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Abstract Recent work on low-rank matrix factoriza-

tion has focused on the missing data problem and ro-

bustness to outliers and therefore the problem has of-

ten been studied under the L1-norm. However, due to

the non-convexity of the problem, most algorithms are

sensitive to initialization and tend to get stuck in a lo-

cal optimum. In this paper, we present a new theoreti-

cal framework aimed at achieving optimal solutions to

the factorization problem. We define a set of stationary

points to the problem that will normally contain the op-

timal solution. It may be too time-consuming to check

all these points, but we demonstrate on several practi-

cal applications that even by just computing a random

subset of these stationary points, one can achieve sig-

nificantly better results than current state of the art. In

fact, in our experimental results we empirically observe
that our competitors rarely find the optimal solution

and that our approach is less sensitive to the existence

of multiple local minima.
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Fig. 1 The L1-cost for fitting a 1D-subspace to a set of points
in R3 (m = 3 and r = 1). The cost function is varied over two
dimensions of U and then the optimal solution is computed
for the other variables. Note that there are at least three local
minima.

1 Introduction

Given an observation matrix W ∈ Rm×n, we are inter-

ested in the problem of factorizing W into two low-rank

matrices U ∈ Rm×r and V ∈ Rr×n with r < min(m,n)

such that W ≈ UV , or effectively solving

min
U,V
‖W − UV ‖ . (1)

If ‖ · ‖ is the standard L2-norm, then the solution is

obtained by computing a Singular Value Decomposi-

tion (SVD) of W . However, in many applications W

tends to contain missing values and erroneous measure-

ments (outliers) and therefore, a lot of work has been

devoted to alternative methods that are more robust to

such factors. In this paper, we analyze the factorization

problem under the L1-norm and give new theoretical

insights to the problem, which in turn, will lead to a

novel approach for solving it.

Factorization plays an important role in many ap-

plications in computer vision. Perhaps its most well-

known application is in affine structure from motion,

first studied in [33]. There are numerous extensions —
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also based on factorization — to, for example, indepen-

dently moving objects [16], projective structure from

motion [31], non-rigid structure from motion [3,17] and

articulated motion [37]. In photometric stereo, the fac-

torization problem also appears as a subtask and SVD-

based methods are common [38,27]. Another important

application area is in shape modelling [15]. Here the ob-

jective is to compute a compact representation of the

training shapes, which can be achieved via factoriza-

tion. Often, the principal components are computed by

an SVD, but this assumes no missing data and only

inlier measurements.

Related Work. Missing data in low-rank matrix fac-

torization was originally addressed in [35], then under

the L2-norm. An algorithm independent of initializa-

tion was given in [21], but the method is highly sensitive

to noise. Still, it is suitable as an initialization method

followed by an iterative, refinement technique. Similar

approaches to the structure-from-motion problem are

studied in [32,22].

An early work that aims for robustness to outliers

is [1], using iteratively reweighted least squares to op-

timize a robust error function. A limitation is that the

method requires a good initial solution, which is of-

ten difficult to obtain. The theory of robust subspace

learning is further developed in [24]. In [5], a damped

Newton method is proposed to solve the problem with

missing data. In [6], a bilinear model is formulated un-

der L2 norm with the constraints that the factor matri-

ces should lie in a certain manifold. It is solved via the

augmented Lagrange multipliers method. In [23], alter-

nating optimization is proposed for both the Huber-

norm and the L1-norm. Yet another iterative approach

is proposed in [18] which can be seen as an exten-

sion of [35], but for the L1-norm. This approach has

been further generalized in [30] to handle the projec-

tive structure-from-motion problem. In [28], a damping

factor is incorporated in the Wiberg method. It also

experimentally showed that Newton-family minimiza-

tion techniques with a damping factor lead to a top

global convergence performance. The method in [40]

first solves the affine factorization in L2 norm by adding

an extra mean vector in the formulation. Another re-

cent algorithm in [39] constrained U to be column-

orthogonal and added a nuclear norm regularizer to V .

