LUND UNIVERSITY

INTRAC - Programmer's guide

Schonthal, Thomas

1977

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Schonthal, T. (1977). INTRAC - Programmer's guide. (Technical Reports TFRT-7128). Department of Automatic
Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/14a9bf12-ac6d-4c92-ba42-27bafd5364a0

CODEN: LUTFD2/(TFRT-7128)/1-033/(1977)

INTRAC - PROGRAMMER'S GUIDE

TOMAS SCHONTAL

DEPARTMENT OF AuTomATIC CONTROL
LUND INSTITUTE OF TECHNOLOGY
OcTOBER 1977

SIS-
DB1

DOKUMENTDATABLAD eniigt SIS 62 10 12

Dokumentutgivare

ﬂﬁh& Institute of Technology

32?3“"‘ Dept of Automatic Control

Forfattare

Tgﬁgs Schdnthal

Dokumentnamn Dokumentbeteckning

BEBoRT LUTFD2/ (TFRTI9128) /1-33/(1977)

Utgivningsdatum Arendsbeteckning

88% 1977, 1st printifg
Dec 1979, 2nd printing

10T4

[_D;’kuﬁe;;;-ital_(;c.h_t-m.dar(iltel T
1870
INTRAC - Programmer—S Guide

Referat (sammandrag)

26T0

interactive
interactive

program package

Calling and initializing INTRAC;

This report describes in detail how to construct a command driven
(preferrably in FORTRAN) based upon the
module INTRAC. The following problems are discussed:

Designing application routines and interfacing them to INTRAC;

' How to use INTRAC s auxiliary routines for argument decoding and data

| Display handling;

exchange between INTRAC and application routines;

|
!A few examples are taken from IDPAC, one of the first program packages
|to utilize INTRAC, but the methods are quite general.

| Referat skrivet av

|
[Author __ . -

Y FSUSPRS

Computer aided design,

Interactive programs

| Klassitikationssystem och -klass{er)

5070

. Indextermar (ange killa)
o

| Forslag till ytteriigare nyckelord
f
1
|
1
=
]
1

Engineers Joint Council, N.Y.,

Céﬁbuter software (Thesaurus of Engineering and Scientific Terms,
USA) .

I Omfdng o I Ovriga- ':)iblio.‘;;;f.l.ska uppglfter
33Tpages_|5672

Sprak !

English

e
Sekretessuppgifter

6070

Dokumentet kan erhilas fran

ﬁéﬁértment of Automatic Control
Lund Institute of Technology
| Box 725, S$-220 07 LUND 7, Sweden

Pris

B0 e

ISSN
6014
l\'/lottagarens uppgifter

62T4

'“IEQN
6076

b

Blankett LU 11:25 1976—07

1
2)
3
4)
5)
6)
(R

33

INTREC

IMTRAC

Frogrammer”s Guide 11 bec 709

4 -)
rogrammer s Guide

AR RS RS SRR RRIERER RS RS R R YRS

Tomas

Contents

Abstract

Scope

Schonthal
Department of Automatic Control,
Lund Institute of Technoloyy, Sweden

Main Program Outline

Error Routine

Qutiline

Functional pescription of INTRAC

Designing Application Routines

Argument Decoding, a Programming Example

Appendix

Appendi x
Appendi x
Appendix
Appendix
Appendi x

Apoendix

A

f3

Initializing and Calling INTRAC,
INTRAC s Error Routine

Argument Decoding Functions
Accessing Global Variables
Command Logging and Echoing
Display Handling

Text String Format

INTRAC s Data Areas

INTRAC = Programmer”s Guide 11 bec 79

1) Abstract

This report describes in detail how to construct a
command driven interactive proaram package
(preferrably in FORTRAN) based upon the
interactive module INTRAC.

The following problems are discussed:

Designing application routines and
interfacing them to INTRAC

Calling and initializing INTRAC

How to use INTRAC”s auxiliary routines for
arqument decoding and data exchange between
INTRAC and applicstion routines

Display handling

A few examples are taken from IDPAC, one of the first
program packages to utilize INTRAC, but the
methods are cuite gencrals,

23

. INTRAC = Programmer”s Guide 11 bec 79

The scope of this report is to define some programming
conventions that are necessary in order to interface
INTRAC successfully to usersupplied application routines.

The runtime facilities of INTRAC as well a5 a discussion
of the design philosaphy behind INTRAC are dealt with in:

"INTRAC - A Communication Module for

Interactive Programs - Language Manual' by

Hilding Elmgvist andg Johan Wieslander, which the reader
is assumed to have read, since ccncepts such as

MACROy global variacle etcs wWwill appear in this text
without explanationss.

The implementation problems are treated in:
“"Implementation Procedures for INTRAC", by Tomas Schonthal.

Problems arising when using program languages
other than FORTRAN are not discussed.

In the first paragraphs the programming methods are
merely outlined and examplified, to be followed by
appendices containing exact information about
nroyramming conventions and dats representations, etc.

32

al

b)

c)

d)

, INTKAC = Programmer”s Guide 11 bec 79 -4

Main Program Outline

Constructinyg a command driven program backage around INTKAC
puts same constraints on the programmer.
Among other tnings the following items are affected:

The design of the main proaram
The integrity of INTRAC s own data aress

The information exchange between INTRAC and
the user”s application routines

This does of course in no way limit the choice of
problem selving algorithms and data representationse.

