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Abstract

Crystal plasticity models are often used to model the deformation behavior of polycrys-

talline materials. One major drawback with such models is that they are computationally

very demanding. Adopting the common Taylor assumption requires calculation of the re-

sponse of several hundreds of individual grains to obtain the stress in a single integration

point in the overlying FEM structure. However, a large part of the operations can be

executed in parallel to reduce the computation time. One emerging technology for run-

ning massively parallel computations without having to rely on the availability of large

computer clusters is to port the parallel parts of the calculations to a graphical processing

unit (GPU). GPUs are designed to handle vast numbers of floating point operations in

parallel. In the present work, different strategies for the numerical implementation of crys-

tal plasticity are investigated as well as a number of approaches to parallelization of the

program execution. It is identified that a major concern is the limited amount of memory

available on the GPU. However, significant reductions in computational time – up to 100

times speedup – are achieved in the present study, and possible also on a standard desktop

computer equipped with a GPU.

Keywords: Crystal plasticity, Graphics processing unit, CUDA, GPGPU, Parallelization

1 Introduction

The material properties of metals are dependent on the microstructure of the material. To

be able to accurately model plastic deformations it is therefore necessary for the model
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to be able to describe the concurring changes in the microstructure of the metal. Plastic

deformations result in increased dislocation density, which in turn makes the material

harder, and at the same time the grain orientations evolve, producing a deformation texture

in the material. One way of modeling this process is by adopting a crystal plasticity model,

which describes plastic deformations through modeling of the slip in the crystal lattice.

Early works on crystal plasticity are found in e.g. [1, 2, 3, 4, 5, 6]. The models may be

either rate-independent or rate-dependent. For the rate-independent models, there is the

problem of resolving the active slip system, which in the worst case lacks a unique solution.

For rate-dependent models, formulated as creep models, the basic approach is that all slip

systems are considered active at all times. In order to reduce the problem size somewhat

and achieve a real elastic domain, i.e a viscoplastic model, it is possible to introduce a

threshold into the equations governing the slip, at the cost of introducing conditionals

into the code. Whichever approach is chosen, the problem remains ill-conditioned. In

this implementation a rate-dependent crystal plasticity model without threshold will be

considered.

For polycrystalline materials the stress resulting from a given deformation is found by

modeling slip in a number of crystalline grains with different orientations. This provides a

model of polycrystal plasticity, also capable of predicting the evolution of crystallographic

texture. Although crystal plasticity modeling has become a standard tool in computational

mechanics, it is hampered by the significant computational cost related to the method. This

is because the model requires the slip to be calculated in a large number of grains in order

for it to be statistically relevant. Considering a rate-dependent crystal plasticity model the

equations used for computing the slip rates are stiff ordinary differential equations, leading

to a high computational cost of the method that has so far put restrictions on the usage

of it.

Different approaches to calculating the slip have been used, both implicit and explicit.

A common method is to use an implicit Euler method with Newton-Raphson iterations

for finding the solution, see [7]. Another approach is the rate tangent scheme discussed

in [5], which is explicit but requires the inversion of a matrix with the size of the number

of active slip systems. In [8, 9] an explicit Runge-Kutta algorithm is used for crystal

plasticity simulations. Another method is introduced in [10], reformulating the system of

equations into an optimization problem. Usually the explicit methods for calculation of

the constitutive response are used together with dynamic calculations where an explicit

time stepping algorithm is used.

With the recent advances in the use of graphical processing units (GPUs) for paralleliza-

tion of non-graphical applications, it is possible to get considerable parallel throughput on

an ordinary desktop computer without having to rely on the availability of large computer

clusters. The availability and low cost of General Purpose Graphical Processing Units

(GPGPUs) make them attractive compared to more traditional, CPU-based, cluster solu-
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tions. Current applications include e.g. finite element-based phase field simulations [11],

molecular dynamics models [12, 13], fluid dynamics simulations [14, 15, 16], and general

finite element calculations [17, 18].

Since crystal plasticity models, using the Taylor assumption, do not result in any cou-

pling between the grains, it is well suited for parallelization. This has been utilized in

[19, 20, 21] for parallelization on CPUs. Those works show that there is much to be gained

from parallelization of the calculations, but the implementations rely on the availability

of large computer clusters. GPU-implementation presents a way of making it feasible to

run crystal plasticity models on a desktop computer, achieving significant speedup without

having to depend on external resources.

The largest challenge when porting crystal plasticity simulations to the GPU is in the

present work found to be the limited amount of on-chip memory available on the GPU,

which becomes an issue since the equations governing the description of plastic slip are stiff

and requires an implicit solver to obtain optimal computational efficiency. Still, the present

GPU-implementation of crystal plasticity shows that significant reductions in computation

time can be achieved. Reduction of computation time by a factor of up to 100 is achieved.

The layout of the present paper is as follows: Section 2 discusses aspects of GPU

hardware and CUDA programming. Section 3 details the crystal plasticity model and

Section 4 describes different numerical implementations of the model. GPU implementation

strategies are discussed in Section 5. Illustrative simulation examples are shown in Section

6 and a concluding discussion on the results is given in Section 7.

2 GPU programming

Since GPUs were originally produced to satisfy the needs of the gaming industry they

are small, cheap and mass produced. A high degree of parallelism can be obtained on

an ordinary desktop, or even on a laptop computer. GPUs have been developed to be

able to simultaneously perform the same floating point operation quickly on thousands of

graphical pixels, and thus rely heavily on parallel execution. They are optimized for floating

point operations and for working on large data sets [22, 23]. Originally, GPUs where only

marginally programmable through different graphics tools, but with the introduction of

GPGPUs and CUDA (Compute Unified Device Architecture), a greater flexibility in GPU

programming has been achieved. Some aspects of the GPU architecture, especially of the

memory layout, is discussed in the following sections.

2.1 Processor architecture

The parallelism in GPUs differs from “ordinary” parallel processors since on the GPU

processor cores are grouped together into what is called streaming multiprocessors (SM).

The cores in one SM are slaved so that they all run the same instruction at any given time,
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but operating on different data. In graphics applications this hardware support for SIMD

(Single Instruction Multiple Data) instructions is a useful feature for performing the same

operation on all pixels on the screen. The side effect of this is that conditional statements

in the code should be avoided, since the threads that are not active inside a conditional

statement will still have to wait for those threads which fulfill the conditional to finish.

