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A Quantitative Pixel-Wise Measurement of
Myocardial Blood Flow by Contrast-Enhanced
First-Pass CMR Perfusion Imaging
Microsphere Validation in Dogs and Feasibility Study in Humans

Li-Yueh Hsu, DSC, Daniel W. Groves, MD, Anthony H. Aletras, PHD, Peter Kellman, PHD,
Andrew E. Arai, MD

Bethesda, Maryland

O B J E C T I V E S The aim of this study was to evaluate fully quantitative myocardial blood flow (MBF)

at a pixel level based on contrast-enhanced first-pass cardiac magnetic resonance (CMR) imaging in dogs

and in patients.

B A C K G R O U N D Microspheres can quantify MBF in subgram regions of interest, but CMR perfusion

imaging may be able to quantify MBF and differentiate blood flow at a much higher resolution.

M E T H O D S First-pass CMR perfusion imaging was performed in a dog model with local hyperemia

induced by intracoronary adenosine. Fluorescent microspheres were the reference standard for MBF

validation. CMR perfusion imaging was also performed on patients with significant coronary artery

disease (CAD) by invasive coronary angiography. Myocardial time-signal intensity curves of the images

were quantified on a pixel-by-pixel basis using a model-constrained deconvolution analysis.

R E S U L T S Qualitatively, color CMR perfusion pixel maps were comparable to microsphere MBF

bull’s-eye plots in all animals. Pixel-wise CMR MBF estimates correlated well against subgram (0.49 �

0.14 g) microsphere measurements (r � 0.87 to 0.90) but showed minor underestimation of MBF. To

reduce bias due to misregistration and minimize issues related to repeated measures, 1 hyperemic and

1 remote sector per animal were compared with the microsphere MBF, which improved the correlation

(r � 0.97 to 0.98), and the bias was close to zero. Sector-wise and pixel-wise CMR MBF estimates also

correlated well (r � 0.97). In patients, color CMR stress perfusion pixel maps showed regional blood flow

decreases and transmural perfusion gradients in territories served by stenotic coronary arteries. MBF

estimates in endocardial versus epicardial subsectors, and ischemic versus remote sectors, were all

significantly different (p � 0.001 and p � 0.01, respectively).

C O N C L U S I O N S Myocardial blood flow can be quantified at the pixel level (�32 �l of myocardium)

on CMR perfusion images, and results compared well with microsphere measurements. High-resolution

pixel-wise CMR perfusion maps can quantify transmural perfusion gradients in patients with CAD. (J Am

Coll Cardiol Img 2012;5:154–66) © 2012 by the American College of Cardiology Foundation
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irst-pass gadolinium-enhanced cardiac mag-
netic resonance (CMR) perfusion imaging is
effective in detecting and diagnosing coro-
nary artery disease (CAD) in patients (1–11).

everal studies have used semiquantitative ap-
roaches to measure first-pass CMR perfusion
mages. Although these methods are generally sim-
le, semiquantitative perfusion estimates compress
he effects of vasodilation into a narrower range of
erfusion values compared with fully quantitative
stimates (12,13). Myocardial blood flow (MBF)
an be estimated from first-pass CMR perfusion

See page 167

images (12,14 –18). These validation studies
showed that fully quantitative MBF estimates from
CMR correlated well with absolute MBF as mea-
sured by microspheres. However, these studies were
performed on a sector-by-sector basis to improve
signal-to-noise ratio and to mitigate motion arti-
facts. This approach inherently downgrades the
resolution of CMR perfusion information to signif-
icantly larger regions of interest.

The aim of this study was to evaluate whether
first-pass CMR perfusion imaging has sufficient
spatial resolution to estimate fully quantitative
MBF at the pixel level. We developed a computer-
based method for pixel-wise MBF quantification
from CMR perfusion images. The results of the
fully quantitative pixel-wise CMR MBF estimates
were compared with absolute MBF as determined
by microsphere measurements in canines. The het-
erogeneity of pixel-wise CMR perfusion MBF
estimates was studied within myocardial sectors. To
evaluate the feasibility of this method in a clinically
relevant model, pixel-wise CMR perfusion maps were
examined in patients with significant coronary stenosis
as determined by invasive coronary angiography to
determine whether endocardial to epicardial perfusion
gradients could be detected.

