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Abstract
We have studied whether the efficiency of alchemical free-energy calculations with the 
Bennett acceptance ratio method of protein–ligand binding energies can be improved by 
simulating only a part of the protein. To this end, we solvated the full protein in a spherical 
droplet with a radius of 46 Å, surrounded by vacuum. Then, we systematically reduced the 
size of the droplet and at the same time ignored protein residues that were outside the droplet. 
Radii of 40 to 15 Å were tested. Ten inhibitors of the blood clotting factor Xa were studied 
and the results were compared to an earlier study in which the protein was solvated in a 
periodic box, showing complete agreement between the two set of calculations within 
statistical uncertainty. We then show that the simulated system can be truncated down to 15 Å, 
without changing the calculated affinities by more than 0.5 kJ/mol on average (maximum 
difference 1.4 kJ/mol). Moreover, we show that reducing the number of intermediate states in 
the calculations from eleven to three gave deviations that on average were only 0.5 kJ/mol 
(maximum 1.4 kJ/mol). Together this shows that truncation is an appropriate way to improve 
efficiency of free-energy calculations for small mutations that preserve the net charge of the 
ligand. In fact, each calculation of a relative binding affinity requires only 6 simulations, each 
of which takes ~15 CPU hours of computation on a single processor.

Keywords: free-energy perturbation, Bennett acceptance ratio, ligand-binding affinities, 
periodic boundary conditions, system truncation, long-range electrostatics.
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Introduction
Accurate estimation of protein–ligand binding affinities is a major challenge in computational 
chemistry.  Although formally correct relative free energies can be obtained by alchemical 
free-energy techniques such a free energy perturbation (FEP) and thermodynamic integration 
(TI),  they have found little use outside academia.1,2 The main reason for this  is  that such 
methods  are  computationally  demanding,  because  they  require  simulations  of  unphysical 
intermediate states involving extensive sampling of the phase space.3 

More approximate methods to estimate binding affinities exists, which do not require 
simulations  of  intermediate  states.4 They  are  usually  referred  to  as  end-points  methods 
because they sample only the complex, and possibly the free protein and the free ligand.5 A 
popular method in this class is MM/GBSA (molecular mechanics with generalised Born and 
surface-area solvation).6,7 Although it  only requires a simulation of the complex, we have 
shown  that  it  can  actually  be  computationally  more  expensive  than  TI  because  it  is 
intrinsically imprecise and requires averaging over many independent simulations to reach a 
precision comparable to that of FEP or TI.8 In addition, the accuracy of some of the terms in 
MM/GBSA have been questioned and the method often fails to give a useful accuracy of the 
predicted affinities.9,10,11 Another popular  end-point  method is  the linear interaction energy 
(LIE).12 We have shown that it is slightly more effective than MM/GBSA, although it also 
suffers from a poor precision and a varying accuracy.13,14

Therefore, alchemical free-energy calculations seem to be the method of choice, at least 
for relative binding affinities, and the challenge is then to make the method more efficient.  
Previously,  we  have  analysed  how  many  unphysical  intermediate  states  and  how  long 
simulation are needed to obtain accurate results.8 We showed that for our test case, rather few 
intermediate states (3 to 5) were enough and the simulation time should be ~1 ns for the  
protein–ligand simulations and 2 ns for the free ligand simulations.

Apart from improvements in the simulation protocol, the system itself can be changed 
in a way that reduces the computer requirements. One approach that has been used by some 
research groups for the calculation of protein–ligand affinities is to simulate only a part of the 
protein, immersed in a droplet of explicit water molecules. In some approaches, the water 
droplet is surrounded by vacuum and therefore special care has to be taken to ensure that the 
water molecules in the droplet have bulk-like behaviour.15 One approach is to use stochastic 
boundary conditions, in which the outermost region is simulated using Langevin dynamics 
and thereby impose friction on the inner region.16,17 

Another approach is to impose restraints on the water molecules. A radial potential has 
to be added to prevent the water from evaporating and hence keeping the number density 
constant through the droplet. This has been obtained with various kinds of potentials.15,18,19 

Moreover,  the  polarisation  orientation  of  the  water  molecules  is  heavily  affected  by  the 
presence of vacuum. In the SCAAS (surface-constrained all-atom solvent) model,18 King and 
Warshel solved this problem by imposing a uniform distribution for the angle between the 
water dipole vector and the displacement vector from the origin. Essex and Jorgensen have 
developed  a  similar  method15 and  they  found  it  necessary  to  restrain  also  the  vector 
perpendicular to the plane of the water molecule. 

Alternatively, the excluded part of the simulated system can be replaced by continuum 
electrostatics. Roux and co-workers have introduced a technique called generalised solvent 
boundary potential (GSBP),20,21 in which the effect of the excluded atoms are modelled using 
a  solvent-shielded  static  field  and  a  solvent-induced  reaction  field.  The  reaction  field  is 
expanded in a basis set representing the inner-region charge distribution. Both the static field 
and the basis set coefficients are pre-calculated by solving the Poisson–Boltzmann equation. 
Simonson et  al.  introduced an approach that is  a combination of vacuum simulations and 
continuum corrections.22 The vacuum simulations are performed using stochastic boundary 
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conditions and some charges are reduced to mimic solvent screening. After the simulation, 
full charges are re-introduced and the corresponding free energy is calculated. Finally,  the 
solvation free energy of the system is estimated using Poisson–Boltzmann calculations.

Although these methods have been shown to work well in several applications, to our 
knowledge, there has been no systematic study on the effect of truncation. How large portion 
can be truncated without loosing accuracy? In this paper we will report such an investigation. 
We study the binding of a series of inhibitors of the blood clotting enzyme factor Xa (fXa), 
which  was  also  used  it  in  our  previous  study  with  the  full  protein.8 This  allows  us  to 
investigate the effect of going from an octahedral system with periodic boundary conditions to 
a full protein in a spherical solvent droplet and then to several truncated spherical system of 
different sizes. The results show that system truncation is an excellent approach to reduce the 
computational cost of protein–ligand free-energy calculations without loosing accuracy.

Methods

System  preparation.  The  ten  3-amidinobenzyl-1H-indole-2-carboxamide  inhibitors 
considered in this study are shown in Figure 1. They are named after their numbers in the 
original study.23 The preparation of most of these ligands has been described before8 and the 
new ligands (5 and 51) were prepared in an analogous way. All calculations were started from 
the  crystal  structure  of  fXa  in  complex  with  ligand  125 (PDB code  1lpk).23 The  crystal 
structure shows two conformations for one of the amidino groups of the ligand, but only a 
single conformation of the ligand was studied here (the A conformation) because our previous 
study did not show any difference between the affinities of the two alternative conformations.8

The  preparation  of  the  protein  has  also  been  described  before:24 All  Arg  and  Lys 
residues  were  considered  to  have  a  positive  charge  and  the  Glu  and  Asp  residues  were 
considered to have a negative charge. His57 and 83 were protonated on the Nδ1 atom, His91, 
145, and 199 on the Nε2 atom, and His13 on both atoms. To be comparable to our previous 
study, the protein was described by the Amber 99 force field25 and the ligands with the general 
Amber force field,26 with charges derived by the restrained electrostatic  potential  (RESP) 
method 27 using potentials calculated at the Hartree–Fock 6-31G* level and sampled with the 
Merz–Kollman scheme.28 Parameters for the ligands are provided as supplementary material.