The following tabble describes the idea kehind the main
procgrame Some paragraphs cantain a reference to

an appendix with cdetailed information.

Initialize INTRAC (and if necessary, the application
section of the program package), i.e. define mode flags,
acsign default values, etce. (Sce Appendix A.)

FeGe at this stage IDPAC writes & version message.

Obtuin ane command Liney, decode it and transfer

“the table of application command names by & call

to SUBR. INTRAC. (See Appendix A.)
Error? If so: Goto ul.

Empty line? 1f so: Goto b).

Was the command STOP? I1f so: Exit.

INTRAC has now provided an index, which identifies the
desired application routine, to which control may be passed
esds by means of FORTRANTs computed GOTO constructs

Pass control to the desired application routine.
Error? It so: Goto dd). If noat so: Goto b).

Write an appropriate error message, e.gs by a call
to an application dependent error routine,

which, if the error was flagged by INTRAC,

sheould pass controt to INTRAC®s own erraor

recutine (see Appendix A)s then gato b).

L INTRAC = Programmer”s Guide 11 bec 79 -5

4) Error Routine Qutline

— et e e e = e = Yo — e = = —

The convention for signalling error conditions is to
assign a ylobal error indicator provideag by INTRAC &
positive value. (See Appendix G.)

Eege in IDPAC this error indicator assumes values in
several dntervals aof Length 100, each one representing a
uniyue category of error casess. Eage the interval [901,966]
is reserved for Least Squares ldentification errors,

and to be more specific, error case 9146 ceorresponds to:
MODEL OKDER TOO HIGH — TOO MANY PARAMETERS

IDPFAC”s error routine is therefore organized in two levels:

a) overall error routine, which is called whenever an error
message is desireds. The overall routine merely identifies
the error categorys

The error interval (1,491 is reserved for INTRAC
itself (See Appendix A,)

bY Error cateqory routine, several identical routines, insofar
as program Logic is concerned. These routines handle the
individual error casesy, within the scope of one error
category.

* This corganization has the advantage of bLeing easily understood
and updated, since its only elements are:

- A computed GOTO statement on the error indicator
— A WRITE statement and a FORMAT key for eeach error case

~ A call to INTRAC”s own error routine from the
overall error routine (See Appendix A.)

- An echoing loyic to remind the operator of
an erroneous command if the operation mcde 1is
MACRO with no automatic cchoing (See Appendix D.)

a)

b)

d)

e)

).

h)

INTRAC - Programmer”s Guide 11 bec 79

In arder to further exnlain the behaviour of the
proyram packasge,
a simplified flow table of INTRAC is provided.

Is the operation mode MACRO? If so: Teke administrative
measures for MACRO execution/generation (could be
affected by the error indicator).

Clear the error indicator.

Read a free format command Line from appropriate

device (keyhoard or mass storage, respectively, depending
on operation wmode).

Divide the command line into typed (classified) data items
(arguments), the first of which will be referred toc as the
cammand word (command identifier). Were the arquments
syntactically correct? If not so: Set the errgor indicator
and return.

Are INTRAC s awn commands desired and dces the command word

match a&any ot their names? If so: Fxecute the appropriate
INTRAC command, then goto ¢) if no error acccurred,
otherwise returne.

Substitute asctual values for variable names in the commandg
Line, if any. (See Appendices ([and Co)

Are any application commands desired and does the command

word match an entry in the table of application command names?

If so: cowmpute an application selector needed by the main
program as described in Section 3, then returne.

Should the command (ine be treated as data? If so: Returne

Weas it desired to execute a MACRO? If sc: Look up a text file,

whose name eguals the command word and whose first line is
a lecal MACRO statemente 0.K? If so: Enter MACRO
execution motie, then goto c).

If net so: Flag the error case INVALID COMMAND, then return.,

LComments

Maote that IRTRAC is the main routine for its cwn
commands, so that control will not be returned until &

command Line 1s identified either as an application
command, a data Line or an empty Linee.

The flow table does not explain the echoing feature
as well as some details concerning MACROSs. However,
features are with one exteption (to be explained in
Section &) transparent to the application routines.

Note the scan order between INTRAC s own commands,
application commands and MACRGOs.

INTRAC merely flags error cases, control to
INTRAC” s own error routine should be passed
via the calling program”s error routine.

The error indicator should be cleared by INTRAC
and not by the application routines.

INTRAC - Proyrammer”s Guide 11 Dec 79

these

INTRAC = Programmer”s Guide 11 bec 79 -4

Designing Application Routines

The design of the application routines leaves the programmer
with the ¢greatest creative freedom. 1t is therefore impossicle
to set un aeneral rules,y, so instead a hypothetical

application routine in the spirit of IDPAC 1is

discussed in order to:

Give a general idea of how an applicatiaon routine might tock.
To denonstrate the usefulness of INTRAC”s auxiliary routimes.