With the augmented Lagrangian multipliers method,

it achieves a fast convergence rate. All of these algo-

rithms are based on local optimization, and hence they

risk getting stuck in local minima. The cost function

may indeed exhibit several local optima as exemplified

in Fig. 1. One noticeable attempt to solve the prob-

lem globally optimal is proposed in [10], which uses a

branch and bound method. It proves that the globally

optimal solution is obtained. However, in practice, it

is only restricted to the simple problems for which the

number of variables in either U or V is very small. For

example, there are only 9 variables in U in one of their

experiments.

Alternative approaches for tackling the low-rank fac-

torization or low-rank approximation problems are to

minimize a convex surrogate of the rank function, for

example, the nuclear norm. In [9], the solution turns out

to be very pleasing - only a convex optimization prob-

lem needs to be solved. The nuclear norm formulation

leads to solving an SDP, which the methods in [8,25] try

to solve efficiently. These approaches can handle appli-

cation problems when the rank is not known a priori,

for example, segmentation [11], background modeling

[8] and tracking [36]. However, when applied to prob-

lems with known rank, the performance of the meth-

ods based on the nuclear norm formulation is typically

worse compared with the bilinear formulation [7]. These

methods assume that the missing data are sparse and

the locations of missing data are random. However, for

many applications the assumption is in general not ful-

filled. For example, in structure from motion the miss-

ing data are neither sparse nor randomly located, but

rather distributed densely in the off-diagonal blocks. In

[29], it is also noted that the convex factorization ap-

proach may break down due to violation of the sparsity

assumption in structure from motion.

Due to the limitation of the nuclear norm formula-

tion, we only consider comparisons based on the bilin-

ear formulation. More specifically, we consider the L1-

Wiberg method in [18] together with two recent follow-

up methods, that is, the Regularized L1-Augmented
Lagrangian Multipliers method (RegL1-ALM) in [39]

and General Wiberg in [30] to be the state-of-the-art

for robust factorization with missing data and they will

serve as a baseline for our work. In [18], L1-Wiberg

is also compared with three other methods, namely the

Alternated Linear Programming (ALP) and Alternated

Quadratic Programming (AQP) in [23] and L2-Wiberg

in [35]. However, as L1-Wiberg gives a fairly large im-

provement over ALP, AQP and L2-Wiberg, it is un-

necessary here to include those three methods in our

comparison. In contrast to all these methods, the our

approach does not depend on initialization.

Article Overview. The main contribution of this pa-

per is a new approach that directly tries to estimate

the globally optimal solution under the L1-norm. Con-

trary to the local methods to which we compare, it does

not depend on the initialization. Furthermore, we will

show that the same methodology is applicable to the
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truncated L1-norm. In this model, each outlier gets a

constant penalty. Another contribution is that in our

framework, the affine subspace problem can be han-

dled in a robust manner as well. Setting the translation

vector to the mean of the observations, which is cus-

tomary, is not a good choice in the presence of missing

data and outliers.

In Section 2, mathematical problem formulations

are given for the cost function under either the L1-

norm or the truncated L1-norm. In Section 3, various

applications are described, from the toy example of line

fitting to real vision applications, that is, affine struc-

ture from motion and photometric stereo. In Section 4,

some results on L1-projection are given, which consti-

tute an essential part of our framework. In Section 5,

the special case when the rank r = m − 1 is studied

and an optimal algorithm is given. In Section 6, the

general case when r < m is discussed and two algo-

rithms are described. In Section 7, the adaption of the

algorithms to the cost function under the truncated L1-

norm is briefly described. The experimental results and

comparisons are exhibited in Section 8, followed by the

conclusion.

2 Problem Formulation

We will be focusing on the L1-norm, which is defined

as

‖X‖1 =
∑
i,j

|xij |. (2)

Under the L1-norm, the problem can simply be stated

as

min
U,V

∑
i,j

|wij −
∑
k

uikvkj |. (3)

In practice, there may be missing observation entries

in the matrix W . This means that the cost function

should only be summed over the indices i, j that have

measured values in W . We will make no requirement

that the full observation matrix is available.

