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Abstract

Crack tip conditions in SUS 304 austenitic stainless steel are studied using a constitutive

model in which the martensitic phase transformation is an integral part. The phase trans-

formation occurring in the crack tip region gives rise to fracture toughening of the material

whereby the resistance against crack initiation, as well as the macroscopic material re-

sponse are strongly altered by the presence of a martensitic phase. The constitutive model

employed herein permits studying the transformation zones under different isothermal con-

ditions. Local crack tip conditions and related plastic deformation is confirmed to depend

strongly on the varying extent of the martensitic phase transformation at different temper-

atures. The shape and size of the plastic and transformation zones in the neighborhood of

the crack tip are obtained from numerical simulations, as well as derived analytically.

Keywords: Steels, Constitutive modeling, Phase transformation, 304 stainless steel, Trans-

formation toughening

Nomenclature

The nomenclature and mathematical operators used in the present paper are summarized

in Table 1.

1 Introduction

Austenitic stainless steels are of major engineering importance in many applications due

to their excellent mechanical properties over a wide range of temperatures in combination

with good corrosion resistance. This class of steels is also susceptible to diffusionless phase
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Table 1: Nomenclature.
Parameter Description
b Parameter controlling the non-roundness of the transformation potential surface
b
r Reversible part of the left Cauchy-Green tensor

ci Parameters in the transformation threshold function
ca,m
p Specific heat of the austenite and martensite phase, respectively

E Elastic modulus
f Yield function
Fmech Mechanical transformation driving force
eFmech θ-dependent components of Fmech from the HRR solution

F̆mech θ-dependent components of Fmech from the linear elastic solution
Fchem Chemical transformation driving force
Ftrans Transformation threshold function
F , F

r, F
ir Deformation gradient, its reversible and irreversible components

G Shear modulus
h Transformation potential function
I1 First invariant of the stress tensor
J2, J3 Second and third invariants of the deviatoric stress tensor
Jr Determinant of the reversible deformation gradient
K Bulk modulus
K̄ Parameter in the transformation potential function
KI Mode I stress intensity factor
Kσ Stress amplitude parameter in the HRR field
l, l

r, l
ir, l

p, l
tr Spatial velocity gradient, its reversible, irreversible, plastic and transformational components

n Exponent in the Ramberg-Osgood hardening law
rpl,tr Radius of the plastic and of the transformed zone, respectively, at the crack tip
r, θ Polar crack tip coordinates
R, Rct Radius of the FE-analysis domain and of the inner crack tip region, respectively
s Function of the Ramberg-Osgood exponent n
sa,m
0 Entropy of the austenite and martensite phase, respectively

T , T0 Absolute temperature and absolute reference temperature
ux, uy Displacement components in the x- and y-directions, respectively
x, y Cartesian crack tip coordinates
x̂, ŷ Normalized Cartesian crack tip coordinates
z Volume fraction of martensite
α Coefficient in the Ramberg-Osgood hardening law
δ Parameter controlling the pressure dependence of the transformation surface
εp

eff
Effective plastic strain

φ Angular crack tip function
ρ0 Mass density
σeff Effective stress
σij , σ̂ij Stress tensor components and the normalized counterpart
eσij Angular dependence of the crack tip stress components from the HRR solution
σ̆ij Angular dependence of the crack tip stress components from the linear elastic solution
τ Kirchhoff stress tensor
ν Poisson’s ratio
(·) : (·) Tensorial contraction over two indices
tr(·) Tensorial trace
sym(·) The symmetric part of a tensor
(·)dev The deviatoric part of a tensor
˙(·) Material derivative with respect to time

(·)i Isochoric part of a tensor
(·)−1 Inverse of a tensor
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transformation of the austenitic face-centered cubic parent phase into body-centered cu-

bic or body-centered tetragonal martensite under applied deformation. This very rapid

transformation is promoted by a lowering of the temperature while higher temperatures

restrict martensite formation [1]. Since austenitic stainless steels are used for example

in power generating and chemical industries, low-temperature service conditions for these

materials are indeed common. If the loading situation is such that fracture is initiated

in the material, formation of martensite at the crack tip may delay or even prevent fur-

ther crack propagation. The increase in fracture toughness due to martensite formation,

which has been frequently observed e.g. in [1, 2, 3, 4, 5, 6, 7, 8], is somewhat surprising

since the hard martensitic phase is considerably more brittle than the ductile austenite.

This transformation toughening and reduction of crack growth rate has been attributed

to crack tip shielding and crack tip blunting [9], and crack closure due to roughening of

the crack surfaces or due to the crack being subjected to compression by the dilatation in

the transformed material [10, 11]. In addition, several authors point out that the strongly

dissipative process of martensitic phase transformation reduces the energy available at the

crack tip for extending the crack [2]. On a micromechanical level, crack initiation is de-

layed since void nucleation is reduced by the phase transformation, cf. [12], and the growing

martensitic phase restricts subsequent void growth [13].

It is also noted that the fracture toughness is not a strictly increasing function of the

volume fraction of transformed material, but also a function of temperature, strain rate

and the absolute size of the martensite islands that are formed [14, 15]. Regarding the

latter, based on experimental observations, it was proposed in [16] that smaller regions of

martensite restrict the load transfer to the martensite while larger martensite islands carry

more load, and hence are more likely to fracture. Similar observations are made in [17].

