansion is performed in QCD which gives the asymptotic
behavior of some correlation function. This is then compared to the asymptotic behavior
of the model. It is not clear that low energy models should respect high energy constraints
from QCD, but if there is some intermediate region the models should overlap.

Another way to test a model is to test its predictions. If a model is to be used for HLbL
calculations it should probably get the hadronic vacuum polarization, which is known to
a larger relative precision, right. Checking whether a certain model saturates the LECs of
χ PT is another similar test. There are also sum rules which can be used to evaluate models.

Yet another possibility is to try several different models which all seem reasonable and see
the spread in predictions as a theory error, as we did in paper . There we also looked at
which points in phase space that contribute to HLbL. All the models used in that analysis
satisfy electromagnetic gauge invariance which is another important constraint.

In the end evaluating models for low energy QCD is hard. There are some conditions
which must be satisfied and others which need to be given priority, depending on the
observable under study. A uniquely determined model which offers systematic predictions
is not yet available. Meanwhile, the lattice QCD community is progressing and many of
the observables which previously required modeling will probably be computed with high
precision numerical techniques. The discussion here has focused on Lagrangian models.
There is also a possibility to use more data driven methods as dispersion relations, which
provide a more direct link between experimental information and predictions.


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same order of magnitude as the estimate when the rooted staggered lattice action was taken
into account. However, we found that the precise size and sign of the correction depends
strongly on the extra effects.

My contributions: All collaborators have been involved in the analytical computations. Me
and my supervisor did all of the analytical calculations independently and agreed with the
other collaborators afterwards. We also implemented the needed numerics independently.
In doing this I used my supervisors infinite volume integral expressions. I wrote the main
draft for the paper which was modified by the other collaborators.

Paper : Connected, Disconnected and Strange Quark Contributions to HVP

We presented an argument showing why the ratio of disconnected to connected contri-
butions to hadronic vacuum polarization is -/ for pions in two-loop chiral perturbation
theory. We also pointed out what corrections are to be expected. The argument holds in the
isospin limit up to corrections from higher orders in chiral perturbation and contributions
from the strange quark. We checked these corrections at two loop in chiral perturbation
theory. The corrections from strange quark contributions cancel to a large extent.

My contributions: The argument for the size of the ratio of disconnected to connected
contributions was my supervisor’s idea. The analytical and numerical calculations were
performed independently by the two of us. I did all the comparison of our results. I wrote
a draft for the paper which was modified by my supervisor.

Paper : Vector two point functions in finite volume using partially quenched
chiral perturbation theory at two loops

We calculated the vector two point functions in infinite and finite volume with twisted
boundary conditions for partially quenched QCD using chiral perturbation theory. We
presented analytical expressions and implemented them numerically. In the infinite volume
case the two loop contribution dominates the one loop one. This is not the case for the
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1 Introduction

Lattice QCD calculations of hadronic quantities of necessity happen in a finite physical

volume. In a box with periodic boundary conditions this leads to spatial momentum

components pi = (2π/L)ni which even for a large 4 fm lattice gives a minimum spatial

momentum of about 300 MeV. In order to access smaller spatial momenta it has been

suggested to use twisted boundary conditions [1–3]. This allows for more momenta to be

sampled. Some early numerical tests were performed in [4].

It is well known that in a finite box Lorentz invariance is broken by the boundary

conditions. In particular, the spatial part of the symmetry group becomes the cubic group

– 1 –
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in case of periodic boundary conditions. Imposing twisted boundary conditions on a field

φ in some spatial directions i via

φ(xi + L) = eiθiLφ(xi) (1.1)

breaks the cubic symmetry down even further. In particular, reflection symmetry, xi → −xi

in the i-direction is broken by (1.1).

In this paper we analyze the consequences of this for a number of quantities in Chiral

Perturbation Theory (ChPT). In [2] ChPT for twisted boundary conditions was developed

and they showed that finite volume corrections remain exponentially suppressed for large

volumes. We use their method for masses, pseudo-scalar and axial-vector decay constants,

the vector two-point function and electromagnetic form-factors. We have different expres-

sions than those given in [2], the precise relation is discussed in more detail in section 8.

In general, form-factors and correlators can also have a much more general structure

and this has consequences for the Ward identities. We discuss three examples of this.

Another result is that vector currents get a vacuum-expectation-value (VEV), which leads

to non-transverse vector two-point functions. The main goal of our paper is to study all

this at one-loop order in ChPT.

Section 2 gives the lowest order Lagrangian in ChPT and defines a few other pieces

of notation. We introduce twisted boundary conditions in section 3. The more technical

derivation of the needed one-loop integrals is given in appendix A. As a first application

we calculate the vacuum expectation value of vector currents and the two-point functions.

We show how they do satisfy the Ward identities at finite volume. We find, in agreement

with [5], that the two-point function is not transverse. The next two sections contain

the results for the meson masses and the axial-vector and pseudo-scalar decay constants.

Here again we see the occurrence of extra terms. The axial-vector matrix elements is not

just described by the decay constant but there are other terms. The pseudo-scalar decay

constants at infinite volume were not published earlier so we have included those expressions

as well. We have explicitly checked that the Ward identities relating the axial-vector and

pseudo-scalar matrix elements are satisfied. The extra terms in the axial-vector matrix

element are needed to achieve this. We also add the mixed matrix elements due to the fact

that the twisted boundary conditions break isospin. Numerical results are presented for

all masses and the charged meson axial-vector decay constants.

Section 7 discusses the pion electromagnetic form-factor and related quantities. We

show once more how finite volume and twisting allow for extra form-factors and have

checked that with the inclusion of these the Ward identities are satisfied. We study in detail

the finite volume corrections from the isospin current matrix element
〈
π0(p′)|d̄γµu|π+(p)

〉
which is used in lattice QCD to obtain information on the pion radius. We find that

the corrections due to twisting can be sizable. Our main conclusions are summarized in

section 9.

After finishing this work we became aware of the work in [6] where a number of the

issues we discuss here were raised as well. The discussion there is in two-flavour theory but

also includes partial twisting. We discuss the relation with our work in section 8.
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2 Chiral perturbation theory

ChPT is the effective field theory describing low energy QCD as an expansion in masses

and momenta [7–9]. Finite volume ChPT was introduced in [10]. In this paper we work in

the isospin limit for quark masses, i.e. mu = md = m̂, with three quark flavours. Results

for two-quark flavours are obtained by simply dropping the integrals involving kaons and

eta and replacing F0, B0 by F,B. We perform the calculations to next-to-leading order

(NLO), or O(p4). The Lagrangian to NLO is

L = L2 + L4, (2.1)

where L2n is the O(p2n) Lagrangian. For the mesonic fields we use the exponential repre-

sentation

U = ei
√

2M/F0 with M =


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

 . (2.2)

We use the external field method [8, 9] to incorporate electromagnetism, quark masses as

well as couplings to other quark-antiquark operators. To do this we introduce the field χ

and the covariant derivative

χ = 2B0(s+ ip), DµU = ∂µU − irµU + iUlµ. (2.3)

rµ, lµ, s and p are the external fields. Electromagnetism is included by setting

lµ = eAµQ, rµ = eAµQ, (2.4)

where e is the electron charge, Aµ is the photon field and Q = diag(2/3,−1/3,−1/3).

Masses are included by setting s =M = diag(m̂, m̂,ms) where m̂ = (mu +md)/2.

With these definitions the lowest order Lagrangian L2 is

L2 =
F 2

0

4

〈
DµUD

µU † + χU † + Uχ†
〉

(2.5)

where the angular brackets denotes trace over flavour indices. The expression for L4 can

be found in for example [8].

One problem at finite volume is the definition of asymptotic states, which we need to

define the wave function renormalization and matrix elements. We assume the temporal

direction to be infinite in extent and use the LSZ theorem to obtain the needed wave

function renormalization by keeping the spatial momentum constant and taking the limit

in (p0)2 to p2 = m2. We stick here to states with at most one incoming and outgoing

particle so this is sufficient. Note that since Lorentz symmetry is broken the masses are

different for the same particle with different spatial momenta.

We will not present the infinite volume expressions but only the corrections at finite

volume using the quantity

∆VX = X(V )−X(∞), (2.6)

where X is the object under discussion.
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3 Finite volume with a twist

Periodic boundary conditions on a finite volume implies that momenta become quantized.

Adding a phase factor at the boundary shifts these discrete momenta. To see this, we

impose for a field in one dimension at a fixed time

ψ(x+ L) = eiθψ(x), (3.1)

where L is the length of the dimension and θ is the twist angle. Developing both sides in

a Fourier series we get∑
k

ψ̂ke
ik(x+L) =

∑
k

ψ̂eikxeiθ ⇒ k =
2π

L
n+

θ

L
, n ∈ Z. (3.2)

The effect on anti-particles follows from the complex conjugate of (3.1); momenta are

shifted in the opposite direction. It is possible to have different twists for different flavours

and also different twists in different directions.

We impose now a condition like (3.1) on each quark field q in each spatial direction i

q(xi + L) = eiθ
i
qq(xi), (3.3)

and collect the angles θiq in a three vector ~θq and a four-vector θq = (0, ~θq). The twist-angle

vector for the anti-quark is minus the one for the quarks. For a meson field of flavour

structure q̄′q this leads to a twisted boundary condition in direction i

φq̄′q(x
i + L) = e

i(θiq−θiq′ )φq̄′q(x
i) . (3.4)

We introduce the meson twist angle vector θφ in the same way as above and we will use the

conventional π±, . . . for labeling them. . . Note that flavour diagonal mesons are unaffected

by twisted boundary conditions. A consequence of the boundary conditions (3.4) is that

charge conjugation is broken since φq̄q′ and φq̄′q have opposite twist. A particle with spatial

momentum ~p corresponds to an anti-particle with momentum −~p.
In terms of loop integrals over the momentum of a meson M this means that we have

to replace the infinite volume integral by a sum over the three spatial momenta and an

integral over the remaining dimensions∫
ddkM
(2π)2

→
∫
V

ddk

(2π)d
≡
∫

dd−3k

(2π)d−3

1

L3

∑
~n∈Z3

~k=(2π~n+~θM )/L

. (3.5)

It is explained in [2] how this ends up with the correct allowed momenta for each propagator

in a loop. The allowed momenta ~k = (2π~n + ~θM )/L are not symmetric around zero and

thus reflection symmetry is broken. An immediate consequence is that∫
V

ddk

(2π)2

kµ

k2 −m2
6= 0 . (3.6)

Note also that a meson and its anti-meson carry different momenta and it is therefore

important to keep track of which one is in a loop, as well as to be careful with using charge
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conjugation. The twist angles also bring in another source of explicit flavour symmetry

breaking.

The one-loop integrals needed are worked out using the methods of [11, 12] and pre-

sented in detail in appendix A. The notation we use indicates the mass of the particle but

implies also the corresponding twist vector in the expressions.

4 Vector vacuum-expectation-value and two-point function

Because of (3.6) the vacuum-expectation-value of a vector-current is non-zero and we obtain〈
ūγµu

〉
= −2AVµ (m2

π+)− 2AVµ (m2
K+)〈

d̄γµd
〉

= 2AVµ (m2
π+)− 2AVµ (m2

K0)〈
s̄γµs

〉
= 2AVµ (m2

K+) + 2AVµ (m2
K0)〈

jemµ
〉

= −2AVµ (m2
π+)− 2AVµ (m2

K+) . (4.1)

We used here that θπ− = −θπ+ , θK+ = −θK− , θK0 = −θ
K

0 and θπ0 = θη = 0. This non-

zero result can be understood better if we look at the alternative way of including twisting

in ChPT [2]. The twisted boundary conditions can be removed by a field redefinition.

However, then we get a non-zero external vector field which can be seen as a constant

background field. Charged particle-anti-particle vacuum fluctuations are affected by this

background field thus giving rise to a non-zero current even in the vacuum.

The two-point function of a current jµ is defined as

Πa
µν(q) ≡ i

∫
d4xeiq·x

〈
T (jaµ(x)ja†ν (0))

〉
. (4.2)

The current jπ
+

µ = d̄γµu satisfies the Ward identity.

∂µ
〈
T (jπ

+

µ (x)jπ
−

ν (0))
〉

= δ(4)(x)
〈
d̄γνd− ūγνu

〉
. (4.3)

We used here that mu = md with the usual techniques to derive Ward identities. A

consequence is that with twisted boundary conditions the vector two-point function is no

longer transverse. However, flavour diagonal currents like the electromagnetic one remain

transverse. This does not mean that they are proportional to qµqν − q2gµν since Lorentz

symmetry is broken. A more thorough discussion at the quark level and estimates using

lattice calculations can be found in [5].

The infinite volume expressions we obtain agree with those of [13]. The finite-volume

corrections for the d̄γµu and electromagnetic current are

∆V Ππ+

µν (q) = 2Π̃µν(m2
π+ ,m

2
π0 , q) + Π̃µν(m2

K+ ,m
2

K
0 , q) ,

∆V Πem
µν (q) = Π̃µν(m2

π+ ,m
2
π− , q) + Π̃µν(m2

K+ ,m
2
K− , q) ,

Π̃µν(m2
1,m

2
2, q) = gµν

(
4BV

22(m2
1,m

2
2, q)−AV (m2

1)−AV (m2
2)
)

+ qµqν
(
4BV

21(m2
1,m

2
2, q

2)− 4BV
1 (m2

1,m
2
2, q

2) +BV (m2
1,m

2
2, q

2)
)

+ (qµg
α
ν + qνg

α
µ)(−2)BV

2α(m2
1,m

2
2, q) + 4BV

23µν(m2
1,m

2
2, q) . (4.4)
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Using the relations (A.16) it can be checked that the consequences of (4.3), namely qµΠπ+

µν =〈
ūγµu− d̄γµd

〉
and qµΠem

µν = 0 are satisfied.

We do not present numerical results here, the values of the vacuum expectation value

are small compared to
〈
uu
〉
.

5 Meson masses

We define the mass here as the pole of the full propagator at fixed spatial momentum ~p.

~p should be such that it satisfies the twisted boundary condition for the field under con-

sideration. Lorentz and charge conjugation invariance are broken by the twisted boundary

conditions. This leads to a mass that depends on all components of the spatial momentum

~p. An anti-particle with spatial momentum −~p has the same mass as the corresponding

particle with spatial momentum ~p.

The analytical results for the mass correction in terms of the integrals defined in

appendix A are

∆Vm2
π± =

±pµ

F 2
0

[−2AVµ (m2
π+)−AVµ (m2

K+) +AVµ (m2
K0)]

+
m2
π

F 2
0

(
−1

2
AV (m2

π0) +
1

6
AV (m2

η)

)
,

∆Vm2
π0 =

m2
π

F 2
0

(
−AV (m2

π+) +
1

2
AV (m2

π0) +
1

6
AV (m2

η)

)
,

∆Vm2
K± = ± p

µ

F 2
0

[−AVµ (m2
π+)− 2AVµ (m2

K+)−AVµ (m2
K0)]−

m2
K

F 2
0

1

3
AV (m2

η) ,

∆Vm2

K0(K
0
)

= +(−)
pµ

F 2
0

[AVµ (m2
π+)−AVµ (m2

K+)− 2AVµ (m2
K0)]−

m2
K

F 2
0

1

3
AV (m2

η) ,

∆Vm2
η = −

m2
K

F 2
0

2

3
(AV (m2

K+) +AV (m2
K0)) +

m2
η

F 2
0

2

3
AV (m2

η) ,

+
m2
π

F 2
0

1

6
(2AV (m2

π+) +AV (m2
π0)−AV (m2

η)) . (5.1)

The notation K0(K
0
) and +(−) means + for K0 and − for K

0
. We agree with the infinite

volume expressions of [9] and the known untwisted finite-volume corrections [10, 11]. The

relation to the results in [2, 6] is discussed in section 8.

In (5.1) the masses m2
π, m2

K and m2
η can be replaced by the physical masses with or

without finite volume correction, or lowest order masses. The differences are higher order.

The same comment applies to F0 in (5.1). The masses in the loop functions AV are written

as the physical masses. The notation AV (m2
M ) with M the meson includes includes the

dependence on θM . We keep for example π+ and π0 as notation even if they have the same

infinite volume and lowest order mass, since θπ+ and θπ0 are different.

Note that in the case where ~p = ~θ/L the different signs for AVµ between particle

and anti-particle will be canceled by the sign difference in ~p originating from opposite

twist angles. The same cancellation occurs for the higher momentum states if the change
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2π~n/L→ −2π~n/L is taken. This is consistent with the fact that charge conjugation should

be defined with a change of sign in momentum, as discussed above.

The twisted boundary conditions do break isospin and thus induce π0-η mixing. This

only affects the masses at next-to-next-to-leading-order (NNLO), i.e. higher order than

NLO. The derivation follows the arguments as given in section 2.1 in [14] .

We now show the volume and twist angle dependence for the case with

mπ = 139.5 MeV , mK = 495 MeV , m2
η =

4

3
m2
K −

1

3
m2
π, Fπ = 92.2 MeV . (5.2)

We have used these masses in the one-loop expressions as well as the value of Fπ for F0 in

the expressions. We show results for several values of the twist angle θ with

~θu = (θ, 0, 0) , ~θd = ~θs = 0 . (5.3)

Note that this implies that for π+ and K+ there is a non-zero spatial momentum ~p = ~θu/L,

while ~p vanishes for π0, K0 and η. As can be seen in figure 1, the finite volume correction

has a sizable dependence on the twist-angle. The correction for the K0 does not depend

on the twist angle here, since for the choice of angles in (5.3) there is only the η-loop

contribution due to ~pK0 = 0. The relative correction to the kaon and eta masses remains

small while for π+ and π0 it can become in the few % range.

6 Decay constants

We define the meson (axial-vector) decay constant in finite volume as〈
0|AMµ |M(p)

〉
= i
√

2FMpµ + i
√

2F VMµ , (6.1)

where M(p) is a meson and Aµ = q̄γµγ5(λM/
√

2)q is the axial current. The extra term

is needed since the matrix element in finite volume is no longer proportional to pµ. The

first term in (6.1) can be identified by looking at the time component of the current. The

second term has non-zero components only in the spatial directions and vanishes in infinite

volume.

For the flavour charged mesons, the charge in the axial current and the meson is

necessarily the same. In the isospin limit the same is true for the π0 and the η. However

the twisted boundary conditions do break isospin and thus the π0 also couples to the octet

current and the η to the triplet current. At NLO this coupling comes from two effects, the

mixing between the isospin triplet π and the octet η as well as the direct transition to the

other current. A derivation can be found in section 2.2 of [14].

We also consider decay through a pseudo-scalar current. We define this decay con-

stant as 〈
0|PM |M(p)

〉
=
GM√

2
(6.2)

where P = q̄iγ5(λM/
√

2)q is the pseudo-scalar current corresponding to the meson M . A

similar comment to above about π0 and η applies.
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Figure 1. Absolute value of the relative finite volume correction to the masses of the light pseudo-

scalar mesons as a function of the box size for various twist angles. The twist is for all cases on the

up quark. The input values are specified in (5.2) and (5.3). The dip in the top two plots is where

the correction goes through zero
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These two matrix elements satisfy the Ward identity

∂µ
〈
0|AMµ |M(p)

〉
= (mq +mq′)

〈
0|PM |M(p)

〉
, (6.3)

valid for flavour charged mesons of composition q̄q′. This leads to

p2FM + pµF VMµ =
1

2
(mq +mq′)GM . (6.4)

We have checked that our expressions for the charged mesons agree with this. An important

part in this agreement is the use of the correct momentum-dependent mass of the meson.

For the neutral mesons a somewhat more complicated relation is needed since they are

sums of terms with different quark masses.

The analytical results for the finite volume effects on the axial-vector decay constants

are given below in terms of the integrals defined in appendix A. For the π0 and η we listed

the matrix-elements with A3
µ and A8

µ separately, indicating which decay is which with an

extra subscript. The isospin breaking decay vanishes if the up and down quarks have the

same twist angles.

Again we agree with the infinite volume results of [9]. The finite volume corrections

for the axial current decay constants for the flavour charged mesons are

∆VFπ± =
1

F0

(
1

2
AV (m2

π+) +
1

2
AV (m2

π0) +
1

4
AV (m2

K+) +
1

4
AV (m2

K0)

)
,

F Vπ±µ = ± 1

F0

[
2AVµ (m2

π+) +AVµ (m2
K+)−AVµ (m2

K0)
]
,

∆VFK± =
1

F0

(
1

4
AV (m2

π+) +
1

8
AV (m2

π0) +
1

2
AV (m2

K+) +
1

4
AV (m2

K0) +
3

8
AV (m2

η)

)
,

F VK±µ = ± 1

F0

[
AVµ (m2

π+) + 2AVµ (m2
K+) +AVµ (m2

K0)
]
,

∆VFK0(K̄0) =
1

F0

(
1

4
AV (m2

π+) +
1

8
AV (m2

π0) +
1

4
AV (m2

K+) +
1

2
AV (m2

K0) +
3

8
AV (m2

η)

)
,

F V
K0(K

0
)µ

= +(−)
1

F0

[
−AVµ (m2

π+) +AVµ (m2
K+) + 2AVµ (m2

K0)
]
. (6.5)

They agree with the untwisted finite volume results of [11]. The relation to the results

given in [2] is discussed in section 8. The flavour neutral expressions include the effects of

mixing.

F Vπ03µ = F Vπ08µ = F Vη3µ = F Vη8µ = 0 ,

∆VFπ03 =
1

F0
(AV (m2

π+) +
1

4
AV (m2

K+) +
1

4
AV (m2

K0)) ,

∆VFπ08 =
3m2

η −m2
π

2
√

3F0(m2
η −m2

π)
(AV (m2

K+)−AV (m2
K0)) ,

∆VFη8 =
3

4F0
(AV (m2

K+) +AV (m2
K0)) ,

∆VFη3 =
−m2

π√
3F0(m2

η −m2
π)

(AV (m2
K+)−AV (m2

K0)). (6.6)

to simplify the expressions.
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The masses and F0 in these expressions can be chosen in different ways as discussed

earlier for the masses.

The lowest order value for the pseudo-scalar decay constants is G0 = 2F0B0. We are

not aware of published results for the NLO corrections at infinite volume, we thus quote

those for completeness and add a superscript (4) to indicate the NLO infinite volume

correction. Note that isospin is valid at infinite volume such that the mixed ones vanish

and there is only an expression for the π, K and η8 case.

G(4)
π =

G0

F 2
0

(
4K46 + 4m2

π(4Lr8 − Lr5) +
1

2
A(m2

π) +
1

2
A(m2

K) +
1

6
A(m2

η)

)
,

G
(4)
K =

G0

F 2
0

(
4K46 + 4m2

K(4Lr8 − Lr5) +
3

8
A(m2

π) +
3

4
A(m2

K) +
1

24
A(m2

η)

)
,

G
(4)
η8 =

G0

F 2
0

(
4K46 + 4m2

η(4L
r
8 − Lr5) +

1

2
A(m2

π) +
1

6
A(m2

K) +
1

2
A(m2

η)

)
,

K46 = (2m2
K +m2

π)(4Lr6 − Lr4) . (6.7)

The integral is

A(m2) = − m2

16π2
log

m2

µ2
. (6.8)

The finite volume effects for the pseudo-scalar decay constants for the flavour charged

mesons are

∆VGVπ± =
G0

F 2
0

(
1

2
AV (m2

π+) +
1

4
AV (m2

K+) +
1

4
AV (m2

K0) +
1

6
AV (m2

η)

)
,

∆VGK± =
G0

F 2
0

(
1

4
AV (m2

π+) +
1

8
AV (m2

π0) +
1

2
AV (m2

K+) +
1

4
AV (m2

K0) +
1

24
AV (m2

η)

)
,

∆VG
K0(K

0
)

=
G0

F 2
0

(
1

4
AV (m2

π+) +
1

8
AV (m2

π0) +
1

4
AV (m2

K+) +
1

2
AV (m2

K0) +
1

24
AV (m2

η)

)
.

(6.9)

For the flavour neutral cases we need to take into account mixing and obtain

∆VGπ03 =
G0

F 2
0

(
1

2
AV (m2

π0) +
1

4
AV (m2

K+) +
1

4
AV (m2

K0) +
1

6
AV (m2

η)

)
,

∆VGπ08 =
G0

F 2
0

m2
η +m2

π

2
√

3(m2
η −m2

π)

(
AV (m2

K+)−AV (m2
K0)
)
,

∆VGη8 =
G0

F 2
0

(
1

3
AV (m2

π+) +
1

6
AV (m2

π0) +
1

12
AV (m2

K+) +
1

12
AV (m2

K0) +
1

2
AV (m2

η)

)
,

∆VGη3 =
G0

F 2
0

−m2
η√

3(m2
η −m2

π)

(
AV (m2

K+)−AV (m2
K0)
)
. (6.10)

At this order Gπ08 and Gη3 only arise from π0-η mixing.

We present now some numerics for the same inputs as used for the masses given in (5.2)

and (5.3).

In figure 2 we show the size of the finite volume corrections to the charged meson decay

constants with both terms in (6.1) shown separately. We use the same input parameters
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Figure 2. Relative finite volume correction for the two terms in the decay constant matrix

element (6.1). On the left hand side we have plotted ∆V FM/Fπ and on the right hand side

FVMx/(FπmM ), i.e. the x-component compared to the size of the zero-component. For the input

chosen the x-component is the only non-zero one for the second term in (6.1). The top row is

M = π+ and the bottom row for M = K+. Input values as in (5.2) and (5.3).

as for the masses of (5.2) and (5.3). The first term in (6.1) is shown in the left plots

normalized to Fπ for the charged pion and kaon. The right plots shows the x-component

of the second term in (6.1), which is the only non-zero component for our choice of input.

It vanishes identically for θ = 0. We have normalized here to the value of FπmK which

is roughly the value of the t-component in infinite volume. Note that the finite volume

corrections can be sizable and the second term is not always negligible.

7 Electromagnetic form-factor

The electromagnetic form-factor in infinite volume is defined as〈
p′|jemµ |p

〉
= F (q2)(p+ p′)µ (7.1)
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where q = p− p′ and jµ is the electromagnetic current for the light quark flavours

jemµ =
2

3
ūγµu−

1

3
(d̄γµd+ s̄γµs). (7.2)

The electromagnetic form-factor in twisted lattice QCD is not the same as in infinite volume

or finite volume with periodic conditions. Instead it has the more general form〈
M ′(p′)|jIµ|M(p)

〉
= fIMM ′µ

= fIMM ′+(pµ + p′µ) + fIMM ′−qµ + hIMM ′µ . (7.3)

In addition to the electromagnetic current we will use

jqµ = q̄γµq, jπ
+

µ = d̄γµu . (7.4)

We will also suppress the M ′ in the subscripts when initial and final meson are the same

and sometimes the IMM ′. In the infinite volume limit the functions f− and h must go to

zero and f+ must go to F (q2) so that eq. (7.1) is recovered. We only work with currents

where the quark and anti-quark have the same mass. The result in infinite volume can be

found in [15]. Results at finite volume with periodic boundary conditions are in [16, 17].

The main reason for using twisted boundary conditions is to extract physical quantities

for small momenta. In the case of the electromagnetic form-factor the twist does not help

when applied to correlators such as 〈
π+(p′)|jqµ|π+(p)

〉
(7.5)

since the same twist is applied to the incoming and outgoing particles we get pi − p′i =

2πni/L. However, as was pointed out in [4], it is possible to extract information using

isospin symmetry. To analyze this more carefully requires calculations in partially quenched

ChPT and this will be the topic of forthcoming work. Here we are satisfied with noting

that in the isospin limit with mu = md and θu = θd we have the relation (in our sign

conventions)〈
π+(p′)|ūγµu|π+(p)

〉
= −

〈
π+(p′)|d̄γµd|π+(p)

〉
= − 1√

2

〈
π0(p′)|d̄γµu|π+(p)

〉
. (7.6)

The relation (7.6) can in principle be used to evaluate the main part, excluding s̄γµs, of

the electromagnetic form-factor of the pion for arbitrary momenta. The current d̄γµu is

referred to as d̄u in the equations below. In practice π0 gives rise to difficulties on the

lattice, and the twisted boundary conditions explicitly break isospin. The corrections due

to the latter are one of the goals of this work.

7.1 Analytic expressions

The split in f+, f− and h in (7.3) is not unique. The functions can depend on all components

of the momenta and twist-vectors. However, we stick to the splitting among f+, f− and h

which naturally emerges from the one-loop calculation. The integrals appearing are defined

in appendix A.
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The results for fV+ are most easily given in terms of the finite volume generalization of

the function H in [15, 18].

