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Greedy Distinguishers and Nonrandomness
Detectors

Paul Stankovski

Dept. of Electrical and Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

Abstract. We present the concept of greedy distinguishers and show
how some simple observations and the well known greedy heuristic can
be combined into a very powerful strategy (the Greedy Bit Set Algo-
rithm) for efficient and systematic construction of distinguishers and
nonrandomness detectors. We show how this strategy can be applied to
a large array of stream and block ciphers, and we show that our method
outperforms every other method we have seen so far by presenting new
and record-breaking results for Trivium, Grain-128 and Grain v1.
We show that the greedy strategy reveals weaknesses in Trivium reduced
to 1026 (out of 1152) initialization rounds using 245 complexity – a result
that significantly improves all previous efforts. This result was further
improved using a cluster; 1078 rounds at 254 complexity. We also present
an 806-round distinguisher for Trivium with 244 complexity.
Distinguisher and nonrandomness records are also set for Grain-128. We
show nonrandomness for the full Grain-128 with its 256 (out of 256) ini-
tialization rounds, and present a 246-round distinguisher with complexity
242.
For Grain v1 we show nonrandomness for 96 (out of 160) initialization
rounds at the very modest complexity of 27, and a 90-round distinguisher
with complexity 239.
On the theoretical side we define the Nonrandomness Threshold, which
explicitly expresses the nature of the randomness limit that is being
explored.

Keywords: algebraic cryptanalysis, distinguisher, nonrandomness de-
tector, maximum degree monomial, Trivium, Grain, Rabbit, Edon80,
AES, DES, TEA, XTEA, SEED, PRESENT, SMS4, Camellia, RC5,
RC6, HIGHT, CLEFIA, HC, MICKEY, Salsa, Sosemanuk

1 Introduction

The output of a sensibly designed cipher should appear random to an
external observer. Given a random-looking bit sequence, that observer
should not be able to tell if the sequence is genuinely produced by the
cipher in question or not. This simple idea is the core of cryptographic
distinguishers and nonrandomness detectors.



Recently we have seen several attempts at finding distinguishers and
nonrandomness detectors and the best ones seem to be built using the
maximum degree monomial test (see [27, 11]) or some derivative of it. This
test is superb for detecting nonrandomness, but it also provides a window
into the internals of the cryptographic algorithm we are examining. The
maximum degree monomial test can provide statements such as “The IV
bits are not mixed properly”, which can be invaluable to the algorithm
designer.

The core of this test is a bit set, and the efficiency of the test is largely
determined by how this bit set is selected. For this selection process, it
seems that guesswork has been the most prominent ingredient. The reason
for this may be that systematic methods have seemed too complicated to
find or use, or simply that the importance of bit set selection has been
underestimated. By far, the best systematic approach we have seen so far
was due to Aumasson et al. [2]. They used a genetic algorithm to select a
bit set, and this is a very reasonable approach for unknown and complex
searchspaces. The complexity of the searchspace depends on the algorithm
we are examining, but are they really so complex that we need to resort to
such methods? In this paper we present a very simple deterministic and
systematic approach that outperforms all other methods we have seen so
far. We call it the Greedy Bit Set Algorithm.

Stream ciphers have an initialization phase, during which they “warm
up” for a number of rounds before they are deemed operational. Block
ciphers are not explicitly initialized in this way, but they do operate in
rounds. For our purposes, this can be translated into an initialization
phase.

How many rounds are needed to warm up properly? This is a question
that every algorithm designer has been faced with, but we have not yet
seen any satisfactory answer to this question. We make some observations
that lead us to a definition of the Nonrandomness Threshold, which helps
us to better understand the nature of the problem. The Greedy Bit Set
Algorithm is a tool that can and should be used by designers to determine
realistic lower bounds on the initialization period for their algorithm.