In [15], it is noted that substantial enhancement of the fracture toughness seems to occur

for intermediate volume fractions of martensite, 30-60%, above which the enhancing effect

levels off. At higher volume fractions of martensite, the ductility of the material is found

to be severely degraded by the extensive presence of hard martensite [17]. Transformation

of austenite into martensite has also been observed in relation to hydrogen embrittlement

of dual-phase steel by sensitizing the austenite grain boundaries to hydrogen. Subsequent

fracture then progresses along these boundaries [1]. Regarding the appearance of the

transformation zones in the vicinity of a crack-tip, it is observed in [2] that the shape of

the transformation zones resembles the butterfly shape of the plastic zone. In addition,

it is noted in [1] that the transformation zones are smaller than the plastic zone. This is,

however, dependent on the temperature since only small amounts of martensite are formed

at higher temperatures despite extensive plastic deformation of the austenite [1].

Simulations of fracture influenced by martensitic phase transformation in relation to

shape memory alloys has been studied in [18, 19, 20] and modeling of phase transformation

in relation to fracture in austenitic stainless steel may be found in [21, 22]. However, to
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the authors’ knowledge, detailed studies of the transformation zones and their influence

on the crack tip properties in stainless steel does not exist. Hence, analyses of this kind

are the focus of the present paper. The presented work exploits a constitutive model that

was previously developed in [23, 24]. The model describes finite strain elasto-plasticity

taking the martensitic phase transformation into account. Parameters are calibrated using

material data on SUS 304 austenitic stainless steel. This allows crack tip conditions under

the influence of phase transformation in this material to be studied through finite element

(FE) analyses of a disc-shaped body. In addition, the appearance of the transformation

zones in the vicinity of the crack tip is obtained analytically. For comparison also the plastic

zones are obtained analytically, as well as through FEs. Noting that the transformed region

is small in comparison with the plastic zone at room temperature and above, crack tip

conditions are governed by the J-integral rather than the KI stress intensity factor under

these circumstances. In the present work, the Hutchinson-Rice-Rosengren (HRR) solution

to the J-dominated crack tip stress field is used as an alternative approach to analytically

determine the size and shape of the transformation zones [25, 26].

This paper is organized as follows. In Section 2, the constitutive model is briefly

summarized. In Section 3, finite element simulations of the crack tip zones under plane

strain mode I conditions and at different temperatures are studied, both with and without

phase transformation. Martensite and austenite transformation zones together with the

plastic zones are determined analytically using the elastic KI field in Section 4 and using

the Hutchinson-Rice-Rosengren plasticity solution in Section 5. Some concluding remarks

in Section 6 close the paper.

2 Constitutive model

The constitutive model employed in the present study was previously established in the

preceding papers [23, 24] and is for completeness outlined in this section. The constitutive

model is a phenomenological, continuum mechanical formulation, based on a multiplicative

split of the deformation gradient F into one component related to the reversible processes

of elastic and thermal deformation – denoted by a superscript r – and one component

related to the irreversible processes of plastic slip and phase transformation – denoted by a

superscript ir, i.e. F = F
r
F

ir. The elastic behavior of the model is given by a Neo-Hookean

type strain energy density function

W =
1

2
K

[
1

2

{
(J r)2 − 1

}
− ln (J r)

]
+

1

2
G [tr (br

i ) − 3] (1)

where J r = det (F r) is the determinant of the reversible deformation gradient, G and K

are the shear and bulk moduli, respectively. Here b
r
i = F

r
iF

rT
i is chosen to denote the

isochoric part of the reversible left Cauchy-Green tensor where F
r
i = (Jr)−

1
3 F

r. The trace
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of a tensorial quantity is given by tr (·). From the strain energy density function in eq. (1),

the Kirchhoff stress tensor can be obtained as

τ = Gb
r,dev
i +

1

2
K
(
J r2 − 1

)
1 (2)

where 1 is the second-order identity tensor and where (·)dev indicates the deviatoric part

of a tensor.

Turning next to the irreversible behavior of the model, the spatial velocity gradient is

denoted by l = ḞF
−1 where a superposed dot indicates the material derivative with respect

to time. Using the previous multiplicative split of the deformation gradient, the spatial

velocity gradient may be written using its reversible and irreversible parts as l = l
r + l

ir

where the irreversible, spatial, part is given by l
ir = F

r
Ḟ

ir
(F ir)−1(F r)−1 = l

p + l
tr. The

component related to plastic slip is denoted by a superscript p and the component related to

phase transformation is denoted by a superscript tr. This decomposition allows deformation

due to plastic slip and deformation due to phase transformation to occur independently of

each other. If active at the same time, however, plasticity and phase transformation will

influence each other. Adopting incremental J2-plasticity the effective stress is defined as

σeff = (3J2)
1/2 and the yield function is found as

f = σeff − σy (T, εp
eff , z) ≤ 0 (3)

where σy (T, εp
eff , z) is related to the hardening behavior of the material with an initial value

σy0 (T ) = σy (T, 0, 0). Although the temperature is present in eq. (3), only isothermal

conditions are considered in the present work and the temperature T is taken as a constant

parameter. The plastic zone is defined by f = 0. The temperature dependence of σy0 is

taken according to [24], giving

σy0 (T ) = 609 − 1.25T MPa (4)

Since this expression is obtained at z = 0, it corresponds to the initial yield stress of the

austenitic phase. Letting sym (·) denote the symmetrical part of a tensor, the evolution of

the plastic slip deformation is found as

sym (lp) =
3

2

τ
dev

σeff
ε̇p
eff (5)

In eq. (5), ε̇p
eff =

[
2
3
sym (lp) : sym (lp)