HV (m2
1,m

2
2, q) =

1

4
AV (m2

1) +
1

4
AV (m2

2)−BV
22(m2

1,m
2
2, q) (7.7)

The effects of π0-η mixing appear earliest at NNLO for the form-factors listed here. The

form-factors f+ we consider are:

∆Vfemπ±+ =
±1

F 2
0

(
2HV (m2

π+ ,m
2
π− , q) +HV (m2

K+ ,m
2
K− , q)

)
,

∆VfemK±+ =
±1

F 2
0

(
HV (m2

π+ ,m
2
π− , q) + 2HV (m2

K+ ,m
2
K− , q)

)
,

∆Vf
emK0(K

0
)+

=
±1

F 2
0

(
−HV (m2

π+ ,m
2
π− , q) +HV (m2

K+ ,m
2
K− , q)

)
,

∆Vfemπ0+ = 0 ,

∆Vfd̄uπ+π0+ =
−
√

2

F 2
0

(
2HV (m2

π+ ,m
2
π0 , q) +HV (m2

K+ ,m
2

K
0 , q)

)
. (7.8)

The f− form-factors for the same cases are:

∆Vfemπ+(π−)− =
p′ν(−pν)

F 2
0

(
2BV

2ν(m2
π+ ,m

2
π− , q) +BV

2ν(m2
K+ ,m

2
K− , q)

)
,

∆VfemK+(K−)− =
p′ν(−pν)

F 2
0

(
BV

2ν(m2
π+ ,m

2
π− , q) + 2BV

2ν(m2
K+ ,m

2
K− , q)

)
,

∆Vf
emK0(K

0
)− =

1

F 2
0

(
−(pν(−p′ν))BV

2ν(m2
π+ ,m

2
π− , q) + p′ν(−pν)BV

2ν(m2
K+ ,m

2
K− , q)

)
,

∆Vfemπ0− =
1

F 2
0

(
m2
π

(
BV (m2

π+ ,m
2
π− , q)− 2BV

1 (m2
π+ ,m

2
π− , q)

)
− qν

(
2BV

2ν(m2
π+ ,m

2
π− , q) +

1

2
BV

2ν(m2
K+ ,m

2
K− , q)

))
,

∆Vfd̄uπ+π0− =

√
2

F 2
0

(
m2
π

(
BV (m2

π+ ,m
2
π0 , q)− 2BV

1 (m2
π+ ,m

2
π0 , q)

)
−
(

2pνBV
2ν(m2

π+ ,m
2
π− , q) +

1

2
(p+ p′)νBV

2ν(m2
K+ ,m

2

K
0 , q)

))
, (7.9)

Finally, the hµ at finite volume are

∆Vhemπ±µ =
1

F 2
0

(
2AVµ (m2

π+) +AVµ (m2
K+)−AVµ (m2

K0)

+ q2BV
2µ(m2

π+ ,m
2
π− , q) +

q2

2
BV

2µ(m2
K+ ,m

2
K− , q)

∓ (p+ p′)ν
(
2BV

23µν(m2
π+ ,m

2
π− , q) +BV

23µν(m2
K+ ,m

2
K− , q)

))
,
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∆VhemK±µ =
1

F 2
0

(
AVµ (m2

π+) + 2AVµ (m2
K+) +AVµ (m2

K0)

+
q2

2
BV

2µ(m2
π+ ,m

2
π− , q) + q2BV

2µ(m2
K+ ,m

2
K− , q)

∓ (p+ p′)ν
(
BV

23µν(m2
π+ ,m

2
π− , q) + 2BV

23µν(m2
K+ ,m

2
K− , q)

))
,

∆Vh
emK0(K

0
)µ

=
1

F 2
0

(
q2

2
BV

2µ(m2
π+ ,m

2
π− , q) +

q2

2
BV

2µ(m2
K+ ,m

2
K− , q)

+ (−)(p+ p′)ν
(
BV

23µν(m2
π+ ,m

2
π− , q)−B

V
23µν(m2

K+ ,m
2
K− , q)

))
,

∆Vhemπ0µ =
1

F 2
0

(
2(q2 −m2

π)BV
2µ(m2

π+ ,m
2
π− , q) +

q2

2
BV

2µ(m2
K+ ,m

2
K− , q)

)
,

∆Vhd̄uπ+π0µ =

√
2

F 2
0

(
−AVµ (m2

π+)− 1

2
AVµ (m2

K+) +
1

2
AVµ (m2

K0)

+ (q2 − 2m2
π)BV

2µ(m2
π+ ,m

2
π0 , q)

+ (p+ p′)ν
(

2BV
23µν(m2

π+ ,m
2
π0 , q) +BV

23µν(m2
K+ ,m

2

K
0 , q)

))
.

(7.10)

We used in these formulas that the π0 and η have no twist and that particle and anti-

particle have opposite twists. Both f− and h vanish in infinite volume.

7.2 Ward identities

All the form-factors we discuss have the same mass for the quark and anti-quark in the

vector current. As a consequence they obey, even at finite volume, the Ward identity

qµfIMM ′µ = (p2 − p′′2)fIMM ′+ + q2fIMM ′− + qµhIMM ′µ = 0 . (7.11)

We have used this as a check on our results. This standard check requires a bit of cau-

tion when using twisted boundary conditions. The issue is that masses are momentum

dependent when twist is applied, see section 5. When performing a one loop calculation

part of the mass correction is different for ingoing and outgoing meson, this means that

p2 − p′2 6= 0 even when the incoming and outgoing particle are the same. Comparing

equations for the mass corrections, we see that these cancel the parts coming from AVµ in

hIMM ′µ. The remainder cancels between q2fIMM ′− and qµhIMM ′µ when using the identi-

ties in appendix A.4.

7.3 Numerical results

Let us first remind here why twisting is useful for form-factors with the example of the pion

form-factor and a lattice size of mπL = 2. The smallest spatial momentum that can be

produced is 2π/L = πmπ and the corresponding q2 is q2
min = −0.089 GeV2 = −(0.3 GeV)2.

Twisting allows for q2 continuously varying from zero.
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In this section we concentrate on the quantity

fµ =
(
1 + f∞+ + ∆V f+

)
(p+ p′)µ + ∆V f−qµ + ∆V hµ = − 1√

2
fd̄uπ+π0µ . (7.12)

This is the form-factor corresponding to the right hand side of (7.6) normalized to 1 at

q2 = 0 in infinite volume. The finite volume parts are what is needed to obtain the pion

electromagnetic form-factor, neglecting the s-quark contribution, at infinite volume. We

have separated the lowest order value of 1, the infinite volume and finite volume correction

to f+ as well as the f− and hµ parts defined earlier.

Again we look at the case with ~θu = (θ, 0, 0). This means that the incoming π+

four-momentum p, the outgoing π0 momentum p′ and q2 are

p =

(√
mV 2
π+ + (θ/L)2, θ/L, 0, 0

)
,

p′ =
(
mV 2
π0 , 0, 0, 0

)
,

q2 = mV 2
π+ +mV 2

π0 − 2mV
π0

√
mV 2
π+ + (θ/L)2 . (7.13)

Note that the masses at finite volume that come in here, not the infinite volume ones. We

have indicated this with the superscript V in the masses. To plot the corrections we use

mV 2
M = m2

M + ∆Vm2
M in the numerics with ∆Vm2

M given in (5.1). The size of this effect

is shown in the left plot of figure 3. We plot the value of q2 at finite and infinite volume

and the deviation of the ratio from 1 as a function of θ/L. The endpoint of the curve is for

θ = 2π. The right plot in figure 3 shows the effect on the form-factor of this change in q2.

We plotted there the one-loop contribution at infinite volume to the pion electromagnetic

form-factor, f∞+ (q2), as a function of the two different q2 discussed here. The extra input

values used are Lr9 = 0 and µ = 0.77 GeV. The total effect of this correction is rather

small.

In the remainder we will use the q2 as calculated with the finite volume masses. In

figure 4 we plot the different parts of the form-factor as defined in (7.12). Plotted are the

infinite volume one-loop part of f∞+ , the finite volume corrections ∆V f+, ∆V f− and the

two non-zero components of ∆V hµ. As one can see, the finite volume corrections are not

small and the parts due to the extra form-factors can definitely not be neglected. The units

are GeV for the two components of ∆V hµ.

The more relevant quantities for comparison are the components with µ = 0 and µ = 1.

We have plotted the form-factor as defined with upper index µ. The left plot in figure 5

shows µ = 0 and the right plot µ = 1. Units are in GeV. The finite volume correction is

of a size similar to the infinite volume pure one-loop contribution and the correction due

to the extra terms at finite volume and twist are not negligible.

8 Comparison with earlier work

The one and two-point Green functions of vector currents are discussed in section 4. These

issues were discussed in a more lattice oriented way in [5]. Here we have provided the

ChPT expressions for them.
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Figure 3. Left: the dependence of q2 at a fixed ~q = (θ/L, 0, 0) for the finite volume with mπL = 2

and infinite volume as well as the difference ratio from one. The curves end at θ = 2π. Right: the

effect of this change in q2 on the infinite volume corrections of fV+ (q2) with Lr9 = 0.
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Figure 4. The various parts of the form-factor defined in (7.12). See text for a more detailed

explanation.

For the masses the comparison with earlier work is more subtle. In this work, we have

consistently used the formulation with non-zero twist angle and no induced background

field. This implies that the allowed meson momenta are of the form ~pBR = (2π~n+~θ)/L, with

~n a three-vector with integer components and ~θ the twist vector for the field corresponding

to the meson. As mentioned in section 2 we define asymptotic states as those where there

is at fixed ~p a pole at a value, E0, of the energy. The LSZ theorem can then be used for

these single particle states to obtain matrix elements by taking the limit E → E0 allowing

for the usual method with wave function renormalization and possibly mixing of external

states to take into account external leg corrections. Our definition of the mass used is

m2
BR = E2

0 − ~p2
BR . (8.1)
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Figure 5. Left: µ = 0 Right: µ = 1. Plotted are those due to the one-loop infinite volume

correction, f∞+ (q2), the finite volume correction to f+, ∆V f+, and the full finite volume correction,

∆V fµ = ∆V f+(p+ p′)µ + ∆V f−q
µ + ∆V hµ.

The mass can depend on all components of ~p since there is no rotation invariance and even

cubic invariance1 is no longer present. We have used the expression “momentum-dependent

mass” in the text to indicate this dependence. The relation between E and ~p for states is

called dispersion relation in some other references, see e.g. [6].

[6] discussed the pion mass, both neutral and charged, in two-flavour ChPT on the

lattice. They work in the version of ChPT where the fields satisfy periodic boundary

conditions but there are background fields ~B = ~θ/L. They have periodic momenta ~pp =

(2π~n)/L and define kinematical momenta ~pk = ~pp + ~B which coincide with our definition

~pBR. However when they define the mass they write the result in the form2

m2
JT = E2

0 −
(
~pp + ~B + ~K

)2
= E2

0 −
(
~pp + ~B

)2
− 2

(
~pp + ~B

)
· ~K + NNLO. (8.2)

~K is NLO, thus we can neglect ~K2 as indicated. Comparing (8.1) and (8.2), the parts

containing the integral AVµ in (5.1) can be written in the form −2(~pp + ~B) · ~K. [6] ex-

presses this that the meson field (spatial) momentum is renormalized. When comparing

the expressions, keep in mind we have also a twist on the sea quarks while [6] does not.

Comparing with the results of [2] is not obvious. The masses are not defined there.

The discussion of loop diagrams in the main text indicates that they used momenta of the

form ~pp + ~B everywhere and if one assumes that their mass is defined as

m2
SV 1 = E2

0 −
(
~pp + ~B

)2
, (8.3)

then they missed the terms with AVµ . If instead a definition of the mass similar to (8.2) is

assumed we are in agreement. The expression corresponding to ~K is not present in [2].

1We assume here that the t direction is infinite.
2We have changed their notation and conventions to make the comparison more clearly.
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For the decay constants a similar issue arises. They are not fully defined in [2]. If

one defines the decay constant from the time component of the axial current then only the

parts ∆V FM are relevant and we are in full agreement, if, as is natural, the neutral pion

and eta decay constants in [2] are defined with the isospin and octet axial currents. It

turns out that to NLO the decay constants can be defined with a shift in momentum ~K ′

similar to what was done for the masses, i.e. the full matrix element has the form〈
0|AMµ |M(p)

〉
= i
√

2FM
(
pµ +K ′µ

)
+ NNLO . (8.4)

However, the needed shift vector is different in the two cases,

~K 6= ~K ′ . (8.5)

The pion form-factors as discussed in section 7 were treated in the two-flavour case

in [6]. They discussed the time component only but added partial twisting and quench-

ing. The extra terms in the matrix element (7.3) are seen in (19) of [6] as well. The

terms in (19) in [6] containing GFV , G
iso
FV ,G

iso
FV correspond to our ∆V f+,∆

V f−,∆
V hµ

of (7.8), (7.9) and (7.10). We have included the spatial components as well and checked

that the expected Ward identity following from current conservation is satisfied when all

effects of the boundary condition are taken into account. It should be noted that here the

matrix element cannot be rewritten in terms of one form-factor f+ and momenta rescaled

with a shift ~K ′′.

9 Conclusions

In this paper we discussed the one-loop tadpole and bubble integrals in finite volume and

at non-zero twist.

We have worked out the expressions in one-loop ChPT for masses, axial-vector and

pseudo-scalar decay constants as well as the vacuum expectation value and the two-point

function for the electromagnetic current. We also discussed how the vector form-factors

behave at finite twist angle. In particular we showed how one needs more form-factors

than in the infinite volume limit and obtained expressions for those at one-loop order. We

discussed how the extra terms are needed in order for the Ward identities to be satisfied.

Explicit formulas are provided for a large number of cases. We have given numerical

results for all masses and the axial-vector decay constant of the charged mesons. We found

that for the vector form-factor there are nontrivial finite volume effects due to the extra

form-factors and have discussed the size of these effects on the form-factors. In particular,

we have taken care to precisely define what all quantities are.

Work is in progress for including the effects due to partial quenching and twisting as

well as the effects from staggered fermions [19].
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A Finite volume integrals with twist

The basic method to do finite volume integrals with twist can be found in [2]. The discussion

below follows [12] closely.

A.1 Miscellaneous formulae

The first ingredient is the Poisson summation formula which is in one dimension

1

L

∑
k=2πn/L+θ/L

n∈Z

f(k) =
∑
m∈Z

∫
dk

2π
f(k)eiLmke−imθ. (A.1)

The
∑

m∈Z e
ima projects on a = 2πn. k − θ/L is of this form, hence the sign in e−imθ

in (A.1).

The results for loop integrals with twist are expressed with the third Jacobi theta

function and its derivatives w.r.t. to u. The definitions are

Θ3(u, q) =

∞∑
n=−∞

qn
2
e2πiun , Θ′3(u, q) =

∞∑
n=−∞

qn
2
2πine2πiun,

Θ′′3(u, q) = −
∞∑

n=−∞
qn

2
4π2n2e2πiun. (A.2)

Some useful properties can be found in [12].

A.2 Tadpole integral

We define the tadpole integral in finite volume with twist as

A{ ,µ,µν}(m2
M , n) =

1

i

∫
V

ddk

(2π)d
{1, kµ, kµkν}
(k2 −m2

M )n
. (A.3)

The blank in the superscript indicates no superscript.
∫
V d

dk/(2π)d is defined in (3.5).

The momentum ~k which is summed over must be such that the boundary condition for the

propagating meson M is satisfied,

~k =
2π

L
~n+

~θM
L
, ~θM = (θxM , θ

y
M , θ

z
M ) . (A.4)

We also introduce a fourvector θM = (0, ~θ). Note that this implies that the tadpole integral

is not invariant under ~k → −~k since −~k does not satisfy the boundary conditions for non-

zero twist. The direction of propagation is important. We drop the subscript M below for

clarity.

To describe the evaluation of these integrals, we restrict to the case {1} and then quote

the results for the other cases. We Wick rotate to Euclidean space and apply Poisson’s

summation formula from eq. (A.1), giving

A(m2, n) = (−1)n
∑
~l∈Z3

∫
ddkE
(2π)d

1

(k2
E +m2)n

eiL
~l·~k−i~l·~θ . (A.5)
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The term with ~l = 0 gives the infinite volume result. We focus on the finite volume

part and use a prime on the sum to indicate that we sum over ~l 6= 0. Using 1/an =

(1/Γ(n))
∫∞

0 dλλn−1e−aλ, we get

AV (m2, n) = (−1)n
′∑

~l∈Z3

∫
ddkE
(2π)d

∫
dλ

Γ(n)
λn−1e−λ(k2+m2)eiL

~l·~k−i~l·~θ. (A.6)

The shift of integration variable via k = k̄+ iLl/(2λ), with l = (0,~l), completes the square:

AV (m2, n) = (−1)n
′∑

~l∈Z3

∫
ddk̄E
(2π)d

∫
dλ

Γ(n)
λn−1e−λ(k̄2+m2)e−L

2~l2/(4λ)−i~l·~θ. (A.7)

We can now perform the Gaussian integral and we end up with

AV (m2, n) = (−1)n
′∑

~l∈Z3

∫
dλ

Γ(n)

λn−1−d/2

(4π)d/2
e−λm

2
e−L

2~l2/(4λ)−i~l·~θ. (A.8)

Changing variables λ→ λL2/4 and using the Jacobi theta function of (A.2), we arrive at

AV (m2, n) = (−1)n
(
L2

4

)n−2 ∫
dλ

Γ(n)

λn−3

(4π)2
e−λm

2L2/4

 ∏
j=x,y,z

Θ3

(
−θj

2π
, e−1/λ

)
− 1

 .

(A.9)

The −1 removes the case with ~l = 0 and the triple product comes from the triple sum and

we set d = 4.

Performing the same operations using the other elements in X gives for the finite

volume corrections

AV µ(m2, n) = (−1)n
1

πL

(
L2

4

)n−2 ∫
dλ

Γ(n)

λn−4

(4π)2
e−λm

2L2/4

×Θ′3

(
−θµ

2π
, e−1/λ

) ∏
j=x,y,z
j 6=µ

Θ3

(
−θj

2π
, e−1/λ

)
. (A.10)

Note that the component µ = 0 vanishes.

AV µν(m2, n) = gµνAV22(m2, n) +AV µν23 (m2, n) ,

AV22(m2, n) =
(−1)n−1

2

(
L2

4

)n−3∫
dλ

Γ(n)

λn−4

(4π)2
e−λm

2L2/4

 ∏
j=x,y,z

Θ3

(
−θj

2π
, e−1/λ

)
− 1

 ,

AV µν23 (m2, n) =
(−1)n

4π2

(
L2

4

)n−3 ∫
dλ

Γ(n)

λn−5

(4π)2
e−λm

2L2/4

((a)µ = 0 or ν = 0) × 0

((b)0 6= µ 6= ν 6= 0) ×Θ′3

(
−θµ

2π
, e−1/λ

)
Θ′3

(
−θν

2π
, e−1/λ

) ∏
j=x,y,z
j 6=µ,ν

Θ3

(
−θj

2π
, e−1/λ

)
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((c)µ = ν 6= 0) ×Θ′′3

(
−θµ

2π
, e−1/λ

) ∏
j=x,y,z
j 6=µ

Θ3

(
−θj

2π
, e−1/λ

)
(A.11)

AV µν23 vanishes for µ = 0 or ν = 0, case (a). For µ 6= ν one uses the line (b), otherwise (c).

AV µν23 is from the lµlν part after the shift of k to k̄. The sign conventions are Minkowski

with upper indices as indicated. In the main text we have dropped the argument n, we

only need n = 1.

A.3 Two propagator integrals

We define two propagator integrals as

B{ ,µ,µν}(m2
1,m

2
2, n1, n2) =

1

i

∫
V

ddk

(2π)d
{1, kµ, kµkν}

(k2 −m2
1)n1((q − k)2 −m2

2)n2
. (A.12)

As in the tadpole case, the direction of the propagators is important. We use the convention

that the particles propagate in the direction of the momentum indicated in the propagator.

We thus write k and q − k in the propagators to indicate this, even if the sign in the

denominator at first sight is not relevant.

We have in principle a twist angle vector for each of the two particles in the denom-

inators. However, it is sufficient to specify only the twist vector for the first propagator,

with m2
1, and the external momentum q. The latter must be such that q− k automatically

produces the correct boundary conditions for the particle corresponding to m2
2. This is

discussed in detail in [2].

We first do the Poisson summation trick to get full integrals over k. We combine the

two propagators in (A.12) using a Feynman parameter x and shift integration variable by

k = k̃ + xq. We then have expressions of the form of the previous subsection but with k̃

as integration variable and m̃2 = (1 − x)m2
1 + xm2

2 − x(1 − x)q2 instead of m2, as well as
~̃
θ = ~θ1 − x~q.

The final result is

BV (m2
1,m

2
2, n1, n2, q) =

Γ(n1 + n2)

Γ(n1)Γ(n2)

∫ 1

0
dx(1− x)n1−1xn2−1AV (m̃2, n1 + n2) ,

BV µ(m2
1,m

2
2, n1, n2, q) =

Γ(n1 + n2)

Γ(n1)Γ(n2)

∫ 1

0
dx(1− x)n1−1xn2−1

×
(
AV µ(m̃2, n1 + n2) + xqµAV (m̃2, n1 + n2)

)
,

BV µν(m2
1,m

2
2, n1, n2) =

Γ(n1 + n2)

Γ(n1)Γ(n2)

∫ 1

0
dx(1− x)n1−1xn2−1

(
AV µν(m̃2, n1 + n2)

+ x(qµgνα + qνgµα)AV α(m̃2, n1 + n2) + x2qµqνAV (m̃2, n1 + n2)
)
.

(A.13)

The signs are for upper indices in Minkowski space as indicated. For the numerical eval-

uation it is useful to treat the integral over x and λ together. In the main text we have

dropped the indices n1 and n2 and used the components as defined below in (A.15).
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A.4 Integral relations

It is possible to derive relations between integrals using the relation

2k · q = (k2 −m2
1)− ((q − k)2 −m2

2) +m2
1 −m2

2 + q2 . (A.14)

These were done in infinite volume in [20] and in [13] in the same conventions as ours.

The trick remains valid at finite volume. Care has to be taken in the shift of integration

momentum for some of the tadpole integrals (from k to q − k) but that is consistent with

the boundary conditions.

We define components

BV µ(m2
1,m

2
2) = qµBV

1 (m2
1,m

2
2, q) +BV µ

2 (m2
1,m

2
2, q)

BV µν(m2
1,m

2
2, q) = qµqνBV

21(m2
1,m

2
2, q) + gµνBV

22(m2
1,m

2
2, q) +BV µν

23 (m2
1,m

2
2, q) . (A.15)

The relations we get from using (A.14) are, suppressing the arguments (m2
1,m

2
2, q),

2q2BV
1 = −AV (m2

1) +AV (m2
2) + (q2 +m2

1 −m2
2)BV − 2BV µ

2 qµ ,

qµB
V µν
23 = −q2qνBV

21 − qνBV
22

+
1

2

(
−AV ν(m2

2)−AV ν(m2
1) + qνA(m2

2) + (q2 +m2
1 −m2

2)BV ν
)
. (A.16)

These are valid for n1 = n2 = 1 and n = 1 in the tadpole integrals. They are needed

to prove the Ward identities in the main text. We have also used them to simplify the

expressions.
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Abstract

This paper contains some new results on the hadronic light-by-light contribution
(HLbL) to the muon g−2. The first part argues that we can expect large effects from
disconnected diagrams in present and future calculations by lattice QCD of HLbL.
The argument is based on the dominance of pseudo-scalar meson exchange.

In the second part, we revisit the pion loop HLbL contribution to the muon
anomalous magnetic moment. We study it in the framework of some models studied
earlier, pure pion loop, full VMD and hidden local symmetry for inclusion of vector
mesons. In addition we study possible ways to include the axial-vector meson. The
main part of the work is a detailed study of how the different momentum regions
contribute. We derive a short distance constraint on the γ

∗
γ
∗ → ππ amplitude and

use this as a constraint on the models used for the pion loop. As a byproduct we
present the general result for integration using the Gegenbauer polynomial method.



(a) (b) (c)

Figure 1: The thee main hadronic contributions to the muon anomalous magnetic moment.
(a)The lowest order hadronic vacuum polarization. (b) An example of a higher order
hadronic vacuum polarization contribution. (c) The light-by-light scattering contribution.
In all three cases the shaded regions represent the hadronic part.

1 Introduction

The muon anomalous magnetic moment is one of the most precise measured quantities in
high energy physics. The muon anomaly measures the deviation of the magnetic moment
away from the prediction of a Dirac point particle

aµ ≡ gµ − 2

2
. (1)

where gµ is the gyromagnetic ratio ~M = gµ(e/2mµ)~S. The most recent experiment at BNL
[1–4] obtains the value

aµ = 11 659 208.9(5.4)(3.3) 10−10 , (2)

an impressive precision of 0.54 ppm (or 0.3 ppb on gµ). The new experiment at Fermilab
aims to improve this precision to 0.14 ppm [5] and there is a discussion whether a precision
of 0.01 ppm is feasible [6]. In order to fully exploit the reach of these experiments an
equivalent precision needs to be reached by the theory. The theoretical prediction consist
of three main parts, the pure QED contribution, the electroweak contribution and the
hadronic contribution.

aµ = aQED
µ + aEWµ + ahadµ . (3)

An introductory review of the theory is [7] and more comprehensive review are [8, 9].
Recent results can be found in the proceedings of the conferences [10, 11].

The hadronic part has two different contributions, those due to hadronic vacuum polar-
ization, both at lowest and higher orders, and the light-by-light scattering contributions.

ahadµ = aLO-HVP
µ + aHO-HVP

µ + aHLbL
µ . (4)

These are depicted symbolically in Fig. 1.
The hadronic vacuum polarization contributions can be related to the experimentally

measured cross-section e+e− → hadrons. Here the accuracy can thus in principle be
improved as needed for the experimental measurements of aµ.
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The more difficult light-by-light contribution has no such simple relation to experimen-
tally measurable quantities. A first comprehensive calculation appeared in [12]. One of
the main problems there was the possibility of double counting when comparing quark-
loop, hadron-loop and hadron exchange contributions. A significant step forward was done
when it was realized [13] that the different contributions start entering at a different order
in the expansion in the number of colours Nc and in the chiral power counting, order in
momentum p. This splitting was then used by two groups to estimate the light-by-light
contribution [14–16](HKS) and [17–19](BPP). After correcting a sign mistake made by
both groups for different reasons and discovered by [20] the results are

aHLbL
µ = 8.96(1.54) 10−10 (HKS), 8.3(3.2) 10−10 (BPP ) . (5)

A new developments since then have been the inclusion of short distance constraints on
the full correction [21](MV) which indicated a larger contribution

aHLbL
µ = 13.6(2.5) 10−10 (MV ) . (6)

Comparisons in detail of the various contributions in these three main estimates can be
found in [22] and [23]. An indication of a possibly larger quark-loop contribution are
the recent Schwinger-Dyson estimates of that contribution [24–27]. First results of using
dispersion relations to get an alternative handle on HLbL have also appeared [28–31].
Lattice QCD has now started to contribute to HLbL as well, see e.g. [32, 33] and references
therein.

In this paper we add a number of new results to the HLbL discussion. First, in Sect. 2
we present an argument why in the lattice calculations the disconnected contribution is
expected to be large and of opposite sign to the connected contribution. This has been
confirmed by the first lattice calculation [34]. The second part is extending the Gegenbauer
polynomial method to do the integration over the photon momenta [9, 20] to the most
general hadronic four-point function. This is the subject of Sect. 3. The third and largest
part is about the charged pion and kaon loop. These have been estimated rather differently
in the the three main evaluations

aπloopµ = −0.45(0.81) 10−10 (HKS), −1.9(1.3) 10−10 (BPP ), 0.0(1.0) 10−10 (MV ). (7)

The numerical result is always dominated by the charged pion-loop, the charged kaon
loop is about 5% of the numbers quoted in (7). The errors in all cases were mainly the
model dependence. The main goal of this part is to show how these differences arise in the
calculation and include a number of additional models. Given the uncertainties we will
concentrate on the pion-loop only.

There are several improvements in this paper over the previous work on the pion loop.
First, we use the Gegenbauer polynomial method of [9, 20] to do two more of the integrals
analytically compared to the earlier work. Second, we study more models by including
the vector mesons in a number of different ways and study the possible inclusion of axial-
vector mesons. That the latter might introduce some uncertainty has been emphasized in
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Connected Disconnected

gray=lots of quarks/gluons

Figure 2: The connected contribution where all photons couple to a single quark-loop and
an example of a disconnected diagram where the photons couple to different quark-loops.

[35, 36]. We present as well a new short-distance constraint that models have to satisfy for
the underlying γγππ vertex.

Our main tool for understanding the different results is to study the dependence on
the virtualities of the three internal photons in Fig. 1(c). The use of this as a method
to understand contributions was started in [22] for the main pion exchange. One aspect
that will become clear is that one must be very careful in simply adding more terms in
a hadronic model. In general, these models are non-renormalizable and there is thus no
guarantee that there is a prediction for the muon anomaly in general. In fact, we have not
found a clean way to do it for the axial vector meson as discussed in Sect. 4. However,
using that the results should have a decent agreement with ChPT at low energies and the
high-energy constraint and only integrating up to a reasonable hadronic scale we obtain
the result

aHLbL πloop
µ = −(2.0 ± 0.5) · 10−10 . (8)

This is discussed in Sect. 4.
A short summary is given in Sect. 5. Some of the results here have been presented

earlier in [10, 37, 38] and [39].

2 Large disconnected contributions

Lattice calculations of HLbL are starting to give useful results. One question here is how
to calculate the full contribution including both connected and disconnected contributions.
The latter is more difficult to calculate, see e.g. [40], and many calculations so far have only
presented results for the connected contribution. In this section we present an argument
why the disconnected contribution is expected to be large and of opposite sign to the
connected contribution. The connected contribution is the one where the four photons
present in Fig. 1(c) all connect to the same quark line, the disconnected contribution
where they connect to different quark lines. This is depicted schematically in Fig. 2. The
argument below is presented for the case of two-flavours and has been presented shortly in
[38].