The protein–ligand complexes and the free ligands were solvated in a sphere of TIP3P29 
water molecules on a grid using a combination of the Q program (version 5),19 the Amber 10 
suite of programs,30 as well as in-house scripts. First, the complex was fully immersed in a 
water sphere that extended at least 10 Å outside the protein. Second, water molecules outside 
of a certain radius from the nitrogen atom of the indole ring of the ligand were deleted (cf.  
Figure 1). Radii of 40, 35, 30, 25, 20, and 15 Å were used for these simulations. Protein 
residues with all atoms outside the simulation sphere were kept in the simulation, but were 
excluded from the calculations of non-bonded interactions. We also tested to cut away the 
protein atoms outside the sphere, but this did not improve the efficiency (and of course did not 
change the results). For the free ligand, solvent spheres with radii of 25, 20, or 15 Å was used.

Free-energy  calculations.  We have  calculated  the  relative  free  energy of  eight  inhibitor 
transformations,  as  is  described  in  Figure  1,  using  a  thermodynamic  cycle  that  has  been 
described previously.8,31 The free energies of the transformations were calculated using the 
Bennett acceptance ratio (BAR)32
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 Gi = RT ln 〈 f − UC 〉 i1

〈 f  U−C 〉 i
C (1)

with

f ( x) = 1/(1+ exp( x /RT )) (2)

and

C =  GiRT ln
N i

N i1
(3)

where  R and  T are the gas constant and the absolute temperature,  respectively,  ΔU is the 
difference in energy between the system at  λi and the system at  λi+1 and U(λ) = (1 – λ)U0 + 
λU1, where U0 and U1 are the potentials of two physical end states. Ni is the number of samples 
when sampling at λi. The sampling was always performed for the system at λi as indicated in 
Eqn 1 and simulations were performed at λ = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 
1.0. The total free energy,  G , was obtained by summing over all λ values. 

The transformation at each λ value was divided into an electrostatic and a van der Waals 
part, and the charges were mutated before the Lennard-Jones parameters were changed. A 
single-topology protocol was used1 and dummy atoms were introduced for vanishing atoms. 
In the van der Waals transformation, a soft-core potential, as implemented in the Q package 
was used:19,33 

V vdw =
A ij

r ij
6
vdW 

2 −
Bij

r ij
6
vdW

(4)

where i and j are two atoms, rij is the distance between them, Aij and Bij are the Lennard-Jones 
parameters in the force field, and αvdW is a soft-core parameter, set to 10 Å6 in all calculations. 
The soft-core potential was used only for atoms that were changed to a different atom type in 
the perturbations.

A soft-core version of the Coulomb potential was implemented into the Q package in an 
analogous  fashion  so  that  the  electrostatic  and  van  der  Waals  transformations  could  be 
calculated in a single simulation:

V ele =
q iq j

4 0 r ij
2
1−el

 (5)

where  qi and  qj are the atomic charges, ε0  is the vacuum permittivity, and αel is a soft-core 
parameter,  set  to  10 Å2 in  all  calculations.  The equation involves  a  λ dependence, which 
ensures that it  coincidences with a normal Coulomb potential  for  λ = 1 (and  Vele = 0 for 
disappearing atom, which  always were considered to be the  λ = 0 state, because the charge 
vanishes in that state).   

The potential  in Eqn 4 does not  contain any  λ dependence.  Therefore,  the soft-core 
potential will be active also in the end state for non-disappearing atoms. Strictly, a free-energy 
calculation going from the soft-core potential to the normal Lennard-Jones potential is needed 
to reach the correct end state. However, test calculations showed that the free-energy change 
of such perturbations was negligible, e.g. 0.004 kJ/mol for the  49→53 transformation. The 
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same applies for non-disappearing perturbed atoms with the soft-core Coulomb potential: The 
free-energy difference between the soft-core and normal Coulomb potential for the  49→53 
transformation was only 0.06 kJ/mol.

The approach using separate electrostatic and van der Waals transformations will  be 
called the two-transformations approach (TTA) and it was used in all transformations unless 
otherwise stated.  The approach in  which electrostatics and van der Waals interactions  are 
changed simultaneously, using the electrostatic soft-core potential in Eqn 5, will be called the 
single-transformation approach (STA).

MM/GBSA calculations.  We  have  also  carried  out  MM/GBSA calculations  (molecular 
mechanics  with  generalised  Born  and  surface-area  solvation)  for  the  same  fXa–ligand 
complexes.6,7 In  this  approximate method,  the  free energy of  binding is  calculated  as  the 
difference in free energy between the complex (PL), the protein (P), and the ligand (L), viz., 
ΔGbind = G(PL) – G(P) – G(L). Each of these free energies are estimated according to

G = 〈 Eele  Evdw  G pol  G np − TS 〉 (6)

where  Eele  and  Evdw  are the molecular mechanics electrostatic and van der Waals energies, 
respectively, evaluated using the same force field as in the simulation but with no cut-off. Gpol 

is the polar solvation free energy evaluated using the generalised Born method of Onufriev, 
Bash and Case (model I, with α = 0.8, β = 0, and γ = 2.91).34 Gnp  is the non-polar solvation 
free energy calculated from the solvent-accessible surface area (SASA), according to  Gnp  = 
γSASA +  b,  where γ = 0.0227 kJ/mol/Å2  and  b = 3.85 kJ/mol.35 Finally,  S is  an entropy 
estimate  taken  as  a  sum  of  translational,  rotational  and  vibrational  contributions.  The 
translational and rotational entropies were estimated by statistical mechanical formulas of gas-
phase molecules.6,7 The vibrational entropy was estimated from a normal-mode analysis of a 
truncated and buffered system (8 + 4 Å).24 The averages in Eqn 6, were evaluated at snapshots 
from molecular  dynamics  (MD)  simulation  of  the  complex,  as  is  typical  in  MM/GBSA 
calculations.6,7 The  averages  were  calculated  over  40  snapshots  from  40  independent 
simulations, i.e., in total 1600 snapshots. All MM/GBSA calculations were performed with 
the Amber 10 suite of programs.30

Error  estimates.  All  reported  uncertainties  are  standard  errors  of  the  mean  (standard 
deviations divided by the square root of the number of samples). The uncertainty of the BAR 
free  energies  calculated  at  each  λ value  was  estimated  by  bootstrapping  and  the  total 
uncertainty  was  taken  as  the  square  root  of  the  sum  of  the  squares  of  the  individual 
uncertainties. For MM/GBSA, the reported standard error is the standard deviation of the 
mean over the 40 independent simulations (ignoring the standard deviation among the 40 
snapshots in each simulation).