] 1
2 is the effective plastic strain rate. The notation

(·) : (·) denotes a tensorial contraction over two indices. The second invariant of the

deviatoric stress tensor is defined by J2 = 1
2
tr
(
τ

dev
τ

dev
)
. The phase transformation in the

model is assumed to be governed by a transformation function

h = Fmech + Fchem − Ftrans ≤ 0 (6)

DOI: 10.1016/j.engfracmech.2011.11.004 5
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where Fmech and Fchem are the mechanical and chemical driving forces and where Ftrans is

a threshold value for phase transformation, much like the yield stress in standard plastic-

ity models. The transformation zone is in this way defined by h = 0. The mechanical

thermodynamic driving force for phase transformation is given by

Fmech = K̄

(
σ̄eff +

1

3
δI1

)
where σ̄eff =

(
3J2 + 3b

J3

J
1/2
2

)1/2

(7)

In eq. (7), K̄, δ and b are material parameters and the first invariant of the stress tensor is

denoted by I1 = tr (τ ) while the third invariant of the deviatoric stress tensor is given by

J3 = 1
3
tr
(
τ

dev
τ

dev
τ

dev
)
. It can be noted that Fmech contains both volumetric and deviatoric

components by the presence of the I1-invariant and the J2- and J3-invariants, respectively.

As is shown in detail in [23], the transformation surface h in eq. (6) is calibrated through

a procedure where the 24 crystallographically possible variants of martensite and the as-

sociated transformation strains are considered. By this approach, the parameters δ and b

can be calibrated to fit the behavior of a polycrystalline material undergoing a martensitic

transformation from fcc to bct structure. The δ-parameter controls the dependence on

deviatoric stresses, i.e. the transformation shear deformation, and the b-parameter con-

trols the influence of hydrostatic pressure, i.e. b is related to the volumetric deformation

component. If both δ and b are put to zero, a surface corresponding to the yield surface in

J2 plasticity is obtained.

The chemical thermodynamic driving force for phase transformation is obtained as the

difference between the chemical energies of the austenite and martensite phases, giving

Fchem = −ρ0

{
(sa

0 − sm
0 ) (T − T0) +

(
cm
p − ca

p

) [
(T − T0) − T ln

T

T0

]}
(8)

where T0 is a reference temperature, cp the specific heat and s0 the entropy. Here and

throughout the text, superscripts a and m indicate components related to the austenite

and martensite phases, respectively. The transformation threshold Ftrans is given by

Ftrans = K̄ {c1 + c2 (T ) [1 − exp(−c3z)] [1 − c4 ln(1 − z)]} (9)

where ci are model parameters and where z ∈ [0, 1] is the volume fraction of martensite

in the material. In a purely austenitic material z = 0 and if only martensite is present

z = 1. The evolution of the deformation related to phase transformation is obtained from

the potential function in eq. (6) and appears as

sym
(
l
tr
)

= ż
∂h

∂τ
(10)

All components of the constitutive model are thereby defined. For a complete derivation of

the above expressions, calibration of the parameters and for the numerical implementation,

DOI: 10.1016/j.engfracmech.2011.11.004 6
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refer to [23, 24]. For convenience, the calibrated material parameters are summarized in

Table 2. The behavior of the model, compared to experimental data taken from [27], is

shown in Fig. 1.

Following the definitions of “stress-assisted” and “strain-induced” martensitic phase

transformation, as formulated in [28], the present model incorporates both of these pro-

cesses since phase transformation and plasticity may occur independently of each other

in the model, each being defined in stress-space by a transformation surface and a yield

surface, respectively. This allows the two processes to be phenomenologically captured. It

is noted that at stresses below the yield stress of austenite, phase transformation can take

place in the model and result in“stress-assisted”phase transformation. Correspondingly, at

stresses above the yield limit of austenite, phase transformation takes place together with

plastic straining, giving “strain-induced” phase transformation. In addition, the parame-

ter c2 that varies with temperature, cf. Table 2, renders a formulation that allows phase

transformation at low temperatures without plastic deformation while, at higher temper-

atures, increasing stress is required to drive phase transformation and hence increasing

plastic deformation is present during the phase transformation. The K̄-parameter is found

when calibrating the transformation threshold function Ftrans in eq. (9). This parameter is

similar to the “Greenwood-Johnson” parameter as discussed in [29] and the calibration of

this parameter is also shown in [23].

Table 2: Material parameters entering the present model. The values are valid for SUS 304
stainless steel and are taken from [23, 24].

Parameter Value
G 77 GPa
K 167 GPa
ρ0 7800 kg/m3

K̄ 0.185
δ 0.29
b 0.35
T0 440 K
sa
0 − sm

0 0.106 J/kgK
c1 1246 MPa

c2(T ) 198 +
(

T

214

)13.3
MPa

c3 29.5
c4 2.7
ca
p 450 J/kgK

cm
p 415 J/kgK

DOI: 10.1016/j.engfracmech.2011.11.004 7
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Figure 1: The response of the present constitutive model (solid lines) compared to exper-
imental data (symbols) obtained from [27]: (a) shows the stress/strain response and (b)
the corresponding volume fraction of martensite.

