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1. INTRODUCTION

In an early article ([1]1), Anosov gave necessary and sufficient
conditions for the local stability of the null solution in a feedback
system consisting of a linear, time-invariant Tink in the forward
lToop and a relay in the feedback loop. He was followed by Alimov
([21), who stated sufficient conditions for the global asymptotic
stability of the null solution in the same configuration. Since

these papers were written, the status of non-linear stability theory
has been raised considerably, and it is the object of this paper to
apply modern frequency domain stability criteria to the above con-
figuration.

The main work is done in Section 2. In the following section, the
results are generalized to systems with an ideal saturation in the
feedback loop, a case which may be reduced to the former one by
means of a simple loop transformation. Finally, an application to
minimum-variance controllers is given.



2. RELAY SYSTEMS

Consider the following single-input, single-output feedback system

Ax + bu

X
u=- oy (1)

ch + du

J
where @(-) s defined by

o(o) = san(o) = {1 7% (2)
There are problems in defining ¢(0), since the right-hand side of
(Ta) will be discontinuous no matter how u(0) 1is chosen, and the
standard existence and uniqueness theorems for ordinary differential
equations will not be valid. There are ways of overcoming this
difficulty by defining generalized solutions to (1). Alternatively,
@(+) may be replaced by wK(-) defined as

o > 1/K
@c(o) =1 Ko lo| £ 1/K (3).
c < -1/K

If K s large, this is a good approximation of ¢(-), which is in
itself an idealised mathematical entity with Tittle physical relevance.
Besides, the system (1), (2) is not well-defined if d # 0, which

will be the case in Section 3.

A thorough treatment of the well-posedness of the problem is beyond the
scope of this paper, and it will be assumed a priori that these
questions have been dealt with. The stability problem related to (1),
(2) or (1), (3) is to determine conditions on ¢, A, and b, that ensure
stability, Tocally or in the large (= globally), of the trivial
solution. It is assumed that A s strictly Hurwitz (i.e. Re A(A)<0).

2.1 Local Stability of the Null Solution

The conditions for local stability may be derived heuristically as



follows. In a neighbourhood of the origin, the system (1),(3) is a
linear feedback system with a large gain in the feedback loop. A
necessary and sufficient condition for asymptotic stability is that
the closed-Toop poles lie in the open left half-plane. Thus define

i) If d # 0, the closed-loop poles will tend to the zeros of
G(s) as K - o,

ii) If d =0, bn-] #0, (n-1) of the closed-Toop poles will tend
to the zeros of G(s), and the remaining one goes to -,

iii) If d =0, bn-] = 0, bn-Z # 0, (n-2) of the closed-loop poles
will tend to the zeros of G(s), and the remaining two poles

will go to - 1/2 (a,_q - b, a/b_,) * i. .

iv) If d =0, bn-] =0, bn-2
unstable for large enough K.

= 0, the closed-loop system is

Necessary conditions for the Tocal stability of the trivial solution
of (1), (3) are consequently:

i) d # 0, and the zeros of G(s) are in the closed LHP, or

ii) d =0, bn-] # 0, and the zeros of G(s) are in the closed LHP,

or

iii) d=0, b =0, b _,#0, a ;2 b _s/b o, and the zeros
of G(s) are in the closed LHP.

Sufficient conditions for stability are i), ii), or iii) with "closed
LHP" replaced by "open LHP" and a _, > b _a/b , in iii).

For a justification of these arguments concerning the system (1), (2),
see [1].



2.2 Global Stability of the Null Solution

2.2.1 Alimov's Condition

In this section, d is assumed to be 0. The main sufficient
condition for global stability stated by Alimov ([2], eq.(28)) is
that there exist a positive definite P satisfying

{ ATP+PA = -Q < 0 (5a)

PATTb = ~uc,  w >0 (5b)

Expressing Q as qu-rK, where (qT,A) is observable, the
Meyer-Kalman-Yakubovich lemma [3] states that such P and q exist
if and only if the transfer function H(s) a -cT(sI-A)'1A']b is
positive real. Since

Tpk T

cA'b T A" ¢ a7l
S

b _ G(s)
s

- hN = -
S k=0 Sk+2

H

it can be inferred that H(s) is P.R. if and only if Eﬁ£D§§£§l is
P.R. This requires, among other things, Im G(iw) < O,w > 0 and is
thus but a special case of the Popov condition; see below.