We go on to show how the Greedy Bit Set Algorithm performs against
a wide variety of new and old stream and block ciphers, and we find new
record-breaking results for Trivium, Grain-128 and Grain v1. We reveal
weaknesses in Trivium reduced to 1026 out of 1152 initialization rounds
in 245 complexity, thereby significantly improving all previous efforts. By
using a cluster we are able to improve this result even further to 1078
rounds at 254 complexity. For Trivium we also present a new 806-round



distinguisher of complexity 244. Both distinguishing and nonrandomness
records are also set for Grain-128. We show nonrandomness in 256 (out
of 256) initialization rounds, and present a 246-round distinguisher with
complexity 242. For Grain v1 we show nonrandomness for 96 (out of 256)
initialization rounds for a cost of only 27.

The paper is organized as follows. In Section 2 we give an overview
of the black box model attack scenario and explain the maximum degree
monomial test. We also briefly describe the software tools developed for
this paper. In Section 3 we present our Greedy Bit Set Algorithm, com-
ment on the importance of key weight and define the Nonrandomness
Threshold. In Sections 4 and 5 we present and summarize our findings
for the various algorithms. Finally, some concluding remarks are given in
Section 6.

As a frame of reference, this article takes Filiol [12], Saarinen [27] and
Englund et al. [11] as a starting point, and the most relevant previous work
is due to Aumasson et al. [1, 2] (see also Knudsen and Rijmen [19], Viel-
haber [30], Dinur and Shamir [10] and Fischer, Khazaei and Meier [13]).

2 Background

2.1 The Black Box Model

Distinguishers may be built for block ciphers, stream ciphers, MACs, and
so on, so adopting a black-box view of the cryptographic primitive is
instructive. Consider the set-up in Fig. 1, dividing entities into potential
input and output parameters to the left and right, respectively.

Black
box

Key -
IV -
Plaintext -

Ciphertext-

Fig. 1. Black box view of a cipher.

A distinguisher attempts to determine if a given black box produces
true random output or not. No cryptographic primitive produces truly
random output, so the distinguisher can be thought of as a classifier.
Given an output producing black box, the distinguisher answers “ran-
dom” or “cipher”, depending on its assertion. The distinguisher is said to



be efficient if it significantly outperforms guessing, where the meaning of
’significantly’ depends on the application.

For a distinguisher, the key is fixed and unknown. That is, the distin-
guisher may invoke the black box several times with different IVs, but the
key is kept fixed. The IV bits constitute the input parameter bit space
B = {0, 1}m. The fixed key black box scenario is typical for real-world
applications, and distinguishers are practical in the sense that they can
be used in such a scenario.

Nonrandomness detectors are what we get when the input parame-
ter bit space B includes key bits1. This renders them less useful in a
real-world fixed key black box scenario, since they are related-key crea-
tures by construction. Their merit, however, is that they can do a better
job of detecting nonrandomness. This is invaluable for the cryptographic
community, as we can get earlier indications on weaknesses in specific
algorithms. Distinguishers show weaknesses in how IV bits are handled,
while nonrandomness detectors, in addition, can show weaknesses in how
key bits are handled.

Explicitly summarizing the above, we have

Distinguisher: A {’random’,’cipher’}-classifier whose input param-
eter bit set B does not include key bits.

Nonrandomness detector: A {’random’,’cipher’}-classifier whose
input parameter bit set B does include key bits.

Note, using a known or chosen key makes the {’random’,’cipher’}-
classifier a nonrandomness detector, as we are then restricting the key
space and effectively allowing key bits in B. A related discussion can be
found in [19].

2.2 The Maximum Degree Monomial Signature

Algebraic techniques in general have recently been shown to be very pow-
erful, and the maximum degree monomial (MDM) test stands out as a
highly efficient randomness test. We have used this test in the following
natural setting.