The performance of the free-energy estimates  was quantified by the mean unsigned 
error (MUE), the correlation coefficient (r2),  and Kendall's rank correlation coefficient (τ) 
compared to experimental data. The latter was calculated only for the eight transformations 
that  were  explicitly  studied,  not  for  all  combinations  that  can  be  formed  from  these 
transformations. The standard deviation of these quality measures was obtain by a simple 
simulation approach:36 Each transformation was assigned a random number from a Gaussian 
distribution with the mean and standard deviation of the mean obtained from the BAR or 
MM/GBSA calculations. The quality measures (MUE, r2, and τ) where then calculated and the 
procedure was repeated 1000 times. The standard error of these estimates is reported as the 
uncertainty.
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Molecular dynamics simulations.  All MD simulations were performed with the Q suite of 
programs.19 Water  molecules  were  subjected  to  both  radial  and  polarisation  restraints  as 
implemented in Q. The former is a combination of half-harmonic and Morse potentials, and 
the latter is an implementation of the SCAAS model.18 When simulating the truncated protein, 
solute atoms outside the simulation sphere were kept fixed at their initial positions using a 
strong harmonic restraint (837 kJ/mol/Å2), and solute atoms in the outermost 2 Å shell were 
weakly restrained (84 kJ/mol/Å2). When simulating the free ligand, the centre of mass of the 
ligand was weakly restrained (22 kJ/mol/Å2) to the centre of the simulation sphere. In all 
simulations,  the  non-bonded cut-off  was set  to  10 Å,  except  between the  ligand and the 
surroundings, for which no cut-off was applied. Long-range electrostatics were treated using a 
local reaction field (LRF) algorithm.37 The non-bonded pair list was updated every 25th time 
step. The temperature was kept at 300 K using a Berendsen thermostat38 with a 1 ps coupling 
time. The SHAKE algorithm39 was used to constrain bonds involving hydrogen atoms and a 
2 fs time step was used. 

The simulations for the BAR calculations were performed as following: The system at λ 
= 1 was equilibrated, first using a 20 ps simulation in which all hydrogen atoms and water 
molecules were allowed to move, although they were restrained towards their starting position 
with a  harmonic restraints of 105 kJ/mol/Å2, and then by a 30 ps unrestrained simulation. 
Thereafter,  the  perturbation  simulations  were  started.  They  consisted  of  20 ps  restrained 
equilibration, 200 ps unrestrained equilibration, and 1 ns production. Energy differences were 
sampled every tenth picosecond.

The MM/GBSA simulations were performed as following: 40 independent simulations 
were initiated by assigning different starting velocities. Each of these simulations consisted of 
a  20  ps  simulation  using  the  same  restraints  as  described  above,  a  1  ns  unrestrained 
equilibration,  and  a  200  ps  production  simulation.  Snapshots  for  energy  analysis  were 
collected  every  5  ps,  and  hence  40×40=1600  snapshots  were  used  in  the  energy 
evaluation.36

Results and Discussion

Free  energy  estimates  using  full  protein.  We  have  carried  out  alchemical  free-energy 
calculations to obtain the relative binding free energy of eight inhibitor pairs to fXa. Initially, 
the  entire  protein–complex as  well  as  the  free  ligands were immersed in  spherical  water 
droplets with radii of 46 and 25 Å, respectively. The results from these calculations are shown 
in Table 1. It can be seen that the statistical precision of the calculations is excellent: The 
standard error is less than 0.3 kJ/mol for all of the eight transformations.

Four  of  the  eight  calculated  free  energy differences  are  within  1.4  kJ/mol  of  the 
experimental value and these also give the correct sign of the energy difference. Three of the 
remaining free energies are 4–5 kJ/mol from the experimental results, whereas the last one, 
the 63→39 transformation, gives an error of 14 kJ/mol. The calculated energy differences for 
all these four transformation also have the wrong sign, although the calculated result for the 
47→5 transformation is not significantly different from zero. Consequently, the correlation 
coefficient (r2) for all eight transformations is mediocre, 0.5, and τ is poor, 0.00. The MUE is 
only 3.9 kJ/mol, but this is actually slightly larger than the results of the null hypothesis that  
all transformations give a zero energy difference (3.5 kJ/mol). 

Six of the transformations were included in our previous study, which was performed 
using periodic boundary conditions (PBC) with long-range electrostatics treated with Ewald 
summation. The free energies were calculated by TI with a dual topology, but the simulations 
were performed with the same force field as in the current study. Therefore, it is of interest to 
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compare the previous calculations with the current ones. From the results in Table 1, it can be  
seen that the new calculations have a much better precision (0.1–0.3 kJ/mol) than the PBC 
calculations (0.6–1.2 kJ/mol). There are at least two reasons for this. First, BAR gives a better 
precision than TI:  For  example,  if  we instead calculate  the free-energy difference for the 
125→53 transformation  with  the  spherical  simulations  with  the  TI  method,  we  obtain  a 
standard error or 0.27 kJ/mol, instead of 0.06 kJ/mol with BAR. The remaining difference 
probably comes from the use of a dual topology in the PBC calculations, which is known to 
give a poorer precision than a single topology.1 Naturally, an improved precision is desirable 
in free-energy estimations, provided that it not only an effect of a more restricted phase space 
sampling. However, in the present case, there is no indication that the spherical simulations 
sample a smaller phase space.

In particular, the results in Table 1 clearly show that the two simulation techniques 
give  result  that  are  very  similar:  All  the  calculated  free-energy  difference  agree  within 
1 kJ/mol for the two simulations, except for the problematic  63→39 transformation, which 
gives a difference of 2 kJ/mol. In fact, none of the differences are statistically significant at  
the 95% level. This good agreement shows that the two simulation protocols give identical 
results.  Moreover,  it  indicates  that  the  results  are  reasonably  converged  and  that  the 
differences  to  experiments  may  be  caused  by  deficiencies  in  the  force  field  or  by  the 
uncertainty  in  the  experimental  data  (unfortunately  the  experimental  uncertainty  was  not 
reported,23 but it is typically 2–4 kJ/mol).40,41

Effect of truncation.  Although the calculations do not reproduce the experimental energy 
differences satisfactorily in several cases, this is a secondary issue for this study. The main 
objective is to investigate the effect of truncating the simulated system. How small can we 
make the system and still reproduce the results of the full simulation? Hence, our reference 
will not be the experimental data, but the simulations using full protein. Therefore, we made 
the simulated protein–ligand complexes systematically smaller by simulating systems with 
radii of 40, 35, 30, 25, 20, or 15 Å (the full system has a radius of 46 Å). The results of these  
simulations are shown in Table 2.

It can be seen that the truncations led to changes in the relative binding energies of the 
eight transformations of no more than 1.8 kJ/mol. In fact, in 79% of the cases, the difference 
is  0.4  kJ/mol  or  less.  Looking  at  the  individual  electrostatics  and  van  der  Waals 
transformations (data not shown), this is the case for 79% of the transformations, and the 
maximum change is 1.2 kJ/mol for the electrostatics and 2.2 kJ/mol for the van der Waals 
transformations. There is a clear indication that the error increases slightly when the radius is 
decreased: The mean absolute deviation (MAD) increases from 0.2 to 0.5 kJ/mol going from a 
radius of 40 Å to 15 Å. Concomitantly, the standard deviation of the errors increases from 0.3 
to 0.6 kJ/mol. Even if the errors are small, they are often statistically significant, owing to the 
high  precision  of  the  calculations:  At  a  40  Å  radius,  one  of  the  transformations  have 
statistically significant differences at the 98% level and this number increases up to five for 
the smallest radius. 

Next, the size of the free-ligand simulations was reduced in a similar way to 20 or 
15 Å. The results of these simulations are also shown in Table 2 and they show similar  trends 
although the differences are smaller. The maximum difference is 0.4 kJ/mol and none of the 
differences are statistically significant at 98% confidence at any radius.