In many applications, one would like that erroneous

measurements should have a fixed penalty which can be

obtained via truncation of the residual errors. There-

fore, we will be considering the following problem as

well

min
U,V

∑
i,j

min(|wij −
∑
k

uikvkj |, ε), (4)

where ε is a given truncation value. Hence, the max-

imum cost for an outlier measurement is ε under this

model.

To shed further light on the factorization problem,

one can view it as the estimation of a low-dimensional

subspace. Given data wi ∈ Rm, i = 1 . . . , n, the prob-

lem in (1) can be treated as that of finding an optimal

subspace

S = {w ∈ Rm | w = Uv, v ∈ Rr} (5)

defined by a matrix U ∈ Rm×r such that when all the

data is projected onto S, the sum of projection errors∑
i ‖wi − Uvi‖1 is minimized. Note that with this for-

mulation we always get a linear subspace containing the

origin. In many applications though, one is interested

in finding an affine subspace

S = {w ∈ Rm | w = Uv + t, v ∈ Rr}, (6)

defined by U ∈ Rm×r and t ∈ Rm. For observations

with no missing entries or outliers, the translational

component t is optimally estimated as the mean of the

observation vectors under the L2-norm. This is clearly

not a good estimator under the L1-norm or in the pres-

ence of outliers. In analogy to (3), the affine subspace

problem can be formulated as

min
U,V,t

∑
i,j

|wij − ti −
∑
k

uikvkj |, (7)

or in matrix notation, cf. (1),

min
U,V,t

∥∥∥∥W − [U t
] [ V

1 . . . 1

]∥∥∥∥
1

. (8)

where W ∈ Rm×n, U ∈ Rm×r, V ∈ Rr×n and t ∈ Rm

The residual matrix R ∈ Rm×n, which will be used

later, is defined here as

R =

∣∣∣∣W − [U t
] [ V

1 . . . 1

]∣∣∣∣ . (9)

In summary, we are considering two different cost

functions for the factorization problem, one based on

the L1-norm (3) and one based on the truncated L1-

norm (4), as well as two different versions, one viewed

as a subspace estimation problem (5) and one viewed

as an affine subspace problem (6). In the next section,

we will give several example applications.

3 Applications

Line fitting. Let wi ∈ Rm, i = 1, . . . , n be observed

points in the plane (m = 2) or in space (m = 3). Then,

a line through the origin can be parametrized by a di-

rection vector u ∈ Rm. For each point there should be

a parameter vi ∈ R satisfying wi ≈ uvi. In order to
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Fig. 2 (a) Line fitting. L1-balls are plotted for two 3D points. Note that it is typical that the optimal line goes through
the corner of the L1-ball for exactly two points (which means there is residual error in one axial direction only), whereas the
other points (not shown) have errors in two axial directions. (b) Affine structure from motion. Three images of a toy dinosaur
and the corresponding 3D reconstruction. (c) Photometric stereo. Three of eight images of a gourd and the corresponding 3D
reconstruction viewed from the side. Images are courtesy of [2].

estimate the line parameters, one can solve the factor-

ization problem

min
u,v

∥∥[w1 . . . wn

]
− u

[
v1 . . . vn

]∥∥
1
. (10)

For a line not necessarily going through the origin, it

can be regarded as an affine subspace problem

min
u,v,t

∥∥∥∥[w1 . . . wn

]
−
[
u t
] [v1 . . . vn

1 . . . 1

]∥∥∥∥
1

. (11)

See also Fig. 2(a).

Affine structure from motion. According to the affine

camera model [20], a 3D point v ∈ R3 is mapped to the

image point w ∈ R2 by w = Uv+t, where U ∈ R2×3 and

t ∈ R2 encode the orientation and the translation of the

camera, respectively. Given image points wij in image

i of 3D point vj , for i = 1, . . . ,m and j = 1, . . . , n, this

can be written as

w11 . . . w1n

...
. . .

...

wm1 . . . wmn

 =

U1 t1
...

...

Um tm

[v1 . . . vn
1 . . . 1

]
.

