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1. INTRODUCTION

It is intuitively clear that the dynamical properties of a

system determines how difficult it is to control the system.
The purpose of this note is to demonstrate, how the perform-
ance is influenced by time delays, instability and non-mini-
mum-phase properties. A simple linear system with a minimum
variance criterion is used for the purpose of illustration.

The analysis therefore also reflects some properties of the

minimum variance regulator.



2. THE MODEL OF THE PROCESS AND ITS ENVIRONMENT

Consider the single-input single-output system whose block

diagram is shown in Fig. 1.

elt) Dlsturbgnce
Dynamics

n(t)

ult) System | y(t)
Dynamics

Fig. 1 - Block diagram of the system to be analysed.

The output y is the sum of a disturbance n and the output of
a linear deterministic system. The disturbance n is assumed
to be a sampled Wiener process. Such a process can be repre-
sented as

n(t+l) = n(t) + v(t) (1)

where {v(t)} is a sequence of independent, equally distributed,
normal (0,1) random variables. The error in predicting the
process over k-steps is thus equal to k. Systems having the
following properties will be considered:

stable minimum phase systems,

unstable minimum phase systems,

stable non-minimum phase systems,

_w N
L ]

unstable non-minimum phase systems.

The effect of variations in the time delay will also be con-



sidered. This requires special attention in the cases 1 and

2 but is obtained automatically in cases 3 and 4.

The simplest model for the process dynamics which make it
possible to illustrate the cases given above is a system
with the pulse transfer function

z(z-a)

The input-output relation for the system can be written as

N . mp
y(e) = 24— I u(e) + —E— e(t) (3)
1l - aqg 1 -g
orxr
(1-ag 1) (1-g Hy (t) = (b+q™1) (1-g Hyu(t-1) +
_l .
+ (l-ag 7e(t) (3')

Notice that the chosen disturbance model implies that the con-
trol signal will always appear as (l—q_l)u(t). This reflects
the fact that an integrating control is necessary in order to
eliminate the influence of the drifting disturbance. Techni-
cally this effect is conveniently handled by choosing the in-
crement in u as the control variable. The model then becomes

y(t) = (1+a)y(t-1) + ay(t-z) = bvu(t-1) + vu(t-2) +

+ e(t) - ae(t-1) (4)

The model is thus in standard form, see Astrém [1970, p. 1731,
with
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A(x) = x° - (l4a)x + a
B(x) = bx + 1
C(x) =x - a

The criterion is taken as minimizing the expected value of y2

in the steady state.

The system described by (4) is stable if |a| < 1 and minimum
phase if |b| > 1. The time delay can be increased by one unit
by choosing b equal to zero. Controllability is lost for
b=-1/a and b = -1. When ab = -1 there is a pole-zero cancel-
lation and the dynamics of the system (2) is reduced to a
simple delay. The pulse transfer function is then

H(z) = z_l

When b = -1 the system has a zero at z = 1. This means that it
becomes very difficult to eliminate the drifting disturbance.
The minimum variance control strategies and the minimal values
of the loss functions will now be determined in the different

cases.



3. STABLE MINIMUM PHASE SYSTEM
This case corresponds to |a| < 1 and |b| > 1. The system will

also be non-minimum phase if b = 0. This case which corresponds

to an extra time-delay in the system will also be discussed.
To determine the control strategies we will use the fundamental

identity Astrdm [1970, p. 170] which in this particular case

reduces to

2 2
l-ax =[1- (1+a)x + ax“] - 1 + goX + 9;x
Equating coefficients of equal power of x we get
-a = =-(l4+a) + 9 99 = 1

0 = a + gl gl = -a

The minimum variance regulator becomes

% _'}. _ “'l
vu(t) = - G (q ) ) y(t)=—l———aq_—l— y (t) (5)

F*(q—l)B"‘(q ) b + g

= 4

and the minimal value of the loss function is
2
Ey“(t) =1 (6)

This is the variance of the one step predictor for the dis-
turbance n. Under minimum variance control the variance of

the control signal is

2a + b + a2b

b(b3-1)

E‘[vu(t)]2 = (7)

A graph of the control variance is shown in Fig. 2. Notice

that the variance of the control signal increases as b



approaches +1 or -1, which corresponds to the limits when

the system has a zero on the unit circle.