M E T H O D S

Experimental preparation. The study protocol was
eviewed and approved by the Animal Care and Use
ommittee of the National Heart, Lung, and
lood Institute (NHLBI). Seven healthy mongrel
ogs weighing between 10 and 22 kg were used in
his study. The animals were anesthetized with 1%
o 2% isoflurane during the experiment. Instrumenta-
ion of each animal included 2 femoral arterial lines for

lood pressure monitoring and microsphere blood i
ample withdrawals, a left atrial catheter for micro-
phere injection, and a catheter in a right ventricular
ranch of the left anterior descending coronary artery
LAD) for a local adenosine infusion.

Approximately 5 million 15-�m fluorescence-
labeled microspheres (Interactive Medical Technol-
ogies, Irvine, California) were administered during
reference blood sampling (10 ml/min for 3 min) to
measure absolute MBF (in ml/min/g) at baseline
and during adenosine infusion. Adenosine was in-
fused at 20 �g/kg/min and diluted with normal
saline to provide an intracoronary injection rate of 1
ml/min to produce a local hyperemic zone. Micro-
spheres and CMR perfusion imaging was per-
formed within 5 to 10 min during the same aden-
osine infusion.
CMR perfusion imaging. The CMR perfusion images

ere acquired with a 1.5-T scanner (Magnetom
vanto, Siemens Healthcare, Erlangen, Germany)
sing a steady-state free precession sequence with
aturation recovery magnetization prepara-
ion (19). A dual-bolus technique (12) was
sed that consisted of 2 doses of gadolinium
iethylenetriamine pentaacetic acid (DTPA)
Magnevist; Berlex Laboratories, Wayne,
ew Jersey) at 0.005 mmol/kg and 0.05
mol/kg diluted into equal volumes and

njected at 2 ml/s followed by a 20-ml saline
ush. Two or 3 short-axis images were
ollected every R-R interval for 60 heart-
eats for each bolus during a breath-hold by
ransiently stopping a mechanical ventilator.

Typical imaging parameters included a
0° composite saturation preparation
ulse, 50° readout pulse, saturation recovery time �
0 ms, repetition time � 2.6 ms, echo time � 1.3

ms, field of view � 260 � 179 mm, acquisition
matrix � 128 � 80, image matrix � 256 � 176
after interpolation, slice thickness � 7 mm. Each
voxel represents approximately 32 �l of myocar-

ium (or 33 mg/voxel). Parallel imaging with an
cceleration factor of 2 was used. Two proton density–
eighted images were also acquired to allow correction of

urface coil B1-field inhomogeneity.
Microsphere processing. After perfusion imaging,
he animals were euthanized with potassium chlo-
ide while under anesthesia. The heart was removed
nd placed in agar to facilitate cutting into 3.5-mm
hort-axis slices. The papillary muscles and right
entricular walls were excluded before microsphere
rocessing. A pair of adjacent pathological slices
as matched to a 7-mm short-axis CMR perfusion
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the pathological slices was divided into 8 circum-
ferential sectors that were further subdivided into
epicardial and endocardial sectors (16 sectors per
slice). Tissue samples and blood reference samples
were processed to provide microsphere measure-
ments of MBF (ml/min/g) per specimen.
Clinical CMR protocol. The clinical study protocol

as reviewed and approved by the institutional
eview board of the NHLBI, and all participants
ave written informed consent. Dipyridamole stress
0.56 mg/kg) and rest CMR perfusion imaging
ere performed on a healthy volunteer and 5
atients (4 men and 1 woman, mean age 59 � 12
ears) with known or suspected CAD. All patients
ad coronary artery stenosis confirmed by coronary
atheterization within 60 days of the CMR. The
MR imaging was performed using a steady-state