This is the basis for the famous Tomasi-Kanade factor-

ization algorithm [33] which first estimates the trans-

lation ti by computing the mean of the observations in

the corresponding rows, and then applies SVD to the

(reduced) observation matrix in order to recover U and

V . We will treat it as an affine subspace problem. See

Fig. 2(b) for an example.

Photometric Stereo. Assuming an orthographic camera

viewing a Lambertian surface illuminated by a distant

light source v ∈ R3, the image intensity w of a surface

element is given by

w = uT v,

where u ∈ R3 is the (unnormalized) surface normal.

The length ‖u‖ gives the albedo of the surface element.

By varying the light source directions (and keeping the

camera fixed), and by considering several image inten-

sities, we end up in the factorization problem (1). The

measurement matrix W ∈ Rm×n contains the intensi-

ties of m pixels in n images, U ∈ Rm×3 the albedos

and the surface normals of the m pixels and V ∈ R3×n

the n light sources. Given the normals, it is possible to

estimate a depth map by integration [38]. In Fig. 2(c),

some example images are given together with a 3D re-

construction based on the truncated L1-minimization

(see experimental section). Note that in this example

the surface is highly specular and do not concur with

the Lambertian model at the specularities.

4 L1-Projections

In this section, we will give some general results con-

cerning L1-projections.

Theorem 1. For a given point w ∈ Rm and a given r-

dimensional affine subspace S defined by a matrix U ∈
Rm×r and t ∈ Rm, the L1-projection of w onto S occurs

only along m− r directions.

This is equivalently saying that the remaining r direc-

tions are error free, that is, r components of the residual

vector w−Uv are always zero. The above result is well-

known [26,4] and can be formally proved using linear



A Combinatorial Approach to L1-Matrix Factorization 5

programming theory. However, it should intuitively be

clear that the theorem is true. Writing the cost function

explicitly,

min
v

m∑
i=1

|wi − ti −
r∑

k=1

uikvk|, (12)

we see that it is a piecewise linear function of the vk’s.

Furthermore, as the column vectors uk, k = 1, . . . , r,

form a basis for an r-dimensional subspace they are all

linearly independent. Hence the cost tends to infinity as

u→∞ and the minimum must be attained at a corner

point, that is, where the derivative is not defined in any

direction. So, at least r elements are zero in the residual

vector at optimum.

Assume, for a while, that we know the positions

of the r zeros of Theorem 1. Since each zero gives a

linear constraint on v we could easily compute the L1-

projection from this information. And even if the zero

positions are unknown, this technique can be useful if

an exhaustive search over the possible positions is per-

formed1. A natural question is whether a similar ap-

proach can be used to solve the full problem.

5 Hyperplane Fitting

If the dimension of the subspace r = m− 1 then we are

dealing with a hyperplane. According to Theorem 1, the

projection of a given point w ∈ Rm onto a hyperplane

occurs along a single direction. Moreover, this direction

depends only on the hyperplane - not on the point w.

This result is a direct consequence of Theorem 2.1 in

[26], but for clarity, we state it as a theorem.

Theorem 2. Given a set of points wk ∈ Rm and an

(m − 1)-dimensional affine subspace S, there exist op-

timal L1-projections of wk onto S such that all occur

along a single axis.

If we know this axis, then we can solve for the hyper-

plane using linear programming (LP). Hence optimal

hyperplane fitting can be solved as a series of m LP

problems. Another option is indicated by the following

theorem.

Theorem 3. For an optimal affine hyperplane, there

will be m − 1 rows of zeros and one row with m zero

elements in the residual matrix R in (9). Provided we

know the positions of these zeros, the hyperplane can be

solved for in closed-form.

1 This is not the most efficient way of computing an L1-
projection.

Proof. According to Theorem 2, all the points will be

projected along a single direction. This means that the

residual matrix R will have m−1 rows of zeros. Without

loss of generality, we assume the top m − 1 rows of R

are zeros, which gives a partition of R = [0, r̂T ]T where

r̂ is a row vector. Applying the same partition to W , U

and t leads to[
0

r̂

]
=

[
W̃

ŵ

]
−
[
Ũ t̃

û t̂

] [
V

1 . . . 1

]
. (13)

Note the partition of R ∈ Rm×n yields a zero matrix

0 ∈ R(m−1)×n and a row vector r̂ ∈ Rn.