This type of application routine normally consists of
six sections:

Initialization, in which parameters are assicnea
default values, flags are cleared, etca

Argument decoding, in which the unigue syntax of the command
is tested in details INTRAC s syntax control may be thought
of as a first, application independent pass. the argument
decoding as a final, application dependent one.

The argument decoding is carried out by means of special
LOGICAL FUNCTIGMNs,y which access and correctly

interprete IKTRAC s data areases

(See Appendix 8,)

INTRAC has an operaticn mode:
“befine a MACRC but do not exccute it",
in which the program packane as & whole acts as an interactive
compilery, verifying the formal correctness of the
command Line before it is added to the MACRO, but no moree.

For this purpose INTRAC provides a flao. If that flag is set,
then the application routine should pass control back to

the main prenram after the arygument decoding, except

for what is said &t €¢) cbout command loycing.

(See Appendix Ga)

Note

This is the only way that INTRAC s MACRO facility

affects the zpplication routines, ang it has to be
considered, if the program package as 2 whole is to

function proaperly.. Ottiecrwisc the program package might
attempt tou usccess undefined data or alter existing data, etc,
Whether to perform the syntax control or not in this mode

c)

d)

e)

f)

JINTRAC = Programmer”s Guide 11 pec 79 -9

is up to the application proarammer,

bata input (typically in the form of
files on mass storage).

fvaluation of input datas usually accomplished by
calls to prewritten scientific library rcutines.

Data outputy very similar to ¢). Howrver, the programmer
should keep in mind that after entering e) there is no
"going back*. I1f, for some reason, the results from d) are
partly erronecus, or the application routine is unahle

tu produce all the results. then it is recaommended that
either the ocutput should be completely inhibited or

some action lbie taken to prevent the output froem keing
misuncderstood or, perhaps even better:

the operator should be allowed to take some remedial action.

If the command was successfully carried out,y, it might be
desired to log it on the listing device.

That will be accomplished hy a call to a special INTRAC
routine (See Appendix D),

Just note that if the application routine ocutputs to

the Listing device, then the logging sheould precede

that output,

EFrror messages
I1f an errcor cccurs hetween 2) and e), then

" INTRAC”s glubal error indicator should ke set to an

appropriate vatue and control he transferred back to
the main proagram (See Appendix A).

In some cases, hawever, extra measures need to be taken, e.y.
still open input files should be closed,

temporary tiles should be deleted, etce

In short the runtime cenvironment should to the Llargest
possible extent he reset to its state at the time

before the attempt to execute the erroneaus command

was madea

It is good practice to collect all the error case assignments
in a tail at the end of the application routine, each ane
nreceeded by a comment line.

Formaltly, the application routines are SUSROUTINES
lacking arguments, implicitly communicating with

INTKAC via aryument decodinyg functions and

CGHMON blockss. In *a genersl sense, however, they may

be regarded as separate progrems, interchanying daeta via
mass storage filesy reserved wmemory areas, etcs

INTRAC = Programmer” s Guide 11 bec 79 -10

Subcommands

The application routine may be regarded as a2 minjature
program package itself, with a command table ¢f its own, so
called subcommands. In this fashion it is possible to
program an hierarchy of commands. The application routines
call SUBR. INTRAC, test the error flag and,

if necessary, call the error routine in the same way

as the main program,

except for the dinitialization call which

should be made just once during the entire run

of the program package.

A good example of the use of subcommands is IDPAC s
data editor PLMAG,

Its main module accesses and prepares a data file, while the
subcommands perform (not seldom a areat number of)
manipulations of its contents. For efficiency reasons

it pays well to leave the data file open between these
simple manipulations.

To ensure only one exit peoint from the program packaage,
the INTRAC command STOP should be flagued as erraoneous at
subcommand Llevel (See Appendix A).

7)

INTRAC = Programmer”s Guide 11 bec 79

Argument Decoding, a Programming Example

Consider the hypothetical application command:
(Square brackets are not part of the command Lline,
they merely enclose optional arguments.)

CaM COUTPUT =1 INPUT L[PARAM]

com - command word
ouTPUT name of output data set
= - assiqnment operator

INPUT - name of input data set, if QUTPUT is missing,
then INPUT will be overwritten by the output
PARAM - floatiny point parameter, if missing, then

the value 2.2 is assuned

INTRAC stores the values of the argumerits and their
types (eaye NAME, INTEGER, FLOATING POINT, €tCel e

In this case four types of argyuments are presents:

NAMES (OUTPUT and INPUT), which are accessed by
means of the LOGICAL argument deccding FUHNCTION LHMAME

DELIMITER (=), which 1s accessed by means of
the LOGICAL arqument decoding FUNCTION LHOLL

- FLOATING POIMT NUMBER (PARAM), which is accessed

either by the LGGICAL argument decoding FUNCTION
LREAL or LKUMZ, the latter preferrabitle, since it also
interpretes INTEGERS as FLOATING POIKT NUMEERS.

LINE TERMIMATOR or end of command, which is accessed
by means of the LOGICAL argument decoding FUNCTION LTERM

In order to obtsin the argumentss the user has to supply
a pointer (here named ICNTY to the argument he tries
to eccesse.