It should be noted that even if the total relative binding free energies are small for all 
transformations  (0  to  –4  kJ/mol;  cf.  Table  1),  this  is  the  sum  of  four  individual  terms 
(electrostatics and van der Waals transformation for the free and bound ligand), which are 
appreciably larger, –164 to 61 kJ/mol for the electrostatics terms and –4 to 9 kJ/mol for the 
van der Waals terms as is shown in the last four columns in Table 1. Therefore, the small 
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effects of the truncations are not caused only by the fact that the energy terms are small but 
rather because the simulations of the ligands in water and in the protein give similar results. 
Consequently, we can conclude that if average errors of 0.5 kJ/mol and maximum errors of 
1.4 kJ/mol are acceptable, the simulated system can be truncated to a radius of 15 Å for both 
the protein and the free ligand, leading to a reduction of the number of atoms from 38844 to 
1480 for the protein simulations.

Unfortunately,  it  is  not  possible  to  make  the  simulated  systems  smaller  for  two 
reasons. First, the potential that prevents the molecules from evaporating is not parametrised 
for spheres smaller than 12 Å.19 Second, the considered inhibitors are rather large, with ~18 Å 
between the most distant atoms. This means that with a 15 Å radius, there are only two layers  
of water molecules outside the molecule, one of which is strongly affected by the SCAAS 
restraints. Therefore, it is not reasonable to make the sphere smaller.

Effect of the number of λ values. In our previous study of fXa, we found that the efficiency 
of  the  calculations  can  be  considerably  improved  by simulating  at  fewer  intermediate  λ 
values.8 Therefore, we calculated the free-energy differences also in this study with six (λ = 
0.0, 0.2, 0.4, 0.6, 0.8, and 1.0), five (λ = 0.1, 0.3, 0.5, 0.7, 0.9), three (λ = 0.0, 0.5, and 1.0), or 
two (λ = 0.0 and 1.0) λ values. The results of these calculations are collected in Table 3.

Considering the simulations with a 20 Å sphere first, the difference between six and 
eleven  λ  values  is  less  than  1  kJ/mol  for  both  the  protein–ligand  and  the  free-ligand 
simulations, as well as for the total binding free energy. The MAD for ΔGbind over the eight 
studied transformations is only 0.1 kJ/mol. 

With five λ values, the difference in ΔGbind increases to 0.3 kJ/mol on average, with a 
maximum of 1.3 kJ/mol for the 53→47 transformation. In variance to the other number of  λ 
values, the calculations with  five λ values involves the extrapolation of the results at λ = 0.1 
and  λ = 0.9 to that of  λ = 0 and  λ = 1. We tested various extrapolation schemes, but a simple 
linear extrapolation involving two points worked best and is therefore used for the results in 
Table 3.

With  three  λ  values,  MAD  for  ΔGbind increases  to  0.5  kJ/mol  and  the  maximum 
difference increases to 1.4 kJ/mol. However, the individual differences for the free and bound 
simulations are even larger, up to 2.0 kJ/mol for the 53→47 transformation.  

If  only the two end points are simulated (λ =  0.0 and 1.0),  the results  deteriorate 
significantly: The MAD increases to 0.9 kJ/mol and five of the simulations give errors that are 
larger than 1 kJ/mol, with a maximum of 3.1 kJ/mol for the  47→5 transformation. These 
deviations are probably too large to be acceptable in most applications. Therefore, we tend to 
recommend calculations with three λ values.

The results with a 15 Å sphere are analogous with MADs for ΔGbind of 0.2, 0.4, 0.2, 
and 1.0 kJ/mol for six, five, three, and two λ values, respectively. There is no indication that 
the smaller sphere gives worse results. This clearly shows that the efficiency of the BAR 
calculations can be increased by using three λ values. 

The single-transformation approach (STA).  All results up to now were obtained with the 
two-transformation approach (TTA), in which the charges are first transformed in one set of 
simulations  and  then  the  van  der  Waals  parameters  are  transformed  in  a  second  set  of 
simulations.  However,  both  transformations  can  be  done  in  a  single  set  of  simulations, 
provided that soft-core Coulomb potentials are employed. We have previously shown that 
such an approach can improve both the precision and accuracy of TI calculations of binding 
affinities.8 Therefore, a soft-core Coulomb potential was implemented into the Q software in 
analogy with the soft-core Lennard-Jones potential. We assume that the conclusions drawn 
above hold true also for this STA approach and therefore present results only with 20 or 15 Å 
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simulation spheres,  and with eleven,  six,  five,  three,  and two  λ  values.  These results  are 
collected in Table 4.

The STA results are very similar to those of obtained with TTA, as expected. With 
eleven λ values, the MAD between the TTA and STA calculations is only 0.8 and 0.5 kJ/mol 
for the 20 and 15 Å spheres, respectively. The largest deviation, –1.9 or –1.3 kJ/mol, is found 
for the problematic  63→39 transformation, with the STA results being slightly closer to the 
experiments. The precision of the STA is similar to of the TTA, with average standard errors 
of 0.19 kJ/mol (0.13 kJ/mol without the 63→39 transformation which gives a twice as large 
standard error than the other transformations, 0.6 kJ/mol).

The calculations with fewer λ values give similar results to those with eleven λ values 
also with the STA approach. The largest error (3.1 kJ/mol) is found with two λ values. With 
three λ values, the maximum error is 1.8 kJ/mol and the MAD is 0.5 kJ/mol.

MM/GBSA calculations.  It  is  of  interest  to  compare  the  results  of  the  rigorous  BAR 
calculations with those of an approximate method such as MM/GBSA. We assumed that it is 
sufficient to use a small simulation sphere and therefore performed the MD simulations using 
a 20 Å protein sphere and post-processed them to obtain MM/GBSA estimates (however, note 
that all protein residues were included in the calculations, although those outside the 20 Å 
radius  were  kept  fixed  at  the  crystal  structure  in  the  MD  simulations).  The  results  are 
collected in Table 5.

The  primary product  of  MM/GBSA is  the  absolute  affinities  of  the  ten  inhibitors 
involved in  the eight  transformations in  Figure 1,  so these are  shown in the first  part  of 
Table 5. Comparing with experiments, the MM/GBSA method gives estimates that are too 
negative by 27 kJ/mol on average. This has been observed several times before and the shift  
depends on the  details  of  the calculations,  in  particular  the  continuum-solvation method.9 

However, the  τ is rather good (0.49). Moreover, the MAD after removal of the systematic 
error is only 4 kJ/mol, although the null hypothesis that all inhibitors have the same affinity 
gives the same result. The correlation coefficient r2 is 0.35. 

Compared  to  MM/GBSA calculations  with  PBC and  the  full  system,8 the  present 
calculations give slightly more negative affinities, with differences of 2–15 kJ/mol (average 
10  kJ/mol).  The  correlation  coefficient  (r2)  between  the  two sets  of  calculations  is  0.54. 
Looking at  the individual terms in Eqn 6 (not shown), the electrostatic energy shows the 
largest difference with a mean signed difference (MSD) of –38 kJ/mol. The van der Waals 
energy and polar solvation show intermediate MSDs with the opposite sign, 19 and 18 kJ/mol, 
respectively. The other two terms show only minor differences. As the difference between the 
two simulations is mainly a shift in the absolute affinities, they reproduce the experimental 
results  equally  well  (there  are  no  statistically  significant  difference  in  the  three  quality 
measures, MUE, r2, and τ). The new calculations give slightly higher standard errors (1.1–2.0 
kJ/mol) than the PBC calculations (0.8–1.6 kJ/mol).

