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Abstract 
Type 1 diabetes is characterized by a lack of insulin production in the pancreatic beta cells. Insulin may 

affect liver fat content, and several previous publications have suggested that children with type 1 

diabetes are at risk of fatty liver disease, which, in turn, is a risk factor for cardiovascular disease. The 

aim of this thesis was to explore aberrations of fat metabolism in type 1 diabetes. 

In paper I, we used magnetic resonance imaging to study the hepatic fat fraction of children with type 1 

diabetes. We found that the hepatic fat fraction of children with type 1 diabetes was lower than that of 

controls. Exploratory analyses indicated that the distribution of fat across Couinaud segments was 

different in children with diabetes compared to controls. We attributed this to a reduced effect of 

insulin in the livers of children with type 1 diabetes. 

Based on these findings, we hypothesized that the fat fraction of the pancreas might be similarly 

affected due to a local lack of insulin. In paper II, we therefore studied the fat fraction and volume of the 

pancreas in the same children. We found no difference in pancreatic fat fraction between the groups, 

but the children with diabetes had lower pancreas volume. We found no correlation between diabetes 

duration and pancreas volume. 



To further investigate the timing of changes in hepatic lipid metabolism in relation to the onset of type 1 

diabetes, we longitudinally studied gene expression and serum metabolites in a rat model of type 1 

diabetes in paper III. We found that there was a shift in hepatic lipid metabolism after the onset of 

hyperglycemia and that many of the lipid-regulating genes that changed their expression were 

influenced by insulin. 

Overall, the thesis suggests that a lack of endogenous insulin production affects hepatic processes, 

including the accumulation of hepatic fat. It raises questions about further consequences of a lack of 

insulin in the liver in type 1 diabetes. 

Populärvetenskaplig sammanfattning på svenska 
Insulin påverkar kroppens omsättning av socker, protein och fett. Hos personer typ 1-diabetes slutar 

bukspottskörteln att tillverka insulin, vilket leder till att deras blodsocker blir för högt. Hos personer utan 

typ 1-diabetes tas det mesta av insulinet som kroppen tillverkar upp i levern. Eftersom insulin bidrar till 

att fett bildas förväntade vi oss att fetthalten i levern skulle spegla kroppens insulinproduktion. 

Publicerade undersökningar tydde även på att barn med typ 1-diabetes hade ökad risk för att få 

fettlever, men på grund av deras metodval var resultaten inte helt tillförlitliga. Därför undersökte vi i 

artikel I fetthalten i levern hos barn med typ 1-diabetes och barn utan typ 1-diabetes med 

magnetkamera, som mycket noggrant kan mäta fetthalten i kroppens organ. Undersökningen visade att 

barnen med typ 1-diabetes hade mindre fett i levern och att fettet hade en annorlunda fördelning i 

levern jämfört med barnen utan typ 1-diabetes. Vi tror att den lägre fetthalten hos barn med diabetes 

beror på att de får mindre insulin till levern än friska barn. 

Resultaten gjorde att vi undrade om andra organ hos patienter typ 1-diabetes påverkas på ett liknande 

sätt. Eftersom bukspottskörteln också drabbas av insulinbrist resonerade vi att fetthalten även i detta 

organ kunde minska. Det är känt sedan tidigare att bukspottskörteln hos typ 1-diabetespatienter är 

mindre än hos andra, och en anledning till detta tros vara lokal brist på insulin. I artikel II undersökte vi 

bukspottskörtelns fetthalt och storlek hos samma barn som i artikel I. Vår undersökning visade att det 

inte fanns någon skillnad i fetthalt, men att barnen med typ 1-diabetes hade mindre bukspottskörtlar. 

Bukspottskörtelns volym berodde inte på hur länge barnen hade haft diabetes, vilket antyder att mycket 

av storleksminskningen sker innan patienternas insulinnivåer når en så pass låg nivå att de förlorar 

kontroll över sitt blodsocker. 

I artikel I hade vi konstaterat att barn med typ 1-diabetes har mindre fett i levern än kontrollpersoner. 

Vi misstänkte att fettomsättningen förändrades under insjuknandet i typ 1-diabetes, då kroppens 

förmåga att tillverka insulin avtar. Detta är dock svårt att påvisa hos människor, eftersom man inte exakt 

nog kan avgöra när de kommer att insjukna i diabetes. Därför undersökte vi i artikel III hur genuttrycket 

i levern och kemikaliesammansättningen i blodet förändrades hos en slags råtta som på ett förutsägbart 

sätt drabbas av en motsvarighet till typ 1-diabetes. Vi analyserade prover från levern och blodet vid flera 

tillfällen före och minst ett tillfälle efter att råttorna hade insjuknat med diabetes. Våra fynd visade att 

levern i samband med att råttorna får diabetes ändrar sitt genuttryck så att mindre fett ansamlas. 

Många av generna som deltar i denna förändring påverkas av insulin. 



Sammantaget är avhandlingens huvudfynd att barn med typ 1-diabetes har mindre fett i levern än 

personer utan diabetes och att detta främst beror på insulinbrist i levern. Detta väcker frågan om vilka 

andra konsekvenser som den lokala bristen på insulin i levern orsakar, vilket framtida studier får 

besvara. 
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ALAT  alanine transaminase 
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AUC  area under the curve 

B  magnetic flux density 
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MRI  magnetic resonance imaging 

mRNA  messenger ribonucleic acid 

MRS  magnetic resonance spectroscopy 



MS  mass spectrometry 

m/z  mass-charge ratio 

NAFLD  nonalcoholic fatty liver disease 

NAFLD-LFS nonalcoholic fatty liver disease liver fat score 

NAFPD  nonalcoholic fatty pancreas disease 

NASH  nonalcoholic steatohepatitis 

NCAN  neurocan 

NMR  nuclear magnetic resonance 

NOD  non-obese diabetic 

PPAR  peroxisome proliferator-activated receptor 

PPP1R3B protein phosphatase 1, regulatory subunit 3B 

PNPLA3  patatin-like phospholipase domain-containing protein 3 

RF  radiofrequency 

ROC  receiver operating characteristics 

SNP  single nucleotide polymorphism 

SREBP-1c sterol regulatory-binding protein 1c 

STZ  streptozotocin 

T  tesla 

THC  tetrahydrocannabinol 

TM6SF2 transmembrane 6 superfamily 2 

TR  repetition time 

TE  echo time 

VLDL  very low density lipoprotein 

Wb  weber 

ZnT8  zinc transporter 8 

γ  gyromagnetic ratio 

ρf,w,  fat or water signal, respectively 

ω  precession rate 

Aim and hypotheses 
The overall aim of this thesis is to study aberrations of fat metabolism in type 1 diabetes, with a focus on 

fatty liver disease. 

Paper I 
Primary hypothesis: Hepatic fat fraction differs between children with type 1 diabetes and controls. 

Exploratory outcomes: 

 Distribution of hepatic fat across Couinaud segments in children with type 1 diabetes compared 

to controls 

 Relation of the fat fraction of specific Couinaud segments with the total hepatic fat fraction. 

 Correlations of anthropometric measurements and blood tests with hepatic fat fraction. 



Paper II 
Primary hypothesis: Pancreatic fat fraction differs between children with type 1 diabetes and controls. 

Exploratory outcomes: 

 Difference in pancreas volume between children with type 1 diabetes and controls. 

 Difference in the fat fraction of a segment of m. erector spinae between children with type 1 

diabetes and controls. 

 Correlations of anthropometric measurements and blood tests with hepatic fat fraction. 

Paper III 
Primary hypothesis: Hepatic gene expression and serum metabolites differ in regard to lipid metabolism 

before and after diabetes onset. 

Exploratory outcomes: 

 Overlap of differentially expressed genes affecting lipid processes with differentially expressed 

genes regulated by insulin. 

 Overlap of differentially expressed genes affecting lipid processes with differentially expressed 

genes regulated by glucose. 

 Overlap between genes of metabolic processes and metabolites that are substrates in those 

metabolic processes. 

Background 

Type 1 diabetes 
Type 1 diabetes is characterized by the progressive autoimmune destruction of pancreatic beta cells, 

which leads to a deficiency of insulin. Lack of insulin causes hyperglycemia with symptoms such as 

polydipsia, polyuria, polyphagia, and blurred vision. Untreated type 1 diabetes eventually leads to 

ketoacidosis and death. Although the clinical onset of the disease is often abrupt, type 1 diabetes can be 

preceded by demonstrable islet cell autoimmunity for up to several decades before insulin levels decline 

to the point at which the patient experiences symptoms (1). 

Patients with type 1 diabetes are treated with exogenous insulin. Intensive treatment with insulin can 

maintain near-normoglycemia, whereas long-standing hyperglycemia increases the risk of complications 

such as retinopathy, neuropathy, and diabetic kidney disease (2). Due to the glycemic legacy or 

metabolic memory effect, periods of hyperglycemia permanently increase the risk of long-term diabetes 

complications, even if blood glucose later returns to normal levels (3). 

There is substantial geographic variation in the prevalence of type 1 diabetes. Finland has the highest 

national rate of type 1 diabetes, with an incidence a hundredfold greater than for instance China (4). 

Type 1 diabetes represents about 10% of the cases of diabetes in Sweden and over 95% of diabetes in 

Swedish children. The incidence of type 1 diabetes in children increased from the introduction of 



national registries in the 1970s until the early 2000s, particularly in younger age groups. However, there 

is evidence that this increased incidence of type 1 diabetes among younger children in Sweden has 

declined in recent years (5). Conversely, in countries with a lower incidence of type 1 diabetes, the 

increase in incidence has tended to accelerate (6). 