Consider a black box cipher that has been modified to produce output
during its l initialization rounds. Choose a subset S = {0, 1}n of the input
1 We have not examined the effect of allowing plaintext bits in B, but this has the

potential of working very well as these bits usually enter the state after both key
and IV bits. This is true for block ciphers, but generally not for stream ciphers as
encryption in that case usually works by simply XORing plaintext and keystream.



variables B and regard the l-bit initialization round output of the black
box as a Boolean vector function of the n variables x1, · · · , xn in S. Letting
f : {0, 1}n → {0, 1}l denote the Boolean vector function, the sum∑

x∈{0,1}n
f(x)

produces a maximum degree monomial signature {0, 1}l for the cipher.
Note that this implicitly defines l (regular) Boolean functions fi, 1 ≤ i ≤ l,
one for each output bit. The ith signature bit is the coefficient of the
maximum degree monomial x1 · · ·xn in the algebraic normal form of fi

(see [27, 2]).
An ideal cipher produces a random-looking MDM signature. That is,

if a boolean function g : {0, 1}n → {0, 1} is chosen uniformly at random
from the universe of all such boolean functions, the maximum degree
monomial exists in g with probability 1

2 .
The MDM signature for Trivium over the set consisting of every third

IV bit, setting all other key and IV bits to zero, is

000 . . . 000︸ ︷︷ ︸
930 zeros

101 . . . .

The long sequence of leading zeros is very striking. We conclude that
the sequence appears random-like close to where the first 1-bit appears,
at round 931. We say that we have observed 930 zero rounds, and one
interpretation of this is that 930 initialization rounds are not sufficient to
properly mix the corresponding IV bits. Note that this is a nonrandomness
result (chosen key).

Running the MDM test (producing the MDM signature and counting
the number of initial zero rounds) over any given bit set S (permitting
both key and IV bits) for an otherwise fixed key and fixed IV will produce
a nonrandomness result. Fixed key nonrandomness detection over a bit
set of size n has complexity 2n and requires O(l) space.

If the bit set S contains only IV bits, we have also implicitly pro-
duced a corresponding distinguisher. To assess the efficiency of this dis-
tinguisher, its performance needs to be sampled over random keys. Many
different bias tests can be used here, but we have used MDM signature
bit constantness (equal to zero) as measure, and two approaches stand
out as simple, reasonable and typical.

Taking the minimum number of zero rounds over N randomly sampled
keys assesses a distinguisher in N × 2n time and O(l) space. The time



required for running this distinguisher is, however, only 2n. Higher values
for N increase the confidence level of the zero round number estimate.

Alternatively, taking the maximum number of zero rounds over N
random keys assesses a distinguisher in N × 2n time and O(l) space. In
the black box attack scenario, we need to examine N different black boxes
before we find one that our distinguisher works for. The total running time
for this distinguisher is therefore N × 2n. Taking the maximum costs us
a factor N .

It is reasonable to take the maximum approach when the number of
zero rounds varies heavily over the randomly selected keys. Without so
much variation, it is more reasonable to take the minimum. This trades a
few zero rounds for better time complexity. If complexity is less important,
the highest zero round count is obtained by taking the maximum.

One key point is that the MDM test seems to be highly efficient and
works very well in practice for some cryptographic algorithms. Another
key point that makes the MDM tests attractive is that all output se-
quences can be successively XORed, so only a negligible amount of stor-
age is required. Furthermore, one does not need to know anything at all
about the internals of the algorithm that is being tested. The algorithm
will quite politely but candidly reveal how susceptible any black box al-
gorithm is to the MDM test.

2.3 Black Box Framework

A specialized cryptographic library that permits output of initialization
data was put together for this paper. The library was written in C and
supports bitsliced implementations and threading to make good use of
multiple cores. This is something that the MDM test benefits from since
it is spectacularly parallelizable. A unified interface makes it simple to
author generic tests that can be used for all supported algorithms, and
LATEX-graphs of the results can be generated. This framework is an ex-
cellent tool for testing future generators. Interested researchers may find
both ready-to-use executables and source code at [29]. The stream- and
block ciphers used for this paper are listed in Table 1.