Next, we computed the binding-affinity differences for the transformations in Figure 1, 
i.e.  those  calculated  by  BAR.  Most  of  the  predications  are  similar  to  the  experimental 
difference. The correlation coefficient (r2 = 0.07±0.12) is significantly worse than for the 
BAR calculations (0.50±0.18) at the 95% level. However, the MUEs (4 kJ/mol) of the two 
methods are similar and τ of MM/GBSA is actually better because the sign is correct for five 
of the transformations, but the difference is not statistically significant. The most conspicuous 
difference  between  the  BAR and  MM/GBSA results  is  the  much  worse  precision  of  the 
MM/GBSA results (1.8–2.8 kJ/mol, compared to 0.06–0.36 kJ/mol). This indicates that 60–
900 times more simulations are needed to reach the same precision of the MM/GBSA results, 
showing that BAR is a more effective method (i.e. much less computational effort is needed 
to reach the same precision of the calculated affinities).
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There  is  a  fair  correlation  (r2 =  0.47)  between  the  MM/GBSA  relative  energies 
calculated with a spherical system and the previous PBC simulations. However, the individual 
free-energy differences  differ  by up to  6  kJ/mol,  which  is  larger  than  expected  from the 
estimated  standard  errors  (three  of  the  six  transformations  show  statistically  significant 
differences  at  the  95%  level).  Thus,  even  if  the  differences  between  the  two  sets  of 
simulations is mainly a constant shift, there are also some systematic differences that make 
the results significantly different, although the difference is not larger than 6 kJ/mol.

Timings.  The 1.2 ns simulations (0.2 ns equilibration and 1 ns production) for the protein– 
ligand complexes take ~915, ~36 and ~14.5 CPU hours on a single processor (Intel Xeon 2.26 
GHz) using the 46, 20 and 15 Å simulation spheres, respectively. Thus, the calculation of one 
binding free energy difference takes 40260 CPU hours for the full TTA reference calculations 
with eleven λ values (44 simulations needed), 432 or 174 CPU hours with TTA and three λ 
values (12 simulations), and 216 or 87 CPU hours with STA (6 simulations), if we employ a  
20 or 15 Å radius, respectively. Of course all the individual simulations can be run in parallel.

Comparing with our previous computations using periodic boundary conditions,8 the 
most  optimal  protocol  (using STA) took 337 CPU hours.  Thus we can conclude that  the 
truncation increased the efficiency by a factor of ~1.6 or ~3.8 if we use a 20 or 15 Å sphere,  
respectively. The relative modest increase in efficiency is caused by the fact that the PBC 
calculations  employed  particle-mesh  Ewald  calculations  for  the  long-range  electrostatics, 
which allows for the use of a smaller cut-off radius for these time-consuming interactions. 
Compared to the full calculations with a spherical system and eleven  λ  values, we gain a 
speed-up of 460 when using only three λ values and a 15 Å radius. 

How general are the results? A natural question is how general the results in this paper are. 
All the studied transformations preserve the charge of the ligand (+1 or +2 e) and they are 
small, involving the transformation of a hydrogen atom to a heavy atom, with 0–3 hydrogen 
atoms, except for the 53→125 (O→NH2) and 63→39 (H→OCH3) transformations. Moreover, 
all the transformations take place on the surface of the protein with the R1, R2, and X sites 
(Figure 1) pointing mainly out  into the solution,  whereas sites R3 and R4 are  still  on the 
surface, but interacting somewhat more with the protein,  as can be seen in Figure 2. The 
second, unperturbed, amidinobenzyl group of the ligand interacts with Asp-189 inside the 
protein, but the rest of the binding site is also quite polar (Figure 2).

Clearly,  the possibility to  truncate  the simulated system is  affected by type of  the 
transformations. The dipole moments (with respect to the centre of the mass) of the studied 
ligands are 1.0–1.4 D. Consequently, the difference in the Onsager solvation energy caused by 
the various transformations is quite small and shows a cubic dependence on the radius of the 
simulated sphere, as can be seen in Figure 3a. At 15 Å, it is negligible, <0.01 kJ/mol. On the 
other hand, the total dipole moment of the protein–ligand complex (with respect to the centre 
of the simulated sphere) is appreciably larger, so the Onsager correction at 15 Å is up to 0.4 
kJ/mol for the studied transformations (0.2 kJ/mol at 20 Å), as is also shown in Figure 3a. 
This may explain the variation of the results for the smallest systems, but it is unlikely that a 
simple Onsager correction will improve the results, because it assumes a uniform dielectric 
constant both for the removed protein and solvent. Instead, more sophisticated methods20,21,22 

are needed if an accuracy better than 1 kJ/mol is needed or if you want to study even smaller 
systems. 

Dipole–dipole  interactions  show  a  similar  cubic  distance  dependence,  giving 
negligible contributions at 15 Å distance (<0.03 kJ/mol). On the other hand, charge–dipole 
interactions show a quadratic dependence on the distance and are still noticeable at 15 Å, up 
to 0.5 kJ/mol (Figure 3a). However, for solvent-exposed charges, they are typically scaled 

11



down by solvation and dynamic effects, as is manifested by an effective dielectric constant of 
20 or more.42 The only buried charges in fXa, Asp-189 interacting with the ligand, Asp-102 of 
the catalytic triad, and Asp-194, forming an ionic pair with the amino terminal, are all close to 
the ligand and therefore included also in the smallest truncated system. Thus, the distance-
dependence of the various electrostatic interactions confirms and explains why the truncations 
work well in the present systems. Such an investigation can easily be performed for any sets 
of ligands and proteins to estimate how large truncations are possible. In particular, Figure 3b 
shows that if the transformations involve changes in the net charge of the ligand, the expected 
size of the interactions increases by several orders of magnitude, so that the Born solvation 
term  and  the  charge–charge  interactions  do  not  become  negligible  even  with  simulated 
systems of the size of 100 Å. This explains why such transformations are much harder to 
study with alchemical free-energy methods.1,8

The validity of the reduction in the number of λ values can be checked with standard 
FEP convergence methods, e.g. by the hysteresis of the FEP results, the difference between 
FEP and BAR estimates,  or by more sophisticated overlap measures.43,44 In a forthcoming 
publication, we will examine our suggested method for the binding of over 100 ligands to ten 
different proteins.

Conclusions
In  this  paper,  we  study  how  the  binding  free-energy  difference  for  eight  pairs  of  3-
amidinobenzyl-1H-indole-2-carboxamide inhibitors to blood clotting factor Xa, calculated by 
alchemical free-energy calculations depends on the size of the simulated system. We have 
shown that  calculations  of  the  entire  protein  in  a  spherical  water  droplet  reproduce  free 
energies that were obtained using periodic boundary conditions within statistical precision. In 
fact, the new calculations, obtained with BAR and a single topology, rather than TI with a 
dual topology, give a much better precision with the same length of the simulations (0.2 + 1.0 
ns) and a similar number of intermediate states (11 or 9), 0.06–0.29 kJ/mol, compared to 0.6–
1.2 kJ/mol.  