A large part of the HLbL contribution comes from pseudo-scalar meson exchange.
For that part of the contribution we can give some arguments on the relative size of the
disconnected and connected contribution. An example of a limit where the connected
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πu, πd

(a)

π0, πη

(b)

Figure 3: The meson-exchange picture. (a) With πu and πd exchange. (b) With π0 and πη

exchange.

contribution is the only one is the large Nc limit. One important consequence of this
limit is that the anomalous breaking of the U(1)A symmetry disappears and the flavour
singlet pseudo-scalar meson becomes light as well. This also applies to exchanges of other
multiplets, but there the mass differences between the singlet and non-singlet states are
much smaller.

Let us first look at the quark-loop case with two flavours. The connected diagram
has four photon couplings, thus each quark flavour gives a contribution proportional to
its charge to the power four. The connected contribution has thus a factor of q4u + q4d =
(2/3)4+(−1/3)4 = 17/81. For the disconnected contribution we have instead charge factors
of the form (q2u+q2d) for each quark-loop, so the final result has a factor of (q2u+q2d)

2 = 25/81.
However, this does not give any indication of the relative size since the contributions are
very different.

In the large Nc limit the mesons are the flavour eigenstates. We then have two light
neutral pseudo-scalars, one with flavour content ūu, πu and one with d̄d, πd. In the meson
exchange picture, shown in Fig. 3(a) the coupling of πu to two photons is proportional to
q2u, thus πu exchange has factor of q4u. The same argument goes for the πu exchange and
we obtain a factor of q4d. The total contribution is thus proportional to q4u + q4d = 17/81 in
agreement with the quark-loop argument for the same contribution.

We can also work with the isospin eigenstates instead. These are the π0 with flavour
content (ūu− d̄d)/

√
2 and the flavour singlet πη with flavour content (ūu+ d̄d)/

√
2. In the

large Nc limit we should obtain the same result as with πu and πd. The π0 coupling to 2
photons is proportional to δπ0 = (q2u− q2d)/

√
2 = 3/(9

√
2). The πη coupling to two photons

is δπη = (q2u + q2d)/
√
2 = 5/(9

√
2). The exchange of π0 and πη leads to a contribution

proportional to δ2
π0 + δ2πη

= 17/81 in agreement with the argument from the quark-loop or
πu, πd exchange.

What happens now if we turn on the disconnected contribution or remove the large
Nc limit. The physical eigenstates are now πη and π0 and they no longer have the same
mass. In effect, from the breaking of the U(1)A the singlet has gotten a large mass and
its contribution becomes much smaller. In the limit of being able to neglect πη-exchange
completely the sum of connected and disconnected contributions is reproduced by π0 ex-
change alone which is proportional to δ2

π0 = (9/2)/81. So in this limit we expect the total
contribution is δ2π0 times a factor A. From the discussion in the previous paragraph follows
that the connected part is δ2

π0 + δ2πη
times the same factor A. The disconnected part must

thus cancel the δ2π part of the connected contribution and must be −δ2πη
times again the
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factor A. We thus expect a large and negative disconnected contribution with a ratio of
disconnected to connected of −25/34.

There are really three flavours u, d, s to be considered but the argument generalizes
straightforward to that case with case δπ0 = 3/(9

√
2), δη = 3/(9

√
6) and δη′ = 6/(9

√
3). In

the equal mass case the ratio of disconnected to connected is for three flavours −δη′2/(δ2
π0+

δ2η + δ2η′) = −2/3.
The above argument is valid in the equal mass limit, assuming the singlet does not

contribute after U(1)A breaking is taken into account and only for the pseudo-scalar meson-
exchange. There are corrections following from all of these. For most other contributions
the disconnected effect is expected to be smaller. The ratio of disconnected to connected
of −2/3 is thus an overestimate but given that π0 exchange is the largest contribution we
expect large and negative disconnected contributions.

Note that the above argument was in fact already used in the pseudo-scalar exchange
estimate of [17–19], the comparison of the large Nc estimate and π0, η, η′ exchange is in
Table 2 and the separate contributions in Table 3 of [18], up to the earlier mentioned overall
sign.

Lattice QCD has been working hard on including disconnected contributions [40]. Using
the same method of [32] at physical pion mass preliminary results were shown at Lattice
2016 [34] of 11.60(96) for the connected and −6.25(80) for the disconnected in units of
10−10. This is in good agreement with the arguments given above.

3 The Gegenbauer polynomial method

The hadronic light-by-light contribution to the muon anomalous magnetic moment is given
by [41]

aLbLµ =
−1

48mµ

tr
[

(p/+mµ)M
λβ(0) (p/+mµ) [γλ, γβ]

]

, (9)

with

Mλβ(p3) = e6
∫

d4p1
(2π)4

d4p2
(2π)4

γν (p4/ +m) γµ (p5/ +m) γα
q2p21p

2
2 (p

2
4 −m2) (p25 −m2)

[

∂

∂p3λ
Πµναβ (p1, p2, p3)

]

. (10)

Here m is the muon mass, p is the muon momentum, q = p1 + p2 + p3, p4 = p − p1 and
p5 = p+ p2. The momentum routing in the diagram is shown in Fig. 4. Note that because
of charge conjugation the integration in (10) is symmetric under the interchange of p1 and
p2. The symmetry under the full interchange of −q, p1, p2 is only explicitly present if the
other permutations of the photons on the muon line are also added and then averaged. In
this manuscript we stick to using only the permutation shown. The integral gives still the
full contribution because the different permutations are included in the hadronic four-point
function Πµναβ(p1, p2, p3).

The hadronic four-point function is

Πµναβ(p1, p2, p3) = i3
∫

d4xd4yd4zei(p1·x+p2·y+p3·z)〈0|T
(

V µ(0)V ν(x)V α(y)V β(z)
)

|0〉 . (11)
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↑ p3 β

↑ q µ

α p2 ւ ց p1 ν

p p5 p4 p

Figure 4: The momentum routing for the muon line and through the hadronic four-point
function as used in (10).

The current is Vµ =
∑

q Qq q̄γµq with q denoting the quarks and Qq the quark charge in
units of |e|. The four-point function has a rather complicated structure and we discuss this
in more detail Sect. 3.1.

The partial derivative in (10) was introduced by [41] to make each photon leg permu-
tation of the fermion-loop finite which allows to do the numerical calculation at p3 = 0. It
used p3βΠ

µναβ = 0 to obtain via ∂/∂p3λ

0 = Πµναλ + p3β
∂

∂p3λ
Πµναβ . (12)

The integral in (10) contains 8 degrees of freedom. After projecting on the muon
magnetic moment with (9) it can only depend on p21, p

2
2, p1 · p2, p · p1, p · p2. The earlier

work in [14–19] relied on doing all these integrals numerically and in [17–19] this was done
after an additional rotation to Euclidean space. For the pion exchange contribution a
method was developed to reduce the number of integrals from 5 to 2 using the method
of Gegenbauer polynomials [20]. The assumptions made there about the behaviour of the
hadronic four-point function are not valid for the parts we study in this paper. However,
in [9] for the pion and scalar exchange contributions the same method has been used to
explicitly perform the integrals over the p · p1 and p · p2 degrees of freedom. The same
method can be used to perform the integral over these two degrees of freedom also in the
case for the most general four-point function. This leads to an expression of about 260
terms expressed in the combinations [18] of the four point function that contribute to the
muon g − 2. We have checked that our calculation reproduces for the pion exchange the
results quoted in [9].
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3.1 The general four-point function

The four-point functions defined in (11) contains 138 different Lorentz-structures [18]1

Πµναβ(p1, p2, p3) ≡ Π1(p1, p2, p3)g
µνgαβ +Π2(p1, p2, p3)g

µαgνβ

+Π3(p1, p2, p3)g
µβgνα

+Π1jk(p1, p2, p3)g
µνpαj p

β
k +Π2jk(p1, p2, p3)g

µαpνjp
β
k

+Π3jk(p1, p2, p3)g
µβpνjp

α
k +Π4jk(p1, p2, p3)g

ναpµj p
β
k

+Π5jk(p1, p2, p3)g
νβpµj p

α
k +Π6jk(p1, p2, p3)g

αβpµj p
ν
k

+Πijkm(p1, p2, p3)p
µ
i p

ν
jp

β
kp

α
m , (13)

where i, j, k,m = 1, 2 or 3 and repeated indices are summed. The functions are scalar
functions of all possible invariant products pi · pj.

The four point function satisfies the Ward-Takahashi identities

qµΠ
µναβ = p1νΠ

µναβ = p2αΠ
µναβ = p3βΠ

µναβ = 0 . (14)

These identities allow to show that there are 43 independent functions in general. Of
course, since the four-point function is symmetric under the interchange of the external
legs many of these are related by permutations.

In practice it is easier not to do this reduction, but only the partial step up to reducing
them to the 64 functions Πijkm. This can be done such that the powers of p3 appearing
explicitly never decrease. Not all of these contribute to aµ, in fact at most 32 combinations
can contribute [18]. These are the Π3jkm,Πi3km,Πij3m and the ΠDijk, all with i, j, k = 1, 2.
The ΠDijk come from derivatives of the Πijkm w.r.t. p3λ at p3 = 0

∂

∂p3λ
Πijkm = pλ1Π

1ijkm + pλ2Π
2ijkm

ΠDijk = Π1ijk2 − Π2ijk1 . (15)

3.2 The Gegenbauer method

The simplification introduced in [20] was that the Gegenbauer polynomial method can be
used to average over all directions of the muon momentum. After this averaging is done
there is only dependence on the invariant quantities p21, p

2
2 and p1 · p2 left. The method is

fully explained in [9]. One can apply it to the full four-point function or to the one where
one has reduced the number of components by using the Ward identities to the 64 Πijkl.

So we first take (9) and (10) and rotate everything to Euclidean momenta P1, P2 and
P with Q = P1 + P2, P4 = P − P1 and P5 = P + P2. We see that the muon momentum P

1Note that this is the most general case also valid in other dimensions. For four dimensions there are
some additional constraints leading to only 136 independent components [27]. This is not relevant for the
work presented here.
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shows up in denominators with p24 −m2 = −(P 2
4 +m2) and p25 −m2 = −(P 2

5 +m2) only.
After taking the Dirac trace only scalar products of momenta are present in the numerator.
Removing the products P ·P1 and P ·P2 by completing them to the full P 2

4 +m2 and P 2
5+m2,

the angular averaging over muon momenta can be performed using [9]
〈

1

(P 2
4 +m2)(P 2

5 +m2)

〉

µ

= δX ,

〈

P · P1

P 2
5 +m2

〉

µ

=
1

8
δP1 · P2r

2
2 ,

〈

P · P2

P 2
4 +m2

〉

µ

=
1

8
δP1 · P2r

2
2 ,

〈

1

P 2
4 +m2

〉

µ

=
1

2
δr1 ,

〈

1

P 2
5 +m2

〉

µ

=
1

2
δr2 . (16)

Here we used the notation

δ =
1

m2
,

ri = 1−
√

1 +
4m2

P 2
i

X =
1

P1P2 sin θ
atan

(

z sin θ

1− z cos θ

)

cos θ =
P1 · P2

P1P2

z =
P1P2

4m2
r1r2 . (17)

The final contribution to the muon anomaly is given by

aµ =
α3

2π2

∫

P 2
1 dP

2
1P

2
2 dP

2
2 sin θd cos θAΠ(P1, P2, cos θ) . (18)

The quantity AΠ is given by

Π1131(−1/6 ρ23r
2
2δ − 2/3 ρ1ρ3r2δ + 8/3 ρ1ρ3X − ρ21r1δ − 4/3 ρ21ρ3Xδ − 2 ρ21ρ2Xδ)

+Π1132(+2/3ρ3 + 1/3ρ2ρ3r2δ − 1/6ρ2ρ3r
2
2δ − 2/3ρ1ρ3r1δ − 1/6ρ1ρ3r

2
1δ − 2/3ρ1ρ2r2δ

+ 1/3ρ1ρ2r1δ + 8/3ρ1ρ2X − 4/3ρ1ρ2ρ3Xδ + 2/3ρ1ρ
2
2Xδ − 4/3ρ21ρ2Xδ)

+Π1231(−2/3ρ23r2δ − 1/6ρ2ρ3r
2
2δ − 2/3ρ1ρ3r1δ − 4/3ρ1ρ

2
3Xδ + 1/3ρ1ρ2r2δ

+ 8/3ρ1ρ2X − 4/3ρ1ρ2ρ3Xδ + 2/3ρ21ρ2Xδ)

+Π1232(−2/3ρ23r1δ − 2/3ρ2 − 2/3ρ2ρ3r2δ + 8/3ρ2ρ3X − 4/3ρ2ρ
2
3Xδ − 1/3ρ22r2δ
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− 1/3ρ1ρ2r1δ − 4/3ρ1ρ2ρ3Xδ − 2/3ρ1ρ
2
2Xδ)

+Π1311(+1/3ρ1ρ3r2δ + 1/3ρ21r1δ + 2/3ρ21ρ3Xδ + 2/3ρ21ρ2Xδ)

+Π1312(−2/3ρ23r2δ + 4/3ρ23X − 1/12ρ2ρ3r
2
2δ − 4/3ρ1ρ3r1δ − 1/12ρ1ρ3r

2
1δ

− 4/3ρ1ρ
2
3Xδ + 1/2ρ1ρ2r2δ + 1/6ρ1ρ2r1δ + 4/3ρ1ρ2X − 8/3ρ1ρ2ρ3Xδ

+ 1/3ρ1ρ
2
2Xδ + ρ21ρ2Xδ)

+Π1322(−2/3ρ2 − 2/3ρ2ρ3r2δ + 8/3ρ2ρ3X − 1/3ρ22r2δ − 2ρ1ρ2r1δ

− 4/3ρ1ρ2ρ3Xδ − 4ρ1ρ
2
2Xδ)

+Π2131(−2/3ρ1 − 2/3ρ1ρ3r1δ + 8/3ρ1ρ3X − 2ρ1ρ2r2δ − 4/3ρ1ρ2ρ3Xδ − 1/3ρ21r1δ

− 4ρ21ρ2Xδ)

+Π2231(−2/3ρ23r1δ + 4/3ρ23X − 4/3ρ2ρ3r2δ − 1/12ρ2ρ3r
2
2δ − 4/3ρ2ρ

2
3Xδ − 1/12ρ1ρ3r

2
1δ

+ 1/6ρ1ρ2r2δ + 1/2ρ1ρ2r1δ + 4/3ρ1ρ2X − 8/3ρ1ρ2ρ3Xδ + ρ1ρ
2
2Xδ + 1/3ρ21ρ2Xδ)

+Π2232(+1/3ρ2ρ3r1δ + 1/3ρ22r2δ + 2/3ρ22ρ3Xδ + 2/3ρ1ρ
2
2Xδ)

+Π2311(−2/3ρ23r2δ − 2/3ρ1 − 2/3ρ1ρ3r1δ + 8/3ρ1ρ3X − 4/3ρ1ρ
2
3Xδ − 1/3ρ1ρ2r2δ

− 4/3ρ1ρ2ρ3Xδ − 1/3ρ21r1δ − 2/3ρ21ρ2Xδ)

+Π2312(−2/3ρ23r1δ − 2/3ρ2ρ3r2δ − 4/3ρ2ρ
2
3Xδ − 1/6ρ1ρ3r

2
1δ + 1/3ρ1ρ2r1δ + 8/3ρ1ρ2X

− 4/3ρ1ρ2ρ3Xδ + 2/3ρ1ρ
2
2Xδ)

+Π2321(+2/3ρ3 − 2/3ρ2ρ3r2δ − 1/6ρ2ρ3r
2
2δ + 1/3ρ1ρ3r1δ − 1/6ρ1ρ3r

2
1δ + 1/3ρ1ρ2r2δ

− 2/3ρ1ρ2r1δ + 8/3ρ1ρ2X − 4/3ρ1ρ2ρ3Xδ − 4/3ρ1ρ
2
2Xδ + 2/3ρ21ρ2Xδ)

+Π2322(−1/6ρ23r
2
1δ − 2/3ρ2ρ3r1δ + 8/3ρ2ρ3X − ρ22r2δ − 4/3ρ22ρ3Xδ − 2ρ1ρ

2
2Xδ)

+Π3111(+1/6ρ23r
2
2δ − 2/3ρ1 − 4/3ρ1ρ3r2δ + 1/2ρ1ρ3r

2
2δ − 1/3ρ1ρ2r2δ − ρ21r2δ

− 1/3ρ21r1δ − 8/3ρ21ρ3Xδ − 2/3ρ21ρ2Xδ − 2ρ31Xδ)

+Π3112(+4/3ρ3 + 2/3ρ2ρ3r2δ + 1/6ρ2ρ3r
2
2δ + 2/3ρ1 + 2/3ρ1ρ3r1δ − 1/3ρ1ρ3r

2
1δ

− 8/3ρ1ρ3X + 2/3ρ1ρ2r1δ − 8/3ρ1ρ2X + 4/3ρ1ρ2ρ3Xδ + 4/3ρ1ρ
2
2Xδ + 1/3ρ21r1δ)

+Π3121(+2ρ1 + ρ21r1δ)

+Π3122(+2ρ2 + ρ22r2δ)

+Π3211(+4/3ρ3 − 8/3ρ23X + 2/3ρ2ρ3r2δ + 2/3ρ1 + 2/3ρ1ρ3r1δ − 1/6ρ1ρ3r
2
1δ

− 8/3ρ1ρ3X + 1/3ρ1ρ2r2δ + 1/3ρ1ρ2r1δ + 4/3ρ1ρ2ρ3Xδ + 2/3ρ1ρ
2
2Xδ

+ 1/3ρ21r1δ + 2/3ρ21ρ2Xδ)

+Π3212(+4/3ρ3 − 8/3ρ23X + 2/3ρ2 + 2/3ρ2ρ3r2δ − 1/6ρ2ρ3r
2
2δ − 8/3ρ2ρ3X

+ 1/3ρ22r2δ + 2/3ρ1ρ3r1δ + 1/3ρ1ρ2r2δ + 1/3ρ1ρ2r1δ + 4/3ρ1ρ2ρ3Xδ

+ 2/3ρ1ρ
2
2Xδ + 2/3ρ21ρ2Xδ)

+Π3221(+4/3ρ3 + 2/3ρ2 + 2/3ρ2ρ3r2δ − 1/3ρ2ρ3r
2
2δ − 8/3ρ2ρ3X + 1/3ρ22r2δ + 2/3ρ1ρ3r1δ

+ 1/6ρ1ρ3r
2
1δ + 2/3ρ1ρ2r2δ − 8/3ρ1ρ2X + 4/3ρ1ρ2ρ3Xδ + 4/3ρ21ρ2Xδ)

+Π3222(+1/6ρ23r
2
1δ − 2/3ρ2 − 4/3ρ2ρ3r1δ + 1/2ρ2ρ3r

2
1δ − 1/3ρ22r2δ − ρ22r1δ − 8/3ρ22ρ3Xδ

− 2ρ32Xδ − 1/3ρ1ρ2r1δ − 2/3ρ1ρ
2
2Xδ)
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+ΠD111(−1/3ρ1ρ3 + 2/3ρ1ρ
2
3X − 1/6ρ1ρ2ρ3r2δ + 1/24ρ1ρ2ρ3r

2
2δ − 1/6ρ21ρ3r1δ

+ 1/24ρ21ρ3r
2
1δ − 1/12ρ21ρ2r2δ − 1/12ρ21ρ2r1δ − 2/3ρ21ρ2X − 1/3ρ21ρ2ρ3Xδ

− 1/6ρ21ρ
2
2Xδ − 1/6ρ31ρ2Xδ)

+ΠD121(+1/3ρ23 − 2/3ρ33X + 1/6ρ2ρ
2
3r2δ − 1/24ρ2ρ

2
3r

2
2δ + 1/6ρ1ρ

2
3r1δ − 1/24ρ1ρ

2
3r

2
1δ

+ 1/12ρ1ρ2ρ3r2δ + 1/12ρ1ρ2ρ3r1δ + 2/3ρ1ρ2ρ3X + 1/3ρ1ρ2ρ
2
3Xδ + 1/6ρ1ρ

2
2ρ3Xδ

+ 1/6ρ21ρ2ρ3Xδ)

+ΠD122(+2/3ρ2ρ3 − 4/3ρ2ρ
2
3X + 1/3ρ22ρ3r2δ − 1/12ρ22ρ3r

2
2δ + 1/3ρ1ρ2ρ3r1δ

− 1/12ρ1ρ2ρ3r
2
1δ + 1/6ρ1ρ

2
2r2δ + 1/6ρ1ρ

2
2r1δ + 4/3ρ1ρ

2
2X + 2/3ρ1ρ

2
2ρ3Xδ

+ 1/3ρ1ρ
3
2Xδ + 1/3ρ21ρ

2
2Xδ)

+ΠD211(−2/3ρ1ρ3 + 4/3ρ1ρ
2
3X − 1/3ρ1ρ2ρ3r2δ

+ 1/12ρ1ρ2ρ3r
2
2δ − 1/3ρ21ρ3r1δ + 1/12ρ21ρ3r

2
1δ − 1/6ρ21ρ2r2δ − 1/6ρ21ρ2r1δ

− 4/3ρ21ρ2X − 2/3ρ21ρ2ρ3Xδ − 1/3ρ21ρ
2
2Xδ − 1/3ρ31ρ2Xδ)

+ΠD221(−1/3 ρ23 + 2/3 ρ33X − 1/6 ρ2ρ
2
3r2δ + 1/24 ρ2ρ

2
3r

2
2δ − 1/6 ρ1ρ

2
3r1δ + 1/24 ρ1ρ

2
3r

2
1δ

− 1/12 ρ1ρ2ρ3r2δ − 1/12 ρ1ρ2ρ3r1δ − 2/3 ρ1ρ2ρ3X − 1/3 ρ1ρ2ρ
2
3Xδ

− 1/6 ρ1ρ
2
2ρ3Xδ − 1/6 ρ21ρ2ρ3Xδ)

+ΠD222(+1/3 ρ2ρ3 − 2/3 ρ2ρ
2
3X + 1/6 ρ22ρ3r2δ − 1/24 ρ22ρ3r

2
2δ + 1/6 ρ1ρ2ρ3r1δ

− 1/24 ρ1ρ2ρ3r
2
1δ + 1/12 ρ1ρ

2
2r2δ + 1/12 ρ1ρ

2
2r1δ + 2/3 ρ1ρ

2
2X + 1/3 ρ1ρ

2
2ρ3Xδ

+ 1/6 ρ1ρ
3
2Xδ + 1/6 ρ21ρ

2
2Xδ) . (19)

Here we used the abbreviations ρ1 = P 2
1 , ρ2 = P 2

2 and ρ3 = P1 · P2. in addition to those
defined above.

A more general formula without using the Ward identities can also be derived. Quoting
this one would be too long. In practice for many models, the method without using Ward
identities leads to shorter but equivalent results. We have used both options for the bare
pion loop, the full VMD (Vector Meson Dominance) model and the hidden local symmetry
(HLS) model and only the latter method for the antisymmetric field model for the vector
and axial vector mesons.

4 The pion-loop contribution to HLbL

The pion loop contribution is depicted in Fig. 5. In the models we consider all the diagrams
depicted can appear. The shaded blob indicates the presence of form-factors. In this
section we will only discuss models and not include rescattering and a possible ambiguity
in distinguishing two-pion contributions from scalar-exchanges. The dispersive method
[28–30] will include this automatically but at present no full numerical results from this
approach are available.
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Figure 5: The pion-loop contributions to the vector four-point function of Eq. 11. The
modeling is in the expressions for the form-factors designated by the shaded blobs.

4.1 VMD versus HLS

The simplest model is a point-like pion or scalar QED (sQED). This gives a contribution
of aπloopµ ≈ −4 ·10−10. However, at high energies a pion is clearly not point-like. A first step
is to include the pion form-factor in the vertices with a single photon. Gauge invariance
then requires the presence of more terms with form-factors. The simplest gauge-invariant
addition is to add the pion form-factor also to both legs of the ππγ∗γ∗ vertices and neglect
vertices with three or more photons. For the pion form-factor one can use either the VMD
expression or a more model/experimental inspired version. Using a model for the form-
factor, is what was called full VMD [17, 18] and using the experimental data corresponds
to what is called the model-independent or FsQED part of the two-pion contribution in
[28–30]. The ENJL model used for the form-factor of [17, 18] led to aπloopµ ≈ −1.9 · 10−10.
A form-factor parametrization of the form m2

V /(m
2
V − q2), a VMD parametrization, leads

to aπloopµ ≈ −1.6 · 10−10 and using the experimental data FsQED gives aπloopµ ≈ −1.6 · 10−10

[42].
We study which momentum regions contribute most to aµ by rewriting Eq. (18) with

integration variables the (Euclidean) off-shellness of the three photons, P 2
1 , P

2
2 , Q

2. In fact
to see the regions better we use [22] lP = (1/2) ln (P 2/GeV 2) for P = P1, P2, Q. With
these variables we define

aµ =

∫

dlP1dlP2dlQ aLLQµ . (20)

As a first example we show −aLLQµ along the plane with P1 = P2 for the bare pion-
loop or sQED and the full VMD in Fig. 6. The minus sign is included to make the plots
easier to see. The contribution to aµ as shown is proportional to the volume under the
surfaces. It is clearly seen how the form-factors have little effect at low energies but are
much more important at high momenta. We have three variables in principle but we only
show plots with P1 = P2. The reason is that one can see in all our figures that the results
are concentrated along the line Q = P1 = P2 and fall off fast away from there. The plots
with P1 6= P2 look similar but are smaller and do not show anything new qualitatively.

The other main evaluation of the pion-loop in [14, 15] (HKS) used a different approach.
It was believed then that the full VMD approach did not respect gauge invariance. HKS
therefore used the hidden local symmetry model with only vector mesons (HLS) [43] and
obtained −0.45× 10−10. The only difference with full VMD is in the ππγ∗γ∗ as discussed
in [18]. In [18] it was shown that the full VMD approach is gauge invariant. However, the
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Figure 6: The momentum dependence of the pion loop contribution. Plotted is aLLQµ of
(20) as a function of P1 = P2 and Q. Top surface: sQED, bottom surface:full VMD.

large spread in the results for models that are rather similar was puzzling, both have a good
description of the pion form-factor. We can make a similar study of the momentum range
contributions, shown in Fig. 7. It is clearly visible that the two models agree very well for
low momenta but there is a surprisingly large dip of the opposite sign for the HLS model
at higher momenta, above and around 1 GeV. This is the reason for the large difference in
the final number for aπloopµ . A comparison as a function of the cut-off can be found in [39].

4.1.1 Short distance constraint: VMD is better

In QCD we know that the total hadronic contribution to the muon anomalous mag-
netic moment must be finite. This is however not necessarily true when looking at non-
renormalizable models that in addition only describe part of the total hadronic contribu-
tion. For these one has too apply them intelligently, i.e. only use them in momentum
regions where they are valid.

One tool to study possible regions of validity is to check how well the models do in
reproducing short-distance constraints following directly from QCD. Examples of these are
the Weinberg sum rules but there are also some applicable to more restricted observables.
Unfortunately it is known that in general one cannot satisfy all QCD constraints with a
finite number of hadrons included as discussed in detail in [44]. Still one wants to include
as much as possible of QCD knowledge in the models used.

One constraint on the amplitude for γ∗γ∗ → ππ can be easily derived analoguously
to the short-distance constraint of [21] for the pion exchange contribution. If we take
both photons to be far off-shell and at a similar Q2 then the leading term in the operator
product expansion of the two electromagnetic currents is proportional to the axial current.
However, a matrix element of the axial current with two pions vanishes so we have the
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Figure 7: −aLLQµ of (20) as a function of P1 = P2 and Q. Top surface: full VMD, bottom
surface: HLS.

constraint

lim
Q2→∞

A(γ∗(q1 = Q + k)γ∗(q2 = −Q + k) → π(p1)π(p2)) ∝
1

Q2
(21)

when all scalar products involving k, p1, p2 and at most one power of Q are small compared
to Q2.

In scalar QED the amplitude for γ∗γ∗ → ππ is

ie2
[

2gµν +
(kµ + Qµ − 2pµ1)(k

ν −Qν − 2pν2)

(Q+ k − p1)2 −m2
π

+
(kµ +Qµ − 2pµ2)(k

ν −Qν − 2pν1)

(Q− k + p1)2 −m2
π

]

(22)

which to lowest order in 1/Q2 is

2ie2
[

gµν − QµQν

Q2

]

. (23)

This amplitude does not vanish in the large Q2 limit. sQED does not satsify the short
distance constraint.

In full VMD the γππ and γγππ vertices of scalar QED are multiplied by a factor

m2
ρg

µν − qµqν

m2
ρ − q2

(24)

for each photon line, where q is the momentum of the photon. The (Q2)0 term in the
γ∗γ∗ → ππ amplitude is then zero. The full VMD model does respect the short distance
constraint.
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Figure 8: The momentum dependence of the pion loop contribution. −aLLQµ of (20) as a
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In HLS the γππ vertex of scalar QED is multiplied by

gµν − a

2

q2gµν − qµqν

q2 −m2
ρ

(25)

and the γγππ vertex is multiplied by

gµαgνβ − gµα
a

2

q2gνβ − qνqβ

q2 −m2
ρ

− gνβ
a

2

p2gµα − pµpα

p2 −m2
ρ

. (26)

To lowest order in 1/Q2 the amplitude for γ∗γ∗ → ππ is

2ie2
[

gµν − QµQν

Q2

]

(1− a). (27)

The HLS model with its usual value of a = 2 does not satisfy the short distance constraint.
It was also noticed [22] in a similar vein that the ENJL model, that essentially has full

VMD, lives up to the Weinberg sum rules but the HLS does not.
In fact, using the HLS with an unphysical value of the parameter a = 1 satisfies the

short-distance constraint (21) and lives up to the first Weinberg sum rule. The total result
for that model is aπloopµ = −2.1 · 10−10, similar to the ENJL model. A comparison for
different momentum regions between the full VMD model and a HLS model with a = 1 is
shown in Fig. 8. Notice in particular that the part with the opposite sign from Fig. 7 has
disappeared.