3 The Algorithm and a Threshold

3.1 The Greedy Bit Set Algorithm

The trick to obtaining good results with the MDM test is to find an effi-
cient bit set S for summation, a bit set that produces many zero rounds.



Table 1. Algorithms used to obtain the results in this paper.

Stream ciphers Block ciphers

Trivium [8] Rabbit [6] AES-128 [24] AES-256 [24]
Grain v1 [16] Grain-128 [15] DES [23] PRESENT [7]
Edon80 [14] MICKEY v2 [3] RC5 [25] RC6 [26]
HC-128 [34] HC-256 [33] TEA [31] XTEA [32]
Salsa20/12 [5] Sosemanuk [4] SEED [20] SMS4 [9]

Camellia [22] HIGHT [17]
CLEFIA [28]

The well known greedy heuristic provides a very simple but yet highly
successful algorithm that outperforms all methods we have seen so far.
The algorithm is made explicit in Fig. 2.

Algorithm GreedyBitSet
Input: key k, IV v, bit space B, desired bit set size n.
Output: Bit set S of size n.

S ← ∅;
repeat n times {

S ←GreedyAddOneBit(k, v, B, S);
}
return S;

Fig. 2. The Greedy Bit Set Algorithm.

Note that k and v are fixed, and that the bit space parameter B
determines if key and/or IV bits may be used to build the resulting bit
set. The subroutine GreedyAddOneBit is specified in Fig. 3.

Further note that the algorithm in Fig. 2 illustrates the straightfor-
ward greedy “add best bit”-strategy for building the resulting bit set
S. GreedyBitSet can, by avoiding unnecessary recalculations, easily be
implemented to sport a running time of precisely2

1 +
∑

0≤i<n

(m− i)2i < m2n

initializations for building a bit set of size n, where m is the size of
the permissible bit space B.

2 There are m choices for the first bit, m− 1 choices for the second bit, and so on.



Algorithm GreedyAddOneBit
Input: key k, IV v, bit space B, bit set S of size n.
Output: Bit set S′ of size n + 1.

bestBit← none;
max← −1;
for all b ∈ B\S {

zr ← numInitialZeroRounds(MDMsignature(k, v, S ∪ {b}));
if (zr > max) {

max← zr;
bestBit← b;

}
}
return S ∪ {bestBit};

Fig. 3. The GreedyAddOneBit subroutine.

As a generalization one may allow other bit set building strategies,
or a non-empty starting bit set. In this somewhat generalized form we
denote an instance of the algorithm

GreedyBitSet(strategy, starting bit set, primitive, bit space, key, IV).

For example, running the Greedy Bit Set Algorithm with the “add
best bit”-strategy on Trivium starting with an empty bit set, allowing
only IV bits in the bit set, using the all-ones key and setting all remaining
IV bits to zero may be denoted

GreedyBitSet(Add1, ∅, Trivium, {IV}, 1, 0).

Instead of starting with an empty bit set one may begin by computing
a small optimal bit set and go from there. For most of our results below
we have used optimal bit sets of sizes typically around five or six.

An alternative bit set building strategy is denoted “AddN”. AddN
operates by adding the N bits that together produce the highest zero
round count when added to the existing set. These bit sets should heuris-
tically be better than the ones produced using the Add1 strategy as local
optima are more likely to be avoided. The performances of the Add1 and
Add2 strategies for Grain-128 are compared in Fig. 4, where the darker
curve represents the Add2-strategy. GreedyBitSet with AddN strategy
can be implemented with a running time of precisely3

3 There are
(

m
N

)
choices for the first bit,

(
m−N

N

)
choices for the second bit, and so on.



1 +
∑

0≤i<k

(
m− iN

N

)
2i < mN2k

initializations for building a bit set of size kN .
We have standardized the graphs for uniform comparison between

algorithms. Given a bit set, the portion of leading zero rounds in the
initialization rounds is denoted ’bit set efficiency’.

bit set efficiency

bit set size

24 48 72 96

25%

50%

75%

100%

bit set size

# zero rounds

5 10 15 20 25 30

50

100

150

200

252

Fig. 4. Add1 (gray) vs. Add2 strategy (black) for Grain-128.