This differs from ordinary CPU parallelization where the processors work independently of

each other.

2.2 Memory architecture

The memory on the GPU is also originally tailored to suit graphics applications. This

means that the amount of writable on-chip memory is limited. More memory-demanding

calculations have to use the slower off-chip memory.

The memory available on the GPU is split into global, local, constant, texture, regis-

ter and shared memory, illustrated in Figure 1. The global, local, texture and constant

memories are situated off-chip. The global memory is accessible from the CPU, while the

local memory is only accessible from the GPU, but both use the same cache to speed up

access, which is otherwise slow. The texture memory is similar to the global, but is a con-

stant memory i.e. its content is uploaded from the CPU and can not be changed from the

GPU. On newer generations of GPU cards the off-chip memory is cached to make access

quicker. Local and global memory shares the same cache. On some GPUs there is also

the possibility for fetching constants in the global memory using the texture cache. For

the global memory there is the possibility to use coalesced memory access, meaning that

if the memory is properly aligned then threads running in a SIMD fashion can fetch their

respective memory in one single transaction.

The constant memory is also situated off-chip, but with a fast on-chip cache which is

able to broadcast a value to all threads in a warp in one single clock cycle. Warps are

further discussed in section 2.3. On the chip there is also a number of registers for each

single processor and a shared memory, accessible for all processors in the same SM. The

shared memory is physically the same memory as the cache for the local memory. It is

therefore possible to decide how large a part should be used for each purpose.

Local variables are, as far as possible, placed in the registers. When the program uses

more memory than available in the registers, the remainder will use the local memory. The

compiler tries to determine which variables are most advantageous to place in the registers

and which can be placed in local memory with the smallest possible loss of efficiency. But

it is also possible to force certain variable to be placed in the registers.
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Figure 1: Memory architecture on the GPU.

DOI: 10.1002/nme.4724 5



International Journal for Numerical Methods in Engineering 2014, 100(2), 111-135

2.3 Programming model

A GPU application typically runs its main program on the CPU, transfers data to the

GPU, runs computationally intensive parts on the GPU and then transfers the results

back to the CPU. Since the bus speed between CPU and GPU is a possible bottleneck it

is important to limit data transfer to a minimum [24].

The functions implemented on the GPU are called kernels, and contain large numbers

of virtual threads executing in parallel. All the threads in a CUDA kernel make up a

grid, which is divided into blocks. The blocks are in turn subdivided into warps of 32

threads, where the treads in a warp are synchronized. The GPU has a scheduler that can

switch which warp is running on each SM, allowing one warp to run if another has to wait

e.g. while variables have to be fetched from local memory, thus hiding memory latency.

In order to get optimal performance it is therefore important that the total number of

threads in a kernel is considerably larger than the number of threads that can be run in

parallel, allowing the scheduler to perform optimally [23]. The number of registers used by

each thread determines how many warps can coexist on the same SM. Therefore it may

sometimes be favorable to limit the number of registers allowed to each thread even though

this results in increased spill to local memory, since it at the same time makes it easier for

the scheduler to hide memory latency [24].

3 Crystal plasticity

This section details the crystal plasticity model employed in the present work. At first the

single crystal description is given, which is then generalized to polycrystals by homogeniza-

tion based on the Taylor assumption.

Let the motion of a body be described by a function ϕ which maps the position X of

a particle in the reference configuration to position x = ϕ(X, t) of the same particle in

the current configuration at time t. The deformation gradient F is defined as F = ∂Xϕ.

The volume change between the reference and the current configuration then becomes

J = det(F), where det(·) is the determinant of a tensorial quantity. The right Cauchy-

Green deformation tensor is then defined as

C = FTF (1)

where (·)T denotes the transpose of a tensorial quantity.

The deformation of crystalline solids is based on two mechanisms. One part is the

elastic component due to distortion of the crystal lattice. The other part is the plastic

slip deformation that occurs as dislocations move in their slip systems. Here the notion

plastic is used although rate dependent evolution of the inelastic deformation is considered.

The slip systems generally comprises the close-packed planes and directions in the lattice.
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For face-centered cubic materials, considered here, this provides 12 slip systems of the

type {111}〈110〉, see [25]. To take elastic and plastic contributions to the deformation

into account, the deformation gradient is split into an elastic and a plastic part using a

multiplicative split, cf. [26, 27], which provides

F = FeFp (2)

where superscripts e and p denote elastic and plastic quantities, respectively. The elastic

right Cauchy-Green deformation tensor can then be defined as

Ce = FeTFe (3)

Letting a superposed dot denote the material time derivative, the evolution of the plastic

part of the deformation gradient is defined by

Ḟp = lpFp (4)

where the plastic velocity gradient lp is calculated through superposition of all crystallo-

graphic slip rates according to

lp =
∑
α

γ̇αMα ⊗Nα (5)

where γ̇α is the slip rate in slip system α, cf. [3]. Each slip system α = 1, 2...12 is repre-

sented in the reference configuration by the orthonormal vectors Mα and Nα, representing

the slip direction and the normal to the slip plane of system α. Since tr(lp) = 0 this gives

det(Fp) = 1, i.e. the volume change is purely elastic, J = Je = det(Fe), and the plastic

deformation is an isochoric process. Here tr(·) denotes the trace of a tensor. The slip rate

in a certain slip system α depends on the resolved shear stress τα on that slip system,

providing

γ̇α = γ̇α(τα, [·]) (6)

where [·] indicates dependencies on other variables.