From this we conclude that a number in the range aπloopµ = −(1.5-2.1) × 10−10 would
be more appropriate.
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surface: ChPT with L9 = −L10 so the charge radius is included but no polarizability.

4.2 Including polarizability at low energies

It was pointed out that the effect of pion polarizability was neglected in the estimates of
the pion-loop in [14, 15, 17, 18] and a first estimate of this effect was given using the Euler-
Heisenberg four photon effective vertex produced by pions [35] within Chiral Perturbation
Theory. This approximation is only valid below the pion mass. In order to check the
size of the pion radius effect and the polarizability, we have implemented the low energy
part of the four-point function and computed aLLQµ for these cases in Chiral Perturbation
Theory (ChPT). First results were shown in [37, 39]. The plots shown include the p4 result
which is the same as the bare pion-loop and we include in the vertices the effect of the
terms from the L9 and L10 terms in the p4 ChPT Lagrangian. The effect of the charge
radius is shown in Fig. 9 compared to the VMD parametrization of it, notice the different
momentum scales compared to the earlier Figs. 6-8. The polarizability we have set to zero
by setting L9 + L10 = 0. As expected, the charge radius effect is included in the VMD
result since the latter gives a good description of the pion form-factor. Including the effect
of the polarizability can be done in ChPT by using experimentally determined values for
L9 and L10. The latter can be determined from π+ → eνγ or the hadronic vector two-point
functions. Both are in good agreement and lead to a prediction of the pion polarizability
confirmed by the Compass experiment [45]. The effect of including this in ChPT on aLLQµ

is shown in Fig. 10. An increase of 10-15% over the VMD estimate can be seen.
ChPT at lowest order, or p4, for aµ is just the point-like pion loop or sQED. At NLO

pion exchange with point-like vertices and the pion-loop calculated at NLO in ChPT are
needed. Both give divergent contributions to aµ, so pure ChPT is of little use in predicting
aµ. If we had tried to extend the plots in Figs. 9 and 10 to higher momenta the bad high
energy behaviour would have been clearly visible. We therefore need to go beyond ChPT.
This is done in the next subsection.
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a1
a1 a1

Figure 11: Left: the a1-exchange that produces the pion polarizability. Right: an example
of a diagram that is required by gauge invariance.

4.3 Including polarizability at higher energies

If we want to see the full effect of the polarizability we need to include a model that can be
extended all the way, or at least to a cut-off of about 1 GeV. For the approach of [35] this
was done in [36] by including a propagator description of a1 and choosing it such that the
full contribution of the pion-loop to aµ is finite. They obtained a range of −(1.1-7.1)×10−10

for the pion-loop contribution. This seems a very broad range when compared with all
earlier estimates. One reason is that the range of polarizabilities used in [36] is simply
not compatible with ChPT. The pion polarizability is an observable where ChPT should
work and indeed the convergence is excellent. The ChPT prediction has also recently been
confirmed by experiment [45]. Our work discussed below indicates that −(2.0±0.5)×10−10

is a more appropriate range for the pion-loop contribution.
The polarizability comes from L9 + L10 in ChPT [46, 47]. Using [48], we notice that

the polarizability is produced by a1-exchange depicted in Fig. 11. This is depicted in the
left diagram of Fig. 11. However, once such an exchange is there, diagrams like the right
one in Fig. 11 lead to effective ππγγγ vertices and are required by electromagnetic gauge
invariance. This issue can be dealt with in several ways. Ref. [36] introduced modifications
of the a1 propagator that introduces one form of the extra vertices. We deal with them
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via effective Lagrangians incorporating vector and axial-vector mesons.
If one studies Fig. 11 one could raise the question “Is including a π-loop but no a1-loop

consistent?” The answer is yes with the following argument. We can first look at a tree
level Lagrangian including pions ρ and a1. We then integrate out the ρ and a1 and calculate
the one-loop pion diagrams with the resulting all order Lagrangian. In the diagrams of
the original Lagrangian this corresponds to only including loops with at least one pion
propagator present. Numerical results for cases including full a1 loops are presented as
well below. As a technicality, we use anti-symmetric vector fields for the vector and axial-
vector mesons. This avoids complications due to π-a1 mixing. We add vector Vµν and
axial-vector Aµν nonet fields. The kinetic terms are given by [48]

−1

2

〈

∇λVλµ∇νV
νµ − M2

V

2
VµνV

µν

〉

+ V ↔ A . (28)

We add first the terms that contribute to the Li [48]

FV

2
√
2
〈f+µνV

µν〉+ iGV√
2
〈V µνuµuν〉+

FA

2
√
2
〈f−µνA

µν〉 (29)

with L9 = FV GV

2M2
V

, L10 = − F 2
V

4M2
V

+
F 2
A

4M2
A

. The Weinberg sum rules in the chiral limit imply

F 2
V = F 2

A + F 2
π , F

2
VM

2
V = F 2

AM
2
A and requiring VMD behaviour for the pion form-factor

FVGV = F 2
π . We have used input values for the L9 and L10 consistent with this in the

previous subsection.
Calculating the γ∗γ∗ → ππ amplitude in this framework using antisymmetric tensor

notation to lowest order in 1/Q2 gives the amplitude

2ie2
F 2
A

Q2
1m

2
aF

2
(−pµ1Q

ν
1p1 ·Q1 − pν1Q

µ
1p1 ·Q1 +Qµ

1Q
ν
1m

2
π + gµν(p1 ·Q1)

2)

+2ie2
F 2
A

m2
aF

2
(pµ1p

ν
1 − gµνm2

π)

+2ie2(F 2
A + F 2 − F 2

V )

(

gµν

F 2
− Qµ

1Q
ν
1

Q2
1F

2

)

. (30)

The last line vanishes for F 2
A+F 2−F 2

V = 0 which is one of Weinberg’s sum rules. However,
the first two lines give the additional requirement F 2

A = 0. In this model it is not possible
to incorporate the a1 meson and satisfy the short distance constraint (21).

First, we take the model with only π and ρ, i.e. we only keep the first two terms of (28)
and (29). The one-loop contributions to Πρναβ are not finite. They were also not finite for
the HLS model of HKS, but the relevant δΠρναβ/δp3λ was. However, in the present model,
the derivative can be made finite only for GV = FV /2. With this value of the parameters
the result for aµ is identical to that of the HLS model and suffers as a consequences from
the same defects discussed above.

Next we do add the a1 and require FA 6= 0. After a lot of work we find that δΠρναβ/δp3λ|p3=0

is finite only for GV = FV = 0 and F 2
A = −2F 2

π or, if including a full a1-loop F 2
A = −F 2

π .
These solutions are clearly unphysical.
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We then add all ρa1π vertices given by

λ1 〈[V µν , Aµν ]χ−〉+ λ2 〈[V µν , Aνα] hµ
ν〉

+ λ3 〈i [∇µVµν , Aνα] uα〉+ λ4 〈i [∇αVµν , Aαν ]u
µ〉

+ λ5 〈i [∇αVµν , Aµν ] uα〉+ λ6 〈i [V µν , Aµν ] f−
α
ν〉

+ λ7 〈iVµνA
µρAν

ρ〉 . (31)

These are not all independent due to the constraints on Vµν and Aµν [49], there are three
relations. After a lot of work, we found that no solutions with δΠρναβ/δp3λ|p3=0 exists
except those already obtained without Λi terms. The same conclusions holds if we look at
the combination that shows up in the integral over P 2

1 , P
2
2 , Q

2. We thus find no reasonable
model that has a finite prediction for aµ for the pion-loop including a1. In the remainder
we therefore stick to λi = 0 for the numerical results.

Let us first show the result for one of the finite cases, no a1 loop, FV = GV = 0
and F 2

A = −2F 2
π . The resulting contribution from the different momentum regimes is

shown in Fig. 12 The high-energy behaviour is by definition finite but there is a large
bump at rather high energies. The other finite solution, including a full a1-loop and
FA = −F 2

π , FV = GV = 0 is shown in Fig. 13. Here the funny bump at high energies has
disappeared but the behaviour is still unphysical. The high-energy behaviour is good by
definition since we enforced a finite aµ.

We can now look at the cases where aπloopµ was not finite but that include a good low-
energy behaviour. I.e. they have F 2

V = F 2
π/2, FV GV = F 2

π , F
2
A = F 2

π/2 and M2
A = 2M2

V .
The resulting model then satisfies the Ward identities and the VMD behaviour of the pion-
form factor. For the case with no a1-loop we obtain −aLLQµ as shown in Fig. 14. The bad
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high energy behaviour is clearly visible, but it only starts above 1 GeV. The same input
parameters but with a full a1-loop leads to only small changes in the momentum regime
considered as shown in Fig. 15 Again the bad high-energy behaviour is clearly visible.

As a last model, we take the case with F 2
A = +F 2

π and add VMD propagators also in
the photons coming from vertices involving a1. This makes the model satisfy the short-
distance constraint (21). The contributions to aπloopµ are shown in Fig. 16. The same model
but now with the full a1-loop is shown in Fig. 17. Both cases are very similar and here
is a good high energy behaviour due to the VMD propagators added. This model cannot
be reproduced by the Lagrangians shown above, we need higher order terms to do so.
However, the arguments of [18] showing that the full VMD model was gauge invariant also
apply to this model.

Now how does the full contribution to aπloopµ of these various models look like. The
integrated contribution up to a maximum Λ for the size of P1, P2 and Q is shown in Fig. 18.
The models with good high energy behaviour are the ones with a horizontal behaviour
towards the right. We see that the HLS is quite similar to the others below about 0.5 GeV
but then drops due to the part with the sign as shown in Fig. 7. All physically acceptable
models that show a reasonable enhancement over the full VMD result. In fact, all models
except HLS end up with a value of aµ = −(2.0 ± 0.5) × 10−10 when integrated up-to a
cut-off of order 1-2 GeV. We conclude that that is a reasonable estimate for the pion-loop
contribution.

We have not redone the calculation with the model of [36], however their large spread of
numbers comes from considering a very broad range of pion polarizabilities and we suspect
that the result might contain a large contribution from high energies similarly to the model
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shown in Fig. 12. We therefore feel that their broad range should be discarded.

5 Summary and conclusions

In this paper we have two main results and two smaller ones. The first main result is that
we expect large and opposite sign contribution from the disconnected versus the connected
parts in lattice calculations of the HLbL contribution to the muon anomalous magnetic
moment.

The second main result is that the estimate of the pion-loop is

aπloopµ = −(2.0 ± 0.5) · 10−10 . (32)

This contains the effects of the pion polarizability as well as estimates of other a1 effects.
The main constraints are that a realistic limit to low-energy ChPT seems to constrain the
models enough to provide the result and range given in (32). We have given a number of
arguments why the HLS number of [14, 15] should be considered obsolete. In this context
we have also derived a short distance constraint on the underlying ππγ∗γ∗ amplitude.

As a minor result we have given the extension of the Gegenbauer polynomial method
of [9, 20] to the most general hadronic vector four-point function.
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Abstract
The determination of |Vus| from kaon semileptonic decays requires the

value of the form factor f+(q2 = 0) which can be calculated precisely on
the lattice. We provide the one-loop partially quenched chiral perturbation
theory expressions both with and without including the effects of staggered
quarks for all form factors at finite volume and with partially twisted bound-
ary conditions for both the vector current and scalar density matrix elements
at all q2. We point out that at finite volume there are more form factors
than just f+ and f− for the vector current matrix element but that the Ward
identity is fully satisfied. The size of the finite volume corrections at present
lattice sizes is small.

We propose the use of partially twisted boundary conditions to determine
the size of and test estimates of the finite volume corrections using only a
single lattice ensemble.



1 Introduction

The elements of the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing ma-
trix are fundamental parameters of the Standard Model (SM). The ma-
trix is unitary in the SM. Any deviation from unitarity would be a clear
signal for new physics. The first row, containing Vud, Vus and Vub, is
the one best determined by experiment. For testing the unitarity relation
|Vud|2 + |Vus|2 + |Vub|2 = 1, the precision on |Vud| and |Vus| are comparable
[1], while |Vub| is negligible at the current level of precision. The determi-
nation of |Vus| from semileptonic Kaon decays requires f+(q2), see e.g. [2],
the vector form factor of the K to π transition. The ratio f+(q2)/f+(0) can
be extracted from experiment whereas theoretical input is needed for the
absolute normalization given by the vector form factor at zero momentum
transfer, f+(0).

The vector form factor is defined via

〈π(pπ)|Vµ|K(pK)〉 = (pK + pπ)µf+(q2) + (pK − pπ)µf−(q2) (1)

where q = pk−pπ and Vµ = s̄γµq, with q the relevant light quark. The most
precise way of calculating f+(0) at present is with numerical lattice QCD
[3, 4, 5, 6, 7, 8]. In lattice QCD calculations, as well as experimentally, it is
beneficial to introduce the scalar form factor

f0(q2) = f+(q2) + f−(q2)
q2

m2
K −m2

π

(2)

which satisfies

f0(0) = f+(0). (3)

The form factors f+ and f0 are less correlated than f+ and f− and therefore
easier to disentangle experimentally. From a lattice perspective the scalar
form factor can be calculated using an insertion of a scalar current instead
of a vector current. Using a chiral Ward identity at zero momentum transfer
we have

f+(0) = f0(0) =
ms −mq

m2
K −m2

π

〈π(pπ)|S|K(pK)〉 (4)

where S = s̄q. The scalar form factor is often easier to calculate on the
lattice. Moreover, in the staggered formulation the local vector current
is not a taste singlet and the added complications typically lead to larger
statistical errors [9, 10, 11].

An important part in handling the errors introduced in calculating f+(0)
is the use of chiral perturbation theory (ChPT) and various extensions in-
volving discretization effects, finite volume and boundary conditions. In this
paper we calculate the finite volume corrections to the vector and scalar form
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factors in rooted staggered partially quenched ChPT with twisted boundary
conditions, possibly different for valence and sea quarks. The infinite volume
rooted staggered case is included in the calculation in the sense that these
can be obtained from our expressions by exchanging finite volume integrals
by infinite volume integrals, some of which are zero.

In a previous paper [12] some of us developed a mixed action formalism
for staggered quarks. However, since the MILC collaboration has moved
to using only the HISQ action no such results are presented here. Some
previous work on vector form factors in finite volume is [13, 14, 15].

We point out that at finite volume there are more form factors than the
usual f+ and f−, which means that care has to be taken while analysing
Ward identities. In particular Eq. (4) has corrections at finite volume and
twisted boundary conditions. We also point out that the finite volume cor-
rections can be checked using only a single lattice ensemble by varying the
twisted boundary conditions.

We have implemented the resulting expressions numerically and they will
be made available in the CHIRON package [16]. We have applied the nu-
merical programs to a few ensembles from the MILC collaboration’s highly-
improved-staggered-quarks (HISQ) ensembles [17] to show expected sizes of
the corrections. The main conclusions are that the finite volume corrections
are small for present lattices.

This paper is best read together with [12] and is organized as follows:
section 2 establishes our conventions and introduces the various versions of
ChPT that we use. Section 3 introduces our notation for the kaon semilep-
tonic (Kl3) decays and specifies the corrections to Eq. (4) at finite volume.
Our analytical expressions for the Kl3 form factors are presented in section
4 and some numerical examples are given in section 5. Finally, section 6
contains our conclusions. The integral notation used in our results and a
few integral identities can be found in the appendices.

2 ChPT and lattice extensions

This section establishes our conventions and describes the lattice effects that
we take into account. We start by introducing SU(3) ChPT in the continuum
and then give the additional features needed for partially quenched ChPT,
rooted staggered ChPT and twisted boundary conditions. The conventions
used are the same as in [12].

Continuum infinite volume ChPT describes low energy QCD as an ex-
pansion in momenta and masses [18, 19, 20]. It was first used in [21] to
study meson form factors. The same Lagrangian can also be used in finite
volume [22]. In this paper we perform calculations to next-to-leading order
(NLO), or O(p4). The Lagrangian up to NLO is

L = L2 + L4 (5)
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where L2n is the O(p2n) Lagrangian.
The effective degrees of freedom in the SU(3) case are the π, K, and η

mesons. For the fields we use the exponential representation

Σ = exp

(
i
2φ

f

)
, withφ =

 U π+ K+

π− D K0

K− K̄0 S

 , (6)

where f is the pion decay constant at LO and U , D and S are flavor neutral
mesons with up, down and strange flavor respectively.

The lowest order ChPT Lagrangian with external sources [19, 20] is given
by

L2 =
f2

8
Tr
(
DµΣDµΣ†

)
− 1

4
µf2Tr

(
χ†Σ + χΣ†

)
+
m2

0

6
Tr(φ)2 (7)

where µ is a low energy constant (LEC) and χ = s+ ip contains scalar and
pseudo scalar external fields. The covariant derivative is given by

DµΣ = ∂µΣ− ilµΣ + iΣrµ. (8)

In order to include quark masses we let s → s + diag(mu,md,ms). The
last term in L2 is essentially an η′ mass term allowed by the anomaly. The
mass should be taken to infinity in order to integrate out the η′. This may
be postponed until the final stage of the calculation [23]. Postponing the
limit is useful when discussing lattice effects since there is then a one-to-
one relation between indices on φ and the quark content of the mesons [24].
When mη′ → ∞ the trace of φ decouples leaving π0 and η in the diagonal
elements of φ and the correspondence is lost as standard ChPT is recovered.
An expression for L4 can be found in [19].

2.1 Partially quenched ChPT

In partially quenched QCD the masses of the valence quarks differ from
the masses of the sea quarks. In ChPT this can be incorporated using
the observation that the indices on the meson matrix φ are quark indices
before taking the limit mη′ → ∞. In a given diagram the indices which
are determined by the external meson indices correspond to valence quarks
and we refer to these indices as valence indices. Indices which are summed
over in a given diagram correspond to sea quarks and we refer to these
as sea indices. In this way there are sea-sea, sea-valence, valence-sea and
valence-valence mesons.

From a technical point of view the partial quenching can be incorporated
in ChPT using either the supersymmetric method [25], the replica method
[26] or using quark flow. The three methods are equivalent but the quark
flow method is more convenient with rooting in the Staggered theory as will
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be explained below. For this reason we have used the quark flow method in
our calculations.

From a calculational point of view one difference between standard ChPT
and partially quenched ChPT is that the flavor neutral propagators have
a more complicated structure. The flavor charged propagators have the
standard form

GCef =
1

p2 +m2
ef

(9)

where e and f indicate the flavor content of the meson. The flavor neutral
propagators on the other hand have the form

GNEF = G0,EF +DEF (10)

where

G0,EF =
δEF

p2 +m2
E

, (11)

DEF = − m2
0

3(p2 +m2
E)(p2 +m2

F )

(p2 +m2
U )(p2 +m2

D)(p2 +m2
S)

(p2 +m2
π)(p2 +m2

η)(p
2 +m2

η′)

where mU,D,S are the masses of the neutral sea mesons with quark content
u, d, s and mπ,η,η′ are the masses of the π, η, η′ sea mesons. E and F are
quark indices of neutral mesons (sea or valence). Note that GNEF takes the
form of a standard propagator plus a term due to the vertex proportional
to m2

0 of the type φEφF . We will refer to this type of vertex as a hairpin
vertex. Letting mη′ = m0 →∞ [23] gives

DEF = − 1

3(p2 +m2
E)(p2 +m2

F )

(p2 +m2
U )(p2 +m2

D)(p2 +m2
S)

(p2 +m2
π)(p2 +m2

η)
. (12)

2.2 Rooted staggered ChPT

We now introduce staggered quarks and rooting in ChPT. In the staggered
formulation of lattice QCD each quark is fourfold degenerate. In lattice
simulations this is compensated for by taking the fourth root of the quark
determinant, the so called fourth root trick. A consequence of the fourfold
degeneracy is that the number of mesons is increased 16 fold, giving 16 tastes
for each flavor. In staggered ChPT the degeneracy is compensated for by
dividing each sum over sea quarks by four, mimicking the fourth-root trick.
This is the reason why having a direct correspondence between the indices
of φ and the quark content of the corresponding meson is so useful when
dealing with staggered quarks. Also, note that in the replica method any
summed over flavor index is a sea index so that each sum should simply be
divided by four.
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In order to accommodate the 16 fold increase in the number of mesons
in ChPT we use the representation

Σ = exp

(
i
φ

f

)
, with φ =


U π+ K+ . . .
π− D K0 . . .
K− K̄0 S . . .

...
...

...
. . .

 , (13)

where the extra space in the matrix φ can be used to accommodate partial
quenching [26, 25]. Each entry in φ is a 4× 4 matrix written as

πa ≡
16∑

Ξ=1

πaΞTΞ , where TΞ ∈ {ξ5, iξµ5, iξµν(µ > ν), ξµ, I} (14)

are the taste generators, here taken as the Euclidean gamma matrices ξµ,
with ξµν = ξµξν , ξµ5 ≡ ξµξ5 and ξI ≡ I is the 4× 4 identity matrix. These
generate U(4) which is the coset space of a single flavor staggered theory
where the trace is not decoupled. The tastes will also be reffered to as
P,A,T,V and I. As long as no discretization effects are taken into account
all tastes with the same flavor have degenerate masses, this degeneracy is
broken by discretization effects.

When including discretization effects we treat p2, mq and a2 as the same
order in our power counting. L2 will then contain corrections of O(a2).
Although such effects break the 16 fold degeneracy in the meson spectrum,
it turns out [27] that at this order in the power counting there is still an
SO(4) symmetry, usually referred to as taste symmetry. The subgroup
SO(4) is the subgroup where the degeneracy of mass between the tastes
P,A,T,V and I is lifted, giving five different masses for each meson flavor.

Using the conventions in Ref. [12], the Lee-Sharpe Lagrangian [27] gen-
eralized to multiple flavors [28] is written as

L =
f2

8
Tr
(
DµΣDµΣ†

)
− 1

4
µf2Tr

(
χ†Σ + χΣ†

)
+
m2

0

24

(
Tr
(
Φ2
))

+ a2V.
(15)

where V is the taste violating potential found in [28]. The m2
0 term is the

contribution to the singlet-taste and singlet flavor meson, η′I ∝ Tr(φ), which
is the only mass term allowed by the anomaly. As in the continuum partially
quenched case the limit m0 →∞ can be taken at the end of the calculation
in order to keep a correspondence between the indices of φ and the quark
content of the mesons.

As in the continuum partially quenched theory the flavor neutral propa-
gators are more complicated than in standard ChPT. In the staggered theory
the m2

0 terms generate hairpin vertices for the singlet taste flavor neutral
mesons. There are also hairpin vertices for the axial and vector taste flavor
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neutral mesons coming from double trace terms in the staggered Lagrangian.
The neutral propagators for taste Ξ are in this case given by

GNEF,Ξ = G0,EF,Ξ +DΞ
EF (16)

where

G0,EF,Ξ =
δEF

p2 +m2
A,Ξ

, (17)

DΞ
EF = −a2δΞ

(p2 +m2
U,Ξ)(p2 +m2

D,Ξ)(p2 +m2
S,Ξ)

(p2 +m2
E,Ξ)(p2 +m2

F,Ξ)(p2 +m2
π0,Ξ

)(p2 +m2
η,Ξ)(p2 +m2

η′,Ξ)
,

where δΞ are the couplings appearing in the Lagrangian for the hairpin
vertices, for tastes Ξ = V,A, I respectively. In the limit m0 →∞ the singlet
taste disconnected flavor-neutral propagator simplifies to

DIEF = −4

3

(p2 +m2
U,I)(p

2 +m2
D,I)(p

2 +m2
S,I)

(p2 +m2
A,I)(p

2 +m2
B,I)(p

2 +m2
π0,I

)(p2 +m2
η,I)

. (18)

The other tastes have no hairpin vertices and hence DT,P = 0.

2.3 Twisted boundary conditions

Twisted boundary conditions [29] in one dimension are defined by

ψ(x+ L) = exp(iθ)ψ(x) (19)

where L is the length of the dimension and θ is the twist angle. With twisted
boundary conditions momenta are quantized as

p =
2π

L
n+

θ

L
, n ∈ Z. (20)

The twist angle can be choosen arbitrarily, so the momentum of the field
ψ can be continuously varied. In the case θ = 0, periodic boundary con-
ditions are recovered. The twist of the anti-particle follows from complex
conjugation of (19); momenta are shifted in the opposite direction.

Twist angles can be chosen independently in each spatial direction for
each flavor and also independently for sea and valence quarks. For each
quark q, either valence or sea, we define the twist angle, θqi , in direction i
via

q(xi + L) = exp(iθqi )q(xi). (21)

We collect the twist angles θqi in a three vector ~θq and in a four vector

θq = (0, ~θq). The twist angle for an anti-quark is minus the twist angle for
the corresponding quark.
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The twist angles of the mesons follow from that of the quarks as [30]

φq̄′q(xi + L) = exp(i(θqi − θ
q′

i ))φq̄′q(xi) (22)

where φq̄′q is a meson with quark content q̄′q. It follows that flavor diagonal
mesons have zero twist angle and that charge conjugate mesons have oppo-
site twist. A particle with spatial momentum ~p has an anti-particle with
spatial momentum −~p.

When computing loop integrals using twisted boundary conditions in a
finite volume we have to make the replacement∫

ddk

(2π)d
→
∫
V

ddk

(2π)d
≡
∫

dd−3k

(2π)d−3

1

L3

∑
~n∈Z3

~k=(2π~n+~θ)/L

(23)

where we allow for dimensional regularization by using a total of d dimen-
sions. Note that the twisted boundary conditions lead to∫

V

ddk

(2π)d
kµ

k2 +m2
6= 0 (24)

since the sum is not symmetric around zero. This leads to momentum
dependent masses and fewer constraints on form factors, which reflects the
broken lattice symmetry. This also makes checking Ward identities more
involved than in the usual case [14].

3 Parametrization of kaon semileptonic decays at
finite volume

In this section we present our calculation of the finite volume corrections for
the hadronic matrix element in Kl3 decay. Although we use K0 → π−l+ν
as an example, our calculations can be used for any K → πlν decay. The
decay K0 → π−l+ν is at the quark level due to the vector current s̄γµu. In
order to keep the discussion general we follow Ref. [12] and define ȳ and x̄
to be the valence anti-quarks corresponding to s̄ and ū respectively. We also
define x′ to be the spectator valence quark corresponding to the d quark.
The decay is then that of an x′ȳ to an x′x̄ pseudo scalar through the vector
current ȳγµx. We also introduce the notation X, X ′ and Y for the valance
pseudo scalar mesons xx̄, x′x̄′ and yȳ.

We parameterize the matrix element of the weak current between a kaon
and a pion in finite volume as〈

π(pπ)|V xy
µ |K(pK)

〉
V

= fxy+ (q)(pK + pπ)µ + fxy− (q)(pK − pπ)µ + hxyµ (q),

(25)
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where q = (pK − pπ) and V xy
µ is the appropriate flavor changing vector

current. In the various versions of ChPT presented above V xy
µ share the

same form given by

V xy
µ =

if2

4
Trt

[
∂µΣΣ† − Σ†∂µΣ

]
xy
, (26)

where the content of Σ will differ in the different versions and Trt is a trace
over taste only (which simply gives one in the non-staggered theory). Our
conventions are such that f+ = 1 at leading order in ChPT. For zero twist
angle the restored cubic symmetry means that the only first two terms are
needed so that hµ = 0 in this case. For non-zero twist angle hµ 6= 0. Note
that the split between different form factors is not unique in this case. For
example, changing routings in a diagram will shift terms between f− and hµ.
Also, the form-factors depend on the individual components of q through
the twist angles which enter the integrals, see [14]. Nevertheless, altough
the split is in some sense artificial when twisted boundary conditions are
imposed, it is useful in order to relate to the infinite volume limit where
there are well defined form factors depening only on q2:

〈π(pπ)|Vµ|K(pK)〉 = f+(q2)(pK + pπ)µ + f−(q2)(pK − pπ)µ. (27)

In practice it is advantageous to study the scalar form factor on the
lattice and then relate the result to the vector form factor [31, 9]. In ChPT
the scalar current is

Sxy = −f
2µ

4
Trt

(
Σ + Σ†

)
xy
. (28)

We parameterize the matrix element between a kaon and a pion as

〈π(pπ)|Sxy|K(pK)〉V =
ρxy(q)

my −mx
. (29)

With these definitions the Ward-Takahashi identity relating the hadronic
matrix elements leads to the following relation between the relevant form
factors

(p2
K − p2

π)fxy+ + q2fxy− + qµh
xy
µ = −ρxy. (30)

Note that p2
K/π must contain the full loop contribution, to the order at which

the Ward identity is being checked, since f+ = 1 at leading order. In all
results presented below we have checked that this Ward identity holds.