2.2.2 Frequency Domain Stability Criteria

The reader is assumed to be acquainted with the standard theorems of
non-linear stability theory. A complete reference is [4].

Consider again the system given by (1), (3). The forward loop is a
Tinear, time-invariant 1ink, characterized by its transfer function
G(s) = cT(sI-A)'1b-+d, and the feedback lToop is a time-invariant,
monotone—non-decreasing non-linearity contained in the sector [0,K],
where K s an arbitrarily large positive number. The following

stability results are thus easily established:

i) By the circle criterion [5], the feedback system (1), (3) is
asymptotically stable in the large if G(s) is positive real ([4],
p. 57).
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Fig. 1 - Stab111ty by the circle criterion.
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Fig. 2 - Stability by the off-axis circle-criterion.
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Fig. 3 - Stability by Popov's theorem.



i1) By the off-axis circle criterion [6], global asymptotic
stability is ensured if the Nyquist curve of G(s) Ties to
the right of a straight line through the origin with non-zero
slope.

iii) By the Popov theorem [7], the feedback system (1), (3) is
globally asymptotically stable if the Popov plot (i.e. wIm G(iw)
versus Re G(iw) ) lies to the right of a straight line through
the origin.

Remark 1. The assumption that A be strictly Hurwitz is unnecessarily
strict. It can be shown that G(s) may contain one integrator.

Remark 2. 1iii) implies stability if Im G(iw) < 0, w > 0. Thus
Alimov's condition (Section 2.2.1) is a special case of the above
result. The reason for this can be found in a paper by Yakubovich [8].
Alimov's stability result is based on a Lyapunov function of the
Lure-Postnikov form, which is a special case of Popov's Lyapunov
function. In the above paper, Yakubovich proves that if stability can
be inferred from this Lyapunov function for a special non-linearity,
then, under general assumptions, stability is ensured for all
non-linearities lying in the same sector, and Popov's frequency
domain condition, being necessary and sufficient, is consequently
fulfilled.

2.2.3 Multiplier Theory

First, a few definitions will be stated.

Definition 1: Let H be a Hilbert-space with scalar product <-|«>

and H, its extension, i.e. Hy ={ h; ||[Prfll<e VT }; here,
PT denotes the truncation operator. Further, let H be an operator

from Hy to H. Then
i) H s passive iff 38 such that < Py Hx |PT><> > VT,

ii) H s strictly passive iff 35 >0 and 38 such that
< Pp Hx [ Prx> > 6 [[Prx|[2 +8.




The following theorem holds ([9], p. 182):

Passivity theory: The zero-solution in a feedback system

consisting of a finite-gain, passive operator in the forward path

and a strictly passive operator in the feedback Joop is globally

asymptotically stable.

The circly criterion may be viewed as a special case of this theorem.

One way of proving Popov's theorem is by inserting the so-called

Popov multiplier (“]s'+“2)’ a # 0 together with its inverse in

the foward and feedback loop, respectively, thereby exploiting the

time-invariance of the non-linear link. If this Tink satisfies

additional conditions, such as symmetry or incremental conicity, the

class of multipliers may be extended. For odd, monotonic, incementally

conic non-linearities, a large class of multipliers has been specified

by Thathachar et al [10]. This class consists of positive real transfer

functions, whose coefficients satisfy certain inequalities. Due to

their complexity, these conditions are difficult to check in a

practical case. It turns out that the class of admissible multipliers

is more easily characterized in the time domain, as will be done

below.