A E (Au)2

-5 = 1 5

Fig. 2 - Graph of the variance of the control signal for a

stable minimum phase system with a = 0.7.



The case b = 0 which corresponds to an extra time delay in the

system will now be considered. The fundamental identity becomes

2 2 3
1 -ax =[1- (1+a)x + ax ](l+flx) + ggx” + gpx

Equating coefficients of equal powers of x gives

-a = - (l1l+a) + fl

0 = a - (l+a)fl + 9

0 = afl + 9,

Hence

£, =1
9y = 1
g, = -a

The minimum variance regulator becomes

-1 =1,
ae) = - A ) gy = -l ad (8)
F*(q T)B*(q ™) l+g

and the minimal value of the loss function becomes

min Ey2 =1 + fi = 2 (9)

This is the variance of the two step predictor of the disturb-
ance n.

To illustrate the results we will show some simulations of the
system. The interactive simulation language SIMNON developed by
Elmgvist [1975] was used in the simulations. The programs are
given in Appendix A. Fig. 3 shows the disturbance {n(t)}



that was used in all simulations. It follows from Fig. 1 that

the uncontrolled output is the same as the disturbance. Fig. 4

shows the output and the control signal when the control

strategy (5) is used.

0_
-5+
=10+
=151
>y
5
g =20
3 . |
0 50 1
Time

Fig. 3 - Uncontrolled output.
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Fig. 4 - Simulation of the system (3) with the regulator (5). The
parameter values are a = 0.7 and b = 2, which correspond
to a stable minimum phase system. The sample variance of
the output is ;7 = 0.98.



10

4. UNSTABLE MINIMUM PHASE SYSTEM.

This case corresponds to la] > 1 and |b] > 1,0r |a] > 1 and

L = 0. Notice that when |a| > 1 then the polynomial

C(x) = x — a

has a zero outside the unit disc. This means that formulas
in Astrém (1970) do not apply directly because they require
that the polynomial C(x) has all its zeros inside the unit
disc. To solve the problem it is then necessary to transform
the system model. Before doing this let us, however, analyse

what would happen if the control algorithm of section 3 was

used.

Analzsis

Consider the system
[1 - (1+a0)q'l + aoq_z]y(t) = [bya "+ g 21va(t) +
-1
+ [1 - aya le(t)

with the control law (5) i.e.

1 - ag

Vu(t) &= = E=———ta= y (£) (5)
b+ g

Notice that the control law has a zero z = a which cancels

the system pole z = a of the process. The closed loop system
is described by

[(1-agg D) (1-q" 1) o+a™h + g Hamag ) (byra D)1y (£) =

= (1-aga D (brg he(®)

The characteristic equation associated with the closed loop

system is



11

x(x—ao)(b0x+l) + (b—bo)(x-ao)(x—l) + (a—ao)(b0x+l) =0

For a = ag and b = b0 the characteristic equation reduces to

|
o

x(x—ao)(b0x+l)

The closed loop system thus has three poles x = 0, x = ag and

X = l/bo. Since Iaol > 1 one pole is thus unstable. Because of
the pole-zero cancellation this pole is not excited by the
disturbance e(t). If the unstable mode of the process is excited,
the output will of course grow exponentially. Because of the
Zzero at z = a in the controller transfer function this component

of the output will, however, not generate any control actions.

When the parameters a and b deviate slightly from their nominal

values, there is not necessarily a cancellation and the unstable
modes may be excited. The system will thus be extremely sensitive
to parameter variations. The reason is clearly the fact that the

polynomial C(x) has a zero outside the unit disc.

Fig. 5 shows the results of a simulation. The output will grow
exponentially without bounds, because the unstable mode is
excited. The output exceeds the value 10 at time t = 37 and
continues to grow exponentially. The output signal will remain
small for a while because the growing component of the output

is cancelled by the zero z = a in the regulator transfer function.
At time t = 66 the output has, however, grown so large that
round-off errors are noticable and the control signal will also
grow exponentially. The regulator is obviously useless in

practice.