Pathogenesis of type 1 diabetes 

The causes of type 1 diabetes are still unclear, but both genetic and environmental factors are believed 

to contribute to its pathogenesis (7). The concordance of type 1 diabetes in monozygotic twins is 30-

50%, yet only about 15% of newly diagnosed type 1 diabetes patients have a first-degree relative with 

the disease (8). The lifetime risk of developing type 1 diabetes among siblings of persons with the 

disease is about 7%, and slightly less than that of the children of a parent with type 1 diabetes (9). 

Genome-wide association studies have identified over 40 genetic loci that affect the risk of type 1 

diabetes (10). However, the human leukocyte antigen (HLA; also known as major histocompatibility 

complex, MHC) class I and II regions remain the greatest identified contributors to the genetic 

susceptibility to type 1 diabetes (11). HLA class II molecules are expressed in antigen-presenting cells 

such as dendritic cells, phagocytes, and B-cells. The HLA class II molecules induce an immune response 

against foreign antigens by presenting peptide-derived antigens to helper T-cells (12). 69% of persons 

who develop type 1 diabetes before adulthood have the DQ2 or DQ8 variants of HLA class II, compared 

to 15% of the general Swedish population (13). The DQ2/8 haplotype confers the highest risk of disease 

(7). HLA class I molecules display peptide fragments of non-self proteins from within the cell to cytotoxic 

T cells (12). Several HLA class I variants, including HLA-B*39, have been associated with type 1 diabetes 

(14). 

Several environmental factors have been implicated in triggering islet cell autoimmunity and type 1 

diabetes in the genetically susceptible (7). Exogenous influences might occur as early as during 

gestation; for instance, maternal enterovirus infection during pregnancy has been associated with a 

higher risk of type 1 diabetes among offspring (15). Further proposed environmental triggers of 

autoimmunity and progression to type 1 diabetes include virus infections, diet, weight, and the 

microbiome (7). 

The mechanisms of specific beta cell destruction are not yet fully understood. The earliest sign of islet 

autoimmunity is usually the presence of islet autoantibodies, produced by B lymphocytes. Four major 

types of antibodies are generally recognized: antibodies against insulin (IAA), glutamic acid 

decarboxylase (GAD), islet antigen 2 (IA2), and zinc transporter 8 (ZnT8) (16, 17). 44-92% of type 1 

diabetes patients are positive for IAA, 64-75% are positive for GAD, 61-77% for IA-2, and 61-80% for 

ZnT8. 96% of patients are positive for at least one of these four autoantibodies, and a number of further 

candidate autoantibodies have been identified (18). The presence of multiple autoantibodies predicts 

diabetes more strongly than any single autoantibody (19). 

In persons who develop type 1 diabetes, islet cell autoimmunity is followed by beta cell killing. B cells 

are believed to participate in the immune response by presenting antigens to CD4+ and CD8+ T cells 



(20). It is thought that cytotoxic T-cells, helper T-cells, natural killer cells, and macrophages contribute to 

the actual destruction of beta cells (21). 

Beta cell destruction causes a deficiency of insulin. This ultimately leads to the absence of insulin action 

in its target tissues, including the liver, which is a major focus of papers I and III. The mechanisms of 

insulin secretion and insulin’s interaction with the liver are therefore discussed below. 

Insulin secretion 

Insulin is produced and secreted by the beta cells of the islets of Langerhans in the pancreas. The initial 

precursor of insulin is preproinsulin, which has 110 amino acids arranged in a single chain, with a 

hydrophobic signal sequence at its N-terminal end (22). Removal of this signal sequence yields 

proinsulin. The signal sequence is degraded, while proinsulin is transported into maturing secretory 

vesicles. Proinsulin is then further processed, resulting in the removal of a peptide known as the 

connecting (C) peptide and the formation of mature insulin. In this mature, biologically active state, 

insulin consists of 51 amino acids arranged into two peptide chains, designated A and B, which are 

joined by two disulfide bonds (23). Equimolar amounts of insulin and C-peptide are present in the 

mature vesicles and are eventually secreted from the beta cells (24). As C-peptide is extracted to a lower 

extent in the liver than insulin, it is frequently used in clinical practice as a marker of insulin secretion 

(25). In paper I, we had hypothesized that liver fat could correlate with C-peptide, as we expected liver 

fat to reflect beta cell function. 

Beta cells are stimulated to secrete insulin by a complex interplay of external and internal factors. These 

factors include carbohydrates, amino acids, fatty acids, hormones, and neurotransmitters of the 

autonomic nervous system (26-30). The most significant and extensively studied of these stimuli is 

glucose. Glucose-induced insulin secretion is believed to be mediated as follows: First, glucose is 

transported into beta cells through facilitated diffusion of GLUT2 glucose transporters. The intracellular 

glucose is then metabolized to ATP. The resulting elevation of the ATP/ADP ratio causes cell-surface 

ATP-sensitive K+ channels to close, inducing cell membrane depolarization. The shift in electric potential 

causes cell-surface voltage-dependent Ca2+ channels to open, facilitating extracellular Ca2+ influx into the 

beta cell. The subsequent rise in cytosolic Ca2+ causes the fusion of the secretory granules with the cell 

membrane, resulting in the exocytosis of insulin, C-peptide, amylin and residual amounts of proinsulin 

(31). Figure 1 illustrates the basic intracellular events involved in glucose-stimulated insulin secretion 

from beta cells. 



 

Figure 1. Basic intracellular events leading to glucose-stimulated insulin secretion from beta cells (32). 

The release of insulin from beta cells is biphasic. An increase in glucose results in an initial, transient 

burst of insulin secretion that falls back to near-basal levels within ten minutes. The second phase 

involves a slower progression to maximal secretion levels, which persists throughout the duration of 

glucose exposure. This biphasic pattern is believed to be caused by the presence of two populations of 

insulin granules – the first phase stems from granules which are already docked at the cell membrane, 

whereas the second relies on recruitment from a pool of reserve granules from deeper within the cell 

(33). 

Both basal and postprandial circulating insulin levels oscillate with a period of approximately five to ten 

minutes (34), contemporaneously with the calcium concentration of the beta cells (35, 36). The 

oscillations are well synchronized throughout entire islets because of the spread of electric potentials 

between adjacent cells through gap junctions (37, 38), as well as diffusible factors such as ATP (39). The 

periodicities of the approximately one million islets of the pancreas are in turn thought to be 

synchronized by autonomic ganglia (40). In addition to the aforementioned high-frequency oscillations 

in insulin concentration, low-frequency oscillations, with a period of 50 to 150 minutes have also been 

reported (41). 



The arterial blood supply of the pancreas arises from the superior and inferior pancreaticoduodenal 

arteries and the splenic artery, which are divisions of the celiac trunk (42). The individual islet of 

Langerhans is supplied with blood by a central arteriole, the capillaries of which spread towards the 

islet’s periphery. A core of beta cells is located upstream of the surrounding alpha cells, which leads to 

the former’s insulin secretion affecting the latter (43). The capillaries of the pancreas’s endocrine islets 

and exocrine lobules are continuous – after passing through the islets, the blood reaches a secondary 

network around the acinar cells (44). This connection between the endocrine and the exocrine pancreas 

underlies the hypothesis that the lack of insulin reaching the acinar cells in type 1 diabetes causes 

pancreatic atrophy, which is studied in paper II. The vessels containing venous blood eventually 

converge into the pancreatic and pancreaticoduodenal veins, which empty into the hepatic portal vein. 

Insulin and the liver 

Blood from the pancreas initially flows into the hepatic portal vein. Some 75% of the blood flow of the 

liver is supplied from the portal vein, with the remainder coming from the hepatic arteries (45). Blood 

from the portal vein, which in persons without type 1 diabetes contains insulin, mixes with blood from 

the hepatic artery in the sinusoids of the hepatic lobules. Blood in the sinusoids drains into the central 

veins of the hepatic lobules and finally leaves the liver through the hepatic veins (46). 

Of the insulin that enters the liver, 50 to 80% of is cleared in first-pass transit (47). The fenestrated 

epithelium of hepatocytes allows proteins such as insulin to enter the space of Disse, from which the 

insulin can bind to insulin receptors or be absorbed by hepatocellular microvilli (48). Hepatocytes clear 

most of the insulin in the liver, while Kupffer cells only contribute to 15% of hepatic insulin degradation 

(49). The intracellular degradation of insulin is largely performed by insulin-degrading enzyme; the liver 

is the organ with the highest concentration of this enzyme (50). 

The effects of insulin at its target cell begin by its binding to the transmembranous insulin receptor. The 

insulin receptor is a dimer consisting of two polypeptide α-subunits, which are each linked to a β- 

subunit. The extracellular α-subunits bind to the insulin molecule. Upon binding, they discontinue the 

inhibition of tyrosine kinase action of the transmembrane β-subunits (51, 52). 

The β-subunits phosphorylate tyrosine residues on the intracellular enzymes. Its targets include insulin 

receptor substrate and Src homologous and collagen (Shc). Phosphorylation of these proteins causes 

further signaling via the phosphoinositide 3-kinase/Akt and Ras/MAP kinase pathways. Downstream 

effects of Akt promote glucose uptake, glycogen synthesis, and protein synthesis (53). Insulin also 

induces the expression of liver X receptor, which activates fatty acid synthase, steatoyl CoA 

desaturase 1, sterol regulatory element-binding protein 1c, and carbohydrate response element binding 

protein to promote lipogenesis (54, 55). Thus, insulin promotes fat accumulation in its target tissues; the 

macroscopic effects of the reduced action of insulin on hepatic fat were made clear in paper I. 