Second, we have systematically truncated the spherical system, by removing water 
molecules and ignoring interactions with protein residues outside a certain radius. We show 
that we can reduce the radius of the simulated system from 46 Å down to 15 Å without 
changing  the  calculated  free-energy  differences  by  more  than  0.5  kJ/mol  on  average 
(maximum change 1.4 kJ/mol). This is a quite amazing result,  showing that the simulated 
system can be reduced from 38844 to 1480 atoms without changing the calculated free-energy 
differences by more than 1 kJ/mol. Neither any sophisticated model of the removed parts of 
the surrounding is  needed, nor any account of long-range electrostatic effects.  Only some 
restraints on the water molecules at the surface of the simulated sphere are employed. On the 
other hand, the results are in good agreement with previous studies showing that only residues 
within 12–16 Å of the active site of an enzyme need to be considered when studying chemical 
reactions.45,46 

Third, we have investigated how many intermediate states have to be included in the 
BAR calculations.  We showed that  only a single intermediate  state (λ = 0.5) needs  to be 
simulated, if average and maximum deviations of 0.5 and 1.4 kJ/mol are acceptable.

Fourth, we have implemented soft-core Coulomb potentials into the Q package, which 
allows us to do the electrostatic and van der Waals perturbations in a single step (STA), rather 
than in two separate steps (TTA). The results of the two approaches are closely similar (0.5–
0.8 kJ/mol average difference), except for the largest transformation (2 kJ/mol difference), for 
which the STA result is closer to the experiments. Also for STA it is possible to employ only 
three λ values in the calculations.

Finally, we have compared the BAR results with those obtained with the MM/GBSA 
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method. The latter results gives a slightly worse correlation coefficient to the experimental 
results than BAR, but in particular they have a much worse precision, meaning that much 
more simulations are needed to obtain MM/GBSA results of an equal quality. 

Altogether, these results indicate that alchemical free-energy calculations BAR are a 
valuable tool that could be used in drug design to calculate relative binding affinities of drug 
candidates with the same scaffold and the same net charge. Estimates with a precision of 0.1–
0.6  kJ/mol  can  be  obtained from six simulations  that  can  be  run  in  parallel  on  a  single 
processor within 15 h for small transformations preserving the net charge of the ligand. 

Acknowledgements
We  thank  Johan  Åqvist  and  coworkers  for  help  with  the  Q  software  package.  This 
investigation has been supported by grants from the Swedish research council (project 2010-
5025) and from the FLÄK research school in pharmaceutical science at Lund University. It 
has  also  been  supported  by  computer  resources  of  Lunarc  at  Lund  University,  NSC  at 
Linköping University,  C3SE at Chalmers University of Technology,  and HPC2N at Umeå 
University. 

Supporting Information Available: Amber topology and parameter files for the ten ligands. 
This material is available free of charge via the Internet at http://pubs.acs.org.

1 Michel, J.; Essex, J. W. J. Comput.-Aided Mol. Des. 2010, 24, 639-658.
2 Chipot, C.; Rozanska, X.; Dixit, S. B. J. Comput.-Aided Mol. Design. 2005, 19, 765-770.
3 Chipot, C.; Pohorille, A. Eds. Free Energy Calculations. 2007, Springer, New York.
4 Gohlke, H.; Klebe, G. Angew. Chem. Int. Ed. 2002, 41, 2644-2676.
5 Foloppe, N.; Hubbard, R. Curr. Med. Chem. 2006, 13, 3583-3608.
6 Srinivasan, J.; Cheatham III, T. E.; Cieplak, P.; Kollman, P. A.; Case, D. A. J. Am. Chem. 

Soc. 1998, 37, 9401-9809.
7 Kollman, P., A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; 

Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham III, T.; 
E., Acc. Chem. Res. 2000, 33, 889-897.

8 Genheden, S.; Nilsson, I.; Ryde, U. J. Chem. Inf. Model. 2011, 51, 947–958.
9 Genheden, S.; Luchko, T.; Gusarov, S.; Kovalenko, A.; Ryde, U. J. Phys. Chem. B 2010, 

114, 8505-8516.
10 Genheden, S.; Kongsted, J.; Söderhjelm, P.; Ryde, U. J. Chem. Theory Comput. 2010, 6, 

3558–3568.
11 Genheden, S.; Mikulskis, P.; Hu, L.; Kongsted, J.; Söderhjelm, P.; Ryde, U. J. Am. Chem. 

Soc. 2011, 133, 13081–13092.
12 Åqvist, J.; Medina, C.; Samuelsson, J. E. Prot. Eng. 1994, 7, 385-391.
13 Genheden, S.; Ryde, U. J. Chem. Theory Comput. 2011, 7, 3768-3778.
14 Mikulskis, P.; Genheden, S.; Rydberg, P.; Sandberg, L.; Olsen, L.; U. Ryde J. Comput.-

Aided Mol. Design, 2012, in press, DOI:10.1007/s10822-011-9524-z.
15 Essex, J. W.; Jorgensen, W. L. J. Comput. Chem. 1995, 16, 951-972.
16 Berkowitz, M.; McCammon, J. A. Chem. Phys. Lett. 1982, 90, 215-217.
17 Brünger, A. T.; Brooks III, C. L., Karplus, M. Chem. Phys. Lett. 1984, 105,  495-500.
18 King, G.; Warshel, A. J. Chem. Phys. 1989, 91, 3647–366.
19 Marelius, J.; Kolmodin, K.; Feierberg, I.; Åqvist, J. J Mol. Graph. Model. 1998, 16, 213-

225.

13



20 Im, W.; Bernèche, S.; Roux, B. J. Chem. Phys. 2001, 114, 2924-2937.
21 Banavali, N. K.; Im, W.; Roux, B. J. Chem. Phys. 2002, 117, 7381-7388.
22 Simonson, T.; Archontis, G.; Karplus, M. J. Phys. Chem. 1997, 101, 8349-8362.
23 Matter, H.; Defossa, E.; Heinelt, U.; Blohm, P.-M.; Schneider, D.; Müller, A.; Hreok, Si.; 

Schreuder, H.; Liesum, A.; Brachvogel, V.; Lönze, P.; Walser, A.; Al-Obeidi, F.; Wildgoose, 
P. J. Med. Chem. 2002, 45, 2749-2769.

24 Kongsted, J.; Ryde, U. J. Comput-Aided Mol. Design. 2009, 23, 63-71.
25 Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; 

Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem Soc. 1995, 117, 
5179-5197.

26 Wang, J. M.; Wolf, R. M.; Caldwell, K. W.; Kollman, P. A., Case, D. A. J. Comput. Chem., 
2004, 25, 1157-1174.

27 Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269-
10280.

28 Besler, B. H.; Merz, K. M.; Kollman, P. A. J. Comput. Chem. 1990, 11, 431-439.
29 Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impley, R. W.; Klein, M. L. J. Chem. 

Phys. 1983, 79, 926-935.
30 Case, D. A.; Darden, T. A.; Cheatham III, T. E.; Simmerling, C. L.; Wang, J.; Duke, R. E.; 

Luo, R.; Crowley, M.; Walker, R., Zhang, W.; Merz, K. M.; Wang, B.; Hayik, S.; Roitberg, 
A.; Seabra, G.; Kolossvary, I.; Wong, K., F.; Paesani, F.; Vanicek, J.; Wu, X.; Brozell, S. 
R., Steinbrecher, T.; Gohlke, H.; Yang, L.; Tan, C.; Mongan, J.; Hornak, V.; Cui, G.; 
Mathews, D. H.; Seetin, M. G.; Sagui, C.; Babin, V.; Kollman, P. A. Amber 10, University 
of California, San Francisco, 2008.