Exaumples

Assume that: [CNT=3, R=3.2 and that INTRAC
has processed the command line:

ARGT ARG2 * ARGA

The FUNCTION CALL: LOG=LNUMBCICNT,R) then yields:

-11

data

INTRAC = Programmer”s Guide 11 Dec: 7%

LOG=+FALSE. 4 ICNT=3, R=3,2
L0G indicates failure, since * is no legal NUMRER,
which leaves ICNT and R unaffectede.

Assume the same initial values for ICNT and R as above,

bhut consider the following command line instead:
ARGT ARG? 17.24 ARGS4

In this case the above call to LNUMG would yield:
LOG=.TRUE« 4 ICNT=4, R=12.34

LOG indicates success, since 12.%4 is a legal number,
ICNT has been auto—incremented, j.e. made tce point at
the argument immediately after 12.34,

and R has assumed the value 12.34 .

Assuming that SURR. INTINI was called with
ARRLG=+ FALSt. (see Appendix A),

the hypothetical command may now be decoded by
the following FORTRAN logic:

Table 1-1. 1

LOGICAL LHNAME LHOLL,LNUMB,LTERM, LOUT,LOG

[B W N e}

HINPUT AND HOUTP HOUSE THE S$-CHAR. NAMES
INPUT AND QUTPUT, RESPECTIVELY
IN THE FORMAT CAHXXAX 4HXXXX)
DIMENSION HINPUT(2) HOUTP(2) JHEGUAL (2)
C
COMMON /COMINF/ MACLOGsIERRICNR NRLNRR
C
DATA HEQUAL
1 /4H= s 4H /
¢
C INITIALIZE THE ARGUMENT POINTER AND
C VERIFY THE PRESENCE OF ARGUMENTS
ICNT=¢
IFCLTERMCICNKT)) GOTQ error
(command too short)
c
[ASSIGN THE DEFAULT VALUE TO PARAHM
PARAKM=Z 2
C . .
C TEST THE PRESENCE OF OUTPUT

LOUT=NRL.GT.3

SO

, INTRAC - Programmer”s Guide 11 Dec%??

IFC.NOTLLOUTY GOTO 100

C
C QuTAIN OUTPUT
IFCeMOT LHNAME CICNT 4HOUTP)) GOTO error
(QUTPUT not recognized)
C
C OBTAIN =
TFECNOT.LHOLLCICNT,HEQUAL)) GOTO error
(= not recognized)
c
C OBTAIN INPUT
100 IFC,NOTJLHNAMECICNT HINPUT)) GOTO error
(INPUT not recognized)
C
C LET QUTPUT ASSUME ITS DEFAULT VALUE, INPUT,

€ If OUTFUT IS NOT PRESENT IN THE COMMAND LINE
IFCLNOTL.LOUT) CALL HSTORV(HINPUT,HOUTP,Z2)

¢

C OBTAIN PARAM
LOG=LNUMBCICNT,PARAM)

C

C VERIFY END OF COMMAND
IFC.NOTLLTERM(ICNT)) GOTQ error

(command too Long)
C
Note

The text string format ano SUBR., HSTORV
are defined in Appendix F.

The argument decoding functions (See Appendix 8)
may be combined to form multi-argument decoding
functions.

Eege the construct NAMEIL (NAME?2)Y] appears

frequently in I3PAC, where it is decodec £ty a call to
the LOGICAL FUNCTION LSYNAM, which is bhased upon the
argument decoding functions LHMAME and LHOLL.

The meaning ot the parameter NRL in
COMMON /COMINF/ is explained in Appendix G.

If INPUT and OUTPUT represent file namesy then
they should he decoded by LOGICAL FUNCTION LFINAM
rather than by LHNAME (See Appendix B).

13

INTRAC - Programmer”s Guide 11 Dec 79

Appendix A - Initializing and Calling INTRAC,
<« INTRAC”s Error Routine

INTRAC is initialized by a call to SUHBR. INTINI, whereby:
Caommand decoding mode is specified
INTRAC”s global error indicator is cleared

INTRAC”s internal registers are initialized

SUBRCOUT INE INTINIC(MDEVT,MDEVZ,ARRLG,CHLOG)

Arguments, (1) and (0) denote input and output arguments,
respectively

MDEVT,Z - logical urit numbers for MACRO I1/C (1)
Note: MDEVY may not coincide with any
ot the parameters in COMMON /DEVICE/,
MDEVT .2 should he file oriented.

(5ee Appendix Ge)

ARRLG - LOGICAL mode switchy, if .TRUE. 4, then <
is treated Like any other character, else
< will act as an argument separatcr, i.ee.
the numbers of arguments to the Lleft
and to the right of it. will be held
in different registers, and the <
itself will not he accessible from the
application routines (1)

(See Appendix G.)

COMLG - LOGICAL switch controlling the decoding mode
for the comma sign, if «FALSE. , then
comma signs are decoded just lLike any other
characters, else they will bLe repolaced by
the argument at the same position in the
previous command line, if possible,
and if not possible, then the glcbal erraor
indicator will be set (I

SUUROUTINE INTRACCCTAB«NCTAB,MNSPACE,IREADY,
17) « LINSW,MACSUS,STOLOG)

Arauments (same conventions as for SUBK, INTIKI)

INTRAC = Programmer”s Guide 11" Dec 79 1=15

CTAR - matrix containing the table of application
‘commands, size (2,NCTAB), dimensioned (24.)
the j:th command name ({0 < j < NCTAB+1) is
stored with its first four characters in
CTAB(1,j) and with its last four
characters in CTAB(2Z2,j) (1)

For this reason the j:th command name will
occupy the j:th column in CTAH and thus its
etght characters may be accessed as one unit.,
(See Appendix F.)