Pancreatic morphology in type 1 diabetes 

Although selective destruction of beta cells is the hallmark of type 1 diabetes, the overall morphology of 

the pancreas is also pathologically affected, which was the focus of paper II. Beta cells comprise only 

about 1% of the pancreatic volume (56), yet it was noted decades ago that patients with type 1 diabetes 



have markedly lower pancreas volumes than healthy subjects (57). In adults with an average duration of 

type 1 diabetes of 13 years, the pancreatic volume, as measured with MRI, was 48% smaller than that of 

age-matched controls (58). In adults who had been diagnosed with type 1 diabetes during the previous 

six months, the MRI-determined pancreatic volume in relation to the body surface area was 31% lower 

than that of controls (59). An autopsy study found that type 1 diabetes-associated autoantibody-positive 

organ donors, who had a lower average C-peptide value than non-diabetic, autoantibody-negative 

donors, also had a lower pancreas weight (60). In children and adolescents, the size of the pancreas 

decreases in relation to age-matched controls with increasing duration of type 1 diabetes (61), although 

others have not found such a correlation in adults (62). It has further been noted that pancreatic 

atrophy is unrelated to glycemic control (63) and residual beta cell function (64). 

The exocrine pancreas secretes over 20 types of enzymes through the pancreatic ducts into the 

duodenum. These include proteases, lipases, amylases, ribonucleases, and hydrolases (65). There is 

evidence that the reduced pancreas size in type 1 diabetes is associated with decreased exocrine 

function, as measured directly in the duodenum or with indirect markers such as fecal elastase and 

serum trypsin (66-68). As the pancreas has a large reserve capacity, 90% of acinar tissue typically needs 

to be lost before symptoms such as steatorrhea occur (69), and some have claimed that fecal elastin-1 is 

a poor marker of pancreatic insufficiency in type 1 diabetes patients (70). There is conflicting evidence 

about the relation between residual beta cell function and pancreatic insufficiency. Some studies have 

concluded that type 1-diabetic patients with residual insulin secretion produce more exocrine pancreatic 

enzymes than patients with an absolute insulin deficiency (71), whereas others have found no 

correlation between markers of exocrine pancreatic function and markers of residual beta cell function 

(71). 

It has long been believed that diabetes-associated pancreatic atrophy and fibrosis is caused by the 

missing trophic paracrine effect of insulin (61). More recently, it has been suggested that pancreatic 

atrophy is a consequence of the long-standing inflammation associated with beta cell destruction (72). 

Histological analyses of exocrine pancreatic tissue from type 1 diabetes patients has revealed infiltration 

with neutrophils and eosinophils (73). Furthermore, several studies have shown that type 1 diabetes 

patients have higher serum levels of autoantibodies against exocrine pancreatic antigens than controls 

(74, 75). It has also been found that pancreatic acinar cells express some of the same antigens as beta 

cells (76). 

In paper I, we found that children with type 1 diabetes had a lower hepatic fat fraction than controls. 

We suggested that this was caused by less insulin reaching the liver. Based on our finding, we 

hypothesized in paper II that the pancreas might be similarly affected, as we expected a reduced 

paracrine effect of insulin to reduce local lipogenesis. The pancreatic fat fraction in type 1 diabetes had 

not been studied before we performed our experiment. However, some studies of pancreatic fat have 

been performed in healthy and in type 2-diabetic persons. 

Throughout childhood, the pancreatic fat volume increases while retaining the same proportion to the 

total growth of the pancreas, so that the ratio of pancreatic fat/parenchyma remains constant. In 

healthy adults, this ratio increases with age – more so in men than in women. Overweight persons have 



more pancreatic fat than lean persons (77). Pancreatic fat content is positively correlated with liver fat. 

This relationship seems to be mediated by general obesity (78-80). Obese children with NAFLD who also 

have nonalcoholic fatty pancreas disease (NAFPD) tend to have more signs of hepatic inflammation and 

fibrosis than obese children with NAFLD but without NAFPD (81). Twice as much fat was found in the 

pancreata of type 2 diabetes patients as in those of age- and BMI-matched controls (about 20% 

compared to 10% of the organs’ volume, respectively). In this study, pancreatic fat correlated negatively 

with indicators of beta cell function (82), although others have not found any such correlation (83). A 

more recent cohort study found no independent correlation between CT-determined fatty pancreas and 

the five-year incidence of type 2 diabetes after controlling for known risk factors (including fatty liver) 

(84). 

Analogously with how NAFLD may progress to steatohepatitis and hepatocellular carcinoma (as 

discussed below), NAFPD may promote pancreatitis and pancreatic cancer (85). Extrapolating these 

data, one would expect a higher prevalence of pancreas cancer in populations with greater prevalence 

of NAFLD (86), and there is indeed evidence of a slightly increased risk of pancreatic cancer in obesity 

and type 2 diabetes (87, 88). However, there appears to be no increased risk of pancreas cancer in type 

1 diabetes (89). Similar to how we in paper I found an uneven distribution of hepatic fat, there have 

been reports of pancreatic fat infiltration being more severe in the anterior aspect of the head of the 

pancreas than in the posterior aspect (90). 

Rodent models of type 1 diabetes 

Rodent models of type 1 diabetes have been frequently used to dissect the genetics, environment, and 

immunology of type 1 diabetes. The models can be divided into rodents that spontaneously develop 

autoimmune diabetes, and those which require an identified exogenous trigger to develop diabetes. See 

Table 1 for a summary of some of the most widely used rodent models of type 1 diabetes. 

Non-obese diabetic (NOD) mice spontaneously develop diabetes from 10 weeks on, with a higher 

incidence in females than in males. NOD mice share many pathogenetic features with humans 

developing type 1 diabetes. The HLA region is the most important genetic determinant for their 

susceptibility to diabetes. NOD mice display many of the autoantibodies found in humans, including 

insulin, GAD, IA-2, and IA-2 β antibodies. The pancreas of NOD mice is infiltrated by dendritic cells, 

macrophages, neutrophils, and, later, lymphocytes (91). 

BioBreeding diabetes-prone (BBDP) rats derive from a colony of rats which developed spontaneous 

hyperglycemia and ketoacidosis. At between 50 and 90 days of age, BBDP rats develop insulitis followed 

by destruction of beta cells and the rapid onset of hyperglycemia (92). In the BBDP rat, as in humans but 

in contrast to the NOD mouse, there is no significant leukocyte infiltration around the islets ("peri-

insulitis") before progression to frank insulitis and diabetes (93). BBDP rats also develop complications of 

diabetes equivalent to those in humans, such as neuropathy, kidney disease, and vascular disease (94-

96). BBDP rats also have a lower pancreas volume than diabetes-resistant (BBDR) rats before the onset 

of insulitis and diabetes (97), consistent with our findings in humans presented in paper II. 



In addition to developing diabetes, BBDP rats are characterized by a severe reduction in both CD4+ and 

CD8+ T cells due to the cells’ undergoing apoptosis within days of reaching the circulation (98, 99). 

Lymphopenia is required for the development of diabetes in these rats (100); this is entirely dissimilar to 

type 1 diabetes in humans, which is not associated with lymphopenia. Various immunosuppressive and 

immunomodulatory treatments can prevent diabetes in BBDP rats. These include thymectomy, tumor 

necrosis factor-α, lymphotoxin, interferon-α, interferon-γ, and anti-interferon-γ (101). 

Introgression of the lymphopenia (lyp) gene interval from BB diabetes-prone rats onto the genetic 

background of BBDR rats resulted in a strain of rats designated BBDR.lyp/lyp (102). Breeding of the 

congenic DR.lyp rat lines produces Mendelian proportions of DR.lyp/lyp (25%), DR.lyp/+ (50%), and DR.+/+ 

(25%). DR.lyp/lyp rats are lymphopenic from birth and rapidly develop hyperglycemia at between 46 and 

81 days, whereas DR.lyp/+ and DR.+/+ are have normal lymphocyte count and do not develop diabetes 

(103). In paper III, BBDR.lyp/lyp rats were used as models of type 1 diabetes, while BBDR.lyp/+ and BBDR.+/+ 

rats served as controls. 

The Long-Evans Tokushima Lean (LETL) rat was the first rat model of spontaneous autoimmune diabetes 

without lymphopenia or sex-specificity (104). Subsequently, two substrains were established: the 

Komeda diabetes-prone (KDP) and the Komeda non-diabetic (KND) from the original inbred LETL rats. 

The cumulative frequency of diabetes in KDP rats is about 70%, and all rats have mild to severe insulitis 

at 120 to 220 days of age (105). In addition to mutations in HLA class II, a loss-of-function mutation in 

casitas B-lineage lymphoma b (Cblb), coding for a type of ubiquitin ligase, significantly contributes to the 

development of diabetes in KDP rats (106). However, variations in the CBLB gene have so far not been 

clearly linked to type 1 diabetes in humans (107). 

The LEW.1AR1/Ztm-iddm rat arose through a spontaneous mutation in a congenic Lewis rat strain with a 

specific MHC haplotype (108). The prevalence of diabetes is about 20%, with onset of disease occuring 

at about 8 weeks of age. 

In addition to rat models of spontaneous autoimmune diabetes, some environmental perturbants can 

induce diabetes in otherwise non-diabetic strains of rodents. For instance, diabetes can occur in 

diabetes-resistant BB rats exposed to immunomodulatory drugs or viral infections (109, 110). Other 

chemicals can bring about diabetes independently of the genetic background of the animal strain. An 

example is streptozotocin (STZ), which was originally identified as an antibiotic (111). The chemical was 

subsequently found to be selectively toxic towards beta cells. STZ has found infrequent clinical use for 

the treatment of rare islet cell tumors (112), but it is more widely used to induce beta cell failure in 

several animal models of type 1 diabetes (113). Several publications discussed in paper III have studied 

metabolomic changes in rodents after inducing diabetes with STZ. 

Table 1. Comparison of human type 1 diabetes and rodent models of spontaneous autoimmune diabetes (91, 101, 114). 