31 Gilson, M. K.; Given, J. A.; Bush, B. L.; McCammon, J. A. Biophys. J. 1997, 72, 1047-
1069.

32 Bennett C. H. J. Comput. Phys. 1976, 22, 245–268.
33 Zacharias, M.; Straatsma, T. P; McCammon, J. A J. Chem. Phys. 1994, 100, 9025-9031.
34 Onufriev, A.; Bashford, D.; Case, D. A. Proteins 2004, 55, 383-394.
35 Kuhn, B.; Kollman, P. A. J. Med. Chem. 2000, 43, 3786-3791.
36 Genheden, S.; Ryde, U. J. Comput Chem. 2010, 31, 837-846.
37 Lee, F. S.; Warshel, A. J. Chem. Phys. 1992, 97, 3100–3107.
38 Berendsen, H. J. C.; Postma, J. P. M.; Van Gunsteren, W. F.; Dinola, A.; Haak, J. R. J. 

Chem. Phys. 1984, 81, 3684–3690.
39 Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys., 1977, 23, 327-341.
40 Gilson, M. Ann. Rev. Biophys. Biomol. Struct. 2007, 36, 21-42.
41 Brown, S. P.; Muchmore, S. W.; Hajduk, P. J. Drug Discov. Today 2009, 14, 420-427.
42 Schutz, C. N.; Warshel, A. Proteins 2001, 44, 400-417.
43Bhattacharyya, A. Bull. Cal. Math. Soc. 1943, 35, 99-109.
44 Wu, D.; Kofke, D. A.; J. Chem. Phys. 2005, 123, 054103.
45 Kaukonen, M.; Söderhjelm, P.; Heimdal, J.; Ryde, U. J. Chem. Theory Comput. 2008, 4, 

985-1001.
46 Hu, L.; Eliasson, J.; Heimdal, J.; Ryde, U. J. Phys. Chem. A 2009, 113, 11793–11800.

14



Table 1. Relative binding free energies (in kJ/mol) for the eight pairs of fXa inhibitors in 
Figure 1, calculated in a spherical water droplet including the full protein–ligand complex and 
compared to experimental data (Exp),23 as well as to previous calculation in a periodic 
octahedral box (PBC).8 a

 Spherical Exp  PBC  Gbound
el

 Gfree
el

 Gbound
vdW

 Gfree
vdW

125→53 -0.15 ±0.06 -1.0 -1.3 ±0.9 -14.71 -14.54 0.49 0.47

53→9 -0.64 ±0.12 -1.9 -0.2 ±0.7 4.39 4.02 3.98 4.99

53→47 -1.14 ±0.22 -2.5 -0.7 ±0.6 -37.41 -37.22 0.13 1.08

53→49 -1.05 ±0.10 2.5 -1.6 ±0.8 -110.14 -109.83 -1.35 -0.61

53→50 -0.43 ±0.11 -1.9 -0.9 ±0.8 -50.61 -50.38 -0.80 -0.59

53→51 -0.56 ±0.12 3.5 -163.49 -163.55 -1.30 -0.68

63→39 -3.78 ±0.18 10.1 -2.0 ±1.2 60.71 60.48 -1.24 2.77

47→5 -0.18 ±0.29 4.9 35.52 34.08 9.07 10.69

MUE 3.94 ±0.06 (0.73) 3.5 ±0.3 (0.8)

r2 0.47 ±0.07 (0.17) 0.69 ±0.29 (0.28)

τ 0.04 ±0.04 (0.19) 0.33 ±0.26 (0.36)

a The four last columns show the results of the four perturbations contributing to the 
calculated free energies of the spherical system, viz. the electrostatics and van der Waals 
perturbations, obtained with the ligand bound to the protein or free in solution. The net 
binding free energy is  Gbind= Gbound

el
− Gfree

el
 Gbound

vdW
− Gfree

vdW . Standard errors for the 
quality measures assume that the experimental data are exact, whereas the values in bracket 
were obtained by assuming a typical precision of 2.4 ( 1.72 ) kJ/mol for the experimental 
data.41
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Table 2. Deviations of calculated free-energy differences (kJ/mol) for the various 
transformations using smaller systems compared to the simulation with the full protein (46 Å) 
or a 25 Å sphere for the free ligand.a 

Protein simulations Free-ligand simulations

Radius (Å) 40 35 30 25 20 15 20 15

125→53 0.1 0.2 0.2 0.4 0.2 -0.3 -0.1 0.0

53→9 0.2 0.1 0.3 0.3 0.2 0.4 0.4 0.4

53→47 -0.1 0.1 0.1 0.7 -1.8 0.1 0.0 0.2

53→49 -0.2 -0.1 -0.1 -0.1 -0.4 -1.4 -0.1 0.1

53→50 0.4 0.1 0.0 0.3 -0.2 0.1 -0.3 -0.1

53→51 0.2 0.2 -0.1 -0.1 -0.3 -0.8 0.0 -0.2

63→39 0.0 0.6 0.1 0.0 0.3 -0.4 0.3 -0.2

47→5 -0.6 -0.9 0.0 -0.7 -1.3 -0.7 0.1 0.4

MADb 0.2 0.3 0.1 0.3 0.6 0.5 0.2 0.2

# atomsc 27303 18239 11553 6554 3528 1480 3415 1375
a If the deviation is negative, the simulations with a smaller sphere give a more positive 
energy.
b Mean absolute deviation compared to a full protein simulation or a simulation sphere of 25 Å 
for the free ligand. 
c Number of atoms that are allowed to move in the simulated system (the number of atoms in 
the full systems are 38844 and 6319 for the protein and free ligand simulations, respectively). 
The numbers apply for the largest ligand 39.
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Table 3. Effect of using fewer λ values.a 