Finally, setting q2 = 0, which is important for |Vus|, we have the relation

fxy+ (q2 = 0) =
−ρxy − qµhxyµ

(p2
K − p2

π)

∣∣∣∣
q2=0

(31)
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where hxyµ vanishes in the infinite volume limit, allowing for a determination
of the vector form factor from the scalar form factor. In lattice calculations
the term proportional to qµhµ is often dropped [1, 3, 4, 6, 7, 32, 9]. The left
hand side of the equation is then not f+ but a quantity which goes to f+ in
the infinite volume limit.

4 Finite volume corrections to f+, f−, hµ and ρ

In this section we present finite volume corrections to the hadronic matrix
elements needed for Kl3 decays at NLO in ChPT. We present rooted stag-
gered partially quenched ChPT (rSPQChPT) expressions for the partially
twisted case (twisted boundary conditions different in the valence and sea
sectors), as well as the corresponding continuum limit (PQChPT with par-
tially twisted boundary conditions). The continuum limit can be derived
from the staggered results, but we present both for clarity. The finite vol-
ume corrections can be used to derive the infinite volume expressions. To do
this replace every finite volume integral by its infinite volume counterpart.
The expressions are presented using the D notation of [12] which keep the
diagonal propagators intact, see Appendix A. This is to keep the expressions
of manageable length.

Taking the full QCD infinite volume and isospin limits of the PQ result
produces a slightly different expression from the NLO results in [33]. The
difference is of O(p6). There is, however, no conflict in using our finite
volume result with the infinite volume NLO+NNLO calculation of [33] since
there is no overlap between the finite and infinite volume results.

Some complementary results have been moved to the Appendix. In
Appendix C you will find expressions for the partially twisted and fully
twisted K0 → π− form factors in the isospin limit, in which most of the
current lattice calculations are performed. In Appendix B you will find
expressions for the finite volume correction to the masses in the partially
twisted partially quenched and partially twisted partially quenched rooted
staggered cases. These are needed to check the Ward identity in Eq. (30).

The results presented below are the finite volume corrections needed
for hadronic matrix elements of a vector and a scalar current. For a given
quantity, X, the finite volume correction, ∆VX, is defined as

∆VX = XV −X∞ (32)

where XV is X calculated in finite volume and X∞ is X calculated in infinite
volume. The way to use the finite volume corrections is to calculate XV

using lattice QCD and correct for finite volume effects using the appropriate
expression for ∆VX in order to get X∞ , which is the quantity of interest.
The case of hVµ is special in that the corresponding infinite volume expression
is zero.
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The finite volume expressions depend on the volume through the inte-
grals AV , BV , etc. These integrals also depend on the masses and twist
angles of both valence and sea quarks. In staggered ChPT there are addi-
tional low energy constants which enter through the relation between meson
masses and quark masses and through hairpin couplings for the diagonal
vector and axial propagators.

The quantity cΞ which shows up in the rooted staggered expressions is
defined as

cΞ =
1

4
Tr(ξ5ξΞξ5ξΞ). (33)

We use the following two momentum variables,

q = pK − pπ, (34)

p12 = pK + pπ

4.1 Continuum Partially Quenched Partially Twisted ChPT

Below we include the finite volume corrections to the Kl3 form factors, calcu-
lated using PQChPT at O(p4), when the inserted current is a vector current
(Sec. 4.1.1) and a scalar current (Sec. 4.1.2).

4.1.1 Finite volume corrections for the vector form factors

∆V fxy+ = − 1

2f2

(∑
S

(
−AV (m2

yS)−AV (m2
xS) + 4BV

22(m2
xS ,m

2
Sy)
)

(35)

+4
(
BV

22(m2
xy,DY Y )− 2BV

22(m2
xy,DY X) +BV

22(m2
xy,DXX)

)
−AV (DY Y ) + 2AV (DY X)−AV (DXX)

)

∆V fxy− = − 1

2f2

(∑
S

(
4
(
m2
x′y −m2

x′x

) (
BV

21(m2
xS ,m

2
Sy) (36)

−BV
1 (m2

xS ,m
2
Sy)
)

+ 2qµB
V
2µ(m2

xS ,m
2
Sy) + 2p12µB

V
2µ(m2

xS ,m
2
Sy)
)

+ 4
(
m2
x′y −m2

x′x

) (
BV

21(m2
xy,DY Y )− 2BV

21(m2
xy,DY X)

+BV
21(m2

xy,DXX)
)

+4BV
1 (m2

xy,DX′Y )
(
−2m2

x′x′ + 3m2
x′y +m2

x′x

)
+4BV

1 (m2
xy,DX′X)

(
2m2

x′x′ −m2
x′y − 3m2

x′x

)
−4
(
m2
x′y −m2

x′x

) (
BV

1 (m2
xy,DY Y ) +BV

1 (m2
xy,DXX)

)
−4qµB

V
2µ(m2

xy,DX′Y ) + 4qµB
V
2µ(m2

xy,DX′X)
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+2qµB
V
2µ(m2

xy,DY Y )− 2qµB
V
2µ(m2

xy,DXX)

+2p12µB
V
2µ(m2

xy,DY Y )− 4p12µB
V
2µ(m2

xy,DY X)

+2p12µB
V
2µ(m2

xy,DXX)

+4BV (m2
xy,DX′Y )

(
m2
x′x′ −m2

x′y −m2
x′x

)
+4BV (m2

xy,DX′X)
(
−m2

x′x′ +m2
x′y +m2

x′x

) )

∆V hxyµ = − 1

2f2

(∑
S

(
−4p12νB

V
23µν(m2

xS ,m
2
Sy) (37)

+ 2BV
2µ(m2

xS ,m
2
Sy)
(
−q2 −m2

x′y +m2
x′x

)
− 4AVµ (m2

x′S) + 2AVµ (m2
yS) + 2AVµ (m2

xS)
)

−4p12ν(BV
23µν(m2

xy,DY Y ) +BV
23µν(m2

xy,DXX))

+8p12νB
V
23µν(m2

xy,DY X)

+4BV
2µ(m2

xy,DX′Y )
(
q2 −m2

x′x′ + 2m2
x′y +m2

x′x

)
+4BV

2µ(m2
xy,DX′X)

(
−q2 +m2

x′x′ −m2
x′y − 2m2

x′x

)
+2BV

2µ(m2
xy,DY Y )

(
−q2 −m2

x′y +m2
x′x

)
+2BV

2µ(m2
xy,DXX)

(
q2 −m2

x′y +m2
x′x

) )
4.1.2 Finite volume corrections for the scalar form factor

∆V ρxy
(m2

K −m2
π)

= − 1

2f2

(∑
S

(
−2
(
m2
x′y −m2

x′x

)
BV

1 (m2
xS ,m

2
Sy) (38)

+ 2p12µB
V µ
2 (m2

xS ,m
2
Sy)

+BV (m2
xS ,m

2
Sy)
(
+q2 +m2

x′y −m2
x′x

))
−2
(
m2
x′y −m2

x′x

) (
BV

1 (m2
xy,DY Y )

− BV
1 (m2

xy,DXX)
)

+2p12µB
V µ
2 (m2

xy,DY Y )− 2p12µB
V µ
2 (m2

xy,DXX)

−2BV (m2
xy,DX′Y )

(
q2 +m2

x′y +m2
x′x

)
−2BV (m2

xy,DX′X)
(
q2 +m2

x′y +m2
x′x

)
+BV (m2

xy,DY Y )
(
q2 +m2

x′y −m2
x′x

)
+2BV (m2

xy,DY X)
(
q2
)

+BV (m2
xy,DXX)

(
+q2 −m2

x′y +m2
x′x

)
−2A(DX′Y )− 2A(DX′X)

)

11



4.2 Partially Quenched Partially Twisted Rooted Staggered
ChPT

Below we include the finite volume corrections to the Kl3 form factors, cal-
culated using rSPQChPT at O(p4), when the inserted current is a vector
current (Sec. 4.2.1) and a scalar current (Sec. 4.2.2).

4.2.1 Finite volume corrections for the vector form factor

∆V fxy+ = − 1

2f2

∑
Ξ

(
1

16

∑
S

(
−AV (m2

yS,Ξ)−AV (m2
xS,Ξ) +

1

4
BV

22(m2
xS,Ξ,m

2
Sy,Ξ)

)
+BV

22(m2
xy,Ξ,DΞ

Y Y )− 2BV
22(m2

xy,Ξ,DΞ
Y X) (39)

+BV
22(m2

xy,Ξ,DΞ
XX)

− 1

4

(
AV (DΞ

Y Y )− 2AV (DΞ
Y X) +AV (DΞ

XX)
) )

∆V fxy− = − 1

2f2

∑
Ξ

(
1

4

∑
S

((
m2
x′y,5 −m2

x′x,5

) (
BV

21(m2
xS,Ξ,m

2
Sy,Ξ) (40)

− BV
1 (m2

xS,Ξ,m
2
Sy,Ξ)

)
+
qµ
2
BV

2µ(m2
xS,Ξ,m

2
Sy,Ξ)

+
p12µ

2
BV

2µ(m2
xS,Ξ,m

2
Sy,Ξ)

)
+
(
m2
x′y,5 −m2

x′x,5

) (
BV

21(m2
xy,Ξ,DΞ

Y Y )− 2BV
21(m2

xy,Ξ,DΞ
Y X)

+BV
21(m2

xy,Ξ,DΞ
XX

)
+BV

1 (m2
xy,Ξ,DΞ

X′Y )
(
−2m2

x′x′,5 +m2
x′y,5(2 + cΞ) +m2

x′x,5cΞ

)
+BV

1 (m2
xy,Ξ,DΞ

X′X)
(
+2m2

x′x′,5 −m2
x′y,5cΞ −m2

x′x,5(2 + cΞ)
)

−
(
m2
x′y,5 −m2

x′x,5

) (
BV

1 (m2
xy,Ξ,DΞ

Y Y ) +BV
1 (m2

xy,Ξ,DΞ
XX)

)
+cΞqµ

(
−BV

2µ(m2
xy,Ξ,DΞ

X′Y ) +BV
2µ(m2

xy,Ξ,DΞ
X′X)

)
+

1

2
qµ
(
BV

2µ(m2
xy,Ξ,DΞ

Y Y )−BV
2µ(m2

xy,Ξ,DΞ
XX)

)
+

1

2
p12µ

(
BV

2µ(m2
xy,Ξ,DΞ

Y Y )− 2BV
2µ(m2

xy,Ξ,DΞ
Y X)

+BV
2µ(m2

xy,Ξ,DΞ
XX)

)
+BV (m2

xy,Ξ,DΞ
X′Y )

(
m2
x′x′,5 −m2

x′y,5 −m2
x′x,5cΞ

)
+BV (m2

xy,Ξ,DΞ
X′X)

(
−m2

x′x′,5 +m2
x′y,5cΞ +m2

x′x,5

) )
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∆V hxyµ = − 1

2f2

∑
Ξ

(
1

4

∑
S

(
−p12νB

V
23µν(m2

xS,Ξ,m
2
Sy,Ξ) (41)

+
1

2
BV

2µ(m2
xS,Ξ,m

2
Sy,Ξ)

(
−q2 −m2

x′y,5 +m2
x′x,5

)
− 1

2

(
2AVµ (m2

x′S,Ξ)−AVµ (m2
yS,Ξ)−AVµ (m2

xS,Ξ)
))

−p12ν

(
BV

23µν(m2
xy,Ξ,DΞ

Y Y )− 2BV
23µν(m2

xy,Ξ,DΞ
Y X)

+BV
23µν(m2

xy,Ξ,DΞ
XX)

)
+BV

2µ(m2
xy,Ξ,DΞ

X′Y )
(
−m2

x′x′,5 +m2
x′y,5(1 + cΞ) +m2

x′x,5cΞ + q2cΞ

)
+BV

2µ(m2
xy,Ξ,DΞ

X′X)
(
+m2

x′x′,5 −m2
x′y,5cΞ −m2

x′x,5(1 + cΞ)− q2cΞ

)
+

1

2
BV

2µ(m2
xy,Ξ,DΞ

Y Y )
(
−q2 −m2

x′y,5 +m2
x′x,5

)
+

1

2
BV

2µ(m2
xy,Ξ,DΞ

XX)
(
+q2 −m2

x′y,5 +m2
x′x,5

) )
4.2.2 Finite volume corrections for the scalar form factor

∆V ρxy
m2
K −m2

π

= − 1

2f2

(
1

8

∑
S

(
−
(
m2
x′y,5 −m2

x′x,5

)
BV

1 (m2
xS,Ξ,m

2
Sy,Ξ) (42)

+ p12µB
V
2µ(m2

xS,Ξ,m
2
Sy,Ξ)

+
1

2
BV (m2

xS,Ξ,m
2
Sy,Ξ)

(
+q2 +m2

x′y,5 −m2
x′x,5

))
+

1

2

(
m2
x′y,5 −m2

x′x,5

) (
−BV

1 (m2
xy,Ξ,DΞ

Y Y )

+BV
1 (m2

xy,Ξ,DΞ
XX)

)
+p12µ

1

2

(
BV

2µ(m2
xy,Ξ,DΞ

Y Y )−BV
2µ(m2

xy,Ξ,DΞ
XX)

)
−cΞ

2
BV (m2

xy,Ξ,DΞ
X′Y )

(
m2
x′y,5 +m2

x′x,5 + q2
)

−cΞ

2
BV (m2

xy,Ξ,DΞ
X′X)

(
m2
x′y,5 +m2

x′x,5 + q2
)

+
1

4
BV (m2

xy,Ξ,DΞ
Y Y )

(
+q2 +m2

x′y,5 −m2
x′x,5

)
+

1

2
BV (m2

xy,Ξ,DΞ
Y X)q2

+
1

4
BV (m2

xy,Ξ,DΞ
XX)

(
+q2 −m2

x′y,5 +m2
x′x,5

)
−cΞ

2

(
AV (DΞ

X′Y ) +AV (DΞ
X′X)

) )
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Table 1: Parameters for the HISQ Nf = 2 + 1 + 1 MILC ensembles we have
used in the numerical results [17]. The numbers not in that reference come
from the on-going FNAL/MILC analysis [34]. The light (up,down) valence
quark masses are the same as the light sea quark masses on each ensemble,
but the strange quark can be different. We have quoted the kaon mass
therefore with valence and with sea quarks. Below we refer to the different
ensembles using mπ and mπL since these are the most relevant quantities
in the finite volume calculation.

a ml/ms L r1/a mπ mK mK(sea) mπL
(fm) (fm) (MeV) (MeV) (MeV)

0.15 0.035 4.8 2.089 134 505 490 3.2

0.12 0.2 2.9 2.575 309 539 528 4.5
0.1 2.9 2.5962 220 516 506 3.2
0.1 3.8 2.5962 220 516 506 4.3
0.1 4.8 2.5962 220 516 506 5.4

0.035 5.7 2.608 135 504 493 3.9

0.09 0.2 2.9 3.499 312 539 534 4.5
0.1 4.2 3.566 222 523 512 4.7

0.035 5.6 3.565 129 495 495 3.7

0.06 0.2 2.8 5.342 319 547 547 4.5
0.035 5.5 5.4424 134 491 491 3.7

5 Typical finite volume corrections to current lat-
tice simulations

As an illustration of the numerical size of finite volume corrections in current
lattice simulations we present an explicit calculation of these effects for the
set of ensembles used by the FNAL/MILC collaboration in its on-going
analysis of K → π`ν. The formulas in the previous section are of course
more general.

The ensemble parameters we use are presented in Tables 1 and 2. They
are originally described in [17]. The values of r1/a were determined in [17]
and then used with r1 = 0.3117 fm to convert converted a to fm. The
masses were determined in terms of of a and are preliminary results from
the ongoing MILC Kl3 analysis [34]. The values used for the taste splittings
come from [17] and are averages over the light-light numbers for the same
taste presented there. The hairpin couplings, a2δV and a2δA are from an
unpublished MILC analysis for the 0.12 fm lattice and have been scaled by
α2
sa

2 for the other cases. Finally, we use f = 130.41 MeV.
The numerical evaluations needed will be implemented in CHIRON [16].
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Table 2: Taste splittings and hairpin couplings for the HISQ Nf = 2 + 1 + 1
MILC ensembles we have used in the numerical results. Taste splittings
from [17, 35] and the r1/a in Table 1 and hairpin vertices from an unpub-
lished MILC analysis. The correspondence between ensembles here and in
Table 1 is given by the lattice spacing a since the splittings used are the
same for all ensembles with a given lattice spacing.

a a2δV a2δA a2∆V a2∆A a2∆T a2∆S

(fm) GeV2 GeV2 GeV2 GeV2 GeV2 GeV2

0.15 0.042256 -0.058008 0.11464 0.041394 0.077496 0.1474

0.12 0.022844 -0.031341 0.062249 0.021744 0.041057 0.08288

0.09 0.0073091 -0.010034 0.019641 0.0072139 0.01334 0.025289

0.06 0.0013934 -0.0019131 0.003647 0.0013226 0.0024848 0.0051299

Next, we have to make a choice on which masses to use. From the pion
and kaon masses in Table 1 we fix the lowest order masses1 for the neutral
particles (pseudo-scalar taste for staggered) via

m2
uu =m2

dd = m2
UU = m2

DD = m2
π

m2
ss = 2m2

K −m2
π m2

SS = 2m2
K(sea)−m2

π . (43)

In the staggered theory we can determine the meson masses at LO in ChPT
using the relation

m2
ab,Ξ =

1

2

(
m2
aa +m2

bb

)
+ a2∆Ξ . (44)

Alternatively we could have determined m2
ss and m2

SS from the neutral me-
son masses obtained from the lattice instead of from the kaon masses. We
have checked that these two choices for the meson masses produces differ-
ences which are small, much below the expected size of higher orders of
about 20%. All results presented here are calculated using the LO SChPT
expression in Eq. (44), together with the values for masses and taste split-
tings in Tables 1 and 2 and Eq. (43).

The finite volume correction to Kl3 decays is presented in a way that
shows the relative size to the LO f+(0)LO = 1. We calculate each term in
the Ward identity in Eq. (30) divided by the mass difference,

∆Vm2
K −∆Vm2

π

m2
K −m2

π

+ ∆V f+(0) +
qµhµ

m2
K −m2

π

=
∆V ρ

m2
K −m2

π

, (45)

1Corrections are higher order than we have used in ChPT.
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Table 3: Values for the different parts in the Ward identity in Eq. (45) for
the ensembles in Table 1. “mass”, “f+” and “hµ” label the three terms in
the left-hand side of Eq. (45) and “ρ” the right-hand side. The numbers are
obtained with θu = (0, θ, θ, θ) such that q2 = 0 and the kaon at rest for the
staggered case.

mπ mπL “mass” “f+” “hµ” “ρ”

134 3.2 0.00000 −0.00042 0.00007 −0.00036

309 4.5 0.00013 −0.00003 −0.00041 −0.00031
220 3.2 0.00054 −0.00048 −0.00084 −0.00077
220 4.3 −0.00007 −0.00009 −0.00005 −0.00021
220 5.4 −0.00005 −0.00003 0.00001 −0.00006
135 3.9 −0.00006 −0.00020 0.00005 −0.00021

312 4.5 0.00047 0.00023 −0.00068 −0.00001
222 4.7 −0.00000 0.00018 −0.00003 0.00014
129 3.7 −0.00013 −0.00004 0.00009 −0.00007

319 4.5 0.00052 0.00037 −0.00081 0.00008
134 3.7 −0.00016 0.00045 0.00013 0.00043

at q2 = 0 and the results are presented in Tables 3-5. The needed twisting
angle is determined by having q2 = 0. While our results are for a fully
general twisting, the results presented here are for the case where we only
twist the valence up quark. This corresponds to a kaon at rest and a moving
pion. We present results for three cases. The rooted staggered case with
θu = (0, θ, θ, θ), Table 3, and with θu = (0, θ′, 0, 0), Table 4. θ and θ′ are
chosen to have q2 = 0. The third case we show is without effects from
staggering with θu = (0, θ′, 0, 0), Table 5.

Looking at the tables one effect is very clear, for these lattices the finite
volume corrections are all very small and clearly below the 0.2% used as error
in the published MILC results [1]. The finite volume effects also decrease
with increasing mπL as expected.

A second observation is that the finite volume effects are dependent on
the precise way the twisting is done. The predictions for a twisting in all
space directions or in one space direction only are quite different as a glance
at Tables 3 and 4 shows. This opens up a relatively cheap way to check
the rough size of finite volume effects and in particular also our predictions
for them by doing the (lattice) calculations with different ways of partial
twisting but using the same underlying lattice.

A third observation is that the finite volume correction is typically
smaller for the case with staggered effects than for the unstaggered case
and the differences can be of the same size as the actual corrections. We
believe this is due to the fact that the non-pseudoscalar taste mesons have
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Table 4: Values for the different parts in the Ward identity in Eq. (45) for
the ensembles in Table 1. “mass”,“ f+” and “hµ” label the three terms in
the left-hand side of Eq. (45) and “ρ” the right-hand side. The numbers are
obtained with θu = (0, θ′, 0, 0) such that q2 = 0 and the kaon at rest for the
staggered case.

mπ mπL “mass” “f+” “hµ” “ρ”

134 3.2 −0.00003 −0.00066 0.00008 −0.00061

309 4.5 −0.00030 −0.00017 −0.00002 −0.00049
220 3.2 −0.00078 −0.00105 0.00036 −0.00148
220 4.3 −0.00033 −0.00034 0.00018 −0.00049
220 5.4 −0.00008 −0.00010 0.00003 −0.00015
135 3.9 −0.00002 −0.00032 0.00001 −0.00033

312 4.5 −0.00019 0.00002 −0.00009 −0.00026
222 4.7 −0.00024 −0.00018 0.00017 −0.00025
129 3.7 −0.00003 −0.00050 −0.00001 −0.00054

319 4.5 −0.00026 0.00013 −0.00012 −0.00025
134 3.7 −0.00005 −0.00058 0.00001 −0.00062

typically larger masses and thus have smaller finite volume effects.
The exponential decrease of the finite volume correction remains true

also in this case. As an example we show for one of the lattice parameters
the same parts of the Ward identity as shown in the Tables as a function of
mπL. We have used the parameters of the ensemble with mπ = 129 MeV
and mπL = 3.7 and vary mπ while keeping the valence and sea kaon mass
fixed. The result is shown in Fig. 5.

6 Conclusions

In this paper we have calculated the finite volume corrections to Kl3 decays
in rooted staggered partially quenched ChPT with twisted boundary condi-
tions allowing for different twists in the valence and sea sector as well. The
analytical formulas in section 4 and the appendices are our main results.
These formulas can be used to obtain also the corresponding infinite volume
expressions. We presented results for the vector as well as scalar form factor
and we have checked analytically and numerically that the relevant Ward
identity is fulfilled.

Numerically, for representative parameters of current lattice simulations,
the corrections are O(10−3), but often much smaller. The magnitude and
sign of the corrections vary significantly between ensembles.

We suggested using the different ways include twist as a way to determine
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Table 5: Values for the different parts in the Ward identity in Eq. (45) for
the ensembles in Table 1. “mass”, “f+” and “hµ” label the three terms in
the left-hand side of Eq. (45) and “ρ“ the right-hand side. The numbers are
obtained with θu = (0, θ′, 0, 0) such that q2 = 0 and the kaon at rest. This
is the case without effects from staggering.

mπ mπL “mass” “f+” “hµ” “ρ”

134 3.2 −0.00049 −0.00124 0.00037 −0.00137

309 4.5 −0.00033 0.00014 −0.00004 0.00022
220 3.2 −0.00113 0.00077 0.00067 0.00031
220 4.3 −0.00062 −0.00011 0.00046 −0.00027
220 5.4 −0.00014 −0.00011 0.00010 −0.00016
135 3.9 0.00004 −0.00045 −0.00008 −0.00049

312 4.5 0.00031 0.00015 −0.00009 −0.00025
222 4.7 −0.00037 −0.00015 0.00027 −0.00025
129 3.7 −0.00000 −0.00066 −0.00005 −0.00071

319 4.5 −0.00031 0.00015 −0.00011 −0.00027
134 3.7 −0.00007 −0.00064 0.00001 −0.00070

and check finite volume corrections using the same underlying configurations
as a relatively cheap way to check finite volume effects.
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A Integrals and relations

Our results can be written using slight additions to integrals found elsewhere
in the literature. In this section we define the integrals we need and give
references to where more detailed treatments can be found.

18



-0.00015

-0.0001

-5e-05

0

5e-05

0.0001

 3  4  5  6  7  8  9

m
π
 L

"mass"

"f+"

"h
µ
"

"ρ"

Figure 1: Values for the different parts in the Ward identity in Eq. (45)
when varying the pion mass while keeping the kaon mass fixed with the
staggered parameters from the ensemble with mπ = 129 and mπL = 3.7 in
in Table 1. “mass”, “f+” and “hµ“ label the three terms in the left-hand
side of Eq. (45) and “ρ” the right-hand side. The numbers are obtained with
θu = (0, θ, θ, θ) such that q2 = 0 and the kaon at rest.

A.1 One loop integrals with single poles

We will use the notation for finite volume integrals given in Eq. (23). Note
that every integral below depends on the twist angles since these determine
which momenta are sampled in the sum in Eq. (23). We use the mass to
indicate which momenta are to be sampled in each integral. For example a
momentum k2 which shows up as (k2 +m2

π+) will only assume the allowed
values for a π+ meson. For this reason (q−k)2 6= (k− q)2 since they sample
different momenta.

All our results are given in Euclidean space. We need the following
integrals

A(m2) = −
∫
V

ddk

(2π)d
1

(k2 +m2)
(46)

Aµ(m2) = −
∫
V

ddk

(2π)d
kµ

(k2 +m2)
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B(m2
1,m

2
2, q) =

∫
V

ddk

(2π)d
1

(k2 +m2
1)((q − k)2 +m2

2)

Bµ(m2
1,m

2
2, q) =

∫
V

ddk

(2π)d
kµ

(k2 +m2
1)((q − k)2 +m2

2)

Bµν(m2
1,m

2
2, q) =

∫
V

ddk

(2π)d
kµkν

(k2 +m2
1)((q − k)2 +m2

2)

We split these integrals according to

Bµ(m2
1,m

2
2, q) = qµC1(m2

1,m
2
2, q) + C2µ(m2

1,m
2
2, q) (47)

Bµν(m2
1,m

2
2, q) = qµqνC21(m2

1,m
2
2, q)

− δµνC22(m2
1,m

2
2, q) + C23µν(m2

1,m
2
2, q).

where C2µ and C23µν are zero due to symmetry in the zero twist and infi-
nite volume cases. The sign of C22 is chosen such that the corresponding
Minkowski integral has plus signs for all three terms.

In this paper we are primarily interested in the finite volume part of the
integrals. We denote the finite volume integrals by

Cx → BV
x , (48)

Ax → AVx

Expressions for these integrals in terms of Jacobi theta functions can be
found in [14].

A.2 One loop integrals for diagonal propagator

In partially quenched and staggered ChPT the diagonal propagators are
more complicated than in standard ChPT, see sections 2.1 and 2.2. The
non-standard part of the propagators takes the generic form

DXY = −δ
∏
i∈U,D,S(p2 +m2

i )

(p2 +m2
X)(p2 +m2

Y )
∏
j∈π0,η,η′(p

2 +m2
j )

(49)

where δ is the hairpin coupling of the propagating particles. In the staggered
theory δ is taste dependent and given by

δΞ =


a2δV ≡ 16a2(C2V − C5V )/f2, Ξ ∈ {ξµ} (vector taste);

a2δA ≡ 16a2(C2A − C5A)/f2, Ξ ∈ {ξ5ξµ} (axial taste);

4m2
0/3, Ξ = I (singlet taste);

0, otherwise.

(50)

The coefficients C2V , . . . are part of the taste breaking potential V and are
defined in [28]. In the partially quenched theory δ is given by

δ = m2
0/3. (51)
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Taking the isospin limit for the sea quarks gives the diagonal propagators
simplify to

DXY = −δ
∏
i∈U,S(p2 +m2

i )

(p2 +m2
X)(p2 +m2

Y )
∏
j∈η,η′(p

2 +m2
j )
. (52)

To evaluate integrals with diagonal propagators we use the residue no-
tation described in [28]. Both single and double poles can be evaluated
using this technique. Double poles are written as derivatives of single poles.
Although this method works well for evaluation, it produces rather messy
expressions. For this reason we allow for the replacement of any m2 in the
integrals above by D as in Ref. [12]. An example would be

AV (DAXY ) = −
∫
V

ddk

(2π)d
(
−a2δA

)
× (53)(

(p2 +mU,A)(p2 +mD,A)(p2 +mS,A)

(p2 +mX,A)(p2 +mY,A)(p2 +mπ0,A)(p2 +mη,A)(p2 +mη′,A)

)
.

A.3 Integral relations

There are relations among the integrals presented above. The relations valid
when including twisted boundary conditions canbe found in [14]. In addition
there are some relations which are useful for the neutral propagator given
in [28]. Finally, we have used the relation

(m2
a −m2

b)Dab + (m2
b −m2

c)Dbc + (m2
c −m2

a)Dac = 0. (54)

All of these relations are needed to get the result in the form presented above
and they are necessary to show that the Ward identity is fulfilled.