 Human NOD mouse BBDP rat KDP rat LEW rat 

Lifetime 
incidence of 
autoimmune 

0.3% 20% to 80% 100% 70% 20% 



diabetes 
Age at onset Infancy to 

adulthood 
10 weeks 7 to 14 weeks 8 to 16 weeks 6 to 12 

weeks 
Ketoacidosis Severe Mild Severe Severe Severe 
Autoantibodies GAD, IA-2, IAA, 

ZnT8 
IAA, ICA, GAD IAA, ICA, GAD None known None 

known 
Dominant 
genetic influence 

HLA HLA HLA HLA, Cblb HLA 

Associated 
autoimmune 
diseases 

Celiac disease, 
pernicious 
anemia, 
polyendocrine 
syndromes, 
thyroiditis, 
vitiligo 

Thyroiditis Thyroiditis Adrenitis, 
hypophysitis, 
nephritis, 
thyroiditis 

None 
known 

Sex predilection Possibly male > 
female after 
puberty 

Female > male None None None 

 

Nonalcoholic fatty liver disease 

Epidemiology of nonalcoholic fatty liver disease 

NAFLD is defined as histological or radiological evidence of fat constituting more than 5% of the liver’s 

weight in the absence of signficant alcohol consumption (30 g/day for men and 20 g/day for women) 

(115, 116). NAFLD is the most common chronic liver condition in the Western world (117); a magnetic 

resonance spectroscopy study identified NAFLD in 31% of a general US population (118), while a review 

of liver biopsies from Korean potential liver donors found > 5% fat in 51% of samples and > 30% fat in 

10% of sampes (119). 

NAFLD is usually associated with obesity, dyslipidemia, and insulin resistance (120), and an increasing 

incidence of NAFLD is believed to reflect an increase of obesity. NAFLD has also been associated with 

polycystic ovary syndrome, hypothyroidism, hypopituitarism, hypogonadism, hepatitis C, Wilson’s 

disease, Reye’s syndrome, HELLP syndrome, and drugs such as amiodarone, methotrexate, tamoxifen, 

and valproate (115, 116). Furthermore, some studies have implicated type 1 diabetes as a risk factor for 

NAFLD (121-124). This is one of the reasons we studied liver fat in children with type 1 diabetes in 

paper I. 

Liver steatosis per se is normally considered a fairly benign condition, but it can progress to non-

alcoholic steatohepatitis (NASH), liver cirrhosis, and ultimately hepatocellular cancer (125-127). NASH 

was found in 2.2% of Korean potential liver donors (119). The term NAFLD encompasses the entire 

spectrum from benign hepatic steatosis to inflammation and cirrhosis (115). 

NAFLD has been identified as an independent risk factor for overall mortality (128), although some 

studies have found that NASH, but not simple steatosis, is associated with increased mortality (129). A 

study of male Swedish army conscripts found that an increase of BMI with 1 kg/m2 was associated with a 



5% increased risk of severe liver disease during 38-year follow-up, after adjustment for known risk 

factors for liver disease and mortality (130). NASH has been associated with more severe insulin 

resistance and dyslipidemia in patients with type 2 diabetes (131). 

There is no specific treatment for NAFLD, but there is evidence that lifestyle changes and some 

medicines can alleviate the condition. Weight loss, through a hypocaloric diet alone or in combination 

with increased physical exercise, can reduce hepatic steatosis and inflammation (132). There is also 

evidence that exercise without weight loss can reduce hepatic steatosis, although the effect on other 

aspects of liver histology has not been studied (133). Pioglitazone and vitamin E have moderate-grade 

evidence of improving NASH, whereas metformin and statins are not recommended by American 

gastroenterological guidelines (115). Pioglitazone redistributes fat from the liver to adipocytes (134), 

possibly by increasing adipocyte insulin sensitivity (131), while vitamin E is believed to reduce oxidative 

stress (135). Recently, the GLP-1 analogue liraglutide has been found to improve NASH (136). 

Fatty liver disease correlates more strongly with insulin resistance than BMI does (137). In children, fat 

in the liver and in muscle is associated with insulin resistance (138). It has been suggested that 

preferential deposition of fat in skeletal muscle of type 1 diabetes patients increases insulin resistance 

(139), which is why we compared the muscular fat fraction of m. erector spinae in type 1-diabetic 

children and controls in paper II. 

Pathophysiology of nonalcoholic fatty liver disease 

NAFLD is characterized by the accumulation of triglycerides in the liver. Hepatic triglycerides are formed 

by the esterification of free fatty acids and glycerol. There are three potential sources of free fatty acids: 

(1) lipolysis of triglycerides in adipose tissue, (2) dietary fat, and (3) de novo lipogenesis within the liver. 

Free fatty acids in the liver can be used in three ways: (1) generating ATP through beta-oxidation in the 

mitochondria; (2) re-esterification with glycerol to triglycerides and storage in hepatocytes; and (3) 

export from the liver as very low density lipoproteins (VLDL). Hence, hepatic fat accumulation can occur 

as a consequence of increased fat synthesis, increased fat delivery, decreased fat export, and decreased 

fat oxidation. 

In healthy persons, de novo lipogenesis contributes to less than 5% of hepatic triglycerides (140). In 

contrast, there is evidence that de novo lipogenesis is abnormally increased in NAFLD and insulin 

resistance (141). To establish the relative contribution of different sources of lipids to hepatic steatosis, 

Donnelly et al. injected NAFLD patients with multiple stable isotopes for four days before taking a liver 

biopsy. They found that approximately 60% of liver triglyceride content derived from free fatty acid 

influx from adipose tissue, 26% from de novo lipogenesis, and 15% from diet (142).  

In patients with NAFLD, insulin suppresses adipocyte lipolysis less than in healthy persons, causing more 

free fatty acids to enter the blood (143). Hepatic mitochondria in NAFLD show structural abnormalities, 

decreased mitochondrial DNA, and impaired beta-oxidation (144). Furthermore, chronic 

hyperinsulinemia promotes hepatic expression of steatogenic transcription factors such as sterol 

regulatory-binding protein 1c (SREBP 1c) and decreases the export of lipids as VLDL (117). Taken 

together, this evidence suggests that NAFLD is caused by a combination of increased import of 



adipocyte-derived fatty acids from the bloodstream, increased de novo lipogenesis, decreased beta 

oxidation, and decreased export of fatty acids as VLDL. 

There is evidence that mitochondrial dysfunction, leading to reduced hepatic ATP levels, precedes 

NAFLD and hepatic insulin resistance (145). Reduced hepatic ATP has also been demonstrated in 

patients with type 1 diabetes (146). 

Histology and pathophysiology of nonalcoholic steatohepatitis 

Diagnosis of NASH currently requires a liver biopsy. Typical histologic features include (147) 

 macrovesicular steatosis – hepatocytes containing large fat droplets that frequently displace the 

nucleus into the cell periphery; 

 hepatocyte ballooning degeneration – hepatocytes augmenting during cell death; and 

 inflammation – lymphocytic and granulocytic infiltration, typically most pronounced in the 

acinar zone 3 (furthest from the central vein). 

Other histopathological features that may be observed on biopsy include (147-149) 

 acidophil bodies – necrotic hepatocytes with dense cytoplasm and nucleus, surrounded by 

lymphocytes; 

 Mallory–Denk bodies – aggregations of misfolded proteins that commonly seen near the 

nucleus of ballooned hepatocytes; 

 glycogenated nuclei – glycogen accumulation in hepatocyte nuclei, which gives them a 

translucent appearance; 

 iron deposition; 

 megamitochondria – abnormally large mitochondria showing loss of cristae, multilamellar 

membranes, and paracrystalline inclusions; 

 lobular lipogranulomas – nodules of lipids with granulomatous inflammation; and  

 acinar zone 3 fibrosis. 

Fibrosis is not required for the diagnosis of NASH; however, it predicts progression to advanced liver 

disease and death (150, 151). NASH in children can have a different morphology from that found in 

adults, with less hepatocyte ballooning and fewer Mallory-Denk bodies. It often displays macrovesicular, 

azonal hepatocellular steatosis; portal inflammation; and portal fibrosis (152). See Figure 2 for a 

comparison of the histology of NAFLD and NASH. 

One theory of the pathogenesis of NASH suggests that the disease takes place in two steps. First, 

triglycerides are accumulated in the liver. Second, lipid peroxidation causes oxidative stress, which 

triggers the necroinflammatory changes seen histologically in NASH (153). Alternatively, it has been 

suggested that fatty acid-derived metabolites, rather than fatty acids themselves play a major role in the 

pathogenesis of NASH (154). 



 

Figure 2. Histology of NAFLD (A) and NASH (B) in human livers stained with Masson's trichrome and Verhoeff stain (155, 
156). Both display macrovesicular steatosis. Fibrosis (stained green) is more pronounced in NASH, which also features 
leukocyte infiltration, ballooning degeneration, and necrosis. 

Nonalcoholic fatty liver disease in children 

As mentioned, NAFLD is the most common chronic liver condition in the Western world, and this 

includes the pediatric population (157). It has been suggested that the progression of NAFLD in children 

often has a more rapid and severe course than in adults, with a higher risk of developing NASH (158, 

159). Furthermore, the histopathology of pediatric and adult steatosis and NASH differ, although the 

significance of this is unclear (158). 