ree precession, dual-sequence method (20) with im-
ging parameters similar to the animal study. This
ual-sequence method obtains a low-resolution arte-
ial input function image and 3 myocardial images
uring each R-R interval. A gadolinium DTPA con-
rast at 0.05 mmol/kg was injected at 5 ml/s during
he first-pass perfusion imaging.
Sector-wise CMR perfusion image analysis. To com-

are sector-wise MBF measurements from CMR
erfusion images and microsphere MBF, endocar-
ial and epicardial borders of the left ventricular
LV) myocardium were manually traced on a per-
usion image series using Argus CMR software
Syngo, Siemens Healthcare). The myocardial re-
ion of interest defined by these borders was di-
ided into 8 circumferential sectors, and then sub-
ivided into epicardial and endocardial sectors to
atch the corresponding 16 sectors of the patho-

ogical slice in all animals.
Myocardial time-signal intensity curves were

enerated from the myocardial region of interest of
he perfusion image series. The arterial input func-
ion was measured from the low-dose contrast or
ow-resolution image series. B1 normalized time-

signal intensity curves were quantified using a
model-constrained deconvolution (as explained in a
later section) to obtain sector-wise MBF estimates.
Pixel-wise CMR perfusion image analysis. To compute
pixel-wise MBF from CMR perfusion images, a
series of image processing steps were performed
using custom software developed in Interactive
Data Language (ITT Visual Information Solutions,
Boulder, Colorado) to obtain the time-signal inten-
sity curve of each pixel in the myocardial regions of
interest (Fig. 1). First, B1-field inhomogeneity was

approximated by using a high-order polynomial m
surface fit with a hierarchical weighting scheme to
the proton density–weighted image (21). The esti-
mated signal intensity bias field was then applied to
the T1-weighted perfusion image series to correct
or the B1 inhomogeneity.

Next, rigid and nonrigid image registration
ethods were performed on the CMR perfusion

mages to ensure proper propagation of time-signal
ntensity of the myocardial pixels. All images of the
ame slice were first registered to the center of the
yocardial regions of interest to compensate for

igid-body translational motion. A user-selected
andmark at the anterior right ventricular and LV
unction line was then used to adjust rigid-body
otational motion. Finally, a nonrigid image regis-
ration algorithm was used to correct geometric
eformation of the myocardium. This was based on
apping endocardial and epicardial borders of the

erfusion image series to 2 common concentric
ircles that define a new region of interest. The size
f the 2 concentric circles was calculated by using
verage radii of the endocardial and epicardial
orders from all images. A closest distance measure
as used to obtain the correspondence of control
oints between myocardial borders and the concen-
ric circles. The myocardial region of interest in
ach image was then processed by a thin-plate
pline warping to compensate for possible deforma-
ion of the myocardium.

These image processing steps were used to improve
he spatial consistency of the image pixels in the
yocardium and to extract pixel-wise myocardial

ime-signal intensity curves. Pixel-wise time-signal
ntensity curves were quantified using a model-
onstrained deconvolution to obtain MBF pixel maps.
MBF quantification. The central volume principle

escribed by Zierler (22,23) in indicator-dilution
ethods was the basis for MBF quantification. It

ssumes the system response of contrast transport
ithin a tissue to be linear and stationary. The

ontrast concentration curve of the tissue can then
e expressed as a convolution of the arterial input
unction and an impulse response function. The
mpulse response function is a probability density
unction that characterizes contrast transit times
hrough the system. This function, h(t), can be ob-
ained through a reverse process of deconvolution.
ince deconvolution is sensitive to noise, the shape of
(t) is constrained to a mathematical model. The best
arameters describing the model are determined by
terative calculations. This overall process is called
odel-constrained deconvolution (15,24).



m
t
p
H
B
s
r
m
w
w

J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 5 , N O . 2 , 2 0 1 2

F E B R U A R Y 2 0 1 2 : 1 5 4 – 6 6

Hsu et al.