For an ideal cipher, a bit set of size n produced by the Greedy Bit Set
Algorithm will admit around lg (m− n) zero rounds.

3.2 Key Weight and the Nonrandomness Threshold

For some ciphers we have found that the result of the MDM test depends
heavily on the weight of the key. A typical example of this is Trivium, for
which the test seems to work best for the all-zeros key and worst for the
all-ones key. Fig. 5 shows the efficiency of the bit sets produced by the
Greedy Bit Set Algorithm for Trivium, starting with an empty set, using
zero IV fill for these two keys.

For Trivium it seems that the all-zeros and all-ones keys are extreme
cases. All other keys we have tried end up producing a curve that lies be-
tween these two, and a curve produced by averaging over several randomly
chosen keys certainly falls between as well. So which value is most inter-
esting: the maximum, minimum or the averaged one? Which zero round
count should be reported? An attacker working on a deadline might be



bit set efficiency

bit set size

40 80 120 160

25%

50%

75%

100%

bit set size

# zero rounds
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200

400
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800

972

Fig. 5. The all-zeros key works better than the all-ones key for Trivium.

interested in the average performance over random keys, or possibly in the
worst case performance if her deadline is really tight. But the algorithm
designer may have quite other preferences.

Consider an algorithm analyst that needs to determine a reasonable
number for how many initialization rounds that are needed for balancing
initialization time and security in Trivium. Using the graphs in Fig. 5,
the analyst can see that 1000 rounds will just barely withstand signs of
improper mixing in this setting. At 972 rounds we start finding keys that
allow us to prove that the bit mixing is inadequate. As we keep reducing
the number of rounds, more and more keys show the same vulnerability.
At 790 rounds, more or less all keys simultaneously chant “Inadequate
mixing” in four-part harmony. The algorithm designer should, of course,
in this case decide on an initialization round count well above 972. How
much more is debatable.

Recall that we use a bit set S = {0, 1}n which is a subset of the
entire bit space B = {0, 1}m. The highest round count value 972 obtained
above should really be viewed as a lower bound of a threshold - the
Nonrandomness n-Threshold for bit sets of size n. That is the nature of
the limit we are exploring here, a threshold for the existence of proof of
inadequate bit mixing. Testing a specific bit set of size n over a single
key and IV provides a lower bound for this threshold. The true threshold
value is conceptually obtained by repeating the MDM Test several times
taking the maximum over all possible keys, IVs and bit sets of size n for
a total complexity of

(
m
n

)
2m−n.



Definition 1. Nonrandomness n-Threshold
The maximum number of zero rounds attainable according to

max numInitialZeroRounds(MDMsignature(k, v, B, S)),

where the maximum is taken over S ⊆ B with |S| = n, k ∈ K and
v ∈ V . B, K and V are the bit set-, key- and IV space, respectively.

4 Results

The algorithms are grouped according to susceptibility to the MDM test
below, where particularly interesting algorithms are given room for elab-
oration. An algorithm is given a susceptibility rating high, significant,
moderate or low according to its tendency to submit to the MDM test as
the bit set size gets larger.

A direct comparison of our results to the previous best ones can be
found in Table 2 in Section 5.

4.1 High Susceptibility

TEA and The Bit Flip Test TEA is the top candidate. Starting with
an empty bit set, we reach a full 100% zero round count after only two key
bits have been added. It is the key bits that are the weak link, and this
is a previously known deficiency in TEA (see [18]). The picture becomes
quite different when one considers IV bit mixing. Allowing IV bits only
results in a susceptibility that seems to be inherently low.