12

10

Qutput y

Time

wn

Control variable u
3

15 50 100

Time

Fig. 5 - Results of simulation of the system with the regulator

(5) . The parameter values are a = 2 and b = 2 which

correspond to an unstable minimum phase system.
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Minimum Variance Control of an Unstable Plant

The previous analysis demonstrates clearly the necessity in
assuming that the polynomial C(x) has all its zeros inside the
unit circle when deriving the minimum variance control law.
If a system model, which has a polynomial C(x) with zeros
outside the unit circle, is obtained it is necessary to

transform the problem. This can be done as follows.

Tt follows from the representation theorem for random processes

that a stochastic process given by
%k -
y(t) = c (g He(t)

where {e(t)} is white noise and the polynomial C(x) has zeroes

outside the unit disc can also be represented by

*, =1
y(t) = cylg e(t)
where Cl(x) has all its zeroes inside the unit disc. To carry
out the construction in the specific case consider the stochas-
tic process

v(t) = e(t) - ae(t-1)

where {e(t)} is a sequence of independent normal (0,1) random

variables. The stochastic process {u(t)} has the property

1 + a T =0
Eu(t+t)v(t) = q-a |t|= 1
0 Tt} > 1

Such a process can be represented by

v(t) = e(t) = ae(t-1)
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v 2
where {e(t)} is a sequence of independent normal (0,5°) ran-
dom variables. Evaluating the covariance function of {v(t)}
and equating with the previous equation we find

02(1+a2) =1 + a2

or
2 2,2 2 2
o = Lt+a® 1+ a _1-L1+a%  1-a
2a 2a 2a 2a
a
x =
1l/a

We thus find that there are two values of a which give a pro-
cess with the desired covariance structure. There is always one
value such that the polynomial C has all zeroes inside the unit
circle. In the particular case where |a] > 1 we get o = 1/a and
02 = a2. This argument can apparently be carried out in the ge-
neral case. Hence to apply the minimum variance control strate-—

gies we first transform the disturbances and obtain the model

A(x) = x2 - x(1+a) + a
B(x) =bx + 1
C(x) =z - 1/a

2 2

g = a
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Proceeding as before we now get

: 2
1 -x/a=[1- (1+a)x + axz]l + ggx + g;X

Hence

2
- 1/a = - (l+a) + 95 90 = 1 +a-1/a = (a"+a-1)/a
0 =a + 9 g, =~ a

The minimum variance strategy becomes

* _l 2 - . 2 -l
va(e) = - —SHd ) gy = - f2ftenlmad ) gy o)
F¥(g 1)B*(g ) a(b+qg )
and the minimum value of the loss function is
min Ey?(t) = a® la| > 1 (11)

A comparison with the previous case shows that the loss increases
with increasing magnitude of a.

Fig. 6 shows the results of a simulation of the system. A com-
parison with Fig. 4 shows that the empirical variance of the
output has increased from 0.98 to 3.8 which is in good agree-
ment with (11).

An Extra Time Delay in the System.

The case b = 0 which corresponds to an extra time delay in the

system will now be considered. We get

1 -x/a=/[1- (1+a)x + axz](l+le) W g0x2 + 91X3

Hence
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OQutput y

0 50 100

10

Control variable u
]
a

50 100

Time

Fig. 6 - Results of simulation of the system with the control
law (10). The parameter values are a = 2 and b = 2,
which correspond to an unstable minimum-phase system.

The empirical variance of the output obtained in the

simulation is ;5 = 3.8.