Considering isothermal processes, and denoting the density in the reference configura-

tion by ρ0 and the Helmholtz free energy by ψ, the dissipation inequality takes the form

D =
1

2
S : Ċ− ρ0ψ̇ ≥ 0 (7)

where S is the second Piola-Kirchhoff stress tensor and is related to the Cauchy stress

tensor by

σ =
1

J
FSFT (8)
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A tensorial contraction over two indices is denoted by (·) : (·).
Assuming the Helmholtz free energy to be a function of the elastic right Cauchy-Green

deformation tensor, Ce, and quantities related to the slip resistance, gα (α = 1, ..., n where

n is the number of slip systems), allows the dissipation inequality to be written as

D = (Se − 2ρ0
∂ψ

∂Ce
) :

1

2
Ċe +Σe : lp −

n∑
α=1

Gαġα ≥ 0 (9)

where use was made of eqs. (1) - (4), and where the second Piola-Kirchhoff stress tensor

in the intermediate configuration and the Mandel stress tensor where introduced as

Se = FpSFpT , Σe = CeSe (10)

Furthermore, in eq. (9) the slip resistance was identified as

Gα = ρ0
∂ψ

∂gα
(11)

Requiring that no dissipation should occur during purely elastic processes requires that

Se = 2ρ0
∂ψ

∂Ce
, σ =

2

J
Feρ0

∂ψ

∂Ce
FeT (12)

Finally, taking advantage of eq. (5) in eq. (9) leads to that the dissipation inequality can

be written as

D =

n∑
α=1

(ταγ̇α −Gαġα) ≥ 0 (13)

where the resolved shear stress was introduced as

τα = MαΣeNα (14)

For the specific model it is assumed that the Helmholtz free energy can be split into an

elastic and a plastic part, where the elastic part depends on J and the elastic right Cauchy-

Green deformation tensor Ce. The plastic part of the Helmholtz energy is a function of

the slip parameters gα which are related to the slip resistance. The Helmholtz free energy

can then be stated as

ρ0ψ(J,C
e, gα) = ρ0ψ

e(J,Ce) + ρ0ψ
p(gα) (15)

The elastic part is assumed to have the Neo-Hookean form

ρ0ψ
e =

κ

2

[
1

2
(J2 − 1)− ln(J)

]
+
μ

2
(J−2/3tr(Ce)− 3) (16)
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where κ and μ are the bulk and shear moduli, respectively. The second Piola-Kirchhoff

stress tensor in the intermediate configuration then becomes

Se = 2ρ0
∂ψ

∂Ce
=
κ

2
(J2 − 1)Ce−1 + μJ−2/3(I− tr(Ce)

3
Ce−1) (17)

where I is the second order identity tensor. Taking advantage of the fact that Mα and Nα

are orthogonal, the resolved shear stress τα on slip system α can now be calculated as

τα = μMαĈeNα (18)

where Ĉe = J−2/3Ce is the isochoric part of the elastic right Cauchy-Green deformation

tensor.

In order to describe the cross-hardening that occurs between different slip systems we

let the plastic part of the Helmholtz energy assume a quadratic form, as also used in

[28, 29], according to

ρ0ψ
p =

1

2
Q
∑
α

∑
β

hαβg
αgβ (19)

with hαβ = δαβ + q(1 − δαβ). The parameter q controls the ratio between self-hardening

and cross-hardening. The slip resistance then becomes

Gα = ρ0
∂ψ

∂gα
= Q

∑
β

hαβg
β (20)

The remaining evolution laws for the slip rate γ̇α are given by the power law

γ̇α = γ̇0

( |τα|
Gα

r

)m

sign(τα) (21)

where Gα
r is the total slip resistance on the system. This slip resistance is given by the sum

Gα
r = G0 +Gα (22)

where G0 is a constant resulting from lattice friction while Gα is due to dislocation inter-

actions, individual for each slip system. The evolution laws for the slip parameters gα are

finally given by

ġα = (1−Bgα)
|τα|
Gα

r

|γ̇α| (23)

With the above the dissipation inequality can be written as

D =

n∑
α=1

[
|τα|

(
1− Gα

Gα
r

)
+Bgα|τα|G

α

Gα
r

]
|γ̇α| ≥ 0 (24)
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As Gα
r ≥ Gα it can be concluded that the mechanical dissipation is always positive. The

specific model considered here is an isothermal variant of the model given in [30] where

also kinematic hardening is considered, here only isotropic hardening is considered. In [30]

it was also concluded that the mechanical dissipation given by eq. (24) provides a realistic

heat generation due to the plastic deformation process.

4 Numerical method

The crystal plasticity model described above is employed in a nonlinear finite element

framework. In the integration points within each element, the stresses are calculated by

considering the deformations in a large number of crystals. Assuming all crystals in one

integration point to be subjected to the same deformation gradient, i.e. adopting a Taylor

assumption, an efficient approach is obtained. Whereas explicit dynamic calculations only

require the stress to be calculated, implicit dynamic and static calculations also require

that the algorithmic tangent stiffness is evaluated.

The next section describes the generalization to polycrystal plasticity, and introduces

the tangent stiffness. The following sections discuss different strategies for the numerical

implementation. Aiming at efficient GPU implementation, parallelization and memory

consumption issues related to the different schemes are discussed.

4.1 Polycrystal plasticity

When the displacements have been calculated, the strains are subsequently used for cal-

culating the evolution of γα and gα. The new values of γα and gα are in turn used for

calculating the plastic deformation gradient, stress, and tangent stiffness in each grain. Fi-

nally the stress and tangent stiffness for each integration point is calculated as the averages

over all grains at that point.

When using the single crystal constitutive model described above for modeling of a

polycrystalline material there are several different homogenization schemes that can be

used. In the present work the homogenization introduced by Taylor in [1] is employed,

whereby the grains are assumed to be subjected to the same deformation gradient. This

approach has the advantage that no coupling between the grains exists, which makes the

model suitable for parallelization. In order to obtain the global stress, assuming all grains

to be of equal size, the stresses in each grain are averaged according to

S =
1

n

n∑
i=1

Si (25)

where Si is the stress in grain i and n is the number of grains. Homogenization based

on the Taylor assumption has previously been used, for example, in the crystal plasticity

models in [31, 6, 32, 33, 34]. Since the formula can be interpreted as assuming all grains
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to be of the same size, the volume fraction of grains with a specific orientation can be

calculated as the number of grains with this orientation divided by the total number of

grains.