In a Japanese cross-sectional study, fatty liver (determined by ultrasonography) was present in 2.6% of 

children between the ages of 4 and 12 (160). In this cohort, waist circumference was an independent 

risk factor for NAFLD (161). A more recent ultrasound study of Taiwanese children found NAFLD in 3% of 

normoweight children, 25% of overweight children, and 76% of obese children (162). In various other 

populations of obese children, ultrasonography-determined NAFLD has been found in between 12% and 

77% of subjects (163, 164). An American autopsy study of 742 children who had died of unnatural 

causes found that 0.7% of children aged 2 to 4 and 17.3% of youths aged 15 to 19 had fatty liver. 38% of 

obese children had fatty liver (165). The prevalence of NASH among obese children has been estimated 

at up to 24%, with the severity of ultrasound findings being positively correlated to BMI, ALAT, insulin 

resistance and hypertriglyceridemia (166). A recent study of 24 obese adolescents found that 63% of 

them had NASH (167). The large differences in findings may be because of differences in methodology, 

definitions of obesity, and/or differences in the cohorts that were studied, such as genetics or lifestyle. 

Mauriac syndrome is a rare complication of uncontrolled type 1 diabetes. It is characterized by growth 

failure, delayed puberty, Cushingoid features, and hepatomegaly, which can have both steatotic and 

glycogenic features on biopsy (168). A case report implicates a variant in the glycogen phosphorylase 

kinase complex, which catalyzes the first step of the breakdown of glycogen in the liver. Chronic 

hyperglycemia also promotes glycogen deposition (169). 



The genetics of nonalcoholic fatty liver disease 

The variations in hepatic fat fraction that we observed in healthy controls in paper I were presumably 

caused by both genetic and environmental influences. NAFLD has a significant genetic component – the 

heritability of hepatic steatosis has been estimated to be 39% after controlling factors such as age, sex, 

race, and body mass index (166). Polymorphisms in genes controlling lipid metabolism, pro-

inflammatory cytokines, fibrotic mediators and oxidative stress may predispose individuals with NAFLD 

to developing NASH (170). 

Several genome-wide analyses have identified patatin-like phospholipase domain-containing protein 3 

(PNPLA3), neurocan (NCAN), lysophospholipase-like 1 (LYPLAL1), protein phosphatase 1, regulatory 

subunit 3B (PPP1R3B), transmembrane 6 superfamily 2 (TM6SF2), and glukokinase regulator (GCKR) as 

being associated with NAFLD, steatohepatitis, and altered blood lipids (171-173). Group-specific 

component (GC, which codes for vitamin D-binding protein) and lymphocyte cystolic protein 1 (LCP1) 

were associated with NAFLD in adolescents (174). In addition, numerous genes have been identified as 

related to body mass index (BMI) (175), which affects liver fat. 

PNPLA3 encodes the triglyceride lipase adiponutrin, which mediates triglyceride hydrolysis in 

adipocytes. PNPLA3 contributes to NAFLD in children and adolescents (174). Variations of PNPLA3 

between ethnic groups contributes to susceptibility to NAFLD (172, 176-178), which is a major reason 

why Hispanics are more prone to the conditions (179). The effects of PNPLA3 on serum liver enzymes 

and triglycerides seem to interact with abdominal fat and dietary intake (180). Variants of PNPLA3 

associated with an increased risk of hepatic steatosis, advanced liver disease, and hepatocellular 

carcinoma are however not associated with increased risk of diabetes and cardiovascular disease (181). 

Similarly, variants of TM6SF2 associated with risk of steatosis, fibrosis, and hepatocellular carcinoma are 

associated with decreased risk of cardiovascular disease (181). 

NCAN encodes the neurocan core protein, which is involved in cell adhesion. The mechanism of its 

potential contribution to NAFLD is currently unclear (182). Similarly, the biological function of LYPLPAL1 

is unclear, although it has been proposed that the gene product functions as a triglyceride lipase (183). 

PPP1R3B affects glycogen production (184). A variant in the TM6SF2 gene impairs VLDL production 

(173). 

GCKR is expressed predominately in the hepatocytes, where it codes for vitamin D-binding protein 

(VDBP). VDBP is the main carrier protein of vitamin D, low levels of which have been implicated in the 

development of obesity and diabetes and associated with NAFLD (174). More recently, vitamin D 

deficiency has been suggested to contribute directly to the pathogenesis of NAFLD (185). 

Hepatic GCKR mRNA was found to be downregulated by 83% in adolescent subjects with NAFLD 

compared to controls. Possession of at least one copy of the variant C allele of single nucleotide 

polymorphism (SNP) rs222054 was associated with a 2.54-fold increased risk of NAFLD compared to the 

wild GG genotype (174).  

In adolescents, LCP1 gene expression was 300% higher in subjects with NAFLD compared to controls. 

Possession of at least one copy of the variant A allele of SNP rs7324845 was associated with a 3.29-fold 



increased risk of NAFLD compared to the wildtype GG genotype (174). LCP1 is mainly expressed in 

hematopoietic cells and is involved in leukocyte activation and tumor cell proliferation. So far there is 

not much evidence connecting its function directly to lipid homeostasis, so its association with NAFLD 

may be due to linkage disequilibrium (174). 

Markers and diagnosis of fatty liver disease 

In papers I and II, the fat fraction of the liver and the pancreas, respectively, were measured in children. 

We considered several diagnostic modalities before magnetic resonance imaging (MRI) was chosen. 

Furthermore, comparing our results to those of other research groups requires an understanding of the 

advantages and limitations of different diagnostic tools. Hence, the available approaches for measuring 

liver fat are discussed below. 

Liver biopsy 

Liver samples can be obtained through several methods: percutaneous biopsy, transjugular biopsy, 

laparoscopic biopsy, or fine-needle aspiration guided by ultrasonography or computed tomography (CT). 

Percutaneous biopsy is the most common technique. Although patients often find the procedure 

unpleasant, complications are rare, and percutaneous liver biopsies are routinely performed on an 

outpatient basis (186). 

Liver biopsy is still considered the reference standard for diagnosing NAFLD. The disadvantages of liver 

biopsy include its invasive nature, potential sample variability between different parts of the liver, and 

intra- and interobserver variability (187). 

Ultrasonography 

Ultrasonography is cheap, fast, safe, and accessible. Hepatic steatosis appears as a diffuse increase in 

echogenicity – that is, brightness – caused by the reflection of ultrasound from the liver parenchyma 

(188). It has a high sensitivity and specificity compared to liver biopsy for moderate to severe fatty liver 

(189). Ultrasonography is therefore widely used to diagnose fatty liver disease. 

However, ultrasonography also has limitations in determining liver steatosis. This modality has poor 

sensitivity for detecting fatty liver when the fatty infiltration is less than about 30% of hepatocytes (189), 

so it may underestimate the prevalence of less severe fatty liver. Conversely, some authors have 

suggested that ultrasonography may be unable to distinguish NAFLD from other liver pathologies like 

glycogenic hepatopathy and Wilson’s disease, leading to possible misdiagnoses and exaggerating the 

occurrence of NAFLD (190). Sensitivity can also be poor in persons with BMI > 40 or severe NASH (167). 

In addition, there is substantial intra- and interobserver variability when assessing liver fat with 

ultrasonography, which decreases the reliability of the method’s results (191), and there are no 

standards for ultrasonographically evaluating pediatric NAFLD (152). 

Computed tomography 

CT uses a rotating X-ray source and receiver to generate three-dimensional images of the body (192). 

Several quantitative CT indices have been used to assess hepatic steatosis. The two most frequently 

used are the absolute attenuation value of the liver and the liver-to-spleen difference in attenuation 



(188). Overall, CT has been found to be accurate for diagnosing moderate-to-severe steatosis, but less 

so for mild steatosis (188). 

Magnetic resonance methods 

Magnetic resonance imaging and magnetic resonance spectroscopy provide more direct and accurate 

measures of hepatic fat than ultrasound or CT (193-195). Magnetic resonance techniques can accurately 

quantify even mild hepatic steatosis (196). Indeed, MRI has been found to outperform liver biopsy for 

the diagnosis of NAFLD (197), and it has been used extensively in children (198). The physics of magnetic 

resonance imaging is described in detail in the Methods section of this text. 

Blood tests and anthropometry 

Serum markers of liver damage, such as ASAT, ALAT, GGT, and ALP, are often used as markers of NAFLD 

(199). Liver biopsy studies of patients with persistently elevated liver enzyme levels and no viral 

serologic markers of chronic liver disease found NAFLD in 66% to 90% of cases (200-202). Further 

circulating compounds that have been used as biomarkers of NAFLD and NASH include cytokeratin 18 

fragments, alpha 2-microglobulin, apolipoprotein A1, total bilirubin, hyaluronic acid, C-reactive protein, 

fibroblast growth factor-21, interleukin 1 receptor antagonist, adiponectin, and tumor necrosis factor-α 

(203). 

However, there is also evidence against using liver enzymes as a proxy for NAFLD and for grading its 

severity. One study found that children with biopsy-confirmed liver fibrosis had ALAT levels that were 

only mildly elevated compared to those with more benign NAFLD (204). In adults, the entire histological 

spectrum of NAFLD and NASH was found in the livers of patients with ALAT in the normal range, with no 

significant difference compared to patients with raised ALAT (205). A German study of overweight, 

obese, and extremely obese children found elevated ALAT in 11% of the cohort (206). A comparison of 

this proportion with the studies using ultrasound to diagnose NAFLD suggests that using 

aminotransaminases as a proxy for NAFLD may risk underestimating its prevalence. 

As radiological and histological methods for diagnosing NAFLD are expensive and time-consuming, 

several scores based on routine laboratory tests and anthropometric measurements have been 

proposed. The fatty liver index (FLI) is a score based on BMI, waist circumference, triglycerides, and GGT 

that predicts fatty liver disease (207). Persons with prediabetes who score highly on the FLI have a 

higher risk of progressing to type 2 diabetes (208). The hepatic steatosis index (HSI) uses ASAT, ALAT, 

BMI, sex, and the presence of diabetes. HSI was based on an Asian population; as Asians tend to have 

lower BMI and waist circumference than Europeans, the FLI was considered inappropriate in that 

population (209). Finally, the NAFLD liver fat score (NAFLD-LFS) is based on the presence of the 

metabolic syndrome (as defined by waist circumference, serum triglycerides, serum HDL, hypertension, 

and plasma glucose); the presence of type 2 diabetes; and ASAT, ALAT, and fasting insulin. The score was 

developed in a Finnish population of persons with and without type 2 diabetes (210). 