3 Plastic and transformed zones at the crack tip from FE simulations

The constitutive model is implemented as a user-defined subroutine in Abaqus Standard

and material parameters are chosen according to [23, 24]. These parameters are summa-

rized in Table 2. Assuming pure mode I deformation and plane strain conditions, a crack

is modeled in a semi-circular geometry, taking advantage of symmetry. This is shown

schematically in Fig. 2 together with the regions in which a coarse and a refined mesh are

used, respectively. A total of 37,510 eight-noded, isoparametric, second order, elements

of type CPE8 are used to discretize the full domain, whereof 16,800 in the coarse-meshed

region and 20,710 in the fine-meshed region. Different mesh densities were investigated in

order to verify that the shape and size of the obtained transformation zones were consis-

tent. The planar linear elastic displacement field for a plane strain mode I crack is given

by the in-plane displacement components

ux =
KI

G

√
r

2π
cos

(
θ

2

)[
1 − 2ν + sin2

(
θ

2

)]

uy =
KI

G

√
r

2π
sin

(
θ

2

)[
2 − 2ν − cos2

(
θ

2

)] (11)

where r and θ are the polar crack tip coordinates, as shown in Fig. 3. Also, the shear mod-

ulus G, the Poisson’s ratio ν and the mode I stress intensity factor KI were introduced in

eq. (11). To facilitate comparison between different results, Cartesian crack tip coordinates

DOI: 10.1016/j.engfracmech.2011.11.004 8
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x and y are normalized according to

x̂ =

(
KI

σy0 (T = 313)

)
−2

x and ŷ =

(
KI

σy0 (T = 313)

)
−2

y (12)

Note that the normalization factor contains the initial yield stress of the austenite phase

at a temperature of T = 313 K, cf eq. (4). This normalization factor is kept constant

for all isothermal conditions studied in the present work. The analysis region is chosen to

be sufficiently large so that a small-scale yielding approximation is applicable. Boundary

conditions are prescribed on the outer rim of the model in Fig. 2, by using the displacement

components in eq. (11). In the present case, as shown in Fig. 2a, the semi-circular analysis

domain is given an outer radius of R = 200 mm and Rct = 10 mm is also used.

The plastic zones in the vicinity of the crack tip are shown in Fig. 4 at four different

temperatures. Correspondingly, the transformation zones for h (σ, z = 0) = 0, i.e. at the

onset of phase transformation when z = 0, are shown in Fig. 5 for the two lower temper-

atures. The results in these figures are shown using normalized coordinates according to

eqs. (12). Also, in both cases KI = 75 MPa
√

m and KI = 33 MPa
√

m are used. The

former value is a characteristic value for the fracture toughness KIc for stainless steel at

room temperature, cf. [14], and the latter value is chosen since FE calculations indicate

that the plastic strains will then be at or below 10 %. The motivation for limiting the

strains to this interval is further addressed in Section 5. The pointed appearance of the

transformation zone in Fig. 5b is a result of the stress distribution around the crack tip

which influences e.g. the I1 and J3 invariants of the transformation potential function given

by eqs. (6) and (7). The strains due to plastic deformation and due to phase transformation

are competing and this interaction manifests itself in the appearance of the zones in Figs. 4

and 5. This is especially evident for the temperature T = 233 K, cf. Figs. 4b and 5b,

where the zones are of similar size. The interaction is, however, less obvious for the lower

temperature of T = 213 K where the transformation zone is much larger than the plastic

y

x

R

Rct

Crack tip

Outer rim

Fine-meshed region

Coarse-meshed region

Figure 2: Geometry used for the FE model where R = 200 mm and Rct = 10 mm (not
drawn to scale).
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y

x

r

θ

Figure 3: Definition of the polar crack tip coordinates r and θ.

zone and for the higher temperatures of T = 293 K and T = 313 K where the plastic

zone completely dominates the transformation zone. The fully martensitic zones will be

confined to very small regions close to the crack tip. Note that the transformation zones

in Fig. 5 have a butterfly shape also observed experimentally in [2]. The expected trend is

shown in Fig. 5 where the size of the transformed region is reduced as the temperature is

increased. At the two higher temperatures of 293 K and 313 K, no phase transformation

a) T = 213 K

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

KI = 33

KI = 75

x̂

ŷ

b) T = 233 K

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

KI = 33

KI = 75

x̂

ŷ

c) T = 293 K

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

KI = 33

KI = 75

x̂

ŷ

d) T = 313 K

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

KI = 33

KI = 75

x̂

ŷ

Figure 4: Plastic zone at the crack tip at four different temperatures. Results obtained
from FE-simulations using KI = 33 MPa

√
m and KI = 75 MPa

√
m, respectively. (a)

T = 213 K, (b) T = 233 K, (c) T = 293 K and (d) T = 313 K.
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a) T = 213 K
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Figure 5: Transformed zone, corresponding to z = 0, at the crack tip at two temperatures.
Results obtained from FE-simulations using KI = 33 MPa

√
m and KI = 75 MPa

√
m,

respectively. (a) T = 213 K, (b) T = 233 K. None or negligible phase transformation
occurs at these load levels for the higher temperatures of 293 K and 313 K, also considered
in the present work.

occurs at KI = 33 MPa
√

m and only negligibly at KI = 75 MPa
√

m. The transformation

zones at these temperatures are hence not shown. These observations are consistent with

the experimental data shown in Fig. 1b where it is seen that additional strain is required to

initialize phase transformation at these temperatures. It can also be noted from Figs. 4 and

5 that the shape of the zones are similar at both KI = 33 MPa
√

m and KI = 75 MPa
√

m.

This indicates that the lower value in fact can be used to obtain a fair representation of

the zone shapes at higher load levels.

As found experimentally in [1] and also seen in Figs. 4 and 5, the transformation zones

are large in comparison with the plastic zones at lower temperatures, whereas the opposite

situation is found at higher temperatures. At these higher temperatures, the austenite may

be exposed to extensive plastic deformation with only minor phase transformation taking

place. In fact, at sufficiently high temperatures no phase transformation will take place

at all, irrespective of the amount of plastic deformation imposed on the austenitic mate-

rial. This is in contrast to the situation at low temperatures where phase transformation

may occur simply due to a further lowering of the temperature, without any externally

applied deformation of the austenite, i.e. without previous plastic deformation. This is

characteristic of the metastable nature of the austenitic phase.