There is also another class of relations among the integrals. These come
from interchanging the masses in B̃ type integrals, which corresponds to
changing the routings in the corresponding Feynman diagrams. The inter-
changes give the following behavior

B(m2
1,m

2
2, q) = B(m2

2,m
2
1, q) (55)

B1(m2
1,m

2
2, q) = B(m2

2,m
2
1, q)−B1(m2

2,m
2
1, q)

B2µ(m2
1,m

2
2, q) = −B2µ(m2

2,m
2
1, q)

B21(m2
1,m

2
2, q) = B(m2

2,m
2
1, q)− 2B1(m2

2,m
2
1, q) +B21(m2

2,m
2
1, q)

B22(m2
1,m

2
2, q) = B22(m2

2,m
2
1, q)

B23µν(m2
1,m

2
2, q) = B23µν(m2

2,m
2
1, q)

− qµB2ν(m2
2,m

2
1, q)− qνB2ν(m2

2,m
2
1, q).

The last of these relations shows that the split between f− and hµ is not
unique.

All of the relations presented in this section are valid in both finite and
infinite volume. In infinite volume some of the integrals are zero.
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B Finite volume corrections for masses

In this appendix we give expressions for the finite volume correction for
masses in partially twisted partially quenched ChPT and partially twisted
partially quenched rooted staggered ChPT. The expressions are valid for
a flavor charged meson with flavor content xy and, in the staggered case,
pseudoscalar taste. Note that in comparing with [14] we see that the PQ
expression neatly summarizes all flavor charged meson results into a single
expression, valid both with and without isospin.

B.1 Partially Quenched Partially Twisted ChPT

∆Vm2
xy = − 2

f2

(∑
S
pµ
(
AVµ (m2

yS)−AVµ (m2
xS)
)
−m2

xyA
V (DXY )

)
(56)

B.2 Partially Quenched Partially Twisted Rooted Staggered
ChPT

∆Vm2
xy,5 = − 1

2f2

∑
Ξ

(∑
S

pµ
4

(
AVµ (m2

yS,Ξ)−AVµ (m2
xS,Ξ)

)
−m2

xy,5A
V (DΞ

XY )cΞ

)
(57)

C K0 → π− isospin limit expressions

In this appendix we present expressions for the process K0 → π− with up
and down masses set equal, note that isospin is still broken by the boundary
conditions. We give expressions for when sea and valence quarks have the
same twist, which we call fully twisted, and for the partially twisted case. In
the partially twisted case the indices 1, 2, 3 on the masses indicate valence
quarks u, d, s respectively.

C.1 Fully twisted

∆V f+ = − 1

2f2

(
4BV

22(m2
π+ ,m

2
K0) + 6BV

22(m2
K+ ,m

2
η) (58)

+2BV
22(m2

π0 ,m
2
K+)−AV (m2

π+)− 2AV (m2
K+)

− AV (m2
K0)− 3

2
AV (m2

η)−
1

2
AV (m2

π0)

)
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∆V f− = − 1

2f2

(
(m2

K −m2
π)
(
4BV

21(m2
π+ ,m

2
K0) + 6BV

21(m2
K+ ,m

2
η) (59)

+ 2BV
21(m2

π0 ,m
2
K+)− 4BV

1 (m2
π+ ,m

2
K0)
)

−4BV
1 (m2

K+ ,m
2
η)(2m

2
K −m2

π)

−4m2
KB

V
1 (m2

π0 ,m
2
K+)

+2qµB
V
2µ(m2

π+ ,m
2
K0) + 3qµB

V
2µ(m2

K+ ,m
2
η)

+3qµB
V
2µ(m2

π0 ,m
2
K+) + 2p12µB

V
2µ(m2

π+ ,m
2
K0)

+3p12µB
V
2µ(m2

K+ ,m
2
η) + 3p12µB

V
2µ(m2

π0 ,m
2
K+)

+2m2
KB

V (m2
K+ ,m

2
η) + 2m2

πB
V (m2

π0 ,m
2
K+)

)

∆V hµ = − 1

2f2

(
−4p12νB

V
23µν(m2

π+ ,m
2
K0)− 6p12νB

V
23µν(m2

K+ ,m
2
η) (60)

−4p12νB
V
23µν(m2

π0 ,m
2
K+) + 2p12νB

V
23µν(m2

K+ ,m
2
π0)

+2BV
2µ(m2

π+ ,m
2
K0)(−q2 +m2

π −m2
K)

+BV
2µ(m2

K+ ,m
2
η)(−3q2 +m2

π − 5m2
K)

+BV
2µ(m2

π0 ,m
2
K+)(−3q2 +m2

π − 5m2
K)

+6
(
AVµ (m2

π+)−AVµ (m2
K0)
) )

∆V ρxy
m2
K −m2

π

= − 1

2f2

(
−
(
m2
K −m2

π

) (
2BV

1 (m2
π+ ,m

2
K0) (61)

+BV
1 (m2

K+ ,m
2
η) +BV

1 (m2
π0 ,m

2
K+)

)
+2p12µB

V
2µ(m2

π+ ,m
2
K0)

+p12µB
V
2µ(m2

K+ ,m
2
η) + p12µB

V
2µ(m2

π0 ,m
2
K+)

+BV (m2
π+ ,m

2
K0)(q2 −m2

π +m2
K)

+
1

2
BV (m2

K+ ,m
2
η)(+q

2 − 1

3
m2
π +

5

3
m2
K)

+2BV (m2
π0 ,m

2
K+)(3q2 +m2

π + 3m2
K)

+
1

3
AV (m2

η) +AV (m2
π0)

)
C.2 Partially twisted

In the partially twisted result there is no difference between sea and valence
indices for flavor-neutral mesons. We label these states with mπ, mη and
mS where mS = m33.
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∆V f+ = − 1

2f2

(∑
S

(
−AV (m2

1S)−AV (m2
3S) + 4BV

22(m2
1S ,m

2
S3)
)

(62)

6BV
22(m2

13,m
2
η)− 4BV

22(m2
13,m

2
S)

−2BV
22(m2

π0 ,m
2
13)

+
1

2

(
−3AV (m2

η) +AV (m2
π0) + 2AV (m2

S)
) )

∆V f− = − 1

2f2

(∑
S

(
−4(m2

K −m2
π)
(
BV

21(m2
1S ,m

2
S3) +BV

1 (m2
1S ,m

2
S3)
)

(63)

+2(qµ + p12µ)BV
2µ(m2

1S ,m
2
S3)
)

+(m2
K −m2

π)
(
6BV

21(m2
13,m

2
η)− 4BV

21(m2
13,m

2
S)

− 2BV
21(m2

π0 ,m
2
13)

−4BV
1 (m2

13,m
2
η)(2m

2
K −m2

π)

+4BV
1 (m2

13,m
2
S)(m2

K −m2
π)

−4BV
1 (m2

π0 ,m
2
13)m2

π

+3qµB
V
2µ(m2

13,m
2
η)− 2qµB

V
2µ(m2

13,m
2
S)

+3qµB
V
2µ(m2

π0 ,m
2
13) + 3p12µB

V
2µ(m2

13,m
2
η)

−2p12µB
V
2µ(m2

13,m
2
S)

+p12µB
V
2µ(m2

π0 ,m
2
13)

+2BV (m2
13,m

2
η)m

2
K + 2BV (m2

π0 ,m
2
13)m2

π

)

∆V hµ = − 1

2f2

(∑
S

(
−4p12νB

V
23µν(m2

1S ,m
2
S3) (64)

+ 2BV
2µ(m2

1S ,m
2
S3)(−q2 +m2

π −m2
K)

+ 2BV
2µ(m2

1S ,m
2
S3)(−q2 +m2

π −m2
K)

+ 2
(
AVµ (m2

1S)− 2AVµ (m2
2i) +AVµ (m2

3i)
))

−6p12νB
V
23µν(m2

13,m
2
η) + 4p12νB

V
23µν(m2

13,m
2
S)

+2p12νB
V
23µν(m2

π0 ,m
2
13)

+BV
2µ(m2

13,m
2
η)(−3q2 +m2

π − 5m2
K)

+2BV
2µ(m2

13,m
2
S)(+q2 −m2

π +m2
K)

+BV
2µ(m2

π0 ,m
2
13)(−q2 − 3m2

π −m2
K)

)
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∆V ρxy
m2
K −m2

π

= − 1

2f2

(∑
S

(
−
(
m2
K −m2

π

)
2BV

1 (m2
1S ,m

2
S3) (65)

+ 2p12µB
V
2µ(m2

1S ,m
2
S3)

+BV (m2
1S ,m

2
S3)(q2 −m2

π +m2
K)
)(

m2
K −m2

π

) (
−BV

1 (m2
13,m

2
η) +BV

1 (m2
13,m

2
S)

+BV
1 (m2

π0 ,m
2
13)
)

+p12µB
V
2µ(m2

13,m
2
η)− 2p12µB

V
2µ(m2

13,m
2
3,3)

−p12µB
V
2µ(m2

π0 ,m
2
13)

+
1

2
BV (m2

13,m
2
η)(q

2 − 1

3
m2
π +

1

3
m2
K)

+BV (m2
13,m

2
3,3)(−q2 +m2

π −m2
K)

+
1

2
BV (m2

π0 ,m
2
13)(q2 + 3m2

π +m2
K)

+
1

3
AV (m2

η) +AV (m2
π0)

)
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Abstract

We calculate all neutral vector two-point functions in Chiral Perturbation Theory
(ChPT) to two-loop order and use these to estimate the ratio of disconnected to
connected contributions as well as contributions involving the strange quark. We
extend the ratio of −1/10 derived earlier in two flavour ChPT at one-loop order to
a large part of the higher order contributions and discuss corrections to it. Our final
estimate of the ratio disconnected to connected is negative and a few % in magnitude.



Connected Disconnected
gray=lots of quarks/gluons

Figure 1: Connected (left) and disconnected (right) diagram for the two point vector
function. The lines are valence quark lines in a sea of quarks and gluons.

1 Introduction

The muon anomalous magnetic moment is one of most precisely measured quantities
around. The measurement [1] differs from the standard model prediction by about 3
to 4 sigma depending on precisely which theory predictions are taken. A review is [2] and
talks on the present situation can be found in [3]. The main part of the theoretical error
at present is from the lowest-order hadronic vacuum polarization (HVP). This contribu-
tion can be determined from experiment or can be computed using lattice QCD [4]. An
overview of the present situation in lattice QCD calculations is given by [5].

The underlying object that needs to be calculated is the two-point function of electro-
magnetic currents as defined in (1). The contribution to aµ = (g − 2)/2 is given by the
integral in (9). There are a number of different contributions to the two-point function of
electromagnetic currents that need to be measured on the lattice. First, if we only consider
the light up and down quarks, there are connected and disconnected contributions depicted
schematically in Fig. 1. If we add the strange quark to the electromagnetic currents then
there are contributions with the strange electromagnetic current in both points and the
mixed up-down and strange case. In this paper we provide estimates of all contributions
at low energies using Chiral Perturbation Theory (ChPT).

The disconnected light quark contribution has been studied at one-loop order in Ref. [6]
using partially quenched (PQChPT). They found that the ratio in the subtracted form
factors, as defined in (5), is −1/2 in the case of valence quarks of a single mass and two
degenerate sea quarks. They also found that adding the strange quark did not change the
ratio much. Here we give an argument explaining the factor of −1/2 and extend their
analysis to order p6. We also present estimates for the contributions from the strange
electromagnetic current.

The finite volume, partially quenched and twisted boundary conditions extensions to
two loop order will be presented in [7].

In Sect. 2 we give the definitions of the two-point functions and currents we use. Sec. 3
discusses ChPT and the extra terms and low-energy-constants (LECs) needed for a singlet
vector current. Our main analytical results, the two-loop order ChPT expressions for all
needed vector two-point functions are in Sect. 4. Section 5 uses the observation given in
Sect. 3 of the absence of singlet vector couplings to mesons until ChPT order p6 to show
for which contributions the ratio −1/2 is valid. Numerical results need an estimate of the
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LECs involved, both old and new. This is done in Sect. 6 and applied there to the light
connected and disconnected part. Because of the presence of the LECs we find a total
disconnected contribution of opposite sign and size a few % of the connected contribution.
The same type of estimates are then used for the strange quark contribution in Sect. 7.
Here we find a very strong cancellation between p4 and p6 contributions, leaving the LEC
part dominating strongly. A comparison with a number of lattice results is done in Sect. 8.
We find a reasonable agreement in some cases. Our conclusions are summarized in Sect. 9.

2 The vector two point function

We define the two point vector function as

Πµν
ab = i

∫

d4xeiq·x
〈

T (jµa (x)j
ν†
b (0))

〉

(1)

where the labels a, b specify the involved currents. We label the currents as

jµπ+ = d̄γµu , jµU = ūγµu , jµD = d̄γµd ,

jµS = s̄γµs , jµEM =
2

3
jµU − 1

3
jµD − 1

3
jµS , jµEM2 =

2

3
jµU − 1

3
jµD ,

jµπ0 =
1√
2
(jµU − jµD) , jµI2 =

1√
2
(jµU + jµD) , jµI3 =

1√
3
(jµU + jµD + jµS) . (2)

The divergence of the vector current is given by

∂µq̄iγ
µqj = i(mi −mj)q̄iqj , (3)

which means that any current involving equal mass quark and anti-quark is conserved. As-
suming isospin for the π+ current, Lorentz invariance then implies that we can parametrize
the vector two-point functions given above as

Πµν
ab (q) = (qµqν − q2gµν)Πab(q

2). (4)

We also define the subtracted quantity

Π̂ab(q
2) = Πab(q

2)−Πab(0) . (5)

For simplicity we also use Πa = Πaa and Π̂a = Π̂aa

In this paper we work in the isospin limit. This immediately leads to a number of
relations

Ππ+ = Ππ0 , ΠU = ΠD , ΠUS = ΠDS . (6)

With those one can derive

ΠEM =
5

9
ΠU +

1

9
ΠS − 4

9
ΠUD − 2

9
ΠUS ,

ΠEM2 =
5

9
ΠU − 4

9
ΠUD . (7)
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The two-point functions Π are themselves not directly observable. However, the vector
current two-point function in QCD satisfies a once subtracted dispersion relation

Π̂(q2) = Π(q2)− Π(0) = q2
∫ ∞

threshold

ds
1

s(s− q2)

1

π
ImΠ(s) . (8)

The imaginary part can be measured in hadron production if there exists an external vector
boson like W± or the photon coupling to the current. Thus Π̂(q2) is an observable, but
not Π(0). Π(0) depends on the precise definitions used in regularizing the product of two
currents in the same space-time point. The two-point functions for the electromagnetic
current can be determined in e+e− collisions and Ππ+ in τ -decays.

One main use has been the determination of the lowest order HVP part of the muon
anomalous magnetic the electromagnetic two-point function1

aLOHV P
µ =4α2

∫ ∞

0

dQ2Π̂EM(−Q2)g(Q2) ,

g(Q2) =
−16m4

µ

Q6
(

1 +
√

1 + 4m2
µ/Q

2
)4√

1 + 4m2
µ/Q

2

. (9)

3 Chiral perturbation theory and the singlet current

ChPT describes low-energy QCD as an expansion in masses and momenta [10, 11, 12]. The
dynamical degrees of freedom are the pseudo-Goldstone bosons (GB) from the spontaneous
breaking of the left- and right-handed flavor symmetry to the vector subgroup, SU(3)L ×
SU(3)R → SU(3)V . The GB can be parameterized in the SU(3) matrix

U = ei
√
2M/F0 with M =







1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η






. (10)

or with the 2× 2 matrix with only the pions in the case of two-flavours. The Lagrangians,
as well as the divergences, are known at order p2 (LO), p4 (NLO) and p6(NNLO) in the
ChPT counting [11, 12, 13, 14]. However, the vector currents defined in Sect. 2 contain
also a singlet component and the Lagrangians including only this extension are not known.
There is work when extending the symmetry to including the singlet GB as well as singlet
vector and axial-vector currents at p4 [15] and p6 [16]. However this contains very many
more terms than we need. If we only add the singlet vector current, in addition to simply
extending the external vector field to include the singlet part, there are two extra terms
relevant at order p4:

H3 (〈FLµν〉 〈F µν
L 〉+ 〈FRµν〉 〈F µν

R 〉) +H4 〈FRµν〉 〈F µν
L 〉 . (11)

1The version mentioned here comes from [4] but the result essentially goes back to [8, 9]
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Since we are only interested in two-point functions of vector currents these will always
appear in the combination 2H3 + H4. For the two-flavour case we get H3 → h4 and
H4 → h5 but otherwise similar terms.

It should be noted that none of the terms in the extended p4 Lagrangian contains
couplings of the singlet vector-field to the GB. The singlet appearing in commutators
vanishes and the terms involving field strengths vanish, except for the combinations above
which do not contain GB fields.

At order p6 there are many more terms, there are terms appearing that contain inter-
actions of the singlet vector field with the GBs. Two examples are

〈

FRµνχF
µν
L U †〉+

〈

FLµνχ
†F µν

R U
〉

, 〈FLµν + FRµν〉
〈(

χU † + Uχ†)DµUDνU †〉 . (12)

The extra terms that contribute to the vector two-point function at order p6 always contain
two field strengths and the extra p2 needed can come from either two derivatives or quark
masses. Setting all GB fields to zero, the only possible extra terms have a structure with
FV µν the vector-field field strength and χ̄ the quark mass part of χ. This leads to the
possible terms

D1 〈FV µν〉 〈F µν
V χ̄〉+D2 〈FV µν〉 〈F µν

V 〉 〈χ̄〉+D3 〈∂ρFV µν〉 〈∂ρF µν
V 〉 (13)

The Di are linear combinations of a number of LECs in the Lagrangian and one can check
that they are all independent by writing down a few fully chiral invariant terms. A similar
set with Di → di exists for the two-flavour case.

There is a coupling of the singlet vector current to the GBs already at order p4 via the
WZW term. However, due to the presence of ǫµναβ we need an even number of insertions
of the WZW term or higher order terms from the odd-intrinsic-parity sector to get a
contribution to the vector two-point functions.

4 ChPT results up to two-loop order

The vector two-point functions for neutral non-singlet currents were calculated in [17, 18].
We have reproduced their results and added the parts coming from the singlet currents.

The expressions for the two-point functions are most simply expressed in terms of the
function

G(m2, q2) ≡ 1

q2

(

B22(m
2, m2, q2)− 1

2
A(m2)

)

(14)

The one-loop integrals here are defined in many places, see e.g. [18]. The explicit expression
is

G(m2, q2) =
1

16π2

[

1

36
+

1

12
log

m2

µ2
+

q2 − 4m2

12

∫ 1

0

dx log

(

1− x(1− x)
q2

m2

)]

=
1

16π2

(

1

12
+

1

12
log

m2

µ2
− q2

12m2
− q4

1680m4
+ · · ·

)

(15)
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We also need

A(m2) = − m2

16π2
log

m2

µ2
. (16)

µ is the ChPT subtraction scale. We always work in the isospin limit. The expressions we
give are in the three flavour case with physical masses. We will quote the corresponding
results with lowest order masses in [7].

The two-point functions only start at p4. We therefore write the result as

Π = Π(4) +Π(6) + · · · (17)

in the chiral expansion. The p4 results are

Π
(4)

π+ = − 8G(m2
π, q

2)− 4G(m2
K , q

2)− 4(Lr
10 + 2Hr

1) ,

Π
(4)
U = − 4G(m2

π, q
2)− 4G(m2

K , q
2)− 4(Lr

10 + 2Hr
1 + 2Hr

3 +Hr
4) ,

Π
(4)
S = − 8G(m2

K , q
2)− 4(Lr

10 + 2Hr
1 + 2Hr

3 +Hr
4) ,

Π
(4)
UD =4G(m2

π, q
2)− 4(2Hr

3 +Hr
4) ,

Π
(4)
US =4G(m2

K , q
2)− 4(2Hr

3 +Hr
4) ,

Π
(4)
EM = − 4G(m2

π, q
2)− 4G(m2

K , q
2)− 8

3
(Lr

10 + 2Hr
1) . (18)

The obvious relations visible for the G terms will be discussed in Sect. 5. This result agrees
with [6] when the appropriate limits are taken.

The results at p6 are somewhat longer but still fairly short.

F 2
πΠ

(6)
π+ =4q2

(

2G(m2
π, q

2) + G(m2
K , q

2)
)2 − 16q2Lr

9

(

2G(m2
π, q

2) + G(m2
K , q

2)
)

− 8(Lr
9 + Lr

10)
(

2A(m2
π) + A(m2

K)
)

− 32m2
πC

r
61 − 32(m2

π + 2m2
K)C

r
62 − 8q2Cr

93 ,

F 2
πΠ

(6)
U =8q2G(m2

π, q
2)2 + 8q2G(m2

π, q
2)G(m2

K , q
2) + 8q2G(m2

K , q
2)2

− 16q2Lr
9

(

G(m2
π, q

2) + G(m2
K , q

2)
)

− 8(Lr
9 + Lr

10)
(

A(m2
π) + A(m2

K)
)

− 32m2
πC

r
61 − 32(m2

π + 2m2
K)C

r
62 − 8q2Cr

93 − 4m2
πD

r
1 − 4(m2

π + 2m2
K)D

r
2 − 4q2Dr

3 ,

F 2
πΠ

(6)
S =24q2G(m2

K , q
2)2 − 32q2Lr

9G(m2
K , q

2)− 16(Lr
9 + Lr

10)A(m
2
K)

− 32(2m2
K −m2

π)C
r
61 − 32(m2

π + 2m2
K)C

r
62 − 8q2Cr

93

− 4(2m2
K −m2

π)D
r
1 − 4(m2

π + 2m2
K)D

r
2 − 4q2Dr

3 ,

F 2
πΠ

(6)
UD = − 8q2G(m2

π, q
2)2 − 8q2G(m2

π, q
2)G(m2

K , q
2) + 4q2G(m2

K , q
2)2

+ 16q2Lr
9G(m2

π, q
2) + 8(Lr

9 + Lr
10)A(m

2
π)− 4m2

πD
r
1 − 4(m2

π + 2m2
K)D

r
2 − 4q2Dr

3 ,

F 2
πΠ

(6)
US = − 12q2G(m2

K , q
2)2 + 16q2Lr

9G(m2
K , q

2) + 8(Lr
9 + Lr

10)A(m
2
K)

− 4m2
KD

r
1 − 4(m2

π + 2m2
K)D

r
2 − 4q2Dr

3 . (19)

For the two-flavour case the results can be derived from the above. First, only keep
the integral terms with m2

π, second replace L9 by −(1/2)lr6, L
r
10 + 2Hr

1 by −4hr
2 and Lr

10
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by lr5. In addition there are also extra counterterms for the singlet current appearing. The
results are

Π
(4)
π+ = − 8G(m2

π, q
2) + 16hr

2 ,

Π
(4)
U = − 4G(m2

π, q
2) + 16hr

2 − 4(2hr
4 + hr

5) ,

Π
(4)
UD =4G(m2

π, q
2)− 4(2hr

4 + hr
5) ,

Π
(4)
EM = − 4G(m2

π, q
2) +

32

3
hr
2 −

4

9
(2hr

4 + hr
5) ,

F 2
πΠ

(6)

π+ =16q2G(m2
π, q

2)2 + 16q2lr6G(m2
π, q

2)− 8(2lr5 − lr6)A(m
2
π)− 32m2

πc
r
34 − 8q2cr56 ,

F 2
πΠ

(6)
U =8q2G(m2

π, q
2)2 + 8q2lr6G(m2

π, q
2)− 4(2lr5 − lr6)A(m

2
π)

− 32m2
πc

r
34 − 8q2cr56 − 4m2

π(d
r
1 + 2dr2)− 4q2dr3 ,

F 2
πΠ

(6)
UD = − 8q2G(m2

π, q
2)2 − 8q2lr6G(m2

π, q
2) + 4(2lr5 − lr6)A(m

2
π)− 4m2

π(d
r
1 + 2dr2)− 4q2dr3 .

(20)

5 Connected versus disconnected contributions

If we look at the flavour content of the two-point functions in the isospin limit, it is clear
that Ππ+ only contains connected contributions while ΠUD only contains disconnected
contributions. This is derived by thinking of which quark contractions can contribute as
shown in Fig. 1. In the same way ΠU contains both with

ΠU = Ππ+ +ΠUD . (21)

Inspection of all the results in Sect. 4 shows that (21) is satisfied. From (7) we thus obtain

ΠEM2 =
5

9
Ππ+ +

1

9
ΠUD , (22)

and

ΠEM =
5

9
Ππ+ +

1

9
ΠUD − 2

9
ΠUS +

1

9
ΠS . (23)

ΠUS is fully disconnected while ΠS has both connected and disconnected parts.

5.1 Two-flavour and isospin arguments

In [6], they found, using NLO two-flavour ChPT in the isospin limit, that

Π̂Disc
EM2

Π̂conn
EM2

= − 1

10
. (24)

They also calculated corrections to this ratio due to the inclusion of strange quarks. Their
result is in our terms expressed via

Π̂
(4)
UD

Π̂
(4)

π+

= −1

2
(25)
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which is clearly satisfied for the results shown in (20). Note that Π(0), via the part coming
from the LECs, does not satisfy a similar relation due to the extra terms possible for the
singlet current. Inspection of (20) shows that the loop part at order p6 also satisfies (25)
but due to the part of the LECs, the relation is no longer satisfied even for the subtracted
functions Π̂.

The relation (25) can be derived in more general way. As noted in Sect. 3 the singlet
current jµI2 only couples to GBs at order p6 or at order p4 via the WZW term and we
need at least two of the latter for the vector two-point function. For those contributions,
denoted by a prime, we get

Π′
U(U+D) = Π′

U +Π′
UD = 0 , (26)

which together with (21) immediately leads to (25) but for many more contributions. The
ratio of disconnected to connected is −1/2 for all loop-diagrams only involving vertices
from the lowest-order Lagrangian or from the normal NLO Lagrangian. So the ratio is
true for a large part of all higher order loop diagrams and corrections start appearing only
in loop diagrams at order p8 with one insertion from the p6-Lagrangian or at p10 with two
insertions of a WZW vertex. The argument includes diagrams with four or more pions.

Using the isospin relations we can derive that

ΠUD =
1

2
(ΠI2 −Ππ0) (27)

Looking at (27), one can see that the ratio (−1/2) is exact for all contributions with isospin
I = 1 and only broken due to I = 0 contributions. This can be used as well to estimate
the size of the ratio, see below and [19]. A corollary is that two-pion intermediate state
contributions obey (25) to all orders.

The contributions to order p6 for Π̂ satisfy the relation (26) up to the LEC contributions.
Using resonance saturation, the LECs can be estimated from ρ and ω exchange. In the large
Nc limit that combination will only contribute to the connected contribution. Since the ρ-ω
mass splitting and coupling differences are rather small, we expect that the disconnected
contribution from this source will be rather small. This will lower the ratio of disconnected
to connected contributions compared to (25).

5.2 Three flavour arguments

It was already noted in [6] that kaon loops violate the relation (25) in NLO three-flavour
ChPT and the same is rather visible in the results (18) and (19).

The argument for the singlet current coupling to mesons is just as true in three- as in
two-flavour ChPT. However here one needs to use the three-flavour singlet current, jµI3,
instead. Again denoting with a prime superscript the contributions from loop diagrams
involving only lowest order vertices or NLO vertices not from the WZW term, we have
(after using isospin) two relations similar to (26)

Π′
U(U+D+S) =Π′

U +Π′
UD +Π′

US = 0 ,

Π′
S(U+D+S) =2Π′

US +Π′
S = 0 . (28)
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Note that in this subsection we talk about the three-flavour ChPT expressions. Inspection
of the expressions in (18) and (19) show that the relations (28) are satisfied.

In general we can write using (28)

Π′
UD

Π′
π+

= −1

2
− Π′

US

2Π′
π+

. (29)

This indicates that corrections to the −1/2 are expected to be small due to the strange
quark being much heavier than the up and down quarks.

The second relation in (28) allows is a relation involving two-point functions with the
strange quark current.

Note that a consequence of (28) in the equal mass limit is

mu = md = ms =⇒ Π′
UD

Π′
π+

= −1

3
. (30)

In this case the disconnected contribution to the electromagnetic two-point function van-
ishes identically since the charge matrix is traceless.

6 Estimate of the ratio of disconnected to connected

In order to estimate the ratio of disconnected to connected contributions in ChPT the
inputs that appear must be determined. For the plots shown below we use

Fπ =92.2 MeV mπ =135 MeV mK =495 MeV

Lr
9 =0.00593 Lr

10 =− 0.0038 µ =770 MeV (31)

The values for the decay constant and masses are standard ones. The values for the Lr
i

were recently reviewed in [20] and we have taken the values for Lr
9 [21] and Lr

10 quoted
there.

If we only consider Π̂, the only other LECs we need are Cr
93 and Dr

3. As first suggested
in [22] LECs are expected to be saturated by resonances. For Cr

93 and Dr
3 the main

contribution will be from the vector resonance multiplet. Here a nonet approach typically
works well and that would suggest that Dr

3 ≈ 0. We will set it to zero in our estimates.
The value for Cr

93 was first determined using resonance saturation in [18] with a value of

Cr
93 = −1.4 10−4 (32)

If we use resonance saturation for the nonet and the constraints from short-distance as
used in [23] we obtain for the two-point function

ΠVMD
π+ (q2) =

4F 2
π

m2
V − q2

. (33)
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Figure 2: The subtracted two-point func-
tion Π̂π+(q2) or the connected part. Plot-
ted are the p4 contribution of (18) labeled
p4 and the three parts of the higher order
contribution: the pure two-loop contri-
bution labeled p6 R, the p6 contribution
from one-loop graphs labeled p6 L and
the pure LEC contribution as modeled
by (33) labeled VMD.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

-0.1 -0.08 -0.06 -0.04 -0.02  0

^ Π
U

D

q2 [GeV2]
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Figure 3: The subtracted two-point func-
tion Π̂UD(q

2) or the disconnected part.
Plotted are the p4 contribution of (18)
labeled p4 and the two non-zero parts of
the higher order contribution: the pure
two-loop contribution labeled p6 R and
the p6 contribution from one-loop graphs
labeled p6 L. The the pure LEC contri-
bution is estimated to be zero here.