NCTAB - number of command names in CTABR (1)
NSPACE - number of spaces to the left of the prompter (I)
IREADY - prompter (I)
=0: no prompter
=1: >
=c: W
=5: <
=4z ?
=5: space
LINSW - facility switch (I)

= =1: read the command Line into INTRAC”s buffer
3: (-1) + divide, if possibvle, the
command line into arguments

= (O: (3) + scan INTRAC s own table of commands

= f: (0) + scan the table of of application
cammands + if necessary, lock up
a MACRO, whose name equals the Line”s
first argument

= 2: decoude the first argument only

= 4: same as (1) except that no attempt

is made to look up a MACRO
= 5: same as (1)

Mote

(1) is most frequently useds when the
command Line should be interpreted as an
executable statement

(3) is used if the command Lline should be
interpreted as data

(2) can be used to implement a text editaor with
MACRO facility

INTRAC = Programmer”s Guide 11 Dec 79

MACSUS - LOGICAL flag, if «TRUE. 4, forcing the current
MACRO to be suspended,

MACSUS is set by the calling routine in order to

transfer a break signal, e+«gs a hardware
candition such as the occurence of

a certain switch register combination.
always returned FALSE. (I/0)

STOLNG = returned +TRUE. 4 when the INTRAC
command STOP has executed (0Q)

INTRAC has an error routine of tts own, SUBROUTIME INTERR,
which in case of error, writes error messages on logical
unit LTC in COMMON /DEVICE/ (See Appendix G.)

Control should be passed to SUEBR. INTERR via

the proyram calling SURR. INTRAC it the error flLag

was set.

Note

INTERR has reserved the error cases 1 — 49

When operating in MACRO mode with no
automatic echoing, INTERR itself echoes the command Lline
on logical unit LTO in COMMON /DEVICE/.

¢

JINTRAC = Programmer”s Guide 11 bec

Appendix [= Argument Decoding Functions

To decode the command line previously processed by
INTRAC there exists a set of argument decoding
functions with the following properties in common:

They are all LOGICAL FUNCTIONs, returnea .TRUC. on
success, otherwise JFALSE.

Note: If opcrating in “Define but do not execute
a MACRO” mode and €.ge. an

integer argument is expected, the corresvonding
function (LINT) is returned TRUE. if a legal
variable nane is found instead, since

an inteyer variable with that name could

79 1

exist at the time the MACRO is yoing to be executed,

Consider the command string DATAC(Id. DATA is saome vector
and I is an index. When a MACRC is executed, the local

variable 1, will be replaced by its value, at the
the applicaticn routine is entered.

The substitution s made automatically by INTRAC,
from the application routine”s point of view

the command strinus DATACIY and DATAC(E) are
egquivialent, assuming that the value of 1 is 3.
Whern operating in “Define but do not «« mode

the substitution is not carried out, sao in

"order to ke able to verify the formal correctness

of a command line, the argument decoding functions
will be returned TRUCs it the arguments

foltow the syntax for a variable namie,y jets
VARNAME LEXTENSIONT]

They all have the first argument ICNT, which is an
argument pointer, that will be auto-incremented on
and remains unaffected in case of failure,

except for LFORML and LTERM.

With the exception of LFORML, LHOLL and LTERM, the
command line argyument is recturned as one of the

moment

SO

SUCCESS «

function”s wctual arguments, which in case of failure

Wwill remain unaffected.

Arguments (1) and (0) denote input and output
argunents, respectively

LOGICAL FUNCTLION LDELIMCICNT,DELIM)

17

INTRAC - Programmer”s Guide 11 Dec .79 1-18§

Returns a delimiter

ICNT - argument pointer (1/0)
DELIM - delimiter (1/70)
(See Appendix Fo)

LOGICAL FUNCTION LFIMAMCICNT,HFINAM)

Returns a legal file name, ises a8 namec consisting of
at most a system dependent number of characters
(which itself must not exceed).

ICNT - argument poeinter (1/0)

HFINAM - file name, size (2) C(I/Q)
(See Appendix Fa)

LOGICAL FUNCTION LFORML(ICNT)

Verifies the presence of a formal argument(*)Y, the value

of which has to be obtained by means of one cof

the other argument decoding functions,

Note: the argument pointer is never affected by LFORML

- TONT - argument pointer (1)

(*) Otherwice stated: LFORML detects that the value and type
of an argument is currently unknown, implying that the
syntax control cannot be carried out in full detail, yet.

Intention: To resolve syntax ambiguities in “Define a
MACRO but do not execute it~ mode.

LOGICAL FUNCTION LHRAMECICNT HNAME)
Returns a name consisting of up to eight characters
ICNT - argument pointer (I1/0)

HNAME - name, size (2) (1/0)
(See Appendix F.)