The algorithmic tangent stiffness D, necessary to obtain proper quadratic convergence

in the Newton-Raphson scheme in an implicit finite element program, is defined as

D = 2
dS

dC
(26)

and is averaged according to the scheme in eq. (25), providing

D =
1

n

n∑
i=1

Di =
1

n

n∑
i=1

2
dSi

dC
(27)

Since the second Piola-Kirchhoff stress tensor can be obtained from

S = Fp−1SeFp−T (28)

the tangent stiffness can be expressed as

D = 2

(
dFp−1

dC
SeFp−T + Fp−1 dS

e

dCe

dCe

dC
Fp−T + Fp−1SedF

p−T

dC

)
(29)

Establishing the components of eq. (29), differentiation of eq. (17) provides

dSe

dCe
= a1C

e−1 ⊗Ce−1 − a2(I⊗Ce−1 +Ce−1 ⊗ I)− a3
dCe−1

dCe
(30)

with

a1 =
κ

2
J2 +

μ

9
(J−2/3)tr(Ce) (31)

a2 =
μ

3
J−2/3 (32)

a3 =
μ

3
J−2/3tr(Ce)− κ

2
(J2 − 1) (33)

and using Ce = Fp−TCFp−1 provides

dCe

dC
=
dFp−T

dC
CFp−1 + Fp−T dC

dC
Fp−1 + Fp−TC

dFp−1

dC
(34)

Thus it can be concluded that calculation of the algorithmic tangent stiffness only requires

the calculation of

dFp−1

dC
(35)

or alternatively

dFp

dC
=

dFp

dFp−1

dFp−1

dC
(36)

in order to be completed.
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4.2 Backward Euler

A glance at eq. (21), describing the evolution of γα, reveals that its behavior will be

controlled by the term raised to a power m. Since the exponent m is usually taken as

a large number, the term will become close to zero when the resolved shear stress is less

than the slip resistance, and one when they are equal. Should the resolved shear stress

become larger than the slip resistance the value of the term (·)m will grow rapidly, making

the system very sensitive to the value of the ratio |τα|/Gα
r . This sensitivity makes explicit

methods less than optimal. A common approach in crystal plasticity implementations is to

use a backward Euler method, and to solve the resulting equations using Newton-Raphson

iterations. Applying this method on the equations for γ̇α and ġα provides the residual

equations

Rα
1 = Δγα −Δγ0

( |τα|
Gα

r

)m

sign(τα) (37)

Rα
2 = gαn+1 −

1

B

[
1− (1− Bgαn) exp

(
−B |τα|

Gα
r

|Δγα|
)]

(38)

where Δγ0 = γ0Δt, with Δt denoting the time increment. It turns out that one of the

equation sets can be eliminated through use of eq. (37) in eq. (38), providing

gαn+1 =
1

B

[
1− (1− Bgαn) exp(−B

( |Δγα|
Δγ0

)1/m

|Δγα|)
]

(39)

resulting in a simple form of the residual function which appears as

Rα(Δγα) = Δγα −Δγ0

( |τα|
Gα

r

)m

sign(τα) (40)

The resulting residual function in eq. (40) is then iteratively solved.

An exponential update is used for the plastic deformation gradient to update its value

from state n to n + 1 according to

Fp
n+1 = ApFp

n (41)

with Ap being defined as

Ap = exp(Δlp) (42)

The increment in the plastic velocity Δlp is defined from

Δlp =
∑
α

ΔγαMα ⊗Nα (43)

DOI: 10.1002/nme.4724 12
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By this approach, the new elastic right Cauchy-Green deformation tensor can be found as

Ce
n+1 = Ap−TFp

n
−TCn+1F

p
n
−1Ap−1 (44)

which by introduction of a trial elastic deformation tensor as Ĉe,trial
n+1 = Fp

n
−T Ĉn+1F

p
n
−1

gives the updated quantity

Ĉe
n+1 = Ap−T Ĉe,trial

n+1 Ap−1 (45)

To promote computational efficiency, the exponential Ap is calculated using a Pade ap-

proximation on the form

Ap = (I− 1

2
Δlp)−1(I+

1

2
Δlp) (46)

As concluded above the algorithmic tangent stiffness requires the calculation of

dFp−1
n+1

dC
= Fp

n
−1dA

p−1

dC
= Fp

n
−1dA

p−1

dγα
dγα

dC
(47)

The term dγα/dC, appearing last in eq. (47), can be calculated from the system

0 =
dRα

dC
=
∂Rα

∂γβ
dγβ

dC
+
∂Rα

∂C
(48)

which makes all the necessary components of the algorithmic tangent stiffness available.

4.3 Runge-Kutta

Since implicit methods include matrix inversions, implying significant memory require-

ments, they are not optimal for use on a GPU. In order to reduce the memory requirements

an explicit Runge-Kutta method (a third order Kutta method) has been implemented,

which should be more suited for parallelization on the graphics card. However, the draw-

back is that they are less suited for stiff ordinary differential equations (ODEs). Expressing

the system in Ḟp and ġα instead of γ̇α and ġα reduces the size of the problem from 24 to

21 ODEs. Because of the lack of stability of explicit methods, the update from state n to

n+ 1 is performed in multiple steps, where the value of C in step i is calculated as

Ci = (1− λ)Cn + λCn+1 (49)

where

λ =
ti − tn
Δt

(50)
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Defining a vector y from Fp and gα and defining ẏ = f(t, y), the update is performed as

k1 = f(ti, yi) (51)

k2 = f(ti +
1

2
Δt, yi +

1

2
Δtk1) (52)

k3 = f(ti +
3

4
Δt, yi +

3

4
Δtk2) (53)

yi+1 = yi +Δt(
2

9
k1 +

1

3
k2 +

4

9
k3) (54)

In order to calculate the tangent stiffness corresponding to Fp the component dFp/dCn+1

is required. Noting that

ḋy

dCn+1
=

dẏ

dCn+1
=

df

dCn+1
=
∂f

∂y

dy

dCn+1
+

∂f

∂Cn+1
(55)

it is possible to introduce Y = (y, dy/dCn+1) and Ẏ = F (t, f, df/dCn+1). Using the

Runge-Kutta scheme above we now get

k1 = F (ti, Yi) (56)

k2 = F (ti +
1

2
Δt, Yi +

1

2
Δtk1) (57)

k3 = F (ti +
3

4
Δt, Yi +

3

4
Δtk2) (58)

Yi+1 = Yi +Δt(
2

9
k1 +

1

3
k2 +

4

9
k3) (59)

and are thus able to calculate the values of the derivatives dFp/dCn+1 in state n + 1.