Consider the generic configuration of Fig. 4. In Fig. 4b, a multiplier

M(s) has been inserted in the forward path and its inverse in the

feedback loop. From a stability point of view, the systems are equiva-

lent. The aim of this section is to determine the class of multipliers

that, cascaded with a relay, give a passive operator.

b3 Gl(s)

=

Fig. 4a - The generic con-
firugation.

- Nﬁ(s)

Fig. 4b - An equivalent system with

multipliers.

6ls) F Mis) M (s) [
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Definition: (Continuous time) MC is the class of linear, time-
-invariant operators whose impulse response 9060 +g(t) (g9(t) =0,
t <0) satisfies g,z i | g(s) | ds.

0

(Discrete time) MD is the class of linear, time-invariant operators

whose impulse response g.6, + b3 g. &, satisfies g, > =]|g:]:;
070 ~ 42771 i 0 =1

here 6.(k) =1 if k=1, else 0. -

Theorem. (Continuous time) Let Z be a Tinear, time-invariant

1

operator and N the relay operator. Then NZ ' 1is a passive

operator if and only if Z = M-+a-él, where M€ MC and o > 0.

(Discrete time) Let Z be a Tinear time-invariant operator and N
the relay operator. Then NZ'1 is a passive operator if and only if
Z =M+ovV, where M€ MD, a >0, and Vv denotes the backward
difference operator.

Definition 2: Denote this class of operators Z by .MC and MD’

respectively.

Proof of the theorem. For simplicity of notation, only the discrete-

time case will be proved. The continuous-time version is analogous,
but somewhat more technical. The differentiator is omitted, since it
is a standard multiplier in this context. Furthermore, the form (2)
for the relay will be used; it is easy to see that this does not alter
the class of admissible multipliers.

Sufficiency. Let (u(k))i_gs (v(K))y g and (K)o be
sequences in zg (i.e. locally finite), where u(-) is the input
to M'], v(+) 1is the input to the relay, and y(-) is the output
from the relay. NM'1 is a passive operator if and only if wT =
=% u(k)y(k) =0 forall T > 0. Since y(k) =sgn (v(k)) and

U( ) = 'IEO g-] V(k-i)a



T k T
Wp= T sgn v(k) £ g; v(k-1) =gy ¥ |v(k)| +
k=0 i=0 k=0
T k
+ = sgn v(k) I 9; v(k-1) >
k=0 i=1
T T T
29y = |v(k)] - lo: = v(k)| 2 O
k=0 k=1 k=0
according to the assumption.
T

Necessity. Assume that 3T such that g, < 1,‘>_:1|g1.|. Choose vg =1,
Vi = =g sgn(gi). Then wT =9y - -£]l91|'+0(€)’ ¢ » 0. Hence the
necessity. =

Corollary 1. If there is an M€ M (Mp) such that G(s)M(s)
(G(z)*M(z)) is positive real, then the feedback system (1),(3) is

asymptotically stable in the large.

Proof. Since a linear, time-invariant link is passive iff its transfer

function is positive real, this is an immediate consequence of the
passivity theorem. By means of a well-established inversion procedure
(see e.g. [4]1, p. 109), it can be shown that if M is an admissible
multiplier, then so is M']. Thus, the above corollary may be
restated as

Corollary 1'. If there is an M € W (f;) such that G(s)M(s)*
(G(z)M(z)i]) is positive real, then the feedback system (1), (3) 1is
globally asymptotically stable.

Example 1. Consider a feedback system with the transfer function

s(s+1)(s+2)
(s+10)(52+2s+2)(52+s+50)

G(s) =

in the forward path and a relay in the feedback loop. As can be seen
from the Nyquist diagram, Fig. 5, the Nyquist plot belongs to all
four quadrants.

A short computation shows that
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—» Re Gliw)

S(s+1)(s+2)

Fig. 5 - The Nyquist plot of G(s) = 5
(s+10)(s"+2s42) (s

2+s+50)-



s+10)(32+25+2)
(s+1) (s+2)

Gy(s) = (
is an admissible multiplier, giving

GGy (S) = —5—
M 52+s+50

which is positive real. The given feedback system is thus globally
asymptotically stable.