The variation of the crack opening stress σyy ahead of the crack tip at four different

temperatures, both with and without phase transformation, is shown in Fig. 6. Note

that at the lower temperatures the opening stress is reduced close to the crack tip in the

presence of martensite (solid lines), compared to the purely austenitic material (dashed

lines). This effect gradually vanishes as the temperature is increased, making the graphs

coincide at the two higher temperatures of T = 293 K and T = 313 K in Figs. 6c and

DOI: 10.1016/j.engfracmech.2011.11.004 11
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Figure 6: Mode I opening stress obtained from FE simulations at four different temper-
atures with KI = 75 MPa

√
m. (a) T = 213 K, (b) T = 233 K, (c) T = 293 K and (d)

T = 313 K. Solid lines show result with phase transformation and dashed lines show results
without phase transformation.

6d. The stress variations shown in Fig. 6 illustrate the stress relief close to the crack tip

caused by the martensitic phase transformation. The reduced opening stress ahead of the

crack tip caused by phase transformation is one aspect of transformation toughening. The

results in Fig. 6 are taken from FE simulations with KI = 75 MPa
√

m which, as was noted

previously, is a characteristic value of the fracture toughness KIc for stainless steel at room

temperature [14]. The same source indicates that the KIc value will in fact increase as lower

temperatures are considered, a fact that would further increase the stress relief in the crack

tip region resulting from a martensitic phase transformation since more martensite would

be present at higher values of KI at the temperatures shown in Figs. 6a and 6b. The

mode I opening stresses in Fig. 6 are a result of the total influence of martensitic phase

transformation, i.e. the combined effects of both the volume expansion of the martensitic
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phase and the increased yield stress of the transforming material. The former results in

a lowering of the opening stress while the latter increases the stress level. The mode I

opening stresses in Fig. 6 can thus be viewed as the net effect of these two mechanisms.

Having studied the temperature dependent appearance of the crack tip zones and how

phase transformation influences the material behavior numerically through FE simulations,

it is also of interest to determine these zones by an analytical approach. This is done in

the next section by considering the elastic KI field.

4 Plastic and transformed zones at the crack tip from the elastic KI field

If mode I deformation is considered under plane strain conditions, the stress field in the

vicinity of the crack tip can be obtained analytically from the elastic KI-field. Using this

stress field together with the transformation surface h (σ, z = 0) = 0 in eq. (6), the shape

of the transformed zone surrounding the crack tip can be calculated, cf. [18, 20]. In

addition, the plastic zones may be obtained by assuming a von Mises yield condition. In

this approach, the crack tip stress components are given by

σij =
KI√
2πr

σ̆ij (θ) (13)

where the functions σ̆ij are given by

σ̆xx = cos

(
θ

2

)[
1 − sin

(
θ

2

)
sin

(
3θ

2

)]

σ̆yy = cos

(
θ

2

)[
1 + sin

(
θ

2

)
sin

(
3θ

2

)]

σ̆xy = cos

(
θ

2

)
sin

(
θ

2

)
cos

(
3θ

2

)
(14)

Here θ and r are the polar crack tip coordinates, shown in Fig. 3. In addition, it is noted

that σzz = ν (σxx + σyy) for plane strain. First, assuming von Mises plasticity, the yield

condition is defined by

√
3J2 − σy0 = 0 (15)

where σy0 is the initial yield stress of the austenite phase as defined previously in eq. (4).

Using the stress components in eqs. (13)-(14), the radius of the plastic zone is obtained

as

rpl =
3

2π

(
KI

σy0

)2

cos2

(
θ

2

)[
sin2

(
θ

2

)
+

1

3
(1 − 2ν)2

]
(16)
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Figure 7: Size and shape of the plastic zones near the crack tip at four different tempera-
tures under plane strain mode I conditions with ν = 0.3 and KI = 33 MPa

√
m. The left

column shows FE results and the right column shows analytical results from the linear elas-
tic stress field in eq. (16). The rows show results at each of the four different temperatures:
(a) T = 213 K, (b) T = 233 K, (c) T = 293 K and (d) T = 313 K.
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Figure 8: Size and shape of the transformed zones near the crack tip at four different
temperatures under plane strain mode I conditions with ν = 0.3, KI = 33 MPa

√
m and

z = 0 from eq. (17). (a) T = 213 K, (b) T = 233 K, (c) T = 293 K and (d) T = 313 K. In
figures (a) and (b), the left column shows FE results and the right column shows analytical
results from the elastic solution. Note that no phase transformation is present in the FE
results at the two higher temperatures of T = 293 K and T = 313 K in figures (c) and (d).
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in the case of plane strain. On the other hand, the radius of the zone where phase transfor-

mation occurs is obtained by using the stress components in eqs. (13)-(14) together with

the expression for the transformation surface in eq. (6). The radius of the transformation

zone is then found as

rtr =
1

2π

(
KIF̆mech (θ)

Ftrans (z, T ) − Fchem (T )

)2

(17)

Note that the notation F̆mech (θ) indicates that this quantity is evaluated using only the

σ̆ij-components of eq. (13), giving consistent units within the brackets of eq. (17).