This approach corresponds to what is introduced in [35], and later used in [8] for crystal

plasticity modeling.

Since Fp and gα are coupled, the analytic expressions for calculating the derivatives

dFp/dC and dgα/dC yield a set of 147 coupled ODEs, requiring a large number of matrix

multiplications for each function evaluation. This makes the calculations unsuitable for

implementation on a GPU. It was found in the present work that even on a CPU the com-

putational cost for the calculation of the analytic derivatives is comparable to that found

when using numerical differentiation. Therefore the derivatives are calculated through nu-

merical differentiation, with the system of 21 ODEs being solved seven times for each grain:

once to obtain the values of Fp and gα, and six times with different perturbations added

to C in order to be able to calculate the derivatives. This approach reduces the size of the

calculations and increases the parallelism since the calculations in each grain can now be

easily split over seven threads.

Runge-Kutta schemes with adaptive step-size are not used in this implementation. This

is in part because the resulting branch divergence and increased overhead would make
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the methods less suited for implementing on a GPU. The main reason, however, is that

different step size in the perturbed solutions may disturb the tangent stiffness, such that

the quadratic convergence of the Newton-Raphson iterations is influenced.

4.4 Operator split

In order to get optimal performance on the GPU, the solution method should optimally

be even less memory demanding than the third order Runge-Kutta scheme, while at the

same time at least as stable. In order to reduce the size of the problem an operator split

method was introduced, solving Fp and gα separately in each time step. Since the memory

constraints rules out implicit methods, Fp is solved with a semi-implicit Euler method

according to

Fp
i+1 = Fp

i +ΔtlpiF
p
i+1 (60)

where Fp
n+1 can be calculated directly as

Fp
i+1 = (I−Δtlpi )

−1Fp
i (61)

The slip parameters gα are then updated through a one-step Newton iteration by evaluating

gαi+1 = gαi +Δt(I −Δt
∂ġα

∂gβ
)−1ġαi (62)

In order to get rid of the matrix inversion, only the diagonal elements of the Jacobian are

used, leaving

gαi+1 = gαi +
Δtġαi

(1−Δt∂ġ
α

∂gα
)

(63)

This method yields about the same stability as the explicit Runge-Kutta method, but

since it removes the need to store values of the derivatives at several stages the memory

requirements are reduced. As for the Runge-Kutta case, the value of dFp/dCn+1, necessary

for the calculation of the tangent stiffness, is obtained numerically.

5 GPU implementation

For the GPU implementation of the crystal plasticity model, the large number of uncoupled

grains provides a significant potential for parallelization. The calculations of slip, stresses

and tangent stiffness are performed on the GPU using one thread per grain, or seven

threads per grain in the cases with a numeric tangent stiffness. The program execution is

illustrated in Figure 2. The CPU parts of the code are written in Fortran and the GPU

part in CUDA C.
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CPU GPU

t = t+ dt

calculate
deformations F

S, D

calc Δγα1

calc Fp
1

calc S1,D1

calc Δγα2

calc Fp
2

calc S2,D2

calc Δγαn

calc Fp
n

calc Sn,Dn

...

...

...

calc S, Dcalculate
residual

res > tol

t < tend

Figure 2: Sketch of the program flow when running on the GPU.

For the backward Euler approach the Newton-Raphson scheme, used in the calculation

of Δγα to minimize the system residual, contains a loop that runs until a condition on

the maximum residual is fulfilled. This seemingly breaks the rule about avoiding condi-

tional statements. However, all grains in the same element are usually subject to similar

deformations. Therefore the threads are likely to require approximately the same number

of loop iterations to converge. Data from profiling the program execution supports this

assumption.

Since the calculations involve a large number of matrices, the memory limitations of

the GPU is the main bottleneck. Therefore some effort has been put into limiting the

demand on local memory and trying to minimize the number of cache misses. Since there

is no coupling between the grains, there is no obvious use for shared memory. Instead the

largest possible cache for the local memory is used. All material parameters are put in the

constant memory. Since Mα andNα are constant but individual for each grain, resulting in

matrices too large for the constant memory, they have been placed in the texture memory.

All floating point calculations are performed with double precision since the high expo-

nential m makes the equations too sensitive to round-off errors for permitting use of single

precision.
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Figure 3: Comparison between Runge-Kutta implementations using analytical and numer-
ical derivatives respectively, for different numbers of grains per iteration point.

5.1 Optimization strategies

Since memory transactions are the main bottleneck, one focus of the present work has

been on minimizing memory usage and making it more effective. The array structure of

the global matrices has been rearranged so that memory access can be performed in a

coalesced manner. For the backward Euler implementation the GPU part of the program

has also been split into two kernels, one for the Newton-Raphson iteration used for finding

Δγα and one for computing stresses and tangent stiffness. While this split results in some

extra overhead it has the benefits of reducing the total amount of memory used in each

kernel and allowing values calculated in the first kernel to be treated as constants in the

second kernel, making it possible for them to be fetched through the texture cache.

As mentioned in section 4.3, analytical calculations of the tangent stiffness for the

explicit methods results in a large system not very well suited for GPU implementation.

By using numerical differentiation the system size is reduced and the degree of parallelism

increased. Figure 3 shows the decrease in runtime achieved by switching differentiation

scheme. A forward difference scheme is used for calculating the numerical derivative.

Variables which are used by multiple threads, e.g. C and J−2/3 which has the same

value for all grains in the same integration point, are precomputed on the CPU. This both

saves the need for performing the same computation hundreds of times, and allows them to
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be uploaded into the constant memory. The use of constant memory results in fast access

while at the same time reducing the load on the registers. This in turn results in less usage

of local memory and in fewer cache misses.