An independent test of all three indices performed in 92 non-diabetic Europeans with hepatic fat 

fraction determined by MRS found that the diagnostic efficacy, as determined by the area under the 

receiver operating characteristic curve (ROC AUC) was lower than what had been in the original studies 



(211). Presumably, this is due to different underlying characteristics of the populations that the indices 

have been developed and tested in. See Table 2 for a comparison of the three indices. 

Table 2. Indices for estimating the risk of NAFLD based on routine laboratory and clinical measurements. 

Index Laboratory 
measurements 

Clinical 
measurements 

Original population ROC AUC (211) 

Fatty liver index GGT, triglycerides BMI, waist 
circumference 

Italy 0.72 

Hepatic steatosis 
index 

ALAT, ASAT BMI, diabetes 
status, sex 

South Korea 0.79 

NAFLD liver fat 
score 

ALAT, ASAT, 
glucose, HDL, 
insulin, triglycerides 

Diabetes status, 
hypertension 

Finland 0.70 

Methods 
The major investigational technologies used in this thesis are MRI (papers I and II), transcriptomics 

(paper III), and metabolomics (paper III). The principles of these methods and significant findings related 

to diabetes that the methods have generated are discussed below. For details of how the techniques 

were used to investigate the hypotheses of each study, see the methods section of each corresponding 

paper. 

Magnetic resonance imaging 
In papers I and II, MRI was used to measure the volume and fat fraction of the liver and the pancreas in 

children with type 1 diabetes and controls. 

Physical principles 

MRI uses nuclear magnetic resonance (NMR) to produce images (212). The physical principles 

underlying NMR and MRI are discussed in the following section, beginning at the subatomic level and 

progressing to the macroscopic. 

Many atomic nuclei have their own magnetic field (magnetic moment), with a north pole and a south 

pole. The most important nucleus for MRI is the hydrogen nucleus, which consists of a single proton. 

Similarly to the Earth, the protons spin (have angular momentum) around their magnetic axis. If there is 

no strong external magnetic field, the protons are randomly aligned (Figure 3A). The primary magnetic 

field of the MRI scanner makes the proton align itself either with or against (parallel or antiparallel to) 

the direction of the field (213). Most protons align themselves parallel to the magnetic field, as this 

represents a lower energy state than alignment against the direction of the field (Figure 3B). However, 

for quantum mechanical reasons, the protons cannot be aligned fully parallel to the magnetic field, but 

their magnetic moment remains at a fixed angle against the magnetic field, as shown in Figure 1C. 



 

Figure 3. Magnetic properties of atomic nuclei. A. Random orientation of magnetic vectors. B. The magnetic vectors of the 
nuclei align when subjected to a magnetic field. C. Spin and precession of an atomic nucleus. 

Due to the angle between their magnetic moment and the magnetic field, protons subjected to a 

magnetic field precess, which involves the vector of their magnetic moment rotating around the 

direction of the applied magnetic field (Figure 3C). The rate of precession is termed the Larmor 

frequency. It is proportional to the strength of the magnetic field and dependent on the nature of the 

nucleus. The rate of precession can be expressed by the following equation (214). 

      

In this equation, ω is the rate of precession; γ is the gyromagnetic ratio, which is a nuclear-specific 

constant based on size, mass, and spin; and B0 is the strength of the static magentic field. Hence, 

increasing the magnetic field strength will increase the rate of precession. When added together, the 

microscopic magnetic moments of all nuclei sum up to a net macrosopic magnetization, which, unlike 

the individual magnetic moments, is aligned perfectly parallel to the magnetic field. 

In MRI, brief magnetic pulses generated by weaker, perpendicular gradient coils are superimposed on 

the static magnetic field. This causes some protons to shift into a high energy state. Additionally,the 

macroscopic magnetization vector is oriented in a transverse direction. The interaction of the RF 

pulsewith the nuclei is the resonance of nuclear magnetic resonance. Nuclear resonance is a brief, 

induced phenomenon, involving energy exchange between precessing spins and their environment; this 

contrasts with precession per se, which is spontaneous and unaccompanied by energy exchange. The 

vector in the transverse plane is called the transverse magnetization, which is registered as a signal by 

the MRI scanner (214). 

Relaxation involves the macroscopic magnetization returning to its thermal equilibrium state after an RF 

pulse. Over time, interactions between nearby protons will cause a loss of phase coherence between the 

protons and therefore a decay of the transverse component of the macroscopic magnetization. This, in 

turn, causes the signal to decay. This is known as T2 relaxation, spin-spin relaxation, or transverse 

relaxation (Figure 4). 



 

Figure 4. Tissue A has a shorter T2 than tissue B, as it more rapidly loses its transverse magnetization. 

As the protons release the energy received from an RF pulse, the macroscopic magnetization regains its 

longitudinal component along the magnetic field. This is known as T1 relaxation. T1 relaxation is also 

known as spin-lattice relaxation or longitudinal relaxation. T1 relaxation can be described as the process 

in which the net magnetization (M) of a group of protons energized by a radiofrequency pulse returns to 

its original maximal value (M0) that is parallel to B0 (Figure 5). T2 relaxation is generally quicker than T1 

relaxation. 



 

Figure 5. Tissue A has a shorter T1 than tissue B, as it more rapidly achieves longitudinal relaxation. 

By applying a 180° RF pulse, the precession of the protons is reversed, so that protons with faster 

precession are ealier in phase than slower ones. Once the more rapidly precessing protons catch up with 

the slower ones, an echo is produced. The signal from the echo reaches a maximum intensity as the 

precession of protons becomes maximally synchronized, and then the signal once again decays as the 

precession of the protons goes out of phase from each other (214). 

Hydrogen nuclei in different tissues or in different molecules have different local environments, which 

causes different T1 and T2 relaxation. Due to these differences in relaxation time, an MRI scanner can 

distinguish different types of tissues or types of molecules, such as water and fat. 

These differences can be accentuated based on the pulse sequence employed. An MRI pulse sequence is 

a programmed set of RF pulses and changing magnetic gradients (215). A pulse sequence is defined by 

multiple variables, including 

 Repetition time (TR): How frequently excition pulses are applied. 

 Echo time (TE): The time between applying an excitation pulse and the peak of the measured 

signal. 

 Flip angle: The amount of rotation of the net magnetization (M) when the radiofrequency pulse 

is applied. 

Pulse sequences are often referred to by the dominant influence on the appearance of tissues. 

Examples of pulse sequences include 



 T1 weighted. Fluid appears black and fat appears white. Pathological processes are often dark. 

 T2 weighted. Fluid and fat appear white. Pathological processes are often bright. 

 Proton density. Tissues with a higher density of hydrogen atoms produce a stronger signal. Fluid 

and fat both appear white, but since most tissues have similar proton density, images typically 

have poor contrast. 

 Diffusion weighted. Relies on the Brownian motion of water to modulate the signal. In 

quantitative images of the diffusion constant, fluid appears white and fat appears black. 

Fat quantification with magnetic resonance imaging 

In 1984, Dixon described an MRI technique for water and fat separation (216). The technique is based on 

the fact that water protons and fat protons have slightly different Larmor frequencies (fat protons 

precessing 3.4 parts-per-million slower than water protons) (217). The original Dixon technique acquires 

two separate images – one with water and fat signals in phase and the other with the water and fat 

signals 180° out of phase. From these two images, a water-only image and a fat-only image can be 

generated, which allows water and fat quantification (218). The fat fraction can be regarded as the fat 

signal divided by the sum of the fat signal and the water signal: 

    
  

     
 

Later, the Dixon technique was improved by the acquisition of a third image, which enabled correction 

of inhomogeneities of the main magnetic field (219). In 2004, Reeder et al proposed the iterative 

decomposition of water and fat with echo asymmetry and least squares estimation (IDEAL) method, 

which is the basis for modern fat quantifcation with MRI (220). IDEAL is a further improvement of the 

Dixon technique, which allows for an arbitrary number of images to be used for the fat quantification. 

Typically, 3-6 images are used. Even more accurate fat quantification is possible when taking into 

account that the fat signal is actually composed of several different frequencies, as proposed by Yu et al 

(221). The technique by Yu was used for fat quantification in papers I and II. 

Magnetic resonance imaging scanners and their use in medicine 

The major components of an MRI system for clinical use are a magnet, gradient coils, and 

radiofrequency coils. A powerful magnet creates a homogeneous magnetic field. The strength (or flux 

density) of a magnetic field is measured in tesla (T), which is defined as one weber/square meter 

(Wb/m2). One Wb, in turn, is the SI unit of magnetic flux (222). Clinical MRI is usually performed at 1.5 or 

3 T, with higher flux density providing higher resolution. 

There are three gradient coils, which cause linear spatial variations of the magnetic field. The magnetic 

gradients enable the MRI scanner to create cross-section images of a patient in arbitrary orientations 

(via so-called slice selection gradients). The gradient coils are named after the axis along which they act: 

x, y, and z. A slice selection gradient by the x-gradient coil produces sagittal images, by the y-gradient 

coronal images, and by the z-gradient axial images. The gradients are also responsible for encoding the 

NMR signal such that the signal can be reconstructed to usable images. The gradient coils cause the loud 

noises of the MRI machine. 