Pixel-Wise Blood Flow Quantification by CMR

157
Here, we propose a logistic impulse response
function, h�t� � F� �1 � exp�� �t � �� � k�� � I,
where F represents the magnitude of the function, t
and k describe the temporal delay length and decay
rate, respectively, of h(t) due to dynamically chang-
ing contrast concentration. This model differs from
the commonly used Fermi function (15,25) by the
introduction of an interstitial offset term I. This
parameter provides a linear shift of the impulse
response function from zero during and after the
first pass, which accounts for leakage of the contrast
into the interstitial space and the slow clearance
relative to the first-pass kinetics. MBF in both
pixel-wise and sector-wise analyses was estimated
using this model from the LV arterial input and
myocardial time-signal intensity curves.
Statistical analysis. Data are expressed as mean �
SD unless specified. The relationship between
CMR estimates of MBF and microsphere reference
absolute MBF was evaluated by linear correlation.
Limits of agreement were assessed by Bland-
Altman plots. Coefficient of variation (CV) was
defined as the ratio of the SD to the mean. A p
value �0.05 was considered statistically significant.

CMR MBF pixel maps of all animals were
divided and then averaged to 8 endocardial and 8

Figure 1. Diagram for Quantifying CMR Perfusion at a Pixel Lev

(A) The flow diagram of the image processing pipeline for cardiac m
myocardial blood flow (MBF) was quantified from the time-signal in
regions of interest.
epicardial subsectors to compare with microspheres. s
Additionally, subsector averages of MBF pixel maps
were also compared with MBF estimates from
sector-wise time-signal intensity curves.

In CMR perfusion pixel maps of patients with
CAD, endocardial MBF, epicardial MBF, and
endocardial-to-epicardial MBF ratios were measured
with regions of interest in remote myocardium, and in
myocardium served by coronary arteries with signifi-
cant coronary stenoses. MBF and MBF ratios were
compared using a paired Student t test.

R E S U L T S

Physiological measurements remained reasonably
stable during the experiment. The average heart
rate was 101 � 18 beats/min and 98 � 19 beats/

in before and during adenosine infusion, respec-
ively. The average systolic and diastolic blood
ressures were 115 � 11 mm Hg and 68 � 10 mm
g, respectively, before the adenosine infusion.
oth systolic and diastolic blood pressures dropped

lightly to 112 � 14 mm Hg and 61 � 8 mm Hg,
espectively, during the adenosine infusion. For
icrosphere processing, the endocardial sectors
eighed 0.41 � 0.09 g (n � 56), epicardial sectors
eighed 0.58 � 0.13 g (n � 56), and transmural

netic resonance (CMR) myocardial perfusion analysis. (B) Pixel-wise
sity curves of the left ventricular (LV) blood pool and myocardial
el

ag
ten
ectors averaged 0.99 � 0.20 g (n � 56). The
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median microsphere count in endocardial sectors was
2,974 (range: 926 to 9,569) and in epicardial sectors
was 4,677 (range: 1,318 to 15,811). Microsphere
results showed successful vasodilation for all canines,
defined as at least a 2-fold higher microsphere MBF
in hyperemic sectors relative to remote sectors.

Figure 2 compares pixel-wise time-signal inten-
ity curves for hyperemic versus remote regions. A
imilar time course of contrast enhancement was
bserved between pixels within the same region.
here was a hyperemic response on the adenosine-

ffected regions as shown by faster contrast wash-in
nd wash-out kinetics, and a higher overshoot in
he pixel-wise time-signal intensity curves.

For qualitative comparisons, Figure 3 shows
colorized CMR perfusion pixel maps of all animals
with corresponding microsphere MBF on the same
absolute color scale. Regional differential blood flow
was clearly seen in all animals. Qualitatively, the
dynamic range of color perfusion maps from CMR
was comparable to microsphere bull’s-eye plots in
all animals. At the same time, there were also
sectors that did not correspond perfectly due to
spatial misregistration between the CMR imaging
slice versus pathological microsphere slice. Never-
theless, CMR perfusion pixel maps had a higher

CMR Time-Signal Intensity Curves at a Pixel Level

myocardial time-signal intensity curves show hyperemic response
osine-induced region (25 pixels in pink) compared with a remote
pixels in green). A similar time course of contrast enhancement
ved between neighboring pixels within the same region. Example
images at different time points are shown at pre-, peak, and late
hancement. a.u. � arbitrary units; CMR � cardiac magnetic

.

spatial resolution (0.033 g/voxel) than sector-wise
microsphere maps (0.49 g/sector).