There exists a coordinate ambiguity in the factor-

ization as we can always reparametrize [U, t] using a

matrix Q =

[
Q̃ q̃

0 1

]
since we have

[
U t
] [ V

1 . . . 1

]
=
[
U t
]
QQ−1

[
V

1 . . . 1

]
. (14)

This means we can always reparametrize (13) such that

Ũ = I and t̃ = 0. The reparametrization gives the

solution V = W̃ ,[
0

r̂

]
=

[
W̃

ŵ

]
−
[
I 0

ū t̄

] [
W̃

1 . . . 1

]
. (15)

The remaining cost ‖r̂‖1 is now a function of ū and t̄

which is piecewise linear. If the columns of W̃ span Rm

then the cost tends to infinity as ‖
[
ū t̄
]
‖1 →∞. Hence

the piecewise linear cost ‖r̂‖1 attains its minimum at a

corner point with m zeros in the residual vector and if

we know the zero positions, then we can estimate the

unknowns in ū and t̄ by solving linear equations.

If on the other hand the columns of W̃ do not span

Rm, then the complete data matrix W has to lie in

a subspace of Rm. So, for the optimal hyperplane, all

residuals are zero. Using m of these we can compute an

optimal hyperplane.

As an example, consider the case of line fitting to

a set of points {wi, i = 1, . . . , n} in R2. For an optimal

line, the residual matrix R ∈ R2×n has a full row of

zeros in either x or y coordinates.

Note that the final estimation of ū and t̄ could be

solved more efficiently using LP, see Algorithm 1. How-

ever, this does not generalize to truncated L1-norm. In

that case, one needs to do an exhaustive search based

on Theorem 3 or a random search as will be described

later.
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Algorithm 1 Optimal hyperplane fitting (HF)

Given an observation matrix W , solve for the optimal affine
subspace (U∗, t∗) and the projection matrix V ∗

1. Initialize the best error ε∗ =∞
2. For i = 1 to m
3. Set the index set P for row partition as
4. P={1, 2, . . . ,m}\{i}
5. Let W̃ = WP and ŵ = W{i} in (15)
6. Solve minū,t̄ ‖r̂‖1 in (15) using LP
7. Calculate the L1-error ε
8. If ε < ε∗

9. U∗ = U, t∗ = t, V ∗ = V and ε∗ = ε
10. return U∗, t∗, V ∗, ε∗

6 The General Case

A subspace defined by U ∈ Rm×r has d = (m − r)r

degrees of freedom (mr parameters defined up to an

r × r coordinate transformation). Similarly, an affine

subspace has d = (m − r)(r + 1) degrees of freedom.

For example, when r = m − 1 as in the previous sec-

tion, there are only m degrees of freedom of the affine

subspace, and these m unknowns can be determined

in closed-form from the m extra zeros in the residual

matrix (Theorem 3).

In the general case (r < m− 1), there may be fewer

zeros in the residual matrix than necessary to solve di-

rectly for the subspace. Moreover, even with sufficiently

many zeros, the structure of the residual matrix might

not allow us to linearly solve for the parameters. De-

spite these facts, similar ideas can be used to achieve

state-of-the-art results and very often to find an op-

timal L1-factorization. The basis will be the following

type of points:

– A point (U, t) representing an affine subspace in pa-

rameter space is a principal stationary point if the

residual matrix has d extra zeros for the optimal V .

By extra here is of course meant the additional zeros

to the r zeros present in every column of the residual

matrix according to Theorem 1. Note that when r =

m − 1, then there are always d = m extra zeros and

hence all optimal subspaces U∗ to the L1-factorization

problem are principal stationary points (Theorem 3).

Empirically, we have made the following two obser-

vations concerning L1-optimal factorizations:

- In practice, the optimal subspace for L1-factorization

is often a principal stationary point.