It seems that the shortcomings in key bit mixing have been prop-
erly dealt with for XTEA, as the Greedy Bit Set Algorithm cannot show
anything beyond a low susceptibility level for any bit type. There is some-
thing we can learn from TEA. The TEA flaw is revealed by flipping two
key bits, in which case the output does not change. We can devise an
automated test for these simple symmetry faults. A Bit Flip Test can be
defined by adding the two output sequences produced before and after
flipping all bits in a given bit set. Trying all bit sets of small size will
catch design flaws such as the one in TEA. The Bit Flip Test is, in fact,
a MDM test for a bit set of size 1 with a prior change of basis. Instead of
summing over a perfect cube, we sum over the “tilted” cube that is the
result of a linear transformation of the basis.

Two such two-bit configurations are known for TEA, and we have
verified that no other ones exist. We have also verified that none of the



other algorithms we are considering here show any such bit flip weaknesses
for small bit set sizes (five or so).

The Bit Flip Test should really be part of every algorithm designer’s
toolbox. This test, and many others, should be used routinely to check
for errors or unexpected behavior.

Grain-128 For Grain-128, IV bits have a tendency to be more efficient
than key bits and, as with Trivium, low weight keys work better than high
weight keys. Running the Greedy Bit Set Algorithm on the all-zeros key
with the Add2-strategy up to bit set size 40, IV bits only, we produced a
nonrandomness detector for the full Grain-128 with its 256 initialization
rounds. The successive development from the optimal 6-set to bit set size
40 is shown in Fig. 6.

bit set efficiency

bit set size

24 48 72 96

25%

50%
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bit set size

# zero rounds

5 10 15 20 25 30 35 40

50

100

150

200

256

Fig. 6. Insufficient IV bit mixing in full Grain-128 (all 256 rounds).

We now turn our attention from nonrandomness detectors to distin-
guishers. The best previous distinguisher result on Grain-128 was due to
Aumasson et al. [1]. Taking the maximum number of rounds over 64 ran-
dom key trials, they found a 237-round distinguisher for a bit set of size
40.

Our greedy bit set of size 40 turns out to provide a 246-round dis-
tinguisher, measured by taking the maximum zero round count observed
over 16 random key trials for a complexity of 242. The bit set is given
below (zero indexed), and the order in which the bits have been added to
the set has been preserved. The remaining IV bits were set to zero. The
first six bit indices form the optimal 6-set.



34 59 63 64 67 69 55 61 25 85 35 58 2 73 30 38 5 6 10 44
24 50 3 77 91 95 12 13 41 72 19 29 15 79 7 37 21 45 8 71

To summarize the case for Grain-128, we have found one greedy non-
randomness detector showing that 256 (out of 256) rounds are insufficient
for mixing the IV bits. This detector uses a bit set of size 40 and has com-
plexity 240.

We also found a greedy 246-round distinguisher with complexity 242.
This distinguisher uses the 38 first bits of the bit set above, taking the
maximum zero round count over 16 random keys. The two last bits did
not improve the distinguisher.

Trivium There are several interesting observations for Trivium, apart
from the importance of key weight that we have already established in
Section 3.2. Key and IV bits are equally effective, but allowing both kinds
in our bit set will take us much further. To see why this is not a contra-
diction, have a look at Fig. 7, which depicts the case where we allow only
IV bits.

bit set efficiency

bit set size

20 40 60 80

25%

50%

75%

100%

bit set size

# zero rounds

5 10 15 20 25 30 37

200

400

600

800

929

Fig. 7. GreedyBitSet(Add1, Opt7, Trivium, {IV},0,0)

This graph is unique in that the curve drops significantly after the bit
set has been built to size 27. Using every third bit for our bit set turns
out to be the most effective choice. This is due to the threefold structure
of Trivium, and this is not a new observation (see [21]). It doesn’t seem
to matter much which third we choose, but once we have started to build
up our set we do best if we stick to that implicit third. After 27 bits we
run out of bit space, but we can allow both key and IV bits.