LOGICAL FUNCTION LHOLLCICNT,EXPHOLL)

LINTRAC - Programmer”s Guide 11 pec

Compares the current argument with EXPHQOLL

[t

ICNT - argument pointer (I/0)
EXPHOLL - expected text string, size (2) (I)
(See Appendix F.)

LOGICAL FUNCTION LHOLLSCICNT,POSSIByNRyIHOLL)

79

Compares the current argument with a set of strings

ICNT - argument pointer (1/0)

POSSIB - matrix containing comparison strings.
size (2,MR), dimensioned (2,.) (1)
each string occupies two cansecutive
components of POSSIG
(See Appendix F.)

N -~ number of strings in POSSIB (I)

THOLL - returned containing a pointer to FOSSIB

the matching string (1/0)
LOGICAL FUNCTION LIMNTCICNTLINT)
returns an inteyer argument

ICNT - arqument pointer (I/0)
INT - returnedg integer (1/0)

LOGICAL FUNCTION LNUMBCICNT4R)

Returns a number, either real or integer,
as a real number

ICNT - argument pointer (1/0)
R - returned real number (1/0)

LOGICAL FUNCTION LREALCICNT,R)
Returns a real number

ICNT - argument pointer (I/o)
R - returned real number (1/0Q)

for

CINTRAC = Prourammer”s Guide 11 vec 79 1-20

- e e e e e e s e s e e e = e o= s = = mm e e

LOGICAL FUHNCTIOR LTERMCICNT)
Verifies line terminator

ICNT - aragument pointer (1)

INTRAC - Programmer”s Guide 11 bec 79

10) Appendix C - Accessing Glohal Variables

&)

L)

The alobal variables act as a scalar data base,
which may be either accessed automatically

by INTRAC, when the global variable references
are substituted in the command line.

They may also be accessed explicitly frem

the applicatiaon routines.

In the Llatter case the folowing two groups of
INTRAC routines should he used:

Fetch Routines

FIDENT ~ fetches an jdentifier
FINT - fetches an inteyer
FHUMEB - fetches a number, either integer or real,

the result is always converted into
a real number
FREAL - fetches a real number

Arguments

(I) denote input aryument, (0) denote output argument,
and * indicates that the type of the argument depengs

-upon which rautine it beloncs to.

1-21

ARG - the nlohal variable”s name, vector size (2) (I)
(See Appendix F.)
EXT - the global variable”s extensiony
same format as ARG (1)
VALUE* - the global variable”s actual value (0)
FIDENT: same format as ARG
FINT > integer
FNUMBE @ rea
FREAL : real
IND - indicator (0)
=U: success

=1

differs from the expected
(esye intcecger in the case of FINT)

Deposit Routines

: the global variable ARG.EXT is undefined
=2: the type of the global variable ARG.EXT

«

INTRAC — Programmer”s Guide 11 pec. 79 1-22

DIDENT - deposits an identifier
DINT - deposits an integer

DREAL - deposits 4 real number

Arguments

Same conventions as in ad.

ARG - see a)
EXT - see a)l
VALUE=* - value to be assigned to the globkal variable

ARG.EXT (I

PIDENT: same format as ARG
DINT : inteqger

DREAL : real number

IND - indicator (Q)
={: success
=1: no room for the global variable ARG,EXT
=¢: unused
: attempt made to change the type of
the global variable ARG.EXT

INTRAC - Programmer”s Guide 11 Dec. 79

The command lines may be logyged on the listing device
(Logical unit LLP, see Appendix G.) by a call to the
INTRAC routine LPCOM, provided that INTRAC”s global
error indicator is zero (See Appendix G.) and
INTRAC s switech LOG is ON

(See "INTRAC - a Communication Module for

Interactive Programs - Language Manual™)

Note

For application and MACRO calls actual values
will appear instead of variable names, which will
not be the case for INTRAC s own commands.

SUBROUTIME LPCOM(NSPACE,IREADY)

Arguments: (1) denctes input argument

MSPACE - humber of spaces to precede the line (I)
IREADY - character to immediately precede the Line
=0: no character

Assuming the command Line:
ARGT ARGZ2 * ARGS

CALL LPCONM(0,1) yields:
>ARGT ARGZ * ARGG4

and CALL LPCOM(5,2) yields:
HARGT ARGZ * ARGY

The command line may be echoed onto the terminal
by the application.error routine
by a call te SULR. ECHHBUF, no arguments.

(1)

INTRAC - Programmer”s Guide 11 Dec 79

The command line will be echoed on logical unit
LTO (See Appendix G.) provided that INTRAC”s
automatic echoing feature is disabled

and the operating mode is MACRO.

SUBR. ECHBUF was designed merely in arder

to relieve the application error routine
fTrom accessing INTRAC”s internal data areas.
It should be called unconditionally, since
the echoing condition is tested internally.

1-24

INTRAC = Programmer”s Guide 11 bec 79 1-25

.

.

12) Appendix E = Display Handling

An interactive dialeogue consists of prompting
and error messages and command input lines plus
very aften of graphical output.

The organization of this I/0 depends to a great deal on the
chosen terminat/display configuration.

The simplest case is that in which commana dialogue

and graphical output appear on separate physical unitse.