Assuming that the pure LEC parts reproduce (33), leads to the value

Cr
93 = −1.02 10−4 (34)

with mV = 770 MeV. Finally fitting the expression for Ππ+ to a phenomenological form of
the two-point function [24] gives

Cr
93 = −1.33 10−4 (35)

The three values are in reasonable agreement. The size can be compared to other vector
meson dominated combinations of LECS, e.g. Cr

88 − Cr
90 = −0.55 10−4 [21], which is of

the same magnitude. In the numerical results we will use the full expression (33) for the
contribution from higher order LECs rather than just the terms with Cr

93.
In Fig. 2 we have plotted the different contributions to Π̂π+ . This is what is usually

called the connected contribution. As we see, the contribution from higher order LECs, as
modeled by (33), is, as expected, dominant. The full result for Π̂ is the sum of the VMD
and the p4 + p6 lines. We see that the pure two-loop contribution is small compared to
the one-loop contribution but there is a large contribution at order p6 from the one-loop
diagrams involving Lr

i .

9



-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

-0.1 -0.08 -0.06 -0.04 -0.02  0

^ Π
U

D
/^ Π

π+

q2 [GeV2]

p4+p6+VMD

p4+p6

p4

p6 R

p6 L

Figure 4: The ratio of the subtracted two-point functions Π̂UD(q
2)/Π̂π+(q2) or ratio of the

disconnected to the connected part. Plotted are the p4 contribution of (18) labeled p4, the
parts of the higher order contribution: the pure two-loop contribution labeled p6 R and
the p6 contribution from one-loop graphs labeled p6 L as well as their sum. The ratio of
the pure LEC contribution is estimated to be zero. The ratio for all contributions summed
is the continuous line.

In Fig. 3 we have plotted the same contributions but now for Π̂UD or the contribution
from disconnected diagrams. Note that the scale is exactly half that of Fig. 2. The contri-
butions are very close to −1/2 times those of Fig. 2 except for the pure LEC contribution
which is here estimated to be zero.

How well do the estimates of the ratio now hold up. The ratio of disconnected to
connected is plotted in Fig. 4. We see that the contribution at order p4 has a ratio very
close to −1/2 and the same goes for all loop contributions at order p6. The effects of kaon
loops is thus rather small. The deviation from −1/2 is driven by the estimate of the pure
LEC contribution. Using the VMD estimate (33) we end up with a ratio of about 0.18 for
the range plotted. Taking into account (22) we get an expected ratio for the disconnected
to connected contribution to the light quark electromagnetic two-point function Π̂EM2 of
about 3.5%. If we had used the other estimates for Cr

93 (and assumed a similar ratio for
higher orders) the number would have been about 3%.

An analysis using only the pion contributions, so no contribution from intermediate
kaon states, would give essentially the same result.

7 Estimate of the strange quark contributions

The numerical results in the previous section included the contribution from kaons but
only via the electromagnetic couplings to up and down quarks. In this section we provide
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Figure 5: The subtracted two-point function Π̂S(q
2). Plotted are the p4 contribution of

(18) labeled p4, the parts of the higher order contribution: the pure two-loop contribution
labeled p6 R and the p6 contribution from one-loop graphs labeled p6 L as well as their
sum. The pure LEC contribution is estimated by (33) with he mass of the φ.

an estimate for the contribution when including the photon coupling to strange quarks.
I.e. we add the terms coming from ΠUS and ΠS in (23).

The loop contributions satisfy the relations shown in (28) with corrections starting
earliest at p8. Alternatively we can write the first relation as

Π′
π+ + 2Π′

UD +Π′
US = 0 , (36)

this, together with the ratios shown in Fig. 4 and the second relation in (28), shows that
we can expect the extra contributions to be quite small with the possible exception of the
pure LEC contribution.

The pure LEC contribution is estimated to only apply to the connected part and so
contributes only to ΠS. Given that the φ mass is significantly larger than the ρ-mass we
will for that part need to include this difference. A first estimate is simply by using (33)
with mV now the φ-mass of mφ = 1020 MeV. We will call this VMDφ in the remainder.

The estimate we include for ΠS includes both connected and disconnected contributions.
We would need to go to partially quenched ChPT to obtain that split-up generalizing the
methods of [6].

Fig. 5 shows the different contributions to Π̂S. We did not plot Π̂US since the relations
(28) imply that the p4, p6L and p6R are exactly −1/2 the contributions for Π̂S and in
our estimate the pure LEC part for Π̂US vanishes. The contributions are much smaller
than those of the connected light quark contribution shown in Fig. 2. One remarkable
effect is the very strong cancellation between the p4 and p6 effects give an almost zero loop
contribution.
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8 Comparison with lattice and other data

For comparing with lattice and phenomenological data we can use the Taylor expansion
around q2 = 0 from our expressions and the same coefficients evaluated from experimental
data or via the time moment analysis on the lattice [25].

We expand the functions as

Π̂(q2) = Π1q
2 −Π2q

4 + · · · (37)

The signs follow from the fact that the lattice expansion is defined in terms of Q2 = −q2

and the usual lattice convention for Π has the opposite sign of ours. The coefficients,
obtained by fitting an eight-order polynomial to the ranges shown in the plots, are given
in Table 1.

[26] is from an analysis of experimental data. [27] are preliminary numbers from the
BMW collaboration and we have removed the charm quark contribution from their num-
bers. These numbers are not corrected for finite volume. For [25, 28] we have taken the
numbers from their configuration 8, which has physical pion masses and multiplied by 9/5
for the latter to obtain Ππ+ . Our estimates are in reasonable agreement for the connected
contribution. For the disconnected contribution, our results are higher but of a similar
order.

There have been many more studies of the muon g−2 on the lattice and in particular a
number of studies of the disconnected part. However, their results are often not presented in
a form that we can easily compare to. From our numbers above we expect the disconnected
contribution to be a few % and of the opposite sign of the connected contribution. [19]
finds −0.15(5)%, much smaller than we expect, [29] finds about −1.5% which is below but
of the same order as our estimate.

The same comment applies to studies of the strange contribution, e.g. [30] finds a con-
tribution of about 7% of the light connected contribution which is in reasonable agreement
with our estimate.

9 Summary and conclusions

We have calculated in two- and three-flavour ChPT all the neutral two-point functions
in the isospin limit including the singlet vector current. We have extended the ratio of
−1/2 (or −1/10 for the electromagnetic current) of [6] to a large part of the higher order
loop corrections. We used the nonet estimates of LECs to set the new constants for the
singlet current equal to zero and then provided numerical estimates for the disconnected
and strange quark contributions.

We find that the disconnected contribution is negative and a few % of the connected
contribution, the main uncertainty being the new LECs which we estimated to be zero. A
similar estimate for the strange quark contribution has a large cancellation between p4 and
p6 leaving our rather uncertain estimate of the LECs involved as the main contribution.
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Reference ΠA Π1 (GeV−2) Π2 (GeV−4)

sum Π̂EM 0.0853 −0.204
[26] ΠEM 0.0990(7) −0.206(2)

[27] Π̂EM 0.0972(2)(1) −0.166(6)(3)

ΠVMD Π̂π+ 0.0967 −0.166

p4 Π̂π+ 0.0240 −0.086

p6 R Π̂π+ 0.0031 −0.014

p6 L Π̂π+ 0.0287 −0.066

sum Π̂π+ 0.153 −0.328

[27] Π̂π+ 0.1657(16)(18) −0.297(10)(05)
[28] Ππ+ 0.1460(22) −0.2228(65)

p4 Π̂UD −0.0116 0.043

p6 R Π̂UD −0.0015 0.007

p6 L Π̂UD −0.0147 0.032

sum Π̂UD −0.0278 0.082

[27] Π̂UD −0.015(2)(1) 0.046(10)(04)

ΠVMDφ Π̂S 0.0314 −0.030

p4 Π̂S 0.0017 −0.001

p6 R Π̂S 0.0001 0.000

p6 L Π̂S −0.0013 −0.005

sum Π̂S 0.0319 −0.035

[27] Π̂S 0.0657(1)(2) −0.0532(1)(3)

[25] Π̂S 0.06625(74) −0.0526(11)

Table 1: The Taylor expansion coefficients of Π̂ of [25, 26, 27, 28] and a comparison with
our estimates.
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Abstract

We calculate vector-vector correlation functions at two loops using partially quenched
chiral perturbation theory including finite volume effects and twisted boundary con-
ditions. We present expressions for the flavor neutral cases and the flavor charged
case with equal masses. Using these expressions we give an estimate for the ratio of
disconnected to connected contributions for the strange part of the electromagnetic
current. We give numerical examples for the effects of partial quenching, finite vol-
ume and twisting and suggest the use of different twists to check the size of finite
volume effects. The main use of this work is expected to be for lattice QCD cal-
culations of the hadronic vacuum polarization contribution to the muon anomalous
magnetic moment.



1 Introduction

The hadronic contribution to the correlation function between two electromagnetic currents
is known as the hadronic vacuum polarization (HVP). An important application of the HVP
is in the prediction of the anomalous magnetic moment of the muon, muon g − 2. The
muon g − 2 is defined by

aµ =
gµ − 2

2
(1)

where gµ, the gyromagnetic ratio, is one of the best measured quantities in physics. The
experimental value from [1, 2, 3, 4] is

aµ = 11659208.9(5.4)(3.3)10−10. (2)

This value is around 3 standard deviations away from the SM prediction, where the precise
tension depends on which prediction is used, see [5] for a review and [6] for more recent
discussions. A new experiment at Fermilab aims to improve the uncertainty in the ex-
perimental measurement to 0.14 ppm [7] and there are even more ambitious reductions in
the uncertainty discussed in [8]. However, in order to take full advantage of the reduced
experimental errors the theoretical prediction must also be improved.

The theoretical prediction is usually divided into a pure QED, an electroweak and a
hadronic contribution

aµ = aQED
µ + aEW

µ + ahad
µ . (3)

The main uncertainty in current predictions come from the hadronic part. This part can
be divided into lowest order, higher orders and light-by-light contributions;

ahad
µ = aLO-HVP

µ + aHO-HVP
µ + aHLbL

µ . (4)

The first and last term dominate the uncertainty. For a nice overview of the different
contributions and their uncertainties, see Fig. 19 in [9]. In the following we focus on the
first term which is related to the HVP.

aLO-HVP
µ can be determined in several ways. One way is to use dispersion relations

to relate aLO-HVP
µ to σ(e+e− → hadrons) or σ(τ → ντ + hadrons). There is some tension

between the two determinations [4]. This highlights the need for other ways of determining
the HVP contribution to the muon g − 2. One way forward is using lattice QCD1.

In lattice QCD, the HVP is evaluated at Euclidean momentum transfer [11]. A compli-
cation is that the most important contributions to aLO-HVP

µ are with Euclidean Q2 ' m2
µ '

(106 MeV)2. The contributions from different momentum regions are discussed in Fig. 3
of [12]. Simulating with periodic boundary conditions around Q2 ' m2

µ would require much
larger volumes than presently available and there are also complications around Q2 ' 0.

1A recent proposal on the experimental side is given in [10].
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There are a number of proposals how these difficulties can be overcome. The use of
partially twisted boundary conditions to allow continuous variation of momenta was given
in [13, 14], see also [15]. This is only possible for the connected parts of the HVP and
there is an added complication in that the cubic symmetry of the lattice is further reduced
[16, 17, 18]. Some other recent proposals and calculations are given in [19, 20, 21, 22, 23,
24, 25]. The present status of lattice QCD determinations of hadronic contributions to the
muon g − 2 was outlined in [26].

In this paper we focus on effects from finite volume, partially twisted boundary condi-
tions and partial quenching (PQ) using PQ chiral perturbation theory (PQChPT ). Finite
volume effects for the HVP were studied in [27] where they found that chiral perturbation
theory (ChPT ) gives a good description of the finite volume effect already at leading
order, which is p4 in this case. Here we calculate general vector two point functions in
PQChPT in finite volume, that is both the finite volume correction and the infinite vol-
ume part, with twisted boundary conditions at p6. Previous results in ChPT with twisted
boundary conditions at p4 were given in [18, 27]. We also point out that the finite volume
corrections may be estimated by using different twist angles at the same q2 in the same
ensemble. Note that we use Minkowski space conventions.

In [13, 28] the ratio of disconnected to connected contributions for various contributions
to the HVP were discussed. Here we extend the analysis to order p6 to the ratio for the
strange quark contribution to the electromagnetic current. We use the assumption of
vector meson dominance (VMD) for the φ meson (VMDφ) for the pure LEC contribution
in PQChPT .

This paper is organized as follows. In section 2 we introduce the vector two point func-
tion in finite volume with twisted boundary conditions. Section 3 gives a brief introduction
to PQChPT with twisted boundary conditions. Our main results, the expressions for the
one and two point functions to order p6 in PQChPT are introduced in section 4. There we
also present the p4 expressions. The expressions at p6 are given in the appendix where the
integral notation used is also introduced. In section 5 we discuss the ratio of disconnected
to connected contributions in PQChPT , extending the analyses in [13, 28]. In section 6
we estimate the ratio of disconnected to connected contributions to the strange part of the
electromagnetic current. We then present some numerical examples and a way to estimate
finite volume effects using lattice data in section 7. Finally we conclude in section 8.

2 VV correlation function

We define the vector two point function as

Πµν
ab (q) = i

∫
d4x exp(iq · x)

〈
T
(
jµa (x)jν†b (0)

)〉
(5)

with a, b indicating which currents are being considered. In cases where a = b we use

Πµν
a (q) ≡ Πµν

ab (q), a = b. (6)
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We define the electromagnetic current as

jµEM =
2

3
jµU −

1

3
jµD −

1

3
jµS (7)

where

jµU = ūγµu, jµD = d̄γµd, jµS = s̄γµs. (8)

In order to be able to apply twisted boundary conditions for the connected part of various
two point functions we will also define the off diagonal vector current

jµ
π+
v

= d̄γµu. (9)

The combination of two electromagnetic currents can be written as

jµEMj
ν†
EM =

1

9

(
4jµUj

ν†
U + jµDj

ν†
D + jµSj

ν†
S − 4jµUj

ν†
D − 4jµUj

ν†
S + 2jµDj

ν†
S

)
. (10)

We do not consider the corresponding two point functions one by one. Instead we use the
fact that in PQChPT we can keep the masses of the valence quarks arbitrary and calculate
only one connected and one disconnected two point function. We denote these by

Πµν

π+
v

and Πµν
XY , (11)

where X, Y ∈ U,D, S with X 6= Y . These can then be used to construct all the possible two
point functions. The finite volume correction for the connected parts of Πµν

EM calculated
at arbitrary momentum transfer using twisted boundary conditions can be estimated from
Πµν

π+
v

. As it stands, Πµν

π+
v

with isospin in the valence sector is related to the connected part

of Πµν
U but, setting the up and down valence quark masses to the strange quark mass, the

connected part of Πµν
S can also be accessed. In this way the expressions are more general

than the notation might imply. This is enough for calculating the connected part of the
HVP with twisted boundary conditions.

There are constraints on the form factors following from the Ward identity

∂µq̄iγ
µqj = i (mi −mj) q̄iqj. (12)

We only consider currents with same-mass quarks in which case the right hand side is zero
and the current is conserved. In infinite volume this leads to the relation

∂µΠµν
ab = 0. (13)

For the case of the electromagnetic current this also follows from gauge invariance. In a
Lorentz invariant framework any two point function constructed from conserved currents
can be written as

Πµν
ab =

(
qµqν − q2gµν

)
Πab(q

2). (14)
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The quantity which is needed for the calculation of the muon g − 2 is the subtracted
quantity

Π̂ab(q
2) = Πab(q

2)− Πab(0) (15)

where a = b = EM .
In finite volume, (13) doesn’t hold for off-diagonal currents. In this case we get instead

i∂µ

〈
T
{
jµ
π+
v

(x)jν†
π+
v

(0)
}〉

= δ(4)(x)
〈
d̄γνd− ūγνu

〉
. (16)

The right hand side contains vacuum expectation values (VEVs) of flavor neutral vector
currents which are non-zero due to broken Lorentz symmetry. Broken Lorentz symme-
try also means that the decomposition (14) can not be used. In our results we use the
parameterization (note that Π1ab has no factor of q2 in front)

Πµν
ab = qµqνΠ0ab(q)− gµνΠ1ab(q) + Πµν

2ab(q). (17)

This split is not unique but provides a useful way to organize results. Expressions given in
this form reduce to (14) in the infinite volume limit. The Ward identity for Πµν

π+
v

following
from (16) is

q2qνΠ0π+
v

(q)− qνΠ1π+
v

(q) + qµΠµν

2π+
v

(q) =
〈
ūγνu− d̄γνd

〉
. (18)

For Πµν
XY we obtain instead

q2qνΠ0XY (q)− qνΠ1XY (q) + qµΠµν
2XY (q) = 0. (19)

We have used these Ward identities to verify both our analytical expressions and numerical
programs.

3 Partially quenched ChPT and twisted boundary con-

ditions

The low energy effective field theory for the lightest pseudoscalar mesons is ChPT [29, 30,
31]. One way to parameterize the mesons in ChPT is

U = exp

(
i
√

2
M

F0

)
, M =


π0
√

2
+ η√

6
π+ K+

π− − π0
√

2
+ η√

6
K0

K− K̄0 − 2η√
6

 , (20)

where F0 is the pion decay constant in the chiral limit. The trace of M , corresponding to
the singlet η, is removed due to the anomaly. To include partial quenching in ChPT we
keep the trace of M and include a mass term for the singlet η which can be sent to infinity
at a later stage [32].
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M is then redefined as

M =

 U π+ K+

π− D K0

K− K̄0 S

 , (21)

where U,D, S are flavor neutral mesons with quark content ūu, d̄d, s̄s respectively. It is
then possible to interpret the indices of M as flavor indices. Flavor indices can then be
followed in Feynman diagrams using a double line notation for the mesons. Flavor lines
forming loops are summed over all flavors and correspond to sea flavors, and lines which are
connected with external mesons have fixed flavor content corresponding to valence flavors.
Setting the masses of mesons with valence-valence, sea-valence or sea-sea meson different
incorporates partial quenching. The method of following flavor lines is known as the quark
flow method [33, 34, 35].

The lowest order Lagrangian with a singlet η mass term is

L =
F 2

0

4

〈
DµUD

µU †
〉

+
F 2

0

4

〈
χU † + Uχ†

〉
+
m2

0

3
(U +D + S)2 , (22)

where 〈. . .〉 denotes the trace of . . . in flavor space and

DµU = ∂µU − irµU + iUlµ, χ = 2B0(s+ ip) (23)

with rµ, lµ, s, p external fields or sources. F0 is the pion decay constant in the chiral limit
and B0 is related to the scalar quark condensate. The external sources will be used for
incorporating quark masses, interactions with external photons and to generate Green
functions of all our two point functions.

Quark masses are included by setting

s =

mu 0 0
0 md 0
0 0 ms

 , (24)

where valence masses should be used for a fixed index on s and sea masses should be used
for a summed index on s. External photons are introduced by

vµ = lµ = rµ = eAµ

2/3 0 0
0 −1/3 0
0 0 −1/3

 , (25)

where Aµ is the external photon field and e is the electromagnetic charge.
In order to calculate two point functions such as ΠUU , we need to use

vµ = Vµ

1 0 0
0 0 0
0 0 0

 (26)
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where Vµ is an external vector field. The standard ChPT Lagrangian assumes that the
matrix vµ is traceless which is not the case here. Including the trace of vµ leads to additional
terms in the Lagrangian. As explored in Ref. [28] these extra terms do not couple to
mesons until O(p6), or O(p4) via the Wess-Zumino-Witten (WZW) term. For the two
point function, two such vertices are needed. There is then no contribution to the finite
volume correction untilO(p8). TheO(p6) terms do influence the infinite volume expressions
and are needed in order to render these finite. The O(p4) and O(p6) Lagrangians can be
found in [30, 31] and [36, 37], respectively.

The main extra complication from the singlet η mass term is that the propagator for
diagonal mesons becomes rather involved. After the limit m0 →∞ is taken the propagator
between an aā and bb̄ meson is

Dab =
iδab

p2 −m2
a

− i

3

(p2 −m2
1)(p2 −m2

2)(p2 −m2
3)

(p2 −m2
a)(p

2 −m2
b)(p

2 −m2
π0)(p2 −m2

η)
(27)

where m1,2,3 are sea quark masses. For numerical integration we evaluate integrals with this
propagator using the residue notation given in [38]. However, in the analytical expressions
we keep Dab intact, see Appendix A.

For a quark q in a box with length L, twisted boundary conditions are defined by

q(xi + L) = exp(iθiq)q(x
i) (28)

where θiq is the twist angle in the i direction. The twist of the anti quark follow from
complex conjugation. The allowed momenta in direction i of the quark are then

pi =
2π

L
n+

θiq
L
, n ∈ Z. (29)

The momentum of the quark can be continuously varied by varying the twist angle.
In [39], ChPT with twisted and partially twisted boundary conditions was developed,

where partial twisting means that the twist on valence and sea quarks are different. The
twist of a q̄′q meson is

φq̄′q(x
i + L) = exp(i(θiq − θiq̄))φq̄′q(xi). (30)

Diagonal mesons have zero twist and charge conjugate mesons have opposite twists of one
another.

Loop integrals are replaced by sums over allowed momenta in finite volume. We regulate
our integrals using dimensional regularization giving that we replace∫

ddk

(2π)d
→
∫
V

ddk

(2π)d
=

∫
dd−3k

(2π)d−3

∑
~k= 2π

L
~n+

~θ
L

(31)

where we have collected the twist angles θi in a vector ~θ. We also use the four vector
notation θµ = (0, ~θ).
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An important consequence of twisted boundary conditions is that the summation in
(31) is not symmetric around zero, which gives∫

V

ddk

(2π)d
kµ

k2 −m2
6= 0. (32)

This is a consequence of the fact that twisted boundary conditions break the cubic symme-
try of the lattice. The way we evaluate integrals in finite volume is described in Appendix A.

4 Analytical results

In this section we give expressions for the vector one point and two point functions at p4.
The expressions at p6 are given in Appendix B since they are rather long. We denote the
p4 part of a quantity X by X(4) and the p6 part is denoted by X(6). The results for Πµν

XY

assume no twist while results for Πµν

π+
v

and 〈q̄γµq〉 are the partially twisted ones. The Πµν

π+
v

result assumes that the two valence quarks have the same mass, which is enough for HVP.
The more general result with different mass valence quarks is considerably longer. Note
that the results contain implicit sums over sea quarks. A term containing both S and S ′
has two implicit sums, a term containing only S has one implicit sum and a term with no
sea quark mentioned has no implicit sum.

The results in Appendix B contain both the finite volume correction and the infinite
volume part. For a quantity X we denote this by XV . If we would write these out separately
the infinite volume part would be a bit shorter but the finite volume correction would be
much longer. To achieve this compact expression we write every integral in finite volume
as the sum of the finite part of the infinite volume integral after renormalization plus the
finite volume correction. Symbolically we use notation where the part of an integral A
which remains after renormalization is written as

AV = Ā+ AV (33)

This is described in more detail in Appendix A. Note that for this to work all products
of the form 1/ε × ε must cancel, otherwise the parts with Aε would contribute. We have
checked this cancellation explicitly. We have of course also checked that all divergencies
cancel, except those that need to be absorbed in the new LECs involving the singlet vector
current.

The full expression written explicitly in terms of infinite volume and finite volume
integrals is obtained by expanding the expressions below and in Appendix B using (33)
and the corresponding expressions for the other integrals. In order to access the finite
volume corrections any term containing no finite volume integral should be dropped. The
infinite volume result is obtained by removing all finite volume integrals.
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4.1 ΠVµνπ+
v

at p4

Π
V(4)

0π+
v
(q) = 4BV21(m2

uS ,m
2
Sd, q)− 4BV1 (m2

uS ,m
2
Sd, q) +BV(m2

uS ,m
2
Sd, q)

Π
V(4)

1π+
v
(q) = −4BV22(m2

uS ,m
2
Sd, q) + AV(m2

uS) + AV(m2
dS)

Π
V(4)µν

2π+
v

(q) = 4BVµν23 (m2
uS ,m

2
Sd, q)− 2qνBVµ2 (m2

uS ,m
2
Sd, q)− 2qµBVν2 (m2

uS ,m
2
Sd, q) (34)

4.2 ΠVµνXY at p4

Π
V(4)
0XY (q) = −4BV21(m2

XY ,m
2
XY , q) + 4BV1 (m2

XY ,m
2
XY , q)−BV(m2

XY ,m
2
XY , q)

Π
V(4)
1XY (q) = 4BV22(m2

XY ,m
2
XY , q)− 2AV(m2

XY )

Π
V(4)µν
2XY (q) = −4BVµν23 (m2

uS ,m
2
Sd, q) (35)

4.3 〈q̄γµq〉V at p4

〈q̄γµq〉V(4) = 2AµV(m2
qS) (36)

5 Connected versus disconnected

In Ref. [28] we presented arguments for the ratio of disconnected to connected contributions
to vector two point functions relevant to HVP. The basic observation used was that the
singlet vector current does not couple to mesons until O(p6), or O(p4) through the WZW
term. In this section we outline how PQ changes the conclusions in that paper.

To discuss the singlet vector current couplings in PQ QCD we need to briefly introduce
the supersymmetric formulation of PQ QCD. In this formulation there are three quarks for
every single quark in standard QCD. There are two fermionic quarks with different masses,
these are the sea and valence quarks. The third quark is a boson with the same mass as
the valence quark. Sea quark contributions are associated with closed quark loops. The
fermionic and bosonic valence quark closed loop contributions cancel since they contribute
with opposite signs. Using correlators formed from valence quarks then leads to PQ QCD.

The singlet vector current in the supersymmetric formulation is

V µ
s = jµU + jµD + jµS + jµ

Ũ
+ jµ

D̃
+ jµ

S̃
+ jµ1 + jµ2 + jµ3 , (37)

where U,D, S indicate valence quarks, Ũ , D̃, S̃ indicate ghost quarks which cancel normal
valence quark loops and 1, 2, 3 indicate sea quarks. A general feature of two point functions
in the PQ theory is then that

ΠUŨ = −ΠD
UU , and ΠŨ = −ΠC

UU + ΠD
UU , (38)
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where the superscripts, C andD, indicate the connected and disconnected part respectively.
This follows from the observation that any normal quark loop gives a minus sign whereas
bosonic quark loops don’t. The connected (disconnected) part of any two point function
contains one (two) quark loops which gives the above relations. All other quark loops are
in common between the quark and ghost quark currents.

We now turn to the issue of the ratio between disconnected and connected two point
functions. For any two point function Πab we denote the part which contains only vertices
with no coupling to the singlet vector current by Π′ab. Π′ab contains, but is not limited to,
diagrams which contain vertices only from the p2 and p4 Lagrangians, with the exception
of the WZW term. The property that there is no coupling to the singlet vector current
gives in the two flavor case

Π′
U(U+D+Ũ+D̃+1+2)

= 0. (39)

Using (38) and working in the isospin limit gives

Π′U1

Π′π+

= −1

2
. (40)

Changing 1 → D gives the unquenched result from [28]. The PQ theory gives a relation
between the connected part with external valence quarks and the disconnected part with
one external valence quark and one external sea quark.

Similarly, the three flavor case in the isospin limit gives the relation

Π′U1

Π′π+

= −1

2
− Π′U3

2Π′π+

. (41)

6 Disconnected and connected for the strange quark

contribution

The expressions given in section 4 and the numerical results presented below are with
lowest order masses. For this reason, low energy constants related to mass corrections
appear in the two point functions. In this and the following section we have used as input
for the lowest order masses and decay constant

mπ = 135 MeV, mK = 495 MeV, Fπ = 92.2 MeV . (42)

For the LECs we use the values of [40]:

Lr4 = 0.3× 10−3, Lr5 = 1.0× 10−3, Lr6 = 0.1× 10−3 µ = 770 MeV,

Lr8 = 0.5× 10−3, Lr9 = 5.9× 10−3, Lr10 = − 3.8× 10−3, (43)

where µ is the renormalization scale.
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Figure 1: (a) The different contributions to Π̂S(q2). The p4 calculation, the pure two-loop
part, p6R, the p6 part depending on the p4 LECs, p6L, and the pure LEC contribution as
estimated in [28] using φ-dominance, VMDφ. (b) The different loop contributions only,
i.e. the VMDφ contribution not included, with the same vertical scale as used in Fig. 2
but with a different range.

In our earlier work [28] we estimated the ratio of disconnected to connected contribu-
tions for the two point functions with the up and down quark part of the electromagnetic
currents. In addition, we estimated the size of the contributions from the strange quark
electromagnetic current, Π̂S, and the mixed strange quark– up-down quarks, Π̂US. The
latter is purely disconnected. We did not estimate the size of the disconnected contribution
for the strange case since in [28] we used standard ChPT in the isospin conserving case
which did not allow us to do that. Here we calculated the contributions using PQChPT
so we can now estimate separately the connected and disconnected part.