- Even if the optimal subspace is not a principal sta-

tionary point, there is often a principal stationary

point which is close to the optimal one.

How Common Are Principal Stationary Points? To give

some insight into this question we considered a low-

m=3 m=4 m=5
r=1 98.4% 96.6% 96.0%
r=2 - 92.0% 94.0%
r=3 - - 95.0%

Table 1 Percentage of principal stationary points being op-
timal.

dimensional problem in order for brute-force search to

be applicable. More precisely, we considered fitting of a

r-dimensional subspace in Rm.

To generate the data, we first randomly generate r

orthonormal basis ui for i = 1, 2, · · · , r in Rm, which

constitutes the columns of ground truth subspace U .

The data is generated on the subspace using a linear

combination of the basis, xj =
∑j

i=1 aiui where the

coefficients ai are uniformly drawn from [−1, 1]. Gaus-

sian noise from N (0, 0.02) are added to all the points.

And 10% data are regarded as outliers by a random

perturbation uniformly drawn from [−1, 1].

Grid search is performed in the parameter space

of U . We fix the top r × r block of U to be identity,

and search for the remaining (m − r)r variables of U .

Since the ground truth of elements of U is generated

between [−1, 1]. We perform the search in the slightly

larger range of [−2, 2] by dividing it into equally-sized

intervals, with the length of each interval being 0.1. We

estimate V by L1-projection and refining the best solu-

tion using the method from [18]. The number of zeros

in the residual matrix of the solution was counted to

evaluate whether it was a principal stationary point or

not.

Due to the exponentially increasing cost for the grid

search with the number of variables in U , we only con-

sider the test on low-dimensional problems. More specif-

ically, the problems we tested are the cases with r = 1

for m = 3, 4, 5, r = 2 for m = 4, 5, and r = 3 for m = 5.

We skipped the hyperplane-fitting case (r = m − 1)

here. We run 2000 random problems for r = 1 cases

and 200 random problems for r = 2, 3 cases due to the

exponentially increasing time complexity. The percent-

age of the principal stationary point being the global

optimal is summarized in Tab. 1

From Tab. 1, we observe that for more than 90%

of random problems we tested on estimating the differ-

ent low-dimensional subspaces, the principal stationary

points are the globally optimal solutions. This obser-

vation motivates the following algorithms that consider

only principal stationary points. Note the cost function

for one example of the problem m = 3, r = 1 is plotted

in Fig. 1.
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6.1 Searching for Principal Points

Our approach to general subspace fitting is based on

searching for principal stationary points, that is, points

that have d extra zeros in the residual matrix, allow-

ing us to solve directly for the parameters. This sug-

gests that to estimate the subspace U we only need to

consider a subset of columns with d extra zeros in the

residual matrix. Once the subspace U is estimated, the

projection coefficient V for the remaining columns of

W can be solved either by a linear program or with the

approach discussed in Section 4.

We first focus on estimating a subspace U . A zero

at position (i, j) in the residual matrix gives a bilinear

equation in the unknowns ti, uik and vkj

wij − ti −
r∑

k=1

uikvkj = 0. (16)

By Theorem 1, every column yields at least r such equa-

tions, but looking for principal stationary points we can

assume that there are d extra zeros corresponding to the

d degrees of freedom of the subspace. Hence we consider

a subset of at most d columns and assume that there

are dr + d zeros in the corresponding residual matrix.

For small problems an exhaustive search over the pos-

sible positions of these zeros might be tractable, but

to handle larger problems, a randomized algorithm is

necessary.

In principle, this approach can be viewed as apply-

ing RANSAC [19] to low-rank matrix factorization, al-

though our motivation was quite different. Just as in

RANSAC a minimal set of data points are assumed to

have zero error and this assumption is used to find the

model parameters, and then, the obtained parameters

are evaluated on all data to measure the goodness of

fit. Either we repeat this exhaustively for every pos-

sible minimal subset or for a fixed number of random

subsets. More on this later.