1f the graphical and command output are to appear aon the same
physical devices, however, then problems will arise
about how te divide the screeny place the text cursor, etce

To minimize the programming job, 1t is possible to
define the proper configuration characteristics by

a number cof culls to a set of SUHMER. callectively called
the DISHDL.

ALl the Lloegic coverning the dialogue layout is isolated
to the DISHDL, so a change in terminal configuratian
will automatically be taken into account as saon as

the contents of COWMMON /DEVICE/ is modified,

(See Appendix Gao)

In other words, the DISHDL makes the program package
independent of the chosen terminal configurations

(I) and (0) denote input and ocutput arguments,
respectivelye. '

SUBRQUTINE DISHDL
Hancdles text I/0 on a3 display terminal

DISHDL operates in two different modes depending on the
states of the LOGICAL flag IAXES in COMMON /DISCOM/
(COMKFON /DISCOM/ IAXES,NR,NC must be memory resident
throuahout the entire run of the program package)

=, FALSE., = TEXT wmode, no special positioning
of the text lines is made

= TRUE - PLOT mode, employed when the display
is used for both plotting and text 1/0
Text and graphics output will not interfere
the text starts in the HOME positions
(l.e. the upper left corner of the screen,)
several output lines may appear on the

JINTRAC - Programmer”s Guide 11 Dec 79 1-26

same Line on the screen (tabulated)
a carriage return, line feed will
be issued only when that Line is full

DISHDL can be used in different I/0 device combinations,
defined by COMMON /DEVICE/ (See Appendix Ga.),
even if no display unit is available.

Routines

SUBROUINE PLMODECLMOD)
Returns current display mode

LMOD - display mode (=IAXES), LOGICAL (Q)

SUBROUTINE PLSET(ILOG)

Makes a conditional change of display mode if
a visual display mode is present

ILOG - logical mode flag (1)
=, TRUE. : erases the display and sets plot mode
=.FALSF.: erases the display and changes toa text
mode, provided that plot mode was set
and the terminal is a visual display
unit

SUNDROUTINE LJECTCLURN)

Performs page ejection or corresponding operation
(e.ge erase for a visual display unit)

LUN - logical unit number (I)

SUBROUTINE RESET

Resets the cursor to the text position on the display,
provided that LDIS%Wne.LTO (See Appendix G, COMMON /DEVICE/.)

INTRAC - Programmer”s Guide 11 Dec 79 1-27

SUBROUTINE IWRITEC(LUNGNLINE)

A call to SUBR, IWRITE is compulsory when the user
wants to write a number of text lines on the display
in order for the DISHDL to position the text cursor correctly.

Eege to output the following two lines of text
on the display:

RESULT

% ek ok Kk

The corresponding WRITE-statement:
WRITE(LDIS,1000)
1000 FORMAT (" RESULT /7 *xxxx%x7)

Should be preceded by CALL IWRITE(CLDIS.2), Since
FORTRAN”s WRITE ic not "felt'" by the DISHDL.,

The result of this is that the curser will be placed
after the text (i.e. to the right of it or at the
beginning of the next line, depending on

DISHDL s operating mode),

LUN - logical unit number (I)
NLINE - desired number of Llines, NLINE = @
forces DISHDL to start on a new line (I)

13)

a)d

b)

™

c)

d)

,INTRAC = Programmer”s Guide 11 pec 79

Since FORTRAMN IV has no data type TEXT, it has been
necessary to define rules for handling text strings
'in INTRAC .

Text strings are REAL, containg four characters
per variables

Names begin with a letter followed by an optional
mixture of alphanumeric characters, the maximal
number of characters being eight.

A name thus occupies two real variables.

Delimiters consist of one non-alphanumeric
charactery thus occupying one real variable.

A text string should he right filled with spaces.

Examples

The strings “LUND”, “MONKEY” and “*“ may be
declared as:

DIMENSION HLUND(Z), HMONK(Z)

DATA HLUND, HMONK, HSTAR
1 J4HLUND 4 4H v LHMONKLHEY , 4H¥* /

String assignments and comparations are carried out
by means of the INTRAC routines HSTORV and LCOMPV.

(1) and (0) denote input and output arguments,
respectivelye.

SUBROUTINE HSTORV(HSOUR,HDEST,yNR)

HSOUR - Source string, vector size (Nk) (1)
HDEST - destination string, vector size (NR) (0)
NR - string size expressed in terms of real

variahlesy 1eees the number of characters
in the strings i1s obtained as &4*NR (1)

B - e e e e g e owm omm omm m= ome s == - - ma o -_ - - -

LOGICAL FUNCTION LCOMPV(HSTR1,HSTR2,NR)

CINTRAC - Proyrammer”s Guide 11 Dec

LCOMPYV

HSTR1,2

NR

Note

assumes the value .TRUE, if the
Strings HSTRT and HSTR? are equal,
otherwise (FALSE.

strings to be compared with

each other, vectors size (NR) (I)
string size expressed in terms of real
variables (I)

Since the routines HSTORV and LCOMPV are capable of
handling strings of arbitrary length,

the restrictions on string lengths

only be considered when the application routines
exchange data with INTRAC (See Appendices B and ().