Listing 1: Array reduction for the stress tensor

g l o b a l void reducePK(double ∗ g idata , double ∗ g odata , int n){
extern s h a r ed double sdata [ ] ;
unsigned int t i d = threadIdx . x ;
unsigned int i = blockIdx . x∗n + t i d ;
sdata [ t i d ] = 0 ;

while ( i < ( b lockIdx . x+1)∗n){
sdata [ t i d ] += g ida ta [ i ] ;
i += BLOCK SIZE ;

}
sync thr eads ( ) ;

i f (BLOCK SIZE>=512){
i f ( t id <256) sdata [ t i d ]+=sdata [ t i d +256] ;

s ync thr eads ( ) ;
}
i f (BLOCK SIZE>=256){

i f ( t id <128) sdata [ t i d ]+=sdata [ t i d +128] ;
s ync thr eads ( ) ;

}
i f (BLOCK SIZE>=128){

i f ( t id< 64) sdata [ t i d ]+=sdata [ t i d+ 6 4 ] ;
s ync thr eads ( ) ;

}
i f ( t id <32) {

i f (BLOCK SIZE>=64) sdata [ t i d ]+=sdata [ t i d +32] ;
i f ( t id <16)

i f (BLOCK SIZE>=32) sdata [ t i d ]+=sdata [ t i d +16] ;
i f ( t id <8)

i f (BLOCK SIZE>=16) sdata [ t i d ]+=sdata [ t i d+ 8 ] ;
}
i f ( t i d < NUMGP) {

g odata [ b lockIdx . x+t i d ∗9 ] = sdata [ t i d ]∗NUMGP/n ;
}

}

In order to reduce memory transfers and eliminate the possible bottleneck caused by

the memory bus between CPU and GPU, as much data as possible is kept in the global

memory on the GPU. Memory transfers are further reduced by calculating the average

stress and tangent stiffness in each integration point by an array reduction implemented

on the GPU. The code for averaging of the stress tensor is given in Listing 1. This is a

modification of the array reduction presented in [36]; the reduction is stopped when eight

elements remain in the array, corresponding to the eight integration points present in each
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brick element in the FE model, and the number of blocks in the kernel is chosen equal

to the size of the tensor so that each block is responsible for one component of the stress

tensor.

In order to get enough threads for the scheduler to be able to hide latency by switching

between warps, all grains belonging to the same element are considered at the same time.

It would be possible, for large structures, to combine grains from more than one element

in the same kernel, but once the scheduler has enough threads to properly fill the GPU,

increasing the number of threads even further would not increase efficiency significantly,

while the overhead costs would increase.

One way of reducing the work and memory load for each thread would be to split the

calculations for each grain over several threads, using one thread for calculation of each of

the nine elements in the many 3-by-3 matrices, e.g. Fp and lp, and of the values for each of

the twelve slip system, gα, γα, and τα. This approach reduces register pressure and memory

spills, but of course also reduces the number of grains that can be treated in parallel as well

as introducing the issue of sharing data between threads. This requires the use of shared

memory and makes it necessary to keep the threads synchronized. Synchronization can be

achieved either explicitly, which reduces the performance of the kernel since it limits the

options for the scheduler, or by making sure that all threads related to the same grain reside

in the same warp. The latter approach means that 16 threads (a half-warp) have to be

launched for each grain, instead of just 12, increasing the total number of threads required

by a third. Initial efforts revealed that neither approach results in an overall speedup of

the program, and since the readability of the code suffers heavily the subject has not been

pursued further.

6 Results

In order to be able to evaluate the speedup, the same model has been implemented in

both a single CPU version and in a version where calculation of the stresses and the

tangent stiffness are performed on a GPU. The code has also been run using two different

hardware setups. The first one with an Intel Xeon E5-2650 @2.0 GHz CPU with 64 GB

memory and a Nvidia Tesla K20 GPU with 5 GB @2.6 GHz GDDR5 memory. The second

system is a laptop with an Intel core i3-2310M @2.1 GHz CPU with 4 GB memory and a

Nvidia GeForce GT 540M GPU with 2 GB dedicated DDR3 memory working at 900 MHz.

Tesla K20 is at present time a top of the line card and is especially suited for scientific

calculations. The GeForce is an ordinary graphics card such as the one that might be

found in an average desktop or laptop computer. On both setups the CPU-part of the

code has been compiled using Intels Fortran compiler version 13.1.1 and -O3 optimization.

The CUDA code was compiled with Nvidias nvcc with -O3 optimization; the first setup

with nvcc version 5.5 and compiling for compute capacity 3.5, and the second setup with
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nvcc version 5.0 compiling for compute capacity 2.1.

Most of the simulations have been conducted on a single brick element, using a trilin-

ear isoparametric formulation with eight integration points, subject to pure tension. This

example has been investigated using both an explicit and an implicit finite element formu-

lation, i.e. when only the stresses are needed and when both stresses and tangent stiffness

need to be calculated. In order to show that the scaling remains the same for a larger

structure some tests have also been performed on a simple geometry, consisting of a plate

with a hole, shown in Figure 15. The geometry is discretized using 370 brick elements.

Material parameters, pertaining to pure Cu, are taken from [30] and are summarized in

Table 1.

6.1 Simulations based on a single element

Since the code is parallelized so that for each element the calculations for all grains are

performed in parallel, the characteristics of the implementation can be demonstrated with

an example containing only one single element. Therefore a series of tests has been per-

formed where one 3D brick element with eight integration points has been subjected to

pure tension, see Figure 4. Different numbers of grains per integration point are used to

evaluate the global material behavior under loading. The individual grains are initiated

with random orientations in terms of the three Bunge-Euler angles (ϕ1,Φ,ϕ2). These ori-

entations are initiated as ϕ1 = 2πr1, Φ = acos(1 − 2r2) and ϕ2 = 2πr3 where r1,2,3 are

random numbers, obtained from a uniform distribution in the interval [0,1]. The initial

orientation distribution is shown in the pole figure in Figure 6a. The material is loaded in

the rolling direction (RD).

Figure 5 shows a stress/strain plot obtained from the simulations. The large deforma-

tions also affect the texture of the microstructure, as can be seen from Figure 6b where the

completely random orientation distribution evolves into the texture shown in Figure 6b at

the end of the deformation process. The pole figures are of the equal-area mapping type

and the texture plots are {111}-pole figures. It is concluded that the initially randomly

distributed {111}-poles move in the RD-direction on the lower and the upper side of the

pole figure and towards two equally distributed horizontal bands.