6.2 Exhaustive Search

For small-sized problems it is tractable to search the

space of all possible positions for the d + dr zeros of a

principal stationary point. For each possible zero pat-

tern, we need to solve a set of d+dr degree-2 polynomial

equations, which can be expensive and might yield up

to 2d+dr solutions. Fortunately, the structure of these

polynomial equations, for example, all the quadratic

terms are bilinear, yields much fewer solutions. In fact,

for low-dimensional problems, such as line fitting in R3,

there is a unique and simple closed form solution, ren-

dering a much more efficient algorithm.

Algorithm 2 Exhaustive Search (ES)

Given an observation matrix W , solve for the optimal affine
subspace (U∗, t∗) and the projection matrix V ∗.

1. Initialize the best error ε∗ =∞
2. Generate all the column subsets {Ii} of size d
3. Generate all the residual patterns {Rj} of size Rm×d

4. For each column subset Ii
5. For each residual pattern Rj .
6. Compute U , t and VIi

in closed form using WIi
, Rj

7. Compute the projection V{1,2,...,n}\Ii

8. Compute the L1-error ε
9. If ε < ε∗

10. U∗ = U, t∗ = t, V ∗ = V and ε∗ = ε
11. return U∗, t∗, V ∗, ε∗

Note that when generating the residual patterns,

one should first make sure each column has at least

r zeros, which follows from Theorem 1. Then d extra

zeros should be arranged such that each row has at least

r zeros, which followed by applying Theorem 1 to the

transpose of the measurement matrix W . This makes

sure that each row of U can be determined from the

equation system.

6.3 Random Search

The exhaustive search algorithm quickly becomes in-

feasible with growing problem size, both because the

number of possible zero patterns grows exponentially

and because solving the system of quadratic equations

gets increasingly more expensive, as for general d and

r, there is no simple closed-form solution.

Simple patterns of zeros. To work around these prob-

lems, we propose a random search algorithm only con-

sidering especially simple residual patterns. More pre-

cisely, we restrict the search to patterns that lead to lin-

ear equations and can hence be solved extremely fast.

Note that even these simple patterns abound and in

practice, we can always find such patterns despite miss-

ing entries as long as the factorization problem is well-

posed.

Here we describe a family of general residual pat-

tern that can be solved linearly. The first assumption

is that (possibly after some permutations on rows and

columns) we have a (r + 1) × r zeros in the top left of

the residual matrix. Based on the degree of freedom in

the subspace U , a coordinate system can always be cho-

sen such that the first r rows of U become an identity
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matrix, for example the top r rows, that is,

U =


Ir×r
uT
r+1

uT
r+2

...

uT
m

 . (17)

Now, from the definition of R in (9), we can immedi-

ately obtain the first r columns of V

W̃ − I[v1,v2, . . . ,vr] = 0, (18)

where W̃ is the top left r × r sub-matrix of W . Then

the last row of the (r+1)×r zeros in R gives us r linear

constraint on uT
r+1

wT
r+1 − uT

r+1[v1,v2, . . . ,vr] = 0, (19)

where wT
r+1 are the elements of W corresponding to

the last row of the zero block in R. As v1,v2, ...,vr are

already known from (18), we can compute uT
r+1 linearly

from (19). (We have r linear equations and r unknowns

in uTr+1.)

To solve for another row of U , we need at least r ze-

ros in that row of R. They can be either in new columns

or in columns already used to compute uT
r+1. Let us as-

sume that after permutations, the zeros are in columns

r + 1 to 2r.2 This yields

wT
r+2 − uT

r+2[vr+1,vr+2, . . . ,v2r] = 0. (20)

However, since the vr+1, . . . ,v2r are unknown, we

first need to compute them. We can use the fact that

the uT
1 , uT

2 , ... uT
r+1 are all known. This means for the

column vi ∈ Rr of V to be solvable, we need at least
r zeros in the top r + 1 rows of ith column of R. Take

solving vr+1 for example, assume n1, n2, ..., nr are the

indices of rows, where those r zeros locates in the (r +

1)th column of R. Taking the corresponding elements of

W , that is, the rows n1, n2, ..., nr of the column r + 1,

we form a vector w̃. Taking the corresponding rows of

U , that is, the rows n1, n2, ..., nr of U , we form a sub-

matrix Ũ of size r × r. Then vr+1 is computed from

w̃ − Ũvr+1 = 0. (21)

Note this is similar to (18) except we have to solve the

column of V separately as the zero position for each col-

umn might be varied now. Other columns, vr+2, . . . ,v2r

are solved in the same way. With vr+1, . . . ,v2r solved,

we can compute uT
r+2 using (20).