For quantitative comparisons, Figure 4 shows
pixel-wise CMR MBF estimates averaged into
sector-wise measures that correlate well with mi-
crosphere MBF in transmural, endocardial, and
epicardial sectors (n � 56; r � 0.90, r � 0.89, and
r � 0.87, respectively). However, Bland-Altman anal-
ysis shows there is a small bias, suggesting CMR under-
estimates microsphere MBF, or spatial misregistration
adds systematic errors to the comparisons.

To reduce the probability of misregistration,
further comparisons were performed by selecting 1
hyperemic and 1 remote sector from the center of
each zone on both CMR perfusion images and the
pathological slice for each animal. There were even
tighter correlations between CMR estimates of
MBF and microsphere measurements in transmu-
ral, endocardial, and epicardial sectors (n � 14; r �
0.98, r � 0.97, and r � 0.97, respectively) (Figure 5).
Bland-Altman analysis also showed minimal resid-
ual bias for these comparisons.

To address whether quantification of CMR
time-signal intensity curves at a pixel level intro-
duces biases relative to quantification of sector-wise
time-signal intensity curves, additional correlation
and Bland-Altman analysis were performed (Fig. 6).
There was a strong correlation in transmural, en-
docardial, and epicardial comparisons (r � 0.97 for
all comparisons). Similarly, there was no significant
bias in all Bland-Altman plots. This indicates that
MBF quantified at the pixel level does not intrin-
sically alter the perfusion information content of the
CMR images as estimated from conventional
sector-wise analysis.

To analyze transmural perfusion gradients in our
animal model, endocardial MBF, epicardial MBF,
and endocardial-to-epicardial MBF ratio were
measured on CMR perfusion pixel maps and mi-
crospheres. For both hyperemic and remote regions,
there were no significant blood flow differences
between endocardial and epicardial MBF by CMR
or microspheres measurements (Table 1) (all p �
NS). When comparing CMR and microspheres
MBF measurements, there were also no significant
differences between the 2 methods for endocardial
hyperemic MBF, epicardial hyperemic MBF, or
corresponding measurements in the remote region
(Table 1) (all p � NS). However, CMR perfusion
pixel maps and microspheres both detected signif-
icant differences in MBF between hyperemic and
Figure 2.

Pixel-wise
in an aden
region (25
was obser
perfusion
contrast en
remote regions (Table 1) (all p � 0.01).
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Figure 3. Qualitative Comparison of MBF by Pixel-Wise CMR and Microspheres

Cardiac magnetic resonance (CMR) perfusion pixel maps showing myocardial blood flow (MBF) estimates were in a similar range with
microsphere absolute MBF (ml/min/g). Columns, from left to right: a raw image during early contrast enhancement, the result of non-

rigid motion correction, the result of pixel-wise CMR MBF estimates, and reference microsphere absolute MBF.
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To study the heterogeneity of pixel-wise CMR
perfusion MBF in hyperemic and remote regions, the
CV of pixel-wise MBF in transmural, endocardial,
and epicardial sectors was measured (Table 2). There
was less variability of pixel-wise MBF estimates in
hyperemic sectors compared with the remote. This
smaller variability was consistent in transmural, endo-
cardial, and epicardial sectors.

Because the selective coronary infusion of aden-
osine did not create transmural perfusion gradients
in the dogs, we analyzed transmural perfusion
gradients in patients with significant coronary artery
stenosis as determined by invasive coronary angiog-
raphy. Figure 7 shows examples of pixel-wise MBF
maps for human first-pass perfusion CMR imaging
at rest and during stress. Pixel-wise perfusion maps
of the healthy volunteer (Patient #1) show MBF
estimates in the range of 0.5 to 1.0 ml/g/min at rest,
and increase to above 2.5 ml/g/min range during
stress for all 3 coronary territories.