RF coils send out the RF pulses used to excite the protons in the patient, and also receive the resulting 

magnetic resonance signals emitted from the protons. The RF-pulses is typically are typically sent by a 

large transmit coil built in to the main MRI apparatus. The receiving of the signal is usually handled by 

separate, local coils, designed to encapsulate specific body parts (223). 

MRI is used in medicine for a broad range of purposes. Its advantages include not using ionizing 

radiation; being able to generate images in multiple planes without having to move the patient; and 

being able to apply advanced techniques such as diffusion, spectroscopy, and perfusion. Disadvantages 

include high cost and time consumption, as well as danger for patients with incompatible implants and 

foreign bodies (214). 

Transcriptomics 
Transcriptomics is the study of the transcriptome, which consists of all RNA in a cell, tissue, organ, or 

organism. This includes messenger RNA (mRNA), but can also include microRNA and transfer RNA. 

Although genes contain the information to code for RNA, only a small part of the genes are expressed in 

a given cell at a given time. The concentration of different types of mRNA varies based on the degree of 

gene expression and the rate of mRNA degradation. This, in turn, is influenced by intrinsic factors, such 

as the time in the cell cycle and the time of day, and extrinsic factors, such as paracrine or endocrine 

signaling (224). The transcriptome can thus be regarded as the step following the genome and preceding 

the proteome in cellular metabolic processes (Figure 6). 

 

Figure 6. Cellular steps from genome to metabolome and the corresponding fields of study (225, 226). 

Analysis of transcriptome data 

Due to the amount of data collected, statistical analyses that compensate for multivariate testing are 

usually performed, such as by calculating the false discovery rate or Bonferroni correction (227). 

Drawing conclusions about the biological consequences of changes in gene expression observed in 

physiological or pathological states is often based on information from gene annotation databases. 

These databases provide information about for instance the function of genes, the location of genes 

within chromosomes, and the known cellular pathways that regulate gene expression (228). 



Based on finding statistically significant differential expression of genes and knowledge about those 

genes through gene annotation, patterns can be found to determine the net effects of changes in gene 

expression. Gene ontology analysis can group differentially expressed genes into categories (229). 

Categories can be defined based on the genes’ 

 Involvement in biological processes, i.e. the net result of gene activity. This can be described 

with different levels of granularity – for example, a gene that is involved in lipid metabolism can 

be further subsumed under lipid biosynthesis, and still more precisely defined as relating to 

oleate synthesis. 

 molecular function, i.e. the molecular interaction of the gene product, such as binding or 

phosphorylation; and 

 cellular localization, i.e. which parts of the cell that the gene is expressed in. 

By combining information about regulatory gene pathways with ontological exploration of the functions 

of the gene products, transcriptome analysis can be used to link how changes in gene expression cause 

changes in phenotype. In paper III, we used ontological analysis to study how changes in hepatic lipid 

metabolism overlapped with pathways known to be regulated by insulin. 

Transcriptomics applied to type 1 diabetes 

As applied to type 1 diabetes, transcriptomics methods have been used to study “serum signatures” of 

innate inflammation that distinguish persons with type 1 diabetes or persons at risk of type 1 diabetes 

from healthy controls and other persons with other diseases (230). Such studies shown promise for risk 

stratification of autoantibody positive individuals (231). It has been reported that a proinflammatory 

signature of gene expression is present in both patients with recent-onset type 1 diabetes and in high-

risk individuals who later progress to diabetes. In the latter group, the gene expression signature 

preceded the appearance of autoantibodies (232, 233). These studies suggest that dysregulation of the 

innate immune system could be used as an early predictor of adaptive autoimmunity and type 1 

diabetes. 

Metabolomics 
Metabolomics is the study of the metabolome, which consists of all metabolites in a cell, tissue, organ, 

or organism. Metabolites represent the intermediates and end products of cellular processes that begin 

with gene expression (Figure 6). Hence, it has been argued that information about metabolites can 

provide more information about a disease process than genomics alone; a change in the expression of a 

gene does not necessarily correlate directly with a variation in the activity level of a protein, whereas an 

alteration in a metabolite concentration does (234). 

Methods for metabolomic analysis 

Several analytical techniques can be employed to analyze metabolites. As the chemical composition of 

metabolites varies greatly, no one method can be used to analyze the entire metabolome. Among the 

most common techniques are mass spectroscopy, liquid chromatography, gas chromatography, and 

nuclear magnetic resonance. Often, several of these methods are combined for a single experiment 



(235). In paper III, gas chromatography-mass spectrometry and liquid chromatography-mass 

spectrometry were used to analyze the serum metabolite profiles of BB rats. 

Mass spectrometry 

Mass spectrometry has high sensitivity, with advanced platforms being able to detect metabolites in the 

femtomole range (236). In mass spectrometry, chemicals are ionized into gas, and the ions are sorted 

based on their mass-to-charge ratio. See Figure 7 for an overview of the parts of a mass spectrometry 

device. 

 

Figure 7. Main components of a mass spectrometer (image: public domain). 

The analyte is ionized in the ion source. Several methods for ionization are available, including electron 

ionization and chemical ionization. Electron ionization involves bombarding the analyte with 

electrolytes, which causes the molecules to lose an electron and form an ion (237). This process can be 

described as the following reaction, in which M is the molecule being analyzed, e- is an electrolyte, and 

M+ is the resulting ion: 

            



In chemical ionization, ions stemming from the analyte are produced through the collision of the analyte 

with ions of a reagent gas. Commonly used gases include methane, ammonia, and isobutane. As 

chemical ionization is a lower-energy process than electron ionization, causing less fragmentation of the 

analyte, it typically provides less precise information about the mass of the analyte than electron 

ionization (238). 

Ions of the analyte leave the ion source and are accelerated before entering the mass analyzer section of 

the mass spectrometry device. A magnetic field is applied to the ions, deflecting their path and causing 

them to be separated by their mass-charge ratio (m/z). Lighter ions are deflected more than heavy ones, 

and more positively charged ions are deflected more than less positively charged ones (239). 

Finally, the ions reach the detector. The induced charge or current caused by the ions reaching the metal 

detector is recorded. Data are typically represented as a mass spectrogram, plotting the m/z ratio on the 

x axis against the signal intensity on the y axis. 

Chromatography 

Chromatography refers to a collection of laboratory techniques to separate mixtures of chemicals. The 

mixture is dissolved in a mobile phase, which is a fluid in liquid chromatography and a gas in gas 

chromatography (in cases in which the chemical of interest can be vaporized without decomposition). As 

different components of the sample interact differently with a stationary phase based on their chemical 

properties, they flow at different speeds and are separated (240). 

In high-performance liquid chromatography (HPLC), the mobile phase is highly pressurized. Small 

volumes of sample material are added to the mobile phase, and the sample is carried into the HPLC 

column (the stationary phase). Upon exiting the stationary phase, the chemicals reach a detector, and 

the electric signal that is generated at the detector is displayed as a chromatogram (241). 

Nuclear magnetic resonance 

The principles of NMR spectroscopy are described above. NMR spectroscopy has the advantage of 

allowing direct analysis of metabolites in bodily fluids, cells, and intact tissues without the need to 

chemically extract analytes. Disadvantages include poor sensitivity, effects of pH, and the difficulty of 

deconvoluting and normalizing the spectra of complex metabolite mixtures in biological matrices like 

plasma, urine, or tissue extracts. Thus, despite NMR spectra being rich in information, the complexity of 

data and lack of sensitivity limit the amount of metabolites that can be profiled with currently available 

techniques (242). 

Interpretation of metabolomics data 

As methods for measuring metabolites are so sensitive, the results can vary substantially depending on 

many factors during sample collection and storage. Metabolites from samples from the same subject 

can vary depending on for instance when during the day that samples are collected, whether (and what) 

the subject has eaten recently, the medicines that the subject uses, the physical activity of the subject, 

and the anatomical location from which the sample was obtained. Furthermore, the way that samples 

are stored can alter their content of metabolites due to degradation and hemolysis (243). 



A significant step during a metabolomics investigation is identifying the chemical composition of the 

measured metabolites. Compounds are usually identified by comparing the measured mass/charge 

ratios to those of known metabolites from databases (244). However, many of the data acquired during 

a typical metabolomics experiment consist of artifacts and uncharacterized metabolites (245). 

As in transcriptomics, the interpretation of metabolomics data requires methods beyond the statistics 

commonly used in medical research. The datasets generated by metabolomics techniques are typically 

large, and the changes in metabolite patterns are often correlated, since their functions are biologically 

linked (246). Studies can be hypothesis-driven (targeted) or hypothesis-generating (untargeted). Often, 

studies have both a discovery and a validation cohort. As so many metabolites are studied in each 

sample, there is a high risk of false positives. This has led to the development of tools such as cluster 

analysis, partial least squares regression, pathway mapping, comparative overlays, and heatmaps for 

interpreting and visualizing the output of high-throughput metabolomics techniques (247). 

Metabolomics applied to diabetes 

It was noted almost half a century ago that obese persons have altered levels of certain circulating 

amino acids compared to normoweight persons (248). More recently, it has been shown that amino acid 

profiles can predict the progression of normoglycemic individuals to type 2 diabetes (249). Circulating 

branched chain amino acids are positively associated with the risk of type 2 diabetes (250). Ingestion of 

branched chain amino acids can acutely decrease insulin sensitivity in normoglycemic, obese women 

(251). In contrast, studies of type 2-diabetic patients who develop kidney disease had decreased levels 

of branched-chain amino acids (252, 253). 