16



17

0 =a - (l+a)fl + 99

0 = af1 + 97
Solving these equations for fl’ 9o and g, we get

fl(a2+a—l)/a

3 2
(l+a)(a2+a-l)/a - D, W= S a(a+l) - 1/a

a

90

9, = a2 +a-1

The minimum variance strategy is thus given by

' - G*(q-l) _ az(a+l) -1 - a(a2+a—l)c:r_l
vu(t) = - =T =) y(t) = 5 =~ -
F*¥(g ")B¥*(g ™) a+ (a“+a-1)q

* y(t) (12)
and the minimal value of the loss function is given by
min Ey? = a®(1+£2) = a® + 223 22+ 1 Ja] > 1 (13)

A comparison with the corresponding stable system shows that
the penalty for an unstable system is even higher in this case.
For example when a = 2 the loss becomes 4 when |b| > 1 but it

becomes 29 if b also is zero.
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5. STABLE NON-MINIMUM PHASE SYSTEM.

The case |b| < 1 will now be discussed. In this case the mini-
mum variance strategy (5) is extremely sensitive to parameter
variations because the closed loop system has poles outside the
unit circle. See Astrdm (1970). These poles are not excited by
the disturbances if the parameters are exact. If the parameters
of the real process differ from the parameters of the model used
for design the unstable poles will, however, be excited. The si-
mulation shown in Fig. 7 illustrates what happens. The output
signal is apparently well behaved in the simulation. The unstable
mode z = 1/b of the closed loop system is, however, coupled to
the control signal and the magnitude of the control actions will
therefore grow without bounds. This is clearly shown in Fig. 8
which shows the control signal in a different scale. Notice, how-
ever, that there is no noticable effect on the output even when
the control actions have the magnitude 1046 If the simulation is
continued the control signal will, however, finally be so large
that round-off errors will influence the output. In the particu-

lar simulation this happens at t = 185. See Fig. 9.

A Constrained Minimum Variance Strategy.

Since the minimum variance strategy (5) is extremely sensitive
for non-minimum-phase systems we will consider a minimum vari-
ance strategy which is constrained in such a way that all closed
loop poles are inside the unit circle. Such a strategy is derived

in Peterka (1972). To derive the strategy we use the identity
B™ (x)C*(x) = A*(x)F*(x) + x°G*(x)B * (x) (14)

-+ . ) i
where B = B B 1is a factorisation of the polynomial B such that
+ : . D : =
B has all its zeroes inside the unit circle and B has all its
zeroes outside the unit circle. See Peterka (1972). The polyno-

mials are normalised in such a way that B (0) = 1.
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Qutput y

Time

10

Control variable u

Time

Fig. 7 - Results of simulation of the system (3) with the

control law (5). The parameter values are a = 0.7 and

b = 0.9, which correspond to a stable non-minimum-

-phase system.
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Control variable u

10 50 100

Time

Fig. 8 - Control signal of Fig. 7 in different scale.

) Y

Output y

Time

Fig. 9 - Continuation of the simulation shown in Fig. 7

20



In the particular example we get

B(x) = bx + 1 = 1(bx+l) = BB~

that is, B = bx + 1, B =p + x and BY = 1. The identity
(14) then reduces to

(1+bx) (1-ax) = [1 - (l-a)x + axz](l+le) i X(b+X)(go+ng)
Hence

b-a=-1-a4+ fl i bg0
- ab = - (l+a)fl ta+ bg; + 99

0 = afl + 97

Elimination of 9, gives

fl + bg0 =1+ b
(l+a+ab)fl = 99 = a(l+b)
Hence
2 2
(1-b+ab+ab )fl =1+ Db + ab + ab

go=ll gl=-a

The control strategy becomes

%, =1 _ -1
Vat) = - —Spdd g o SLoag (15)
F¥(g T)B *(q ™) l+g

Notice that the control law does not depend on b. In this
particular case the control law is in fact identical to the
control law determined in section 3 for the case b = 0. The

output under minimum variance control becomes

21
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=1 . -1 oy =1
gty = 2 ) aqr) = 1A oy = (B e (16)
B (g ™) 1 4+ bg 1 + bg
The variance of the output becomes
2 (1-b) 2 2
Ey“(t) =1 + 5 = (17)
1 ~=Db l1+Db

Notice that the variance is infinite for b = -1l. This is very
natural because b = -1 means that dynamics contains a diffe-

rentiator. Combining the results of this section with those of
section 3 we find that the variance of the output as a function
of b has the character indicated in Fig. 10.

nes

T
b

Fig. 10 - Variance of the output of the system with constrained
minimum variance control for different values of b.