For 2 patients with single-vessel LAD disease
(Patients #2 and #3), pixel-wise MBF maps of
stress CMR showed transmural perfusion gradients
in the LAD territory. In Patient #4, stress CMR
maps showed a severe LAD perfusion defect cor-
responding to a 70% ostial stenosis and less severe

Figure 4. Comparison of MBF by Pixel-Wise CMR and Microsphe

Pixel-wise cardiac magnetic resonance (CMR) perfusion myocardial
MBF measurements but showed minor underestimation of MBF.
subendocardial perfusion defects corresponding to p
intermediate stenoses in the right coronary and
circumflex coronary arteries. In Patient #5, there
were obvious stress-induced perfusion defects in the
LAD (80% stenosis) and right coronary artery
territory (collateral-dependent occluded vessel), and
a mild subendocardial perfusion defect associated
with a terminal obtuse marginal branch with a 70%
stenosis. There was reduced MBF in all myocardial
regions on the stress CMR perfusion map of
another patient with 3-vessel disease (Patient #6).
Overall, CMR perfusion maps were more homoge-
neous at rest compared with stress CMR maps in all
patients with CAD.

To quantify transmural gradient in patients with
significant coronary stenosis, endocardial MBF, epi-
cardial MBF, and endocardial-to-epicardial MBF ra-
tio of the ischemic and remote regions in CMR
perfusion pixel maps were compared. Table 3 shows
there were no differential blood flows between endo-
cardial to epicardial subsectors in the remote regions
(p � NS). However, there were significant blood flow
ifferences between endocardial and epicardial subsec-
ors in the ischemic territories (p � 0.001). Both
ndocardial and epicardial MBF estimates in the
schemic regions were also significantly lower than in
he remote regions (p � 0.001 for endocardial and

d flow (MBF) estimates correlated well with microsphere absolute
res

bloo
� 0.01 for epicardial comparisons).
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D I S C U S S I O N

The importance of this paper is that it resolves the
concept that perfusion information encoded in the
first-pass CMR images is quantifiable at a pixel
level (around 32 �l of tissue per pixel) in a canine
model. We present an approach to generate com-
prehensive pixel-wise MBF maps for high-
resolution quantitative visualization of first-pass
gadolinium-enhanced perfusion CMR images.
Both pixel-wise and sector-wise comparisons
showed MBF estimates from CMR closely corre-
lated with absolute microsphere measurements over
a wide range of MBF values, particularly in analyses
done in ways to minimize misregistration. The
results of pixel-wise perfusion maps displayed on a
calibrated color scale are qualitatively comparable to
microsphere bull’s-eye plots when displayed on the
same absolute MBF color scale but at 15 times
higher resolution. Although the animal model did
not create statistically significant transmural perfu-
sion gradients, such transmural perfusion gradients
were present qualitatively and quantitatively on
stress CMR perfusion maps in patients with signif-
icant coronary artery stenoses.

Theoretically and empirically, CMR imaging has

Figure 5. Higher Correlation and Smaller Bias After Reducing M

There were higher correlation and smaller bias between pixel-wise
(MBF) estimates and microsphere absolute MBF after reducing misr
sufficient spatial resolution to differentiate perfusion
between subendocardial and subepicardial regions
(26). Transmural gradients of myocardial perfusion
from CMR images have been compared in animal
models (16,27), in normal volunteers (28), and in
patients (29). These studies used a sector-by-sector
approach and showed transmural flow differences in
CMR perfusion. Pixel-wise semiquantitative perfu-
sion maps can identify patients with CAD (5,8,30)
but lack consistent scales for differentiating normal
from abnormal. Pixel-wise fully quantitative perfu-
sion maps have also been evaluated in normal
animal models using intravascular contrast (31) and
in normal human subjects (32). Although these
studies have shown global perfusion differences
between resting and hyperemic myocardium, re-
gional perfusion changes have not previously been
demonstrated at a pixel level.
Flow heterogeneity of myocardial perfusion. Flow
heterogeneity within the heart is well documented in
pre-clinical models (33) and represents an interplay
among the heterogeneity of metabolism/physiology of
the myocardium (34), coronary vascular anatomy at a
small scale, and technical limitations related to perfu-
sion methods such as microspheres (35). Bassingth-
waighte et al. (36) showed that microspheres tend to