The arguments for Π′US = (−1/2)Π′S as given in [28] and in section 5 remain valid and
we obtain the same ratios here.

In Fig. 1(a) we show the results as obtained in our earlier work for Π̂S(q2) but here in
terms of lowest order masses. It should be remembered that the pure LEC contribution, i.e.
tree level diagrams with no loops, is estimated by φ-meson exchange and only contributes
to Π̂S and not to Π̂US. For the loop contributions the relation Π̂US = (−1/2)Π̂S as derived
in [28] holds. There is a large cancellation between the p4 and p6 contributions and the final
result is very much dominated by the pure LEC contribution as estimated by φ-exchange.
In Fig. 1(b) we show the loop contributions with a smaller scale. For ease of comparison
the vertical scale is the same as used in Fig. 2 but with a different range.

In Fig. 2 the loop contributions for the connected, (a), and disconnected, (b), parts
are shown. It is clear that there is no simple ratio here as for the up-down case but in all
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Figure 2: (a) The different contributions to the connected part, Π̂C
S (q2). The p4 calculation,

the pure two-loop part, p6R, and the p6 part depending on the p4 LECs, p6L. The pure
LEC contribution as estimated by VMDφ is not shown. (b) The different contributions
to the disconnected part Π̂D

S (q2). The VMDφ contribution is zero for this case.

cases the disconnected contribution is of opposite sign to the connected one and there are
significant cancellations.

The conclusion here is that the disconnected contribution is of order −15% of the total
strange quark contribution with a sizable error. The error is both due to the large p6 contri-
bution and the uncertainty on the VMDφ estimate. The total strange quark contribution
is by far dominated by the VMDφ part because even if individual loop contributions are
of order 20%, there are large cancellations making the total strange quark contributions
from the loops very small.

7 Numerical size of finite volume corrections

In this section we give numerical estimates of the finite volume effects for vector two
point functions and vacuum expectation values. In particular we address the questions of
convergence of the finite volume corrections and the effects of using different twist angles for
determining finite volume effects from lattice data. Note that we treat the time direction
as infinite. The numerical input is the same as in section 6 except the we have added

mπL = 4 . (44)

As discussed in [15, 18], with twisted boundary conditions the vector currents can get
a vacuum expectation value. The one loop result in standard ChPT was worked out in
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Figure 3: (a) The vacuum expectation value 〈ūγµu〉 with the up valence and sea quark
twisted with θu = (0, θ, 0, 0). (b) Same but only the up valence quark twisted. In both
cases the x-component or µ = 1 is plotted, the others vanish.

[18]. Here we add the two loop results as well as partial quenching and twisting. The
formulas (36) and (64) are fully general but we present numerics here for the case where
up and down masses are the same and sea and valence masses equal. To put the numbers
in perspective we can compare with the results for the scalar vacuum expectation value.
The finite volume corrections here are taken with zero twist using the results of [41]

〈ūu〉 = − 1.2 10−2 GeV−3, 〈ūu〉V (p4) = − 2.4 10−5 GeV−3,

〈ūu〉V (p6R) = 4.5 10−7 GeV−3, 〈ūu〉V (p6L) = − 1.2 10−7 GeV−3., (45)

In Fig. 3(a) we plotted the result for 〈ūγµu〉 for θu = (0, θ, 0, 0) for the fully twisted case,
i.e. both the sea and valence up quarks are twisted. In Fig. 3(b) we plot with the same
twist angle but for the partially twisted case, only the up valence quark is twisted. The
finite volume corrections are roughly an order of magnitude smaller than for the scalar case
in (45), but the same pattern is there. The p6 corrections are very small. The partially
twisted case is almost exactly a factor of two larger than the fully twisted case. The effects
are strongly dominated by the pion loops and for these the difference at p4 is exactly a
factor of two. The vacuum expectation value

〈
d̄γµd

〉
with the up quark fully twisted and

no twist on the down quark is almost exactly minus 〈ūγµu〉. Again it is exactly minus
for the pion loops only. For the partially twisted up quark

〈
d̄γµd

〉
vanishes since then no

active quark has twist.
We now turn to the two point functions. In the finite volume case we cannot simply

present the combination Π̂(q2) since the subtraction of zero is not well defined, after all
Πµν(q = 0) 6= 0. The relevant two point function to use with twisted boundary conditions
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Figure 4: (a) −q2fVMD(q2) as a function of q2. This together with (47) and (48) can be
used to judge the relative size of the finite volume effects in the following figures. (b) The
finite volume corrections at p4 for the spatially symmetric case. The lower straight line
indicates zero around which sin θxu oscillates.

is the connected light part, Ππ+ . In the following we only twist the up quark. We also put
the up and down masses equal and sea and valence masses the same.

There is essentially no numerical difference between the fully twisted (both valence and
sea up quark twisted) and partially twisted cases. We therefore present only the partially
twisted case in the plots. The Ward identity is fulfilled in both cases but the right hand
side of (18) gets the same numerical value in the fully twisted case from both the up and
down vacuum expectation value, and in the partially twisted case only from the up vacuum
expectation value.

In order to show the size of the finite volume corrections we can compare with the naive
VMD estimate. This corresponds to

Πµν
π+

∣∣
VMD

= (qµqν − gµν) 4F 2
π

m2
V − q2

= (qµqν − gµν) fVMD(q2) (46)

with mV = 770 MeV. When we choose q = (0,
√
−q2, 0, 0) we have

Π00 = −Π22 = −Π33 = −q2fVMD(q2) (47)

and all others zero. Instead for q = (0,
√
−q2/3,

√
−q2/3,

√
−q2/3) we have that

Π00 = − q2fVMD(q2) Πii =
2

3
q2fVMD(q2) Πij

∣∣
i 6=j = − 1

3
q2fVMD(q2) (48)

with the others zero. We have plotted −q2fVMD(q2) in Fig. 4(a).

13



-1.5e-06

-1e-06

-5e-07

 0

 5e-07

 1e-06

 1.5e-06

-0.1 -0.08 -0.06 -0.04 -0.02  0

∆
V

Π
π

+
µ

ν

q
2
 [GeV

2
]

p
6
 R µν=00

p
6
 R µν=11

p
6
 R µν=12

(a)

-2e-06

-1.5e-06

-1e-06

-5e-07

 0

 5e-07

 1e-06

 1.5e-06

 2e-06

 2.5e-06

 3e-06

-0.1 -0.08 -0.06 -0.04 -0.02  0

∆
V

Π
π

+
µ

ν

q
2
 [GeV

2
]

p
6
 L µν=00

p
6
 L µν=11

p
6
 L µν=12

(a)

Figure 5: The parts of the finite volume corrections at p6 for the spatially symmetric
case(a) p6R (b) p6L.

We can now present the finite volume corrections. First we take the spatially symmetric
twisted case. Here we use θu = q/L with q = (0,

√
q2/3,

√
q2/3,

√
q2/3). The p4 corrections

are shown in Fig. 4(b). Πµν(q = 0) 6= 0 is clearly visible. The relative size of the correction
compared to the VMD estimate is in the few % range (except of course at q2 = 0 where
it becomes infinite). Note that here we have Π11 = Π22 = Π33, Π01 = Π02 = Π03 = 0 and
Π12 = Π13 = Π23. In [27] they found that lowest order ChPT gives a good description of
finite volume effects already at leading order (p4). If this is the case, then the higher order
corrections should turn out to be small, in contrast to the infinite volume case where they
can be significant, see [28]. In Fig. 5 we plot the two parts of the finite volume correction
for Ππ+ at order p6. We find that the correction is small, supporting the conclusion of [27].
The bottom curves in Fig. 4(b) and 6 show sin(θxu) allowing to judge the type of twisting
effects expected.

In Fig. 6(a) we show the full (p4+p6) finite volume correction for the spatially symmetric
case. The p4 result is included with thin dashed lines for comparison. Using the same twist
angle in all spatial directions is common in lattice calculations of the HVP. It gives the
possibility to average over several directions reducing the statistical error. However, the
finite volume corrections do depend on how the twisting is done. We could have chosen to
twist only in the x-direction. In that case we have θu = q/L with q = (0,

√
q2, 0, 0) and

Π22 = Π33 and all elements with µ 6= ν vanish. The full (p4 + p6) finite volume corrections
for this case are shown in Fig. 6(b). Again, the p4 results are included with thin dashed
lines.

Comparing the two halves of Fig. 6 we see quite different finite volume corrections.
This can be used to test the size of the finite volume corrections using only lattice data by
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Figure 6: The finite volume corrections adding p4 and p6. The p4 correction is shown
as the thin dashed line where each thin line should be associated with the closest thick
line. The lower straight line indicates zero around which sin θxu oscillates. (a) The spatially
symmetric case (b) Twisting only the x-direction. The diamond indicates a q2 accessible
with periodic boundary conditions.

using two different ways of twisting that should reduce to the same q2. This would also
constitute a test of our predictions for the finite volume corrections. The quantity we will
use for this is the average of the spatial diagonal components

Π =
1

3

∑
i=1,2,3

Πii . (49)

The finite volume corrections to Π are shown in Fig. 7. In (a) we show the p4 result and
in (b) the sum of the p4 and p6 results. There is a good convergence and the difference
between spatially symmetric twisting and twisting only in the x-direction is of similar size
as the actual correction over a sizable range of q2. This difference can thus be used to
test the finite volume corrections using the same underlying set of configurations without
having to resort to tricks like reweighting [42]. That the curves for the two cases coincide
for q2 = 0 is clear since then the twists vanish fully for both cases.

8 Conclusion

In this paper we have calculated the vector one and two point functions at p4 and p6

using PQChPT in finite volume with twisted boundary conditions. We have calculated
one connected and one disconnected two point function. In PQChPT this is all that is
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Figure 7: The finite volume corrections to the spatial average as defined in (49). xyz is
the spatially symmetric twisting and x twisting only in the x-direction. (a) p4 (b) Sum of
p4 and p6.

needed to obtain all vector two point functions. The connected two point function was
calculated by considering a flavor charged current with equal masses. The disconnected
two point function was calculated using two neutral currents with different flavors.

Extending the work of [13] and our work in [28] we have used the PQ expressions to
give a numerical estimate of the ratio of disconnected to connected contributions for the
strange quark part of the electromagnetic current. Using VMD for the φ meson to estimate
the pure LEC contribution we obtain a ratio of about -15%.

We have also looked at the effects from finite volume and twisted boundary conditions.
The p6 contributions to the finite volume corrections are small when compared with the p4

contributions which supports the conclusion of [27]. We also point out that the difference
between estimates using different twist angles at the same physical point can be used to
estimate the finite volume corrections.

A Integral notation

The loop integrals needed when calculating vector two point functions are

A{ ,µ,µν}
(
(m2)n

)
=

1

i

∫
V

ddk

(2π)d
{1, kµ, kµkν}
(k2 −m2)n

(50)

B{ ,µ,µν,µνα}
(
(m2

1)n1 , (m2
2)n2 , q

)
=

1

i

∫
V

ddk

(2π)d
{1, kµ, kµkν , kµkνkα}

(k2 −m2
1)n1((q − k)2 −m2

2)n2
.
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When twisted boundary conditions are used the allowed momenta k in k2−m2 are indicated
by the mass, e.g. allowed momenta in k2−m2

π+ are the π+ momenta, see [18]. The integrals
above contain both the finite volume and infinite volume contributions. Exemplifying with
A and suppressing all arguments, we split the integrals according to

A =
CA
ε̄

+ AV + εAε +O(ε2),

1

ε̄
=

1

ε
+ ln(4π) + 1− γ. (51)

The constant CA is the coefficient of 1/ε̄ and differs from integral to integral. We renor-
malize our expressions using the ChPT version of MS where parts proportional to 1/ε̄
cancel. AV then contains the part of the infinite volume integral which remains after
renormalization plus the finite volume correction. We express this as

AV = Ā+ AV (52)

where Ā is the infinite volume part and AV is the finite volume correction.
The infinite volume part of the integrals, including the residues of the poles, can be

found from [43] using that the higher pole integrals can be obtained by derivatives with
respect to the masses. Methods for evaluating the finite volume correction, as well as
expressions for some of the integrals, can be found in [39, 44, 18]. In [18] we gave explicit
expressions, in terms of Jacobi theta functions, for the finite volume corrections to all
of the integrals except for Bµνα ((m2

1)n1 , (m2
2)n2 , q). The expression for the finite volume

correction to Bµνα ((m2
1)n1 , (m2

2)n2 , q) is

BV µνα
(
(m2

1)n1 , (m2
2)n2 , q

)
=

Γ(n1 + n2)

Γ(n1)Γ(n2)

∫
dx(1− x)n1−1xn2−1 ×

(
Avµνα((m̃2)n1+n2)

+x(δµρ δ
ν
σq

α + δµρ q
νδασ + qµδνρδ

µ
σ)AV ρσ((m̃2)n1+n2)

+x2(δµρ q
νqα + qµδνρq

α + qµqνδαρ )AV ρ((m̃2)n1+n2)

+x3qµqνqαAV ((m̃2)n1+n2)
)

(53)

where

m̃2 = (1− x)m2
1 + xm2

2 − x(1− x)q2 (54)

and the integrals on the right hand side should be evaluated with the twist angle

~̃θ = ~θ − x~q. (55)

In the actual results we have split the integrals as

Bµνα = qµqνqαB31 + (gµνqα + gµαqν + gναqµ)B32 +Bµνα
33

Bµν = qµqνB21 + gµνB22 +Bµν
23

Bµ = qµB1 +Bµ
2

Aµν = gµνA22 + Aµν23 (56)
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where all arguments are suppressed.
The diagonal integral introduced in (27) can in principle be split up using the residue

notation of [38] so that all integrals are of the form (50). This leads to longer and more
difficult to read expressions and we keep the diagonal propagator intact using notation
such as

A(Dab) =
1

i

∫
V

ddk

(2π)d

(
δab

p2 −m2
a

− 1

3

(p2 −m2
1)(p2 −m2

2)(p2 −m2
3)

(p2 −m2
a)(p

2 −m2
b)(p

2 −m2
π0)(p2 −m2

η)

)
. (57)

The residue notation is used in the numerical evaluations needed in section 7.

B Analytical results

In this appendix we present the analytical expressions for vector two point functions and
one point functions at p6 in PQChPT in finite volume with twisted boundary conditions.
The expressions contain both the infinite volume part and the finite volume correction, see
section 4, where the p4 expressions are presented, and Appendix A.

B.1 ΠVµνXY at p6

F 2
0 Π
V(6)
0XY = (58)

+(BV(m2
XY ,m

2
XY , q)− 4BV1 (m2

XY ,m
2
XY , q) + 4BV21(m2

XY ,m
2
XY , q))q

2

× (4Lr9 −
1

2
BV1 (m2

XS ,m
2
XS , q)−

1

2
BV1 (m2

Y S ,m
2
Y S , q))

+2(BV(m2
XY , (m

2
XY )2, q)− 4BV1 (m2

XY , (m
2
XY )2, q) + 4BV21(m2

XY , (m
2
XY )2, q))

× (16m2
XYm

2
SSL

r
6 − 8m2

XYm
2
SSL

r
4 +m2

XYA
V(DXY )

+ 16m4
XYL

r
8 − 8m4

XYL
r
5))

+ 4q2BV21(m2
XY ,m

2
XY , q)× (BV21(m2

XS ,m
2
XS , q) +BV21(m2

Y S ,m
2
Y S , q))

− 2q2BV21(m2
XS ,m

2
XS , q)× (BV1 (m2

XY ,m
2
XY , q)−BV1 (m2

Y S ,m
2
Y S , q))

− 4q2BV21(m2
Y S ,m

2
Y S , q)B

V
21(m2

XS ,m
2
XS , q)

− 2q2BV21(m2
Y S ,m

2
Y S , q)× (BV1 (m2

XY ,m
2
XY , q)−BV1 (m2

XS ,m
2
XS , q))

− q2

2
BV1 (m2

XY ,m
2
XY , q)× (BV(m2

XS ,m
2
XS , q) +BV(m2

Y S ,m
2
Y S , q))

− 3q2BV1 (m2
Y S ,m

2
Y S , q)B

V
1 (m2

XS ,m
2
XS , q)

+ q2BV(m2
Y S ,m

2
Y S , q)× (BV1 (m2

XS ,m
2
XS , q) +

1

4
BV(m2

XY ,m
2
XY , q))

+ q2BV(m2
XS ,m

2
XS , q)× (BV1 (m2

Y S ,m
2
Y S , q) +

1

4
BV(m2

XY ,m
2
XY , q))

− 1

2
q2BV(m2

Y S ,m
2
Y S , q)B

V(m2
XS ,m

2
XS , q)− 8AV(m2

XY )(Lr9 + Lr10)
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F 2
0 Π
V(6)
1XY = (59)

8m2
XY (BV22(m2

XY , (m
2
XY )2, q)− 1

4
AV((m2

XY )2))

× (−16m2
SSL

r
6 + 8m2

SSL
r
4 − AV(DXY )− 16m2

XYL
r
8 + 8m2

XYL
r
5)

+ 2(AV(m2
XS)− AV(m2

XY ))×BV22(m2
Y S ,m

2
Y S , q)

+ 2(AV(m2
Y S)− AV(m2

XY ))×BV22(m2
XS ,m

2
XS , q)

+ (AV(m2
XS) + AV(m2

Y S))× (−2BV22(m2
XY ,m

2
XY , q) + AV(m2

XY ))

+ 4(BV22(m2
XS ,m

2
XS , q)B

V
22(m2

XY ,m
2
XY , q) +BV22(m2

Y S ,m
2
Y S , q)B

V
22(m2

XY ,m
2
XY , q)

−BV22(m2
Y S ,m

2
Y S , q)B

V
22(m2

XS ,m
2
XS , q))

− AV(m2
Y S)AV(m2

XS)

− 16BV22(m2
XY ,m

2
XY , q)L

r
9q

2 − 8AV(m2
XY )Lr10q

2

F 2
0 Π
V(6)µν
2XY = (60)

− 4(BV22(m2
XY ,m

2
XY , q)−

1

2
AV(m2

XY ))× (BVµν23 (m2
XS ,m

2
XS , q) +BVµν23 (m2

Y S ,m
2
Y S , q))

− 4(BV22(m2
XS ,m

2
XS , q)−

1

2
AV(m2

XS))× (BVµν23 (m2
XY ,m

2
XY , q)−B

Vµν
23 (m2

Y S ,m
2
Y S , q))

− 4(BV22(m2
Y S ,m

2
Y S , q)−

1

2
AV(m2

Y S))× (BVµν23 (m2
XY ,m

2
XY , q)−B

Vµν
23 (m2

XS ,m
2
XS , q))

+ 16q2Lr9B
Vµν
23 (m2

XY ,m
2
XY , q)

+ 8m2
XYB

Vµν
23 (m2

XY , (m
2
XY )2, q)

× (16m2
SSL

r
6 − 8m2

SSL
r
4 + AV(DXY ) + 16m2

XYL
r
8 − 8m2

XYL
r
5)

− 4BVβµ23 (m2
XS ,m

2
XS , q)B

Vβν
23 (m2

XY ,m
2
XY , q)

− 4BVβν23 (m2
Y S ,m

2
Y S , q)B

Vβµ
23 (m2

XY ,m
2
XY , q)

+ 4BVβµ23 (m2
XS ,m

2
XS , q)B

Vβν
23 (m2

Y S ,m
2
Y S , q)

B.2 ΠVµν
π+
v

at p6

F 2
0 Π
V(6)

0π+
v

= (61)

2(AV(m2
xx)− AV(m2

xy))

× (−m2
xxB

V((m2
xx)

2,m2
xy, q) + 4m2

xxB
V
1 ((m2

xx)
2,m2

xy, q)

− 4m2
xxB

V
21((m2

xx)
2,m2

xy, q)−BV(m2
xx,m

2
xy, q) + 2BV1 (m2

xx,m
2
xy, q))

+m2
Sx(B

V(m2
xS , (m

2
Sy)

2, q) +BV((m2
xS)2,m2

Sy, q)− 4BV1 (m2
xS , (m

2
Sy)

2, q)
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− 4BV1 ((m2
xS)2,m2

Sy, q) + 4BV21(m2
xS , (m

2
Sy)

2, q) + 4BV21((m2
xS)2,m2

Sy, q))

× (−16m2
S′S′L

r
6 + 8m2

S′S′L
r
4 − 16m2

SxL
r
8 + 8m2

SxL
r
5 − AV(DxS))

+ 4(AV(m2
xS) + AV(m2

yS))× ((Lr10 + Lr9) +
1

8
BV(m2

xS′ ,m
2
S′y, q))

+BV2β(m2
xS ,m

2
Sy, q)

× (BVβ2 (m2
xS′ ,m

2
S′y, q) + 2qβBV1 (m2

xS′ ,m
2
S′y, q)− 4qβBV21(m2

xS′ ,m
2
S′y, q))

+BV2β(m2
xS′ , (m

2
S′y)

2, q)× (AVβ(m2
yS)− AVβ(m2

S′S))

+BV2β((m2
xS′)

2,m2
S′y, q)× (AVβ(m2

xS)− AVβ(m2
S′S))

− 4qβ(AVβ (m2
xS)− AVβ (m2

S′S))× (BV21((m2
xS′)

2,m2
S′y, q)−BV31((m2

xS′)
2,m2

S′y, q))

− 4qβ(AVβ (m2
yS)− AVβ (m2

S′S))× (2BV21(m2
xS′ , (m

2
S′y)

2, q)−BV31(m2
xS′ , (m

2
S′y)

2, q))

+ (q2 − 2m2
xx)(B

V(m2
xx,m

2
xy, q)− 2BV1 (m2

xx,m
2
xy, q))

2

+ 2BV21(m2
xS ,m

2
Sy, q)

× (−8Lr9q
2 + 4q2BV1 (m2

xS′ ,m
2
S′y, q)− AV(m2

xS′) + AV(m2
yS′)− 2q2BV21(m2

xS′ ,m
2
S′y, q))

+ q2BV1 (m2
xS ,m

2
Sy, q)× (16Lr9 + 2BV(m2

xS′ ,m
2
S′y, q)− 3BV1 (m2

xS ,m
2
Sy, q))

+ 5qβBV1 (m2
xS′ , (m

2
S′y)

2, q)× (AVβ (m2
yS)− AVβ (m2

S′S))

+ qβBV1 ((m2
xS′)

2,m2
S′y, q)× (AVβ (m2

xS)− AVβ (m2
S′S))

−BV(m2
xS ,m

2
Sy, q)× (4Lr9q

2 + AV(m2
yS′) +

q2

2
BV(m2

xS′ ,m
2
S′y, q))

− qβBV(m2
xS′ , (m

2
S′y)

2, q)× (AVβ (m2
yS)− AVβ (m2

S′S))

F 2
0 Π
V(6)

1π+
v

= (62)

+ (AV(m2
xx)− AV(m2

xy))

× (8m2
xxB

V
22((m2

xx)
2,m2

xy, q)− 2m2
xxA

V((m2
xx)

2) + AV(m2
xy)− AV(m2

xx))

+ 4m2
Sx(B

V
22(m2

xS , (m
2
Sy)

2, q) +BV22((m2
xS)2,m2

Sy, q)

− 1

4
AV((m2

xS)2)− 1

4
AV((m2

yS)2))

× (16m2
S′S′L

r
6 − 8m2

S′S′L
r
4 + 16m2

SxL
r
8 − 8m2

SxL
r
5 + AV(DxS))

+ 4Lr10q
2(AV(m2

xS) + AV(m2
yS)

− 4qβ(AVβ (m2
xS)− AVβ (m2

S′S))BV32((m2
xS′)

2,m2
S′y, q)

+ 4qβ(AVβ (m2
yS)− AVβ (m2

S′S))× (BV22(m2
xS′ , (m

2
S′y)

2, q)−BV32(m2
xS′ , (m

2
S′y)

2, q))

+ 2BV22(m2
xS ,m

2
Sy, q)× (8Lr9q

2 + AV(m2
xS′) + AV(m2

yS′)− 2BV22(m2
xS′ ,m

2
S′y, q))

− 8Lr9q
β(AVβ (m2

xS)− AVβ (m2
yS))− AV(m2

yS)AV(m2
xS′)

+ AVβ((m2
xS′)

2)× (AVβ (m2
xS)− AVβ (m2

S′S))

+ AVβ((m2
yS′)

2)× (AVβ (m2
yS)− AVβ (m2

S′S))
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F 2
0 Π
V(6)µν

2π+
v

= (63)

2(AV(m2
xx)− AV(m2

xy))

× (2m2
xxq

µBVν2 ((m2
xx)

2,m2
xy, q) + qµBVν2 (m2

xx,m
2
xy, q)

−m2
xxB

Vµν
23 ((m2

xx)
2,m2

xy, q) + (µ↔ ν))

− 2m2
Sx(+B

Vν
2 (m2

xS , (m
2
Sy)

2, q)qµ +BVν2 ((m2
xS)2,m2

Sy, q)q
µ

−BVµν23 (m2
xS , (m

2
Sy)

2, q)−BVµν23 ((m2
xS)2,m2

Sy, q) + (µ↔ ν))

× (−16m2
S′S′L

r
6 + 8m2

S′S′L
r
4 − 16m2

SxL
r
8 + 8m2

SxL
r
5 − AV(DxS)

+ (AVβ(m2
yS)− AVβ(m2

S′S))

× (δνβq
µBV(m2

xS′ ,m
2
S′y, q)− 3δνβq

µBV1 (m2
xS′ ,m

2
S′y, q) + 8δνβq

µLr9

+ 2δνβq
µBV21(m2

xS′ ,m
2
S′y, q)− δνβB

Vµ
2 (m2

xS′ ,m
2
S′y, q)− 2δνβq

µBV22(m2
xS′ , (m

2
S′y)

2, q)

+ 4δνβB
V
32(m2

xS′ , (m
2
S′y)

2, q)qµ + 2qβBVµν23 (m2
xS′ , (m

2
S′y)

2, q)

− 2qµBVν23β(m2
xS′ , (m

2
S′y)

2, q) + 2BVνµ33β (m2
xS′ , (m

2
S′y)

2, q) + (µ↔ ν))

+ (AVβ(m2
xS)− AVβ(m2

S′S))

× (δνβq
µBV1 (m2

xS′ ,m
2
S′y, q)− 2δνβq

µBV21(m2
xS′ ,m

2
S′y, q)− 8δνβq

µLr9

− 2δνβB
V
22((m2

xS′)
2,m2

S′y, q)q
µ + 4δνβq

µBV32((m2
xS′)

2,m2
S′y, q)

− 2BVν23β((m2
xS′)

2,m2
S′y, q)q

µ + 2BVνµ,33β ((m2
xS′)

2,m2
S′y, q) + (µ↔ ν))

+ (AVµ(m2
xS)− AVµ(m2

S′S))

× (BV1 (m2
xS′ ,m

2
S′y, q)q

ν − 2BV21(m2
xS′ ,m

2
S′y, q)q

ν − 8qνLr9)

+ 4BVβµ23 (m2
xS′ ,m

2
S′y, q)B

Vβν
23 (m2

xS ,m
2
Sy, q)

+BVµν23 (m2
xS ,m

2
Sy, q)

× (8BV22(m2
xS′ ,m

2
S′y, q)− 2AV(m2

xS′)− 2AV(m2
yS′)− 16Lr9q

2)

− 2(BVβν23 (m2
xS ,m

2
Sy, q)B

V
2β(m2

xS′ ,m
2
S′y, q)q

µ + (µ↔ ν))

+ 2qαBV2β(m2
xS , (m

2
Sy)

2, q)

× (δνβq
µAVα(m2

yS′)− δνβqµAVα(m2
SS′) + (µ↔ ν))

+BV2β(m2
xS ,m

2
Sy, q)

× (−BVµ2 (m2
xS′ ,m

2
S′y, q)δ

ν
βq

2 + δνβB
V(m2

xS′ ,m
2
S′y, q)q

µq2

− 3δνβB
V
1 (m2

xS′ ,m
2
S′y, q)q

µq2 + 2δνβB
V
21(m2

xS′ ,m
2
S′y, q)q

µq2

− 2δνβB
V
22(m2

xS′ ,m
2
S′y, q)q

µ + δνβA
V(m2

yS′)q
µ − δνβAVµ(m2

yS′)

+ δνβA
V
µ(m2

SS′) + 8δνβq
µLr9q

2 + (µ↔ ν))

+ 2BV2β(m2
xx,m

2
xy, q)(q

2 − 2m2
xx)

× (δνβB
Vµ
2 (m2

xx,m
2
xy, q) + 2δνβq

µBV1 (m2
xx,m

2
xy, q)− qµBV(m2

xx,m
2
xy, q) + (µ↔ ν))

21



B.3 〈q̄γµq〉V at p6

〈q̄γµq〉V(6) = (64)

AVµ(m2
qS)
(
AV(m2

qS′)− 2AV22((m2
qS′)

2)
)

+ 2m2
qSA

Vµ((m2
qS)2)(16mS′S′L

r
6 − 8mS′S′L

r
4 + AV(DqS) + 16m2

qSL
r
8 − 8m2

qSL
r
5)

− AVµ(mSS′)
(
AV(m2

qS)− 2AV22((m2
qS)2)

)
− 2AVβµ23 ((m2

qS′)
2)
(
AVβ (m2

qS)− AVβ (mS′S)
)
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