2.2.4 Tsypkin's Method

For the sake of completeness, a brief account of Tsypkin's exact
method for relay systems will be given. For a detailed exposition,
see for instance [11].

Let, as usual, G(s) be the transfer function of the linear link
and let G](s) = G(s) - G(o) be its strictly proper part. The
Tsypkin locus T(iw) 1is defined by

(s} (=)

. . . 1 .
T(iw) = =z Re Gy ((2k+1)iw) + i I T Im 6, ((2k+1)i0)

w > 0
For a symmetric 1imit cycle oscillation with frequency wy to be
sustained in the system, the following conditions must be satisfied:

Im T(iwg) = —2— G(e0)

Re T(iwy) <%5 ;l"lo (s G(s))

The T1imit cycle is stable if é% Im(Tiw) is positive.
(x)=(.00

It should be stressed that the construction of the Tsypkin locus,
graphical or analytical, is a rather time-consuming task. However, a

great merit of this method is that it is exact and that it gives the
possible frequences of self-sustained oscillations in the system.



15

3. SYSTEMS WITH AN IDEAL SATURATION

Consider a feedback system with a Tinear, time-invariant link in
the forward path and an ideal saturation in the feedback Toop. By
an ideal saturation is meant

1 c > M
p(o) =4 o ol M (6)
-1 o < =M

(For global stability considerations, the value of M is unimportant.)
These systems are very important, since, in practice, all control
signals are Timited.

It is an easy matter to transfer the results from Section 2 to the
system (1), (6). Consider Fig. 6.

-® 6ls) —(3)—2
7{4 ()
1 j
- %

Fig. 6 - A loop transformation.

The transformed feedback system of Fig. 6 is equivalent to the generic
configuration. It is left to the reader to verify that the non-linear
link in Fig. 6 is the relay (3). The transfer function of the linear

part is G(s)+1 - l-. As an example, the following stability result

K
for the continuous time case is formulated:

Corollary 2. The feedback system (1), (6) is asymptotically stable in

the large if there is an M E'MC such that (G(s) +1 -%)M(s)i1 is

positive real for large enough K.
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Example 2. Consider a feedback system with the transfer function

2
G(s) = 2 5

(s2+0.01) (s2+100) + & (s°+s°+s+10)

in the forward path and an ideal saturation in the feedback Toop.
This is a variant of a famous counterexample to Aizermann's
conjecture.

The Nyquist plot of G(s) + 1 s given in Fig. 7 for ¢ = 0.03.
What is needed to show overall stability is a multiplier that pulls
the bulge in the third quadrant into the right half-plane without
effecting the phase at low frequencies. This may be achieved by

s + 2.27

s + 45.5 °

which has its maximum phase-lead around w = 10 rads/sec, where the
bulge is. From the Nyquist plot of (G(s)+1)GM(s), shown in Fig. 8,
it can be inferred that the feedback system is asymptotically stable
in the large.

GM(S) =



> Re Gliw)

Fig. 7 - The Nyquist plot of
2

G(s) +1 = 5 +1.

(s%+0.01)(s24100) + £ (s3+52+5+10)

17
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Aim Gliw)

—— > Re Gliw)

s + 2.27
s + 45.4

Fig. 8 - The Nyquist plot of (G(s) +1)~GM(s), Gy(s) =
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4. AN EXAMPLE: THE MINIMUM-VARIANCE REGULATOR WITH A BOUNDED CONTROL
SIGNAL

Consider the difference equation
- -k - -1
(@ Ny = a7 B¥(q T )u + C¥(q7 e (7)

where e(-) 1is white noise and A* and B* are assumed to have all
zeros outside the unit circle. The minimum-variance regulator [12] for
the system represented by (7) is given by

y (8)
where G*(q”') and F*(q™!) satisfy the identity
-1 ; - - -1
c*(a!) = @) P a7 eraTh

deg (F*) = (k-1), deg (G*) = (n-1).