The plastic zones obtained analytically from eq. (16) are plotted in Fig. 7 at four differ-

ent temperatures under plane strain conditions with ν = 0.3. The analytical transformation

zones in Fig. 8 are calculated from eq. (17). In Figs. 7 and 8, KI = 33 MPa
√

m is used as

in the previous FE calculations. Note that the FE zones for KI = 33 MPa
√

m, cf. Figs. 4

and 5, are repeated in Figs. 7 and 8 for clarity. The solution obtained by employing the

elastic KI field is questionable when the transformation zone is confined within the plastic

zone where the elastic field loses its applicability. This is due to inelastic deformation of

the material, caused by phase transformation. However, the results in Figs. 7 and 8 show

the same trends as found in the FE solution in Section 3. That is to say, at the lowest

temperature of T = 213 K, the plastic zone is confined within the transformation zone

and this gradually changes as the temperature is increased. At the higher temperatures of

T = 293 K and T = 313 K, the plastic zones are larger than the transformed zones. Note

that, due to the use of the elastic solution, the maximum extent of the zones is found at

θ = 90◦ unlike in the FE results where the zones are tilting into the first quadrant with

θ ≈ 70◦. As the appearance of the transformation zones may not be valid since when they

are well within the plastic zones, an alternative approach is called for where the plastic

zones are treated explicitly. This can be achieved by considering the plastic solution ob-

tained from the Hutchinson-Rice-Rosengren (HRR) field. This is elaborated in the next

section.

5 Plastic and transformed zones at the crack tip from the HRR field

As an alternative approach to the elastic solution studied previously, the crack tip con-

ditions can instead be analyzed using the stress field obtained from the HRR solution.

Following [25, 26, 30], the inelastic behavior of the material is assumed to be described by

a Ramberg-Osgood type of power hardening law, cf. [31], according to

ε =
σ

E

[
1 + α

(
σ

σy0

)n−1
]

(18)

DOI: 10.1016/j.engfracmech.2011.11.004 16



Engineering Fracture Mechanics 2012, 79(266-280)

where σ and ε are the uniaxial stress and strain, respectively, E is the elastic modulus, n is

the strain hardening exponent, α is a material parameter and σy0 is the initial yield stress

of the austenite phase, as defined in eq. (4). Following [25], a generalized stress-strain

relation is obtained from from eq. (18) according to

εij =
1

E

[
(1 + ν) sij +

1 − 2ν

3
σkkδij +

3

2
α

(
σeff

σy0

)n−1

sij

]
(19)

where sij = σij − 1
3
σkkδij is the deviatoric stress tensor and σeff the effective stress. Young’s

modulus E and the initial yield stress σy0 were included in eq. (19) for consistency.

Letting r and θ denote the polar crack tip coordinates, as shown in Fig. 3, the crack

tip stress components are, according to [25], given by

σij = Kσr
−

1
n+1 σ̃ij (θ, n) (20)

where Kσ is a stress amplitude parameter. The result in eq. (20) is arrived at by assuming

the elastic energy to be much smaller than the plastic energy in the vicinity of the crack

tip. Note that for n = 1, eq. (20) predicts a 1/
√

r singularity, consistent with linear

elastic fracture mechanics theory, while larger values of the Ramberg-Osgood exponent

will weaken the strength of the crack tip stress singularity.

Defining s = (2n+1)/(n+1) according to [25], the angular dependence σ̃ij (θ, n) of the

crack tip stress components is given by

σ̃rr = sφ +
∂2φ

∂θ2

σ̃θθ = s (s − 1)φ

σ̃rθ = (1 − s)
∂φ

∂θ

(21)

where φ = φ (θ, n) is obtained by solving a fourth-order differential equation for plane

strain conditions as shown in [25]. The fourth-order differential equation is given as
[

∂2

∂θ2
− n (s − 2) {n (s − 2) + 2}

] [
(σ̃eff)n−1

{
s (2 − s) φ +

∂2φ

∂θ2

}]
+

4 (s − 1) {n (s − 2) + 1} ∂

∂θ

[
(σ̃eff)n−1 ∂φ

∂θ

]
= 0

(22)

Note that φ is a function of the polar angle θ only, although different behavior for

φ will be obtained for different values of the constant hardening exponent n. In [25],

incompressibility is assumed which results in σzz = 1
2
(σrr − σθθ). This leads to the θ-

dependence of the effective stress being given by

σ̃eff (n, θ) =

[
3

4
(σ̃rr − σ̃θθ)

2 + 3σ̃2
rθ

]1/2

(23)
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Figure 9: Ramberg-Osgood relation fit to experimental data taken from [27]. The corre-
sponding Ramberg-Osgood parameter values are given in Table 3.

where it is noted that

σeff = Kσr
−

1
n+1 σ̃eff (24)

Finally, the angular dependence of the components in eqs. (21) must be normalized. Fol-

lowing [25, 30], this is done by defining

σ̂ij =
σ̃ij

max (σ̃eff)
(25)

In order to obtain the transformation zones for the material studied here, the parameters

α and n must be determined. Considering the experimental data in [27] on SUS 304

austenitic stainless steel, as shown in Fig. 1, values of the parameters from the Ramberg-

Osgood relation in eq. (18) were fit to experimental data, cf. Fig. 9.

Parameters found are summarized in Table 3. Note that the Ramberg-Osgood parame-

ters are determined for an interval of relatively small strains, Fig. 1, namely less than 10 %.

This value of strain was chosen so that the Ramberg-Osgood model could be properly fitted

to the data. This also motivates the choice of KI = 33 MPa
√

m in the previous sections.