Notice the discontinuity of the function at b = -1.
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Under minimum variance control the control variable becomes

=1 -1
Vu(t) = - l_:_EH:T e(t) = - Il - iéiélg:I e(t)
1 + bg 1 + bq

The variance of the control signal becomes

< v 2
E[Vu(t)]2 =1 4+ (a+,o)2 -1+ 2ab + a (18)

1 .- 5 1 - p2

The results of a simulation of the closed loop system with the
control law (15) are shown in Fig. 11. A comparison with Fig.4
shows that the fluctuations in the output are of the same mag-
nitude. Equation (17) also indicates that b = 0.9 only gives 5%

increase of the variance compared to the minimum-phase case.
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Control varijable u

Fig. 11 -

10

0 50 100

0 50 100

Results of simulation of the system (3) with the
control law (15). The parameter values are a = 0.7
and b = 0.9 which correspond to a stable non-minimum-

-phase system. The empirical variance of the output

is v2 = 0.97.

24



6. UNSTABLE NON-MINIMUM PHASE SYSTEM.

The case |a| > 1 and |b| < 1 will now be analysed. The identi-

ty (14) becomes

(1+bx) (1-x/a) = [1 - (1+a)x + ax?](l+flx) + x(b+x) (gy+g;X)

Hence

b -1/a = - (1+a) + fl + by,

- b/a = - (l+a)f; + a + go * bgy
0 = af

1+t 91
Elimination of 91 gives

£, + bgy = 1+a+b-1/a

(l1+atab)f; - g4 = a + b/a
Hence

(l+b+ab+ab2)fl — 1+a-1/a+b+ ab + b/a

or
2 2
fo= 2 + a“ -1+ ab(atl) + b
1 a[l+b+ab+ab2]
g. = (l+b)(a2+a3+a2b-1)
) a(l+b+ab+ab2)
gy = - af

The control strategy is given by

c*(q D gy + 9,9 T
vu(t) = - s Y (£) = — ok (£) (19)
BT¥ (g 1)F"‘(q L 1-|-flq_1
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and the output under minimum variance control becomes

F* (g7 1) 1+ f,q 1t (f.l,.—b__),q._l
Y(t) = ———e(t) = -7 e(t) = |1+ 7| e (¢)
B (g ™) 1 +Dbg 1 +bqg
Hence
2
(£,-b)
l1-b

Results of a simulation of the system is shown in Fig. 12,
A comparison with Fig. 4 shows that the output signal has much
higher variance when the system is unstable and non-minimum-
phase.
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Fig. 12 - Results of simulation of the system (3) with the
regulator (19). The parameter values are a = 2 and
b = 0.9, which correspond to an unstable non-minimum-
-phase system. The empirical variance of the output

is y2 = 4.15.
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7. CONCLUSIONS

The results of the calculations will now be summarised.
The minimal variances obtained in the different cases are

summarised in the Table below.

Case |a] Ey

la. Stable minimum phase la] <1, |b|>1 i

lb. Stable minimum phase

with extra time delay lal <1, p=0 2
2a. Unstable minimum phase la| >1, |b|>1 a2
2b. Unstable minimum phase _ 4 3_
with extra time delay |a|>]” b=0 a +2a’-2a+l
3. Stable non-minimum phase lal <1, |b| <1 lib
4. Unstable non-minimum 2 Uﬁ'b)z
. la] >1, |b| <1 a [1+—1-? ]

Compare for example cases 1 and 2, that is, stable and unstable
systems. For stable systems the control error equals the predic-
tion error for the process over 1 (b # 0) and 2 steps (b = 0)
respectively. When the system is unstable the error increases

to a2 which should be compared with 1 for stable systems. Hence
the more unstable the system is the larger is the loss. When b = 0
the loss increases from 2 to a4 + 2a3 - 2a + 1. Next compare ca-
ses 1 and 3, that is, stable systems. In the non-minimum phase
case |b| < 1 the loss increases from 1 to 2/(1+b). For b = -1
the loss becomes infinite due to loss of controllability of the

unstable mode.
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APPENDIX

The SIMNON programs used in the simulation of the closed loop
system are listed in this appendix.