Now assume that the control signal u 1is limited, |u(t)]| < K. Two
different control strategies are possible: either the minimum-variance
regulator is run as usual, or else the bounds on the control signal
are taken into account in some fashion.

Consider first the straight-forward regulator with no account for the
Timit on |u|. The block diagram is shown in Fig. 9.

1

D

b A
*
|
I
@T”ﬂ
|
<

b

Fig. 9 - The minimum-variance regulator.



As seen from the non-Tinearity, the transfer function of the linear

part of the system is q'k-Kg;; . Applying the Toop transformation
of the preceding section shows that the relevant transfer function
is
- * I ¥ 4 p¥E* *
q k G 1 =g k G +AF" _ C )
A¥F* A¥F* AXE*

The following result has thus been established:

Result 1. The system given by (7), (8), with e =0 and |u|] <K
for some K > 0, is asymptotically stable in the large if there
exists a multiplier M* in -MD such that E** -(M*):t1 is positive
real. It is interesting to note that the condition is independent

of B*.

There are various ways of taking the limitation on |u| into account.
One would be to measure the actual input at each instant and to
replace the nominal value of u(-) in (8) by its actual value. This
gives the feedback system of Fig. 10.

A*

Fig. 10 - A modified minimum-variance
regulator.



The modified control law is

u = (1-B*F*) u, - G*y, (10)

a

where uy denotes the actual value. The relevant transfer function is

k

L r* Kk -k ok * (K
B -1) +qKE g 4 - pr.AF 9 & _BE

A¥ A* A*

Result 2. The system (7) with e =0 and |u}l <K, K> 0, and the
modified regulator (10), is g]ogally asymptotically stable if there

such that ﬁﬁg— (M) is positive real.

is an M* in oy
A priori, there is nothing to be said in favour of this modified
control Taw from the stability point of view; the system parameters

determine whether one control Taw is to be preferred to the other.

It the conditions of Result 1 or 2 are not satisfied and the regulator
saturates, this may produce self-sustained oscillations in the system.
If the regulator saturates only due to initial conditions, this may

be avoided by simply letting the transient settle before the regulator
is activated. However, if saturation takes place in steady state
during normal action due to a Targe noise variance, other precautions
must be taken. A general approach is to replace c* in (9) by a T*,
which satisfies the condition of Result 1 or 2. The transfer function
from e to y will be z§-°F*, giving a larger variance than the
optimal regulator, which is the price one has to pay in order to
guarantee stability. On the other hand this drawback is to a certain
extent illusory, since the control law (8) in presence of saturation

is not necessarily optimal.

Finally, a few words chould be said about the case when A*¥ and B*
do not have all zeros outside the unit circle. Obviously, if A* s
unstable, the system cannot be globally asymptotically stable if wu
saturates. If B™ has zeros outside the unit circle, the minimum-
-variance controller will have to be modified in practice in order to
eliminate extreme sensitivity to parameter variations. One way of
doing this is by changing (8) and (9) into

21



and

REHCREIC
(")

deg (F*) = (n,+k-1),  deg (6*) = (n-1)

-]) and B;(q']) are the stable and the unstable parts

of B*(q_]) respectively, and n, = deg B;(q']). An elementary
calculation shows that the cgngition of Result 1 is unaltered (though
with a new F*) and that -EKE— in the condition of Result w should

be replaced by

Here, B?(q

*
1

A*

BY.c*

22



5. CONCLUSION

The powerful tools of modern non-linear stability theory has been
applied to relay systems. The main drawback of the refined stability
results of Section 2.2.3 as compared to the simpler (and more
conservative) criteria of Section 2.2.2 is that they provide no
algorithm for investigating the existence of the multipliers in
question. As a whole, this is a trial-and-error process. However,
the given examples should provide an indication of how the problem
may be attacked.

23
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