A comparison of the normalized stress components determined from the plane strain

solution of the HRR field at the temperatures presently under consideration is shown

in Fig. 10. Note that the angular dependence of the stress components is identical at

T = 293 K and T = 313 K since n = 2.6 at both of these temperatures, cf. Fig. 10c and

Table 3. Note that Fig. 10 shows the angular variation of the stress components for values

of the n-parameter used in the present study, cf. Table 3, while the behavior for n = 3 and

n = 13 is shown in [25].
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Figure 10: Angular dependence of the plane strain HRR crack tip stress components at the
different temperatures studied in the present work. The stresses are normalized according
to eq. (25). (a) T = 213 K, n = 5, α = 1.0, (b) T = 233 K, n = 4.7, α = 1.4, (c)
T = 293 K, n = 2.6, α = 6.5 and T = 313 K, n = 2.6, α = 7.5.

Considering the von Mises yield condition in eq. (15) and using the effective stress in

Table 3: Parameters α and n in the Ramberg-Osgood relation calibrated against uniaxial
data on SUS 304 stainless steel at four different temperatures, see Fig. 9.

T [K] α n

213 1.0 5.0
233 1.4 4.7
293 6.5 2.6
313 7.5 2.6
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eq. (23), it is possible to obtain an estimate of the initial plastic zone radius according to

rpl =

(
Kσσ̃eff (θ, n)

σy0

)n+1

(26)

Next, by substituting eq. (20) into the expression for the transformation function in eq. (6),

i.e. for h = 0, the radius of the transformation zone is given by

rtr =

(
KσF̃mech (θ, n)

Ftrans (z, T ) − Fchem (T )

)n+1

(27)

In eq. (27), F̃mech was introduced to denote Fmech evaluated using the σ̃ij stress components

in eq. (21). Thus, F̃mech is dependent only on the polar coordinate θ and the value of the

Ramberg-Osgood parameters n and α which are constant for a given temperature.

The plastic zones obtained from eq. (26) are plotted in Fig. 11 and the transforma-

tion zones obtained from eq. (27) are plotted in Fig. 12 at four different temperatures for

h (σ, z = 0) = 0. Since no KI parameter is present in the HRR solution, the stress ampli-

tude Kσ has to be chosen in some way to allow comparison between the HRR results and

the results obtained from the linear elastic solution and from FEs. This means that Kσ

has to be chosen in such a way that the maximum zone radius at a certain temperature is

the same in the HRR solution as in the result from either FEs or from the linear elastic

solution. In the present study Kσ is chosen as Kσ = 298 MPa·m1/(n+1) which makes the

heights of the plastic zones obtained from the HRR solution and from the linear elastic

solution at T = 313 K match. The lower temperature of T = 213 K should be avoided

since the plastic zone is well within the transformed region which could be ambiguous using

the plastic HRR solution which does not consider phase transformation. At T = 233 K

the transformed zone and the plastic zone are of comparable size, making also this choice

ambiguous. The highest temperature of T = 313 K is chosen since martensitic phase trans-

formation is negligible at this temperature. Choosing Kσ in this way will give matching

maximum zone radii at one temperature while deviations will appear at the other tem-

peratures. Despite these deviations, the trend in the changes of both the plastic and the

transformation zone sizes with changing temperature matches those found in the linear

elastic solutions and in the FE solutions. Again the Cartesian crack tip coordinates are

normalized according to eqs. (12) with KI = 33 MPa
√

m.

By the present choice of Kσ, the maximum plastic zone radius in Fig. 11d, obtained from

the HRR solution for the temperature of 313 K, is the same as for that of the plastic zone

shown in Fig. 7d. The latter is obtained from the elastic solution at the same temperature.

Note that Figs. 11 and 12 repeat the FE zones at KI = 33 MPa
√

m, cf. Figs. 4 and

5, for convenience. As was noted in Section 3, the zone shapes remain similar for each

isothermal case, irrespective of the load level. Considering the plastic zones obtained from
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the HRR solution in Fig. 11, it can be noted that the height of the zones is fairly well

approximated by the HRR solution compared to the FE zones at T = 213 K and at the

higher temperature of T = 293 K. Note that at T = 213 K the plastic zone is well within

the transformed region and the result from the HRR solution in Fig. 11a should be viewed

with some caution. In passing it is also noted that the transformation stresses could be

obtained from the transformation function h in eq. (6), much in the same way as was done

for the stresses in the plastic HRR solution. At T = 233 K, Fig. 11b, where the plastic and

martensitic zones are of comparable size, the HRR solution underestimates the size of the

plastic zone compared to FEs. When it comes to the transformed zones shown in Fig. 12,

it can be noted that the transformed zone obtained from the HRR solution at T = 213 K

is significantly larger than the corresponding FE zone. At T = 233 K the HRR solution

underestimates the size of the transformed zone, as is the case also with the plastic zone

at the same temperature shown in Fig. 11b. At the higher temperatures of T = 293 K and

T = 313 K, small transformed zones are obtained using the HRR solution, Figs. 12c and

d, whereas no transformation zones are distinguishable using FEs at these temperatures.

As in Section 3, the competition between plastic and transformational strains is notice-

able in the FE results in Figs. 11b and 12b where the plastic and phase transformation

zones are of comparable size. This results in the pointed appearance of the FE zones at

T = 233 K. The corresponding zones from the HRR solution are, however, smooth since

they are based on an entirely plastic solution, not influenced by phase transformation.

By comparing Figs. 8 and 12, it can be noted that the size of the transformation zones is

drastically reduced at the higher temperatures of T = 293 K and T = 313 K when using the

HRR field. This may be attributed to the fact mentioned previously, that the elastic field

will not give the correct transformation zone when it is confined within the plastic region.