Our best greedy nonrandomness detector using both key and IV bits
takes us 1026 out of 1152 rounds. This is for the zero key, which we noted
before was heavily biased. The greedy strategy was to start from the
optimal 5-set and to use the Add2-strategy up to bit set size 29, via the
Add1-strategy up to bit set size 37, to finally just guessing the last few
bits for a total bit set size of 45. The resulting bit set is

Key bits 1 4 7 10 12 16 19 22 25 31 34 37
40 43 46 49 52 55 58 61 64 70 73 76

IV bits 1 4 7 10 16 19 25 28 31 34 37 40
43 46 49 52 55 58 64 67 70

The every-third-structure is evident in this bit set, so it would be
interesting to measure the zero round performance of the corresponding
54-bit set with 27 key and 27 IV bits. Considering the bit set performance
drop we saw in Fig. 7 above, it is reasonable to assume that we will see
the same effect once we try to go beyond this supposedly near-optimal
54-bit set. More than one million core hours of computation on a cluster
showed that we get 1078 zero rounds after 254 encryptions.

We also present a distinguisher for 806-round Trivium. As noted be-
fore, one can use the internal structure of Trivium by using every third IV
bit for the bit set. Unfortunately, we run out of bits after 27 of them have
been added. We can, however, skip exploiting the threefold structure and,
instead, just use the fact that multiplication is always performed between
neighboring state variables. Using every second IV bit for the bit set will
avoid fast initial term growth and take us 803 rounds over randomly se-
lected keys. This was the minimum number of rounds obtained over 16
trials, so the resulting complexity is 240. Taking the maximum produces
an 806-round distinguisher with complexity 244.

4.2 Significant Susceptibility

Grain v1 is definitely susceptible, as one can see from the direction of the
curve in Fig. 8. The level of susceptibility seems limited, however, as the
extrapolated greedy-curve will not hit the roof for any bit set of relevant
size.

Key bits seem to work a little better than IV bits, in general, but our
best nonrandomness result is 96 zero rounds for the all-zeros key with the
optimal IV bit set of size 7 given by (zero-indexed)

1 22 26 37 45 47 55
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Fig. 8. GreedyBitSet(Add1, Opt5, Grain v1, {Key, IV},0,0)

A 90-round greedy distinguisher was derived from a bit set of size
35 by taking the maximum zero round count over 16 random keys for a
complexity of 239. The zero-indexed IV bit set is

1 22 26 37 45 47 55 12 16 4 28 29 36 0 39 31 34 10
11 7 32 9 50 13 25 59 5 3 57 53 51 42 33 38 8

4.3 Moderate or Low Susceptibility

AES, DES, CLEFIA and HIGHT all start at and stay within a bit set
efficiency in the range 25-50%. These algorithms show only very slight or
no sign of budging as the bit set size increases.

The remaining ciphers have a bit set efficiency below 25%. Edon80
deviates from the norm by having a somewhat erratic curve, but it seems
to stay within the 0-25% efficiency range. Sosemanuk does show a ten-
dency to be affected by the MDM test, but all other algorithms seem to
be more or less inherently non-susceptible.

It is interesting to see that the bit set efficiency for IV bits in RC5,
and for IV bits in RC6 and key bits in XTEA to a lesser extent, show
a decreasing tendency as the search progresses and bit set sizes increase.
The curve for RC5 IV bits can be seen in Fig. 9.

HC-128 and HC-256 set a record of sorts at the low end by showing
no significant susceptibility while producing an extremely large amount
of initial data.

The yet unmentioned and remaining algorithms (Camellia, MICKEY
v2, PRESENT, Rabbit, Salsa20/12, SEED and SMS4) all seem to be
inherently non-susceptible.
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Fig. 9. IV bit sets for RC5 show decreasing efficiency.

5 Results Summary

We have shown how to find efficient bit sets in a systematic and determin-
istic way by using the Greedy Bit Set Algorithm. The record-breaking dis-
tinguishers and nonrandomness detectors derived from using the Greedy
Bit Set Algorithm show that this algorithm outperforms all other bit set
selection schemes we have seen so far. Table 2 compares the previous best
results to ours for Trivium, Grain-128 and Grain v1.