6.1.1 Explicit finite element formulation

In the explicit test program a constant displacement rate of 0.4 mm/s is used with a time

step of 2.5 × 10−4 s. The simulation is continued for 10000 steps, which results in 100%

strain. With such small strain increments, which is usual when running explicit dynamics,

the Runge-Kutta and operator split solvers only requires 2 steps for the integration over one

time step, which gives them an advantage when compared to the backward Euler method

which requires 2-3 iterations to converge.
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Table 1: Material parameters

Parameter Value Description
μ 80 GPa Shear modulus
κ 164 GPa Bulk modulus
G0 55 MPa Lattice friction
Q 200 MPa Hardening parameter
γ̇0 0.001 Reference slip rate
g0 0.007 Initial value of gα

q 1.4 Ratio between self and cross hardening
B 8 Parameter controlling saturation of gα

m 26 Rate sensitivity

×

×

×

×

×

×

×

×

Figure 4: The one-element test case. Positions of the integration points are indicated by
”x” and the loading direction is shown by arrows.
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Figure 5: Stress/strain curve showing σ11 versus the logarithmic strain from straining one
element to twice its length. The flow stress behaviour is representative for polycrystalline
copper.
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Figure 6: Pole figures showing the {111} poles of the 1000 grains in one of the integration
points a) before and b) after deformation, at logarithmic strain of 0.7.
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Figure 7: Comparison between the GPU and CPU implementations on different hardware
with 1000 grains per integration point. Setup 1: Intel Xeon E5-2650 @2.0 GHz and Nvidia
Tesla K20. Setup 2: Intel core i3-2310M @2.1 GHz and Nvidia GeForce GT 540M.

Figure 7 shows the computational time for running one brick element with 1000 grains

per integration point on both of the considered hardware setups, comparing the best serial

implementation, in this case the operator split, with the different GPU implementations.

The time scale in this and the following figures in this section has been normalized with the

time required for running 1000 grains on the CPU on the first setup. On the first setup the

GPU implementation of the operator split method is more than 60 times faster than the

CPU implementation, and even on the laptop an almost ten times speedup can be seen.

A comparison between the runtimes on hardware setup 1 for the different implemen-

tations when the number of grains per integration point is varied is shown in Figure 8.

It clearly shows that for this testcase the backward Euler method is inferior to the other

two, even though all three methods show that a considerable speedup can be achieved on

the GPU. Figure 9 shows only the GPU implementations. Here it can be noted that the

graphs do not exhibit a linear scaling, but rather displays a steplike behaviour. This has

to do with the properties of the GPU; running one thread takes approximately the same

time as running one thread per processor core. Thus performance will be optimal when

the number of threads is evenly divisible with the number of available cores, while adding

just one extra thread to this number will drastically increase the required time. This phe-

nomenon is clearly seen in Figure 10 as well, where clear dips in the speedup appear when
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Figure 8: Comparison between GPU and CPU implementation of the different numerical
schemes for different numbers of grains per iteration point.

the number of grains used is not optimal considering the hardware. Since the backward

Euler method uses twice as many registers as the other methods, and consequently has a

lower maximal occupancy, the dips are not in the same places for this implementation. For

optimal numbers of grains, operator split and Runge-Kutta methods give a peak speedup

of 100 and 80 times respectively, while the more memory intensive backward Euler comes

close to 50 times speedup.

6.1.2 Implicit finite element formulation

The implicit test program uses the same constant displacement rate of 0.4 mm/s, but with

the longer time step 0.01 s. With those settings the plastic material response is initiated

in the first step. The response is identical to that obtained for the explicit calculations,

the difference is in that now the tangent stiffness is calculated.

The Newton-Raphson scheme used for finding Δγα usually requires 5-6 iterations in

the plastic region. The Runge-Kutta and operator split methods both require around 80

steps for the integration of one time step. Figure 11 shows the computational time for

running one brick element with 1000 grains per integration point to an elongation of 100%

on both of the considered hardware setups. The time scale in this and the following figures

has been normalized with the time required for running 1000 grains on the CPU using

the backward Euler scheme on the first setup, chosen as reference. The performance of
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Figure 9: Comparison between the different numerical schemes implemented on the GPU
for different numbers of grains per iteration point.
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Figure 10: Speedup achieved with the GPU implementation compared to the CPU imple-
mentation for each of the three different numerical schemes, for different numbers of grains
per iteration point.
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Figure 11: Comparison between the GPU and CPU implementations on different hardware
with 1000 grains per integration point. Setup 1: Intel Xeon E5-2650 @2.0 GHz and Nvidia
Tesla K20. Setup 2: Intel core i3-2310M @2.1 GHz and Nvidia GeForce GT 540M.

the CUDA implementations of the different numerical schemes is in Figure 11 compared to

that of the serial CPU code for the backward Euler approach. With the first setup all GPU

versions get enough speedup to yield improvements compared to the CPU performance,

but on the laptop the explicit methods are unable to compete with the more stable method.

Still, for the backward Euler it is possible, even on this modest hardware setup, to achieve

a six times speedup.

On hardware setup 1, a typical integration step for one element, i.e. 8 integration

points, with 1000 grains per integration point using the backward Euler approach takes

about 19 ms on the GPU, divided in 14 ms for finding Δγα and 5 ms for calculating stresses

and tangent stiffness. Using the CPU implementation the same step takes 670 ms, with

560 ms required for finding Δγα and 110 ms for calculating stresses and tangent stiffness.

The comparatively longer time required for calculating the tangent stiffness on the GPU is

due to the larger memory requirements for this part of the algorithm which makes it less

suited for GPU implementation.

A comparison of how the computation time changes when changing the number of grains

per integration point for the different CPU and GPU implementations is shown in Figure

12. As expected the time required for the CPU implementations scales linearly. The GPU

implementation shows a step-like behavior, as in the case with explicit dynamics, which
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Figure 12: Comparison between GPU and CPU implementation of the different numerical
schemes for different numbers of grains per iteration point.

can be seen more clearly in Figure 13. Figure 14 shows the speedup achieved from running

each of the numerical methods on the GPU as compared to using the same scheme on the

CPU. The graph shows that although the implicit method does result in a speedup factor

of more than 30, it is less suited for GPU implementation than the other method where

the operator split method, specially tailored for GPU implementation, gives a 120 times

speedup. However, the stiff problem makes the more stable implicit method the overall

winner, as is obvious from Figure 13, in spite of it not being the most optimal one for GPU

implementation. In Figure 14 it can also be noted that the Runge-Kutta and operator

split methods reach maximal efficiency for lower numbers of grains than the backward

Euler method. This is due to the fact that those methods use seven threads per grain

in order to calculate the numerical derivatives necessary for the tangent stiffness, which

means that fewer grains are needed to get enough threads to saturate the GPU.