Reduced levels of the small amino acid glycine have been observed in normoglycemic individuals who 

later develop type 2 diabetes (254), in prediabetic persons (255), and in patients with type 2 diabetes 

(256). Genetic variants of glycine biosynthesis are associated with insulin resistance (257), implying a 

possible genetic basis for metabolomics findings. Metabolomic methods have also been used to 

investigate insulin secretion in beta cells (258, 259), the role of hepatic steatosis in insulin resistance 

(260), and potential novel therapeutic targets for type 2 diabetes (261). A model for predicting liver 

steatosis was developed using LCMS. The model includes one triglyceride and two phosphatidylcholines, 

and the authors reported a ROC AUC of 0.79 (262). 

In type 1 diabetes, metabolomics techniques have been used to demonstrate that persons who progress 

to diabetes have different levels of certain lipids compared to persons who remain nondiabetic. There is 

evidence that these differences exist already in utero; altered lipid content of the umbilical cord may 

reflect a pathogenic pregnancy and an increased risk of developing type 1 diabetes at an earlier age. 

Cord-blood phosphatidylcholines and phosphatidylethanolamines were significantly decreased in 

children diagnosed with type 1 diabetes before 4 years of age (263). 

In a longitudinal study, serum metabolite profiles were compared between 56 children who progressed 

to type 1 diabetes and 73 controls who remained nondiabetic and permanently autoantibody negative 

(264). Persons who developed diabetes had reduced serum levels of succinic acid and 

phosphatidylcholine at birth, reduced levels of triglycerides and antioxidant ether phospholipids 



throughout the follow up, and increased levels of proinflammatory lysoPCs several months before 

seroconversion to autoantibody positivity. Diminished ketoleucine and elevated glutamic acid preceded 

the appearance of insulin and glutamic acid decarboxylase autoantibodies. Autoimmunity may thus be a 

relatively late response to the early metabolic disturbances. The lipid profiles in the progressors during 

the last visits before diagnosis of type 1 diabetes revealed no clear differences as compared with the 

profiles of matched nonprogressors, except for specific phospholipids which were similarly diminished 

as they had been at an early age and around the time of seroconversion to autoantibody positivity. The 

findings were subsequently validated with a different study population (265). The authors concluded 

that a reduction in choline-containing phospholipids in cord blood is associated with progression to T1D 

but not with development of beta cell autoimmunity. 

In a further study, the metabolomic profiles of children who developed islet autoantibodies at the first 

(1-2 years of age) and second (8+ years of age) peak incidences were measured (266). There were 

differences in metabolite profiles that were dependent on age, islet autoantibody positivity, and the age 

of islet autoantibody development. Children with early autoimmunity had lower concentrations of 

methionine compared with children who develop islet antibodies late and with children who remain 

antibody-negative. 

Since the exact clinical onset of type 1 diabetes in autoantibody-positive persons can currently not be 

predicted, the aforementioned studies for using metabolomics are limited to blood samples obtained 

during several years, often with a period of weeks to months intervening between the last blood sample 

and the clinical onset of type 1 diabetes. Hence, it is not known what metabolic changes take place 

shortly before the onset of type 1 diabetes. In paper III we the compared the metabolomic profiles of 

BBDR.lyp/lyp, BBDR.lyp/+, and BBDR.+/+ rats before and after the onset of hyperglycemia in BBDR.lyp/lyp rats 

and at corresponding time points in rats with other genotypes. 

In patients and rodent models of type 1 diabetes, several studies have shown differences in the 

metabolite profiles of diabetic as compared to nondiabetic participants (267-277). Some studies have 

investigated the metabolic effects of insulin deprivation, which, to a certain extent, mimics the onset of 

type 1 diabetes (267). Most of the identified metabolites that differed between rats before and after the 

onset of diabetes in paper III had previously been reported in these aforementioned publications, which 

makes it more plausible that they represent true positive results. 

Metabolomics in clinical practice 

So far, translational successes in using metabolomics in clinical practice have been limited to screening 

neonates for over 40 inborn errors of metabolism (278). Applying the methodology to other diseases is 

more challenging. Inborn errors of metabolism are usually characterized by an abnormally high 

accumulation of a single metabolite that is specific for the particular disease. Moreover, absolute 

quantification of multiple analytes in a module is not needed, since the screening only requires 

detection of differences in a single or a few metabolites in comparison to normal laboratory values 

(279). In most diseases, metabolite patterns are more diffusely altered, making diagnoses and prognoses 

more difficult. 



In one example of a translational metabolomics effort for diabetes care, a panel of blood-based 

biomarkers was assessed using, among other methods, HPLC and MS. Based on these values, the risk of 

type 2 diabetes was determined in a cohort of overweight persons, of whom 55% were normoglycemic. 

Among the normoglycemic participants, 24% were identified as being at elevated risk of progression to 

type 2 diabetes. This information was presented to the patient classification results were presented to 

each patient and his or her physician, who was able to use the risk assessment in clinical assessment. 

Although a significant number of high-risk normoglycemic persons reduced their HbA1c and fasting 

glucose levels, the study is limited by the lack of a control group (280). Nevertheless, the study shows 

conceptually how metabolomics can be used in clinical practice. 

Results and discussion 
The major findings and implications of each paper are summarized below. For a more detailed account, 

see the full text of each paper. 

Paper I 
 Children with type 1 diabetes have a lower hepatic fat fraction compared to controls (1.8% 

versus 1.3%). 

 The distribution of hepatic fat across Couinaud segments differs between children with type 1 

diabetes and controls. 

 We found no correlations between laboratory or anthropometric measurements and liver fat 

fraction. 

Our results were unexpected, given that previous studies had suggested an increased prevalence of 

NAFLD in children with type 1 diabetes. At about the same time as our results were published, other 

groups also released data about MRI-determined fat fraction in patients with type 1 diabetes. 

Collectively, our results show that reduced fat fraction is apparent in both children and adults with type 

1 diabetes. 

Paper II 
 Children with type 1 diabetes have reduced pancreatic volume compared to controls. 

 We found no difference in pancreatic fat fraction between children with type 1 diabetes and 

controls. 

 Pancreas volume did not correlate to diabetes duration after correcting for body surface area. 

We did, however, find a correlation between pancreas size and units of insulin/kg body weight. We 

theorize that if reduced pancreas size in type 1 diabetes is caused by a lack of insulin in the pancreas, 

then exogenous insulin administration would decelerate the decline in size. This would be consistent 

with both our findings that insulin dosage, but not diabetes duration, was related to pancreas size. 

Paper III 
 Hepatic lipid metabolism changes at the onset of hyperglycemia in a rat model of type 1 

diabetes. 



 A significant number of differentially expressed lipid-related genes are regulated by insulin. 

 Serum metabolite changes during the corresponding period are marked by a general increase in 

carbohydrates. 

In this study we provided experimental evidence of the timing of changes in lipid metabolism in type 1 

diabetes. We had hypothesized, based on our previous publications, that a lack of insulin in the liver 

caused reduced liver fat. Hence, we would expect a shift in lipid metabolism to coincide with the sudden 

hypoinsulinemia and hyperglycemia that characterized the rat model of type 1 diabetes we used. This is 

what we observed. 

Conclusions and future perspectives 
Overall, this thesis brings new insights to an otherwise poorly studied area of type 1 diabetes research. 

Its results harmonize well with subsequently published and currently ongoing studies. The thesis raises a 

number of new hypotheses and possibilities for further research about type 1 diabetes, insulin, and fat 

metabolism. 

A subset of patients with type 1 diabetes retain clinically meaningful insulin production (measured as 

residual C-peptide), even years after the diagnosis of diabetes. Residual C-peptide production correlates 

with reduced long-term complications and reduced incidence of hypoglycemia (281). According to our 

hypothesis, these patients would also be expected to have a liver fat fraction more similar to that of the 

general population than patients with an absolute insulin deficiency. Our study was too small to find 

such correlations, but larger studies, perhaps in overweight adults in whom steatosis is expected to be 

more pronounced, could determine the significance of residual beta cell function for liver fat in type 1 

diabetes. 

Recent phase III studies of insulin analogues that preferentially target the liver (such as insulin peglispro) 

have shown that patients treated with these drugs exhibit higher levels of aminotransferases and 

hepatic fat than patients treated with regular insulin analogues (282, 283). This is what would be 

expected based on the results of this thesis. Clinical development of insulin peglispro has been 

discontinued (284), but it could prove to be a useful experimental tool in studying the effects of insulin 

in the liver. 

Pancreatic atrophy and pancreatic exocrine insufficiency in type 1 diabetes remain insufficiently studied. 

It is currently unclear when the decline in pancreatic size begins in relation to the appearance of type 1 

diabetes-associated autoantibodies, insulitis, and the clinical onset of type 1 diabetes. Characterizing the 

decline of pancreas size would require repeated measurements of the pancreas before and after the 

onset of type 1 diabetes. An ongoing study is using ultrasound and MRI to compare the pancreatic 

volumes of persons with recently diagnosed type 1 diabetes, persons with type 1 diabetes, persons with 

genetic risk of type 1 diabetes but no autoantibodies, and persons without known risk of type 1 diabetes 

(285). An alternative method of following pancreas size would be using a test of exocrine pancreatic 

function such as fecal elastase-1, which could more easily be studied in a larger population than 



radiological examinations. If such studies are successful, pancreas size and/or exocrine function could be 

used as a predictor of the onset of type 1 diabetes. 

Furthermore, if such studies confirm that pancreatic atrophy takes place before the onset of type 1 

diabetes, strategies to prevent exocrine pancreatic insufficiency could be explored. If pancreatic atrophy 

is caused by insulin deficiency, then administering insulin before the loss of blood glucose control could 

be a plausible method. If pancreatic inflammation is the cause, then anti-inflammatory drugs could be 

administered. A number of trials attempting to prevent type 1 diabetes have been performed or are 

ongoing, some employing insulin or immunosuppressive regimens (286). It would be interesting to study 

whether pancreatic size and exocrine function are influenced by any of these preventative strategies. 
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