It can also be noted by comparing Figs. 7 and 11 that both the elastic solution and the

HRR solution result in the maximum plastic zone radii appearing at an angle of θ ≈ 90◦.

Note that the plastic zones from the HRR solution are inclined by slightly more than 90◦.

It is emphasized that the analytical zones in Figs. 12a and b are obtained using the plastic

HRR solution in spite of the fact that the plastic zones are within the transformed region. If

eq. (16) is considered, the maximum radius of the plastic zone can be calculated by setting

ν = 1/3 and θ = π/2, giving rpl,max = 0.128 (KI/σy0)
2. In [32], the maximum radius of

the plastic zone is calculated using FEs, resulting in rpl,max = 0.157 (KI/σy0)
2 at θ = 70◦.

Similar results are obtained in [33] where rpl,max = 0.152 (KI/σy0)
2 for θ = 71◦. In both

cases plane strain conditions and elastic perfectly plastic material behavior are assumed.

The plastic zones are in these publications found to be inclined at an approximate angle

of 70◦ from the horizontal plane, which is also found in the present work when using FEs,

cf. Fig. 11. The same behavior is also discussed in the review paper [34].
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6 Concluding remarks

By employing a constitutive model for finite strain plasticity influenced by martensitic

phase transformation under isothermal conditions, the material behavior in the vicinity

of a mode I crack is studied in detail. The shape and size of the plastic zone is by this

approach possible to compare to that of the zone where the austenitic microstructure is to

some extent transformed into martensite. In accordance with several studies, found in the

literature, the maximum extent of the plastic zones is found to be inclined approximately

70◦ from the horizontal axes in the FE results rather than the 90◦ found in the linear elas-

tic solutions and the angle slightly larger than 90◦ found in the non-linear elasto-plastic

HRR solutions. As observed in experiments, the temperature dependence of the marten-

sitic phase transformation manifests itself by extensive phase transformation occurring at

sub-zero temperatures while little or no phase transformation is to be found at room tem-

perature and above. Also in accordance with experimental evidence found in the literature,

the transformation zones appear with a butterfly shape close to the crack tip.

The influential presence of hard martensite results in transformation toughening of the

crack tip region at lower temperatures, leading to a lowered mode I opening stress ahead

of the crack tip. This is in contrast to the behavior at higher temperatures where the

more ductile austenite is more or less unaffected by phase transformation. These aspects

are herein illustrated by plotting the opening stress in front of the crack tip at different

temperatures.

If the constitutive model is used together with an analytical linear elastic solution, the

plastic zone and the zone where phase transformation has taken place deviate from the

numerical FE results. Although the size and shape of the plastic and the transformed

zones deviate, it is noted that the trends in the changes of the zone sizes with temperature

is correct. In addition, from the linear elastic analytical solution the plastic zone is found

to be confined within the phase transformation-exposed material at lower temperatures,

whereas at higher temperatures, the plastic zone is much larger than the region where

martensite formation has occurred. At T = 233 K the plastic zone and the transformation

zone are of comparable size. Since the analytical elastic solution, at higher temperatures,

results in the plastic zone enclosing any material containing martensite, the appearance of

the phase transformation zone is ambiguous.

As an alternative approach, an HRR solution is obtained analytically, not least reveal-

ing that the linear elastic solution overestimates the phase transformation zone at higher

temperatures. These analytical results agree with the FE solution. The plastic zones from

the HRR solution are generally smaller than those obtained from the linear elastic solu-

tions. It should be noted, however, that the HRR zones are obtained for a certain choice

of the stress amplitude parameter Kσ at T = 313 K to allow comparison between results

from the HRR solution with those from the linear elastic solution and from FEs. At higher
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temperatures, where little or no martensite formation takes place, the linear elastic solution

tends to overestimate the size of the transformed zones whereas the HRR solution agrees

quite well with the FE solution at these temperatures. The HRR solution also renders

plastic zones that have their maximum extent inclined slightly more than 90◦ from the

horizontal axes. This is in contrast to the 70◦ inclination of the zones discussed previously

in the literature, also obtained through FE simulations in the present work.

Through the present study, where FE simulations are studied in conjunction with both

linear elastic and non-linear elasto-plastic analytical solutions, a thorough study of the

material behavior near the tip of a mode I crack in austenitic stainless steel at different

temperatures is performed. Novel insight into crack tip plasticity in this material when

exposed to phase transformation, as well as into related transformation toughening, is given

in the present work. As continued work, it would be interesting to consider quasi-static

propagation of the crack to examine other aspects of transformation toughening.
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ŷ

0 0.05 0.1−0.05−0.1
0

0.05

0.1

0.15
HRR solution

a) T = 213K

Figure 11: Size and shape of the plastic zones near the crack tip at four different tem-
peratures under plane strain mode I conditions with ν = 0.3. The left column shows FE
results with KI = 33 MPa

√
m and the right column shows analytical results from the HRR

solution with Kσ = 298 MPa·m1/(n+1). The rows show results at each of the four different
temperatures: (a) T = 213 K, (b) T = 233 K, (c) T = 293 K and (d) T = 313 K.
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Figure 12: Size and shape of the transformed zones near the crack tip under plane strain
mode I conditions with ν = 0.3. (a) T = 213 K, (b) T = 233 K, (c) T = 293 K and (d)
T = 313 K. In figures (a) and (b), the left column shows FE results with KI = 33 MPa

√
m

and the right column shows results from the HRR solution with Kσ = 298 MPa·m1/(n+1).
Note that no phase transformation occurs in the FE results at the two higher temperatures.
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