We presented a nonrandomness detector showing that Grain-128 with
full 256-round initialization does not behave sufficiently random. This
detector uses an IV bit set of size 40 and has a complexity of 240. We also
presented a 246-round distinguisher over random keys with complexity
242.

For Trivium we found a greedy 1026-round nonrandomness detector
with complexity 245. Using a cluster, we went on to find a nonrandomness
detector for 1078 out of 1152 rounds with 254 comlexity. We also presented
a 806-round distinguisher with 244 complexity.

For Grain v1 we showed nonrandomness up to 96 rounds with com-
plexity 27, and a 90-round distinguisher with complexity 239.

6 Concluding remarks

With the exception of TEA, all block ciphers we have tested seem reason-
ably resistant to the maximum degree monomial test. Due to differences
in how zero rounds are measured in stream and block ciphers, one should,
however, not immediately draw the conclusion that block ciphers are safer
than stream ciphers.



Table 2. Comparison to previous results.

Algorithm Attack type Rounds Time Authors Rounds Time Authors

Trivium distinguisher 790 230 [2] 806 244 this paper
Trivium nonrandomness 885 227 [2] 1078 254 this paper
Grain-128 distinguisher 237 240 [1] 246 242 this paper
Grain-128 nonrandomness - - - 256 240 this paper
Grain v1 distinguisher 81 224 [1] 90 239 this paper
Grain v1 nonrandomness - - - 96 27 this paper

The Greedy Bit Set Algorithm can be examined with more elaborate
strategy variants, bit selection schemes, randomness tests, cryptographic
algorithms, allowing plaintext bits in the bit set, and so on. The most
urgent and constructive goal, however, would be to explain why the MDM
test fails miserably for some algorithms. What minimal set of properties
is guaranteed to render the MDM test useless?

Let us elaborate on the concept of “weak” bits, see [2, 13]. Weak bits
are such that they significantly increase the efficiency (the number of
zero rounds) of a bit set if they are added to it. The first question one
might ask is: Do weak bits exist at all? The Greedy Bit Set Algorithm
answers this question and reveals some deeper insight into the concept of
weakness. Our algorithm successively builds larger bit sets by repeatedly
adding the weakest remaining single bit (Add1 strategy). For Trivium,
bits at every third bit position eagerly reappear among the top ranked
bits again and again as the bit set size steadily increases. The bits at
other (off-third) positions do not show up as top ranked at all. This zero
round distribution regularity is clear evidence that Trivium has weak bits.
Other algorithms show no sign of weak bits. This does not prove their
non-existence in any way, but we surmise that any bit selection strategy
for a truly perfect algorithm should not perform much better than random
choice. For Grain-128, there are signs of bit weakness, but they are much
less conclusive than for Trivium.

The existence of weak bits is algorithm dependent. Also, when we use
GreedyBitSet we successively expand a bit set with the currently weakest
bit. This means that the existence of weak bits does not only depend
on the choice of test, but also on the current state of the test. As for
drawing conclusions on the existence of globally weak bits, defining how
to measure bit weakness is only the first step into a rather non-trivial
enterprise.



One consequence of this is that one cannot prove any general perfor-
mance guarantees for GreedyBitSet stating that we will obtain a good bit
with some supposedly high probability. As we have seen, for Trivium we
do, for RC5 we don’t.

Also, more intelligent analysis of the zero round distribution over the
remaining bit space could lead to better practical assessment measures
for bit weakness that could be used to improve The Greedy Bit Set Al-
gorithm.

Automatic cryptanalysis can be performed on many cryptographic
primitives. A toolbox of various tests, MDM-based and others, should be
at the disposal of every algorithm designer. Such a toolbox can be used
to reveal unexpected design weaknesses and to give better estimations
on the required number of initialization rounds. The interested reader is
referred to [29].

We wish to thank the anonymous reviewers for their insightful com-
ments.
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