70 1-29%

in b) and ¢) need

14)

a)l

b)

L INTRAC - Programmer”s Guide 11 Dec 7°

Appendix G = INTRAC s Data Areas

(1) and (0) denote input and output arguments,
respectivelys

COMMON FCOMINE/

Contains a few parameters to be used by the application
routines,

MACLOG MACRO operation mode (I}
= -1: current operation mode 1is:
“pefine a MACRO but do not execute it~
MACLOG assumes other values as well,
tut these are of no interest to the

application prograumer

TERR =

-

;Lebal erraor indicator (0)

= 0: no error

= 1y &y o« I €rror cases

the error cases are assiagned by the
application routines, but

ItRR is cleared internatly by INTRAC

ICHNR - poainter to the table of applicatioen commands
used by the main program tc pass controlbt to
the appropriate application routine
ICMR = [indicates data line/empty line

NRL - number of arguments to the (eft of the
left arrow, if SUBR. INTINTY
was called with ARRLG = JFALSE.
(See Appendix Ad)
else NRL = the total number of
arguments in the command tine (1)

HRR - number of arguments to the right of the Left
arrows provided that SUBR. INTIMWI was
called with ARRLG = JFALSE. 4 else
MRL always = 0 (1)

Note

JCOMINF/ must reside in memory throughout the
entire execution of tlie proyram package

COMIAON /DEVICE/

(1

c)

,INTRAC - Programmer”s Guide 11 Dec 79

Contains all the logical 1/0 numbers for the

application
LKB -
LTP -
LLp -

LDIS -

LTO -

LPLOT

LXXX

LDK1+243,4

Noteé

IDEVICE/ is

foutines.

Keyboard input

Tele printer output (= LTO normally)
tine printer (listing device)

Display output (If no display present,
set LDIS = LTO)

Standard terminal output
Put LPLOT non-zero, if plotting on the
the device associated with LDIS is possible,

otherwise put LPLOT = (

Not used

Used for mass storage 1/0

READ-ONLY from the programmer”s

point of view, and it must reside in memory

the program

" throughout the entire execution of

packadges,

/DEVICE/ may be initialized by means of a
BLOCK DATA progoram

LPLOT s no

logical unit number, but merely

a flag indicating whether the terminal is a
visual display unit or not

logical unit numbers for HMACRO handling are

vrovided by

a call to SUBR. INTINI

(See Appendix A.)

COMMON /GLOEAL/

Holds the global variables

MINPNT -

IPNT =

Humber of reserved global varjables (1)

.

Total number of global variables that
have been assigned values, initially

P

!
inN
N

JINTRAC - Programmer”s Guide 11 Dec 79 1

IPNT = MINPNT (1/0)

MAXPNT - Max number of global variables that
may be allocated (1)

G - Matrix to hold the global variables,
dimensioned (7 ,MAXPNT) (1/0)

GC1,§)46G(2,3)
the j:zth global variable”s identifier
(See Appendix F.)

G(343),G6C4,43)
the j:th global variable s extension,
in the same format as the identifier

G(5,j)
the j:th global variable”s type

=1: Hame, (See Appendix F.)
=¢: Integer

=3: Feal

=4: Delimiter

G(E43)

value of the j:th global variable,
ory 1f identifiery its four leftmost characters

GC7,3)

holds, in case of identifier, the rightmost
four characters of the j:th global variable”s
value (See Appendix Fo)

IGLORAL/ may be initialized by a BLOCK DATA program

/GLOBAL/ must reside in memory throughout the entire
run of the program package

The global variahles should be accessed via the

routines in Appendix C,y not via direct
references to /GLO&AL/

Initialize /GLOFALY with three reserved variables:

NPLX. = 123

«

d)

_INTRAC - Programmer”s Guide 11 Dec 79

DELTA.SAMPLE

= 3.
DEVICELLISTING =

2
LP
and a total ot 60 gleobal variables:

Table 1~2. 2
C GLOBIN
o
BLOCK DATA
c
COMMON /GLOBAL/ MINPNT,IPNT,MAXPNT,G(7,60)
C
EQUIVALENCE (I151,6(5,1)), (152,6(5,2)),
1 (I153,6C5,3)) (161,6(6,1))
C
DATA MINPHT,IPNT,MAXPKNT
1 7343460/
C
DATA GC141),6(2,1),6(3,1),6C4,1),151,161
1 TLHNPLX 4 H A v 4H v 24123/

DATA G(1,2)46(2,2)436(3,42)46(4,42),152,6G(6,42)
1 J4HDELT , LHA vy GHSAMP y 4HLE 43,342/
C

DATA GC(3,1),G(2,2),G(3,3),6(3,4),153,G6(6,32),C(7,3)
1 /4HDEVI 4HCE 4 4HLISTL4HING 41 44HLP 4 4H /
C

END

Note

The above BLOCK DATA program enables data of
different types to be stored at the same
memory locations and it does not

make use of the numbers of machine cells
allocated to scalar data items of each typee

Other COMMONS

INTRAC has a number of internal COMMONS.,
These must reside in memory throughout the
entire program rune and they may not be

be accessed by anyone else then INTRAC.

They are all declared and initialized in the
standard BLOCK GATA program INTTAB.