DISCRETE SYSTEM PROC
"FIiRST ORDER PROCESS WITH DRIFTING NO!SE

INPUT DU E

QUTPUT Y

TIME 1T

STATE X1 X2 U N VE VU VY Vy

NEW NX1 NX2 NU NN NVE NVU NVY NVN
TSAMP TS

INTTHAL
X1:0
X230
us:g
Nil
VE:D
Vu:o
VY:o
VNI D

QUTPUT
Y=X1+N+E

DYNAMICS
NX1=A#X1+X2+B#*(U+DU)
NX2=U+DU

NU=U+DU

NN=N+E

NVESVE+E®#E
NVUsVU+Usl)
NVYsSVY+YwrY
NVNEVN+Na)

TS=T+H



DISCRETE SYSTEM REG1
"HINIMUM VARIANCE REGULATOR

INPUT Y
ODUTPUT DU
TIME T
STATE X
NEW NX
TSAMP TS

INITT AL
Xi0

QUTPUT
Did==(Y=X)/R
DYNAMICS
NX==X/B+(A+1/B)sY
TS=T+H

"07

I =

o5 e o=

ENT



DISCRETE SYSTEM REG1
"MINIMUM VARIANCE REGULATOR

INPUT Y
QUTPUT DU
TIME T
STATE X
NEW NX
TSAMP TS

INITLAL
X0

OUTPUT
DUs=(Y=X)/B

DYNAMICS
NXz=X/B+(A+1/8)%Y
TS=T+H

0.7
2
1

A
8
H

END
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DISCRETE SYSTEM REG2
"CONSTRAINED MIN VAR REG FOR UNSTABLE SYSTEM

INPUT Y
oUTPUT DU
TIME T
STATE X
NEW NX
TSAMP TS

INITIAL

X:0
GO=s(A+1-1/A)/B
Gl=-A/B

OUTPUT
DUs=GO*Y-X

DYNAMICS
NXa=-X/B+(G1-GB0/B)*Y
TS=T+H

ol e i -2
LR \VIE \V]

END
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DISCRETE SYSTEM REG3
"CONSTRAINED MIN VARIANCE REG FOR UNSTABLE NON M|N=PHASE SYSTEM

INPUT Y
QUTPUT DU



TINE T
STATE X
NEW NX

TSAMP TS

INTT AL

X:0

DeAs (L+B+A#B+A*B®3)
Fiz=(A+A®A~1+A#E®(A+1)+53%8) /D
GU=((l+A+A%B)I 2 (A+A#A+A#RE-1 ) =A% =B)/D
Gl=-A%F1

VARZA#A# (1+(F1-8)#(F1-2)/(1-B*F))

QUTRPUT
Ny==Ga*Y-X

DYNAMICS

NX==F1#X+(G1-GO#F1)#Y
TS=T+H
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END



DISCRETE SYSTEM REG3
"CONSTRAINED MIN VARIANCE REG FOR UNSTABLE NON MIN=PHASE SYSTEM

INPUT Y
OUTPUT DU
TIME T
STATE X
NEW NX
TSAMP TS

INITIAL

X:0

DesA#(1+B+AsReAngaR)
Fi1s(A+A#a~1+A%B#(A+1)+348)/D
GO=((1+rA+A#B) #(A+A¥A+A#*B=-1)=A%A=R) /D
Gl=-A#F1

VAR=A®A® (1+ (F1-B)#(F1~-B)/(1-B#*R))

OuUTPUT
DU=-GO*Y~-X

DYNAMICS
NX=-F1eX+(GL-GO#*F1) =Y
TS=T+H



CONNECTING SYSTEM L INK
E[PROCI=FELINOISE)+DRIFT
Y(REGLI=Y[PROC]
DUIPROCI=DULIREGL)

DRIFT:0,0%
END