# λ 6 5 3 2

bound free ΔGbind bound free ΔGbind bound free ΔGbind bound free ΔGbind

Radius = 20 Å

125→53 -0.1 0.0 0.0 0.1 0.1 0.1 -0.2 0.0 -0.2 0.0 0.1 -0.1

53→9 0.6 0.5 -0.1 0.2 -0.6 -0.7 0.7 1.4 0.6 0.1 3.0 2.8

53→47 -0.9 -0.5 -0.4 -0.8 -1.3 0.5 -2.0 -1.5 -0.5 -3.1 -2.1 -1.0

53→49 0.0 0.1 -0.2 0.0 -0.1 0.1 -0.2 -0.1 -0.1 -0.6 0.3 -0.9

53→50 0.0 0.0 0.0 0.1 0.0 0.0 0.0 -0.2 0.2 0.7 0.4 0.3

53→51 0.0 0.2 -0.1 0.0 -0.1 0.2 0.6 0.1 0.4 0.8 0.6 0.3

63→39 -0.1 -0.3 0.1 -0.4 -0.7 0.3 0.4 -0.5 0.9 1.5 0.1 1.4

47→5 -0.7 -0.5 -0.2 -0.7 0.0 -0.7 -0.3 -1.7 1.4 -0.9 -1.4 0.5

MADb 0.3 0.3 0.1 0.3 0.4 0.3 0.6 0.7 0.5 1.0 1.0 0.9

Radius = 15 Å 

125→53 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0

53→9 0.4 0.2 -0.1 0.4 -0.4 -0.8 0.9 1.3 0.5 -0.1 2.4 2.5

53→47 -0.5 -0.6 0.1 -0.8 -1.4 0.6 -1.7 -1.4 -0.3 -2.4 -2.1 -0.3

53→49 0.0 -0.1 0.1 0.1 0.2 -0.1 -0.4 0.2 -0.7 -0.5 1.2 -1.6

53→50 0.1 -0.1 0.2 0.0 0.2 -0.2 0.1 0.0 0.2 0.6 0.3 0.4

53→51 -0.1 -0.1 0.0 0.2 0.1 0.1 -0.1 -0.2 0.0 0.3 0.1 0.2

63→39 -0.4 -0.1 -0.3 0.3 -0.4 0.7 0.6 0.6 0.1 -0.9 1.0 -1.9

47→5 -1.1 -0.4 -0.7 -0.8 0.1 -0.9 -1.6 -1.8 0.2 -1.6 -0.7 -1.0

MADb 0.3 0.2 0.2 0.3 0.3 0.4 0.7 0.7 0.2 0.8 1.0 1.0

a For each radius, the difference (kJ/mol) in the relative binding free energy for the eight 
transformations between the calculation with 11 and with fewer λ values is presented. 
Deviations larger than 1 kJ/mol are highlighted in bold face. Results are presented both for the 
protein–ligand complex (bound) and for the free-ligand (free) simulations, as well as for their 
difference (ΔGbind). In each case, the difference between 11 and fewer λ values are taken.
b Mean absolute deviation compared to calculations using 11 λ values.

17



Table 4. Calculated relative binding free energies using the single­transformation approach 
(kJ/mol).a 

Calculated ΔTTAb ΔSTAc ΔSTAc ΔSTAc ΔSTAc

# λ 11 11 6 5 3 2

Radius = 20 Å

125→53 -0.34 ±0.04 -0.1 -0.1 0.1 -0.1 0.1

53→9 0.29 ±0.15 -1.2 0.5 0.4 0.7 0.6

53→47 1.12 ±0.26 -0.4 1.2 1.0 -0.5 1.8

53→49 -1.48 ±0.09 0.8 0.0 0.0 -0.3 -0.6

53→50 -0.98 ±0.08 0.4 -0.1 0.1 -0.2 -0.2

53→51 -0.63 ±0.09 0.4 0.2 -0.1 -0.3 0.2

63→39 -1.91 ±0.56 -1.9 -0.1 0.1 -1.6 -3.1

47→5 0.11 ±0.21 1.1 0.3 -0.2 -0.4 -0.4

MUE 4.04 ±0.09 (0.70) 0.8 0.3 0.3 0.5 0.9

r2 0.40 ±0.11 (0.16)

τ -0.48 ±0.06 (0.26)

Radius = 15 Å

125→53 0.05 ±0.04 0.2 0.0 0.0 -0.1 -0.4

53→9 0.02 ±0.14 -0.6 0.0 -0.3 0.3 0.3

53→47 -1.02 ±0.23 0.0 0.9 0.1 0.1 0.4

53→49 0.18 ±0.10 0.2 -0.2 0.3 -0.7 -2.6

53→50 -0.86 ±0.07 0.3 -0.1 0.1 0.2 0.2

53→51 -0.28 ±0.08 0.3 -0.1 0.1 -0.2 -0.5

63→39 -2.33 ±0.63 -1.3 -0.1 -0.5 -1.8 -1.0

47→5 0.10 ±0.20 0.8 0.0 -0.1 0.5 0.3

MUE 3.60 ±0.09 (0.72) 0.5 0.2 0.2 0.5 0.7

r2 0.22 ±0.10 (0.16)

τ 0.19 ±0.13 (0.18)
a The MUE, r2, and τ values are calculated with respect to the experimental data.23 The 
standard errors of these estimates were obtained assuming that the experimental data are 
exact, whereas those in brackets were obtained by assuming an uncertainty of 2.4 kJ/mol.41

b Deviation compared to the TTA calculations (cf. Table 2) using 11   λ values. If the deviation 
is negative, TTA gives a more negative energy.
c Deviation compared to using 11 of   λ values with the STA. If the deviation is negative, the 
simulation with less λ values gives a more positive energy.
.
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Table 5. MM/GBSA estimates of the ten inhibitors and the eight transformations in Figure 1.a

 Calculated Exp.  PBC

5 -72.3 ±1.7 -41.9

9 -79.1 ±1.2 -46.2 -65.5 ±0.9

39 -63.9 ±2.0 -27.3 -49.4 ±0.9

47 -73.1 ±1.1 -46.8 -58.8 ±1.1

49 -61.7 ±1.5 -41.9 -59.4 ±1.0

50 -67.3 ±1.3 -46.2 -57.8 ±0.8

51 -65.9 ±1.3 -40.9

53 -70.4 ±1.4 -44.3 -62.5 ±1.0

63 -63.4 ±1.9 -37.4 -52.2 ±1.6

125 -71.4 ±1.2 -43.4 -63.4 ±1.0

MADtr 3.8 ±0.4 (0.6) 3.1 ±0.4 (0.6)

r2 0.35 ±0.10 (0.12) 0.67 ±0.06 (0.10)

τ 0.49 ±0.08 (0.12) 0.40 ±0.08 (0.13)

125→53 1.0 ±1.8 -0.9 0.9 ±1.4

53→9 -8.7 ±1.8 -1.9 -3.0 ±1.4

53→47 -2.7 ±1.8 -2.5 3.7 ±1.5

53→49 8.6 ±2.0 2.4 3.1 ±1.4

53→50 3.1 ±1.9 -1.9 4.7 ±1.4

53→51 4.5 ±1.9 3.4

63→39 -0.6 ±2.8 10.1 2.8 ±1.6

47→5 0.8 ±2.0 4.9

MUE 4.5 ±0.7 (1.0) 3.9 ±0.5 (1.0)

r2 0.07 ±0.09 (0.12) 0.03 ±0.09 (0.12)

τ 0.25 ±0.23 (0.29) 0.00 ±0.17 (0.32)
a Free energies in kJ/mol were estimated using a 20 Å simulation sphere. The results in the 
upper part of the table are the MM/GBSA absolute affinities of the ten inhibitors, whereas 
those in the lower part are the differences for the eight transformations. Experimental23 and 
previous results obtained with periodic boundary conditions (PBC)8 are also included.
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Figure 1. Ligands and transformations considered in this study. The three groups in brackets 
in the upper part of the figure are the R1, R2, R3 groups, whereas the single group in the lower 
part is the R4 group.
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Figure 2. The binding site of factor Xa with ligand 39 bound. The protein is shown as a 
space­filling model with regions with a negative (red) and positive (blue) electrostatic 
potential marked. The five perturbed sites of the ligand are marked with balls, from the right 
R1, R2, R3, X, and R4 (cf. Figure 1).
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Figure 3. Distance dependence of various interactions: a) The Onsager solvation energy for 
the bound and free ligand, dipole–dipole, and dipole­charge, as well as the b) charge–charge, 
interaction and the Born solvation energy. The energies are calculated for a dipole change 
from 1.4 to 1.0 D of the ligand (36.5 to 25.9 D for the bound ligand), a water dipole of 1.85 D, 
and a charge of +1 e. The dielectric constant was always assumed to be 80. Note the different 
energy scale in the two figures.
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