gistration

iac magnetic resonance (CMR) perfusion myocardial blood flow
tration.
isre

card
systematically overestimate regions of high flow and
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underestimate regions of low flow, yet are sufficient for
estimating regional flow in the heart. The current
pixel-wise CMR MBF results (Table 2) have compa-
rable or less variability than prior microsphere flow
measurements with respect to absolute rest flow,
vasodilated flow, and flow heterogeneity (33,37).
With regard to flow heterogeneity versus sample
size, the CMR pixel-wise perfusion estimates are
less variable than predicted by the fractal model
derived from the microspheres for such small
tissue masses (37).
Compensating for nonrigid motion. Image registra-
tion is an essential image processing step for quan-

Figure 6. Comparison of MBF by Pixel-Wise and Sector-Wise CM

Correlations between cardiac magnetic resonance (CMR) myocardia
signal intensity curves were excellent. Bland-Altman analysis showe
not intrinsically degrade the perfusion information content of the C

Table 1. Analysis of Endocardial MBF, Epicardial MBF, and
Endocardial-to-Epicardial Ratio in Dogs CMR Perfusion Pixel
Maps and Microspheres Measurements

Method Endocardial Epicardial Ratio

CMR

Hyperemic 4.64 � 1.31 4.55 � 1.08 1.05 � 0.15

Remote 1.43 � 0.48 1.44 � 0.50 0.99 � 0.19

Microspheres

Hyperemic 4.53 � 1.62 5.11 � 0.38 0.88 � 0.14

Remote 1.47 � 0.64 1.32 � 0.74 1.16 � 0.17

Values are mean � SD.

CMR � cardiac magnetic resonance; MBF � myocardial blood flow.
tifying CMR perfusion images at a pixel level.
Motion artifacts are inevitable. Rigid-body image
registration (38–44) has been studied, but these
methods do not correct for local deformations.
Some techniques compensate for nonrigid image
motion semiautomatically (45) or automatically (46). In
this study, we implemented a semiautomated, nonrigid
image registration method, and this method performed
well on all datasets.
Compensating for interstitial loading. CMR gadolin-
ium contrast agents are imperfect perfusion tracers
because they rapidly enter the extracellular space.
Although the first-pass myocardial time-signal in-
tensity is heavily perfusion dependent, interstitial
loading of contrast can distort the measured time-
signal intensity curves from what would be expected
for an intravascular agent. Practically, the early
phase of the myocardial time-signal intensity curves is

od flow (MBF) estimated from pixel-wise and sector-wise time-
ere is no significant bias. MBF quantified at the pixel level does
images as estimated from sector-wise analysis.

Table 2. The Variability of Pixel-Wise CMR MBF in Hyperemic
and Remote Sectors as Represented by CV

CMR Endocardial Epicardial Transmural

Hyperemic 0.15 0.18 0.19

Remote 0.19 0.23 0.22
R

l blo
d th
CV � coefficient of variation; other abbreviations as in Table 1.
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less sensitive to the capillary leakage of contrast agent
compared with the later portion of the curves (27).
However, the interstitial loading during the later phase of
contrast enhancement results in a large plateau in the
myocardium several times higher than expected for the