6.2 Simulations based on a 3D geometry

Since it is important to confirm that the speedup due to parallelization remains the same

also for a larger FE structure, this has been tested as well, using the backward Euler method

which was evaluated to be the most favorable for implicit finite element calculations. The

geometry used consists of a standard plate with a circular hole at the center, shown in

Figure 15. Due to symmetry only one eight of the structure is modeled and it is discretized
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Figure 13: Comparison between the different numerical schemes implemented on the GPU
for different numbers of grains per iteration point.
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Figure 14: Speedup achieved with the GPU implementation compared to the CPU imple-
mentation for each of the three different numerical schemes, for different numbers of grains
per iteration point.
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Figure 15: Plot of the geometry used for testing a larger structure, with loading direction
indicated by arrows. Taking advantage of symmetries, only one eight of the structure is
actually modeled, indicated by the shaded region in the left figure and detailed in the right
figure. The numbers are in millimeters.

using 370 brick elements. While the GPU solution makes it possible to run even larger

structures, such an example would be unfeasible to use for comparison, since the time

requirements for the CPU version would become too exhaustive. The chosen problem size

is also large enough that all data can not be fitted into the GPU memory at the same time,

which means that the costs related to memory transfers are visible already for a problem

of this size. The structure is subjected to tensile deformation at a constant displacement

rate of 2.5 mm/s using a time step of 0.01 s and for a sequence of 1000 loadsteps. Figure

16 shows the resulting stress distribution, plotted in the deformed geometry.

Figure 17 shows the computational time for running calculations on the structure with

different numbers of grains per integration point. Due to the long run times required on

the CPU, that implementation has only been tested for up to 800 grains per integration

point. The corresponding execution time has been used for normalizing the time-scale on

the vertical axis in Figure 17. The results show that the scaling behavior of the GPU

implementation when the number of grains is increased remains the same as in the one-

element case. The speedup is slightly less for the larger structure, as can be seen in Figure

18. This is because the problem becomes too large to keep all the required data in the

memory on the GPU, which means that more time has to be spent on data transfer.

However, the results confirm that even for a larger problem, the time required by the

FEM part of the program remains negligible compared to the time required for the crystal

plasticity part of the calculations.
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Figure 16: Resulting effective stress (von Mises) from running the plate with hole structure
of 370 elements with 1000 grains per integration point. The dimensions of the geometry
are given in millimeters. The stress distribution is shown in the deformed geometry.
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Figure 17: Comparison between GPU and CPU implementation using the backward Euler
scheme when running a plate with hole structure of 370 elements.
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Figure 18: Speedup achieved with the GPU implementation using the backward Euler
scheme for different numbers of grains per iteration point, for both the one element case
and the larger structure.

7 Discussion/Conclusion

The present work shows the possibility for obtaining significant speedup of crystal plasticity

simulations by taking advantage of the rapidly developing computational capacity of GPUs.

Advantage has been taken of the large degree of parallelism inherent to the polycrystal

plasticity model. Different numerical methods and strategies for their parallelization have

been considered.

All comparisons in the present work have been made between a serial CPU and the

GPU solution. The Xeon processor in hardware setup 1 has 8 processor cores and the i3

processor in hardware setup 2 has 2 processor cores, and both are capable of running 2

threads per core. This capacity could be exploited by using e.g. openMP parallelization on

the CPUs. Although such CPU parallelization is not targeted here, it can be noted that

the speedups of the GPU compared to the CPUs would theoretically be reduced by factors

between 8 and 16 and between 2 and 4 respectively, depending on the hardware setup and

assuming ideal CPU parallelization. Results from CPU parallelization of crystal plasticity

implementations can be found e.g. in [20, 37, 38, 39, 19].

It can be noted that an optimal implementation of the code should take full advantage of

both GPU and CPU parallelization. This strategy has, however, not been pursued further
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here since the GPU implementation is the primary focus. An optimal implementation

should also exploit the possibility of running on multiple GPUs.

The results show that both the Runge-Kutta and the operator split methods that are

introduced are well suited for GPU implementation, giving a large speedup compared to

the CPU implementation of the same methods. The computation time was reduced by

factors as large as 120. Comparing the Runge-Kutta implementation to other works on

GPUs it can be noted that a speedup of about 20 for double precision calculations on a

Tesla C1060 is reported in [40], while less than ten times speedup is achieved using a Fermi

GPU in [41]; both speedups are calculated in comparison to a serial CPU implementation.

Considering that the Tesla K20 is a better card than the ones used in [40, 41], but also

that the crystal plasticity model yields a much larger set of ODEs than that investigated

in [40], the results in the present work are found to be reasonable.

The more memory demanding backward Euler method yields a smaller, but still signif-

icant, speedup. However, since the problem is ill-conditioned, the stability of the implicit

method still makes it the most efficient method when running an implicit finite element

program with long time steps. For an explicit approach with shorter time steps the opera-

tor split approach introduced in this work is proven to be both the most efficient method

and the one best suited for GPU implementation.

While the limited amount of on-chip memory remains the dominant bottleneck in the

calculations, a large number of threads allows the scheduler to hide much of the memory

latency by switching between warps. The parallelization strategy has been chosen such

that maximal speedup is achieved for the number of grains usually used in crystal plasticity

simulations.

Considering the availability of GPUs, parallelization on GPUs makes it feasible to

run crystal plasticity simulations on a desktop computer, rather than requiring large CPU-

based clusters. Although it is preferable to use a graphics card especially suited for scientific

calculation, the suggested approach reduces the computation time significantly even when

running the simulations on an ordinary laptop.

Code

Source code for the CUDA implementation of the backward Euler solution has been made

public at [42].
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