Figure 7. Clinical CMR Perfusion Pixel Maps

Pixel-wise cardiac magnetic resonance (CMR myocardial perfusion m
degrees of coronary artery disease [Patients #2 to #6]). See the Resu
second pass of contrast.
Although the Fermi function approximates the
shape of the impulse response of an intravascular
tracer (25), it does not account for interstitial
loading of the gadolinium contrast. As a result,
Fermi function–constrained deconvolution should

of a healthy volunteer [Patient #1] and patients with various
section for details and quantitative analysis.
aps
lts
be limited to the first myocardial contrast passage
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(15,24). The proposed impulse response function
compensates for these problems by incorporating an
offset term into the deconvolution model to allow
the time intensity curve fitting beyond the first pass
of the contrast. This approach can reduce the
subjectivity of selecting the first-pass range in CMR
perfusion quantification and facilitate automating
perfusion quantification.
Nonlinear signal intensity in CMR perfusion imaging.
The nonlinearity between myocardial signal in-
tensity and gadolinium contrast concentration
might affect MBF quantification (47). The cur-
rent study used dual-bolus contrast administra-
tion (12) and a half-dose contrast with fast
imaging with steady-state precession sequence
parameters to improve the linearity of CMR
signal intensity and to minimize the need for
nonlinear signal intensity calibration.
Clinical implications. Quantitative and objective
analyses of CMR perfusion images have the poten-
tial to improve clinical diagnosis. Objective semi-
quantitative methods have become important clin-
ical tools in single-photon emission computed
tomography myocardial perfusion imaging (48,49).
Quantitative measurements of myocardial perfusion
may have a similar impact in CMR imaging.
Examples of pixel-wise CMR perfusion maps as
presented in this study show transmural perfusion
gradients can be differentiated in patients with
various degrees of ischemia. Thus, first-pass
CMR perfusion imaging provides sufficient spa-
tial resolution to estimate MBF at the pixel level,
which may someday improve the diagnosis of
CAD in patients.
Study limitations. The reference standard micro-
phere MBF has a resolution about 15 times lower
han pixel-wise CMR MBF estimates. This differ-
nce in spatial resolution limits the direct compar-
son of MBF between CMR and microspheres to
he sector level. However, internal comparisons of
ixel-wise and sector-wise CMR MBF estimates
re consistent and do not appear limited by the

Table 3. Analysis of Endocardial MBF, Epicardial MBF,
and Endocardial-to-Epicardial Ratio CMR Perfusion
Pixel Maps in Patients

CMR Endocardial Epicardial Ratio

Ischemic 0.76 � 0.38 1.31 � 0.45 0.58 � 0.22

Remote 2.03 � 0.30 2.05 � 0.58 1.03 � 0.20

Values are mean � SD.
Abbreviations as in Table 1.
ixel-wise signal-to-noise ratio.
Misregistration between the CMR imaging slice
ersus pathological microsphere slice is always a po-
ential source of errors. Minimizing the probability of
isregistration improves the correlations between
MR and microspheres estimates of MBF, as shown

n the Figure 4 and Figure 5 comparisons.
The current study used manual tracing of myocar-

dial borders for nonrigid image registration. Although
the method is effective, it is time consuming. Auto-
mated nonrigid image registration (46) may compen-
sate for motion artifacts and may improve the work-
flow of pixel-wise CMR perfusion quantification.

The number of animals used in this study was
limited, and the animal model chosen did not include
different levels of coronary stenoses or complete oc-
clusion, which may limit the accuracy of pixel-wise
MBF estimates under total ischemic conditions. The
sample size of clinical studies was also limited,
although various degrees of ischemia were incor-
porated to demonstrate that pixel-wise CMR
perfusion maps can detect transmural perfusion
gradients or differential blood flow from single-
or multiple-vessel stenoses. Further trials are
required to evaluate whether pixel-wise CMR
perfusion quantification may improve the diag-
nostic accuracy for detecting CAD compared to
conventional sector-based approach.

C O N C L U S I O N S

MBF in gadolinium-enhanced first-pass CMR
perfusion imaging can be quantified at a pixel
level that is equivalent to 32 �l per sample in this
canine model. The heterogeneity of pixel-wise
CMR MBF estimates is comparable or smaller
than previously published microsphere results in
canines. High-resolution pixel-wise CMR perfu-
sion maps can detect transmural perfusion gradi-
ents and may someday improve the objectivity of
diagnosing CAD in patients.
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