So to solve uT
r+2, we required a block of size (r +

2)× r, inside which the top r + 1 rows contain at least

2 If one or more are in the first r columns it only makes
things easier as v1 to vr are already known.

r zeros in each column, and the last row contain only

zeros. Note that apart from this the position of the non-

zero residuals in this block is arbitrary. One example for

r = 3 is

R =



0 0 0 · 0 0 ...

0 0 0 0 · 0 ...

0 0 0 0 0 0 ...

0 0 0 0 0 · ...
· · · 0 0 0 ...

. . . . . . . . . . . . . . . . . . ...

 . (22)

The remaining rows uT of U can be solved sequen-

tially in the same way. It is worth noting that in gen-

eral, this will not compute all columns in V but only

up to d of them. We will use J to denote the columns

which are computed directly in this way. The remaining

columns of V can be found using L1-projections since

U is already known.

This also leads to a simple strategy to handle miss-

ing data. When a random residual pattern is generated

in Algorithm 3, we simply restrict it such that the ze-

ros in R cannot be placed in a position corresponding

to a missing element of W. Fig. 3 shows an example

residual pattern generated randomly for the structure

from motion application. The zero positions are close to

the main diagonal since that is where we have observed

data.

Fig. 3 A random generated residual pattern for m = 20 and
r = 3 case. Each black patch is a zero in R.

Adaptive Sampling. To generate the residual pattern

described above, we sample d + dr elements from ob-

servation W , corresponding to the zeros in R. As noted

earlier, this is basically the RANSAC approach to ma-

trix factorization although motivated in a completely

different way. Consequently, we can use any of the al-

ternative sampling strategies that have been proposed

for RANSAC. For example, guided-MLESAC [34] pro-

poses an algorithm for maximum likelihood estimation

by RANSAC, which estimates the inlier probability of

each match based on the proximity of matched fea-

tures. PROSAC [12] measures the similarity of corre-

spondences, and uses sequential thresholding to form a

sequence of progressively larger set of top-ranked cor-

respondences. It is based on the mild assumption that

correspondences with high similarity are more likely to
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be inliers. We chose the following PROSAC-like sam-

pling strategy.

We initialize the probability of sampling wij of W

to be pij > 0 if wij is observable, otherwise, we set

pij = 0. In each iteration when a better solution is

found, we check the residual rij = wij − uT
i vj , if rij is

large, then we lower the probability pij of picking up

wij in the next iteration, otherwise we increase pij . In

practice, the strategy helps us to find a better solution

using fewer sampling steps.

Algorithm 3 Random Search (RS)

Given an observation matrix W and a max iterations N ,
solve for the optimal affine subspace (U∗, t∗) and the projec-
tion matrix V ∗.

1. Initialize the best error ε∗ =∞
2. Initialize the probabily pij = 1 for i = 1, . . . ,m, j = 1, . . . , n
3. While k ≤ N
4. Randomly generate a simple residual pattern s.t.

element (i, j) is included with probability ≈ pij
5. Compute U, t and VJ linearly as described in text
6. Compute V{1,2,...,n}\J using L1-projection
7. Compute the L1-error εi

8. If εk < εk−1

9. Update the probability pij based on |W − UV |.
10. If εk < ε∗

11. U∗ = U, t∗ = t, V ∗ = V and ε∗ = ε
12. return U∗, t∗, V ∗, ε∗

7 Truncated L1-Factorization

Perhaps somewhat surprisingly, most of the results we

have presented generalize easily to the truncated L1-

norm; cf. (4). A brief sketch of the proof is as follows.

Consider an optimal factorization with respect to the

truncated L1-norm. Now divide the measurements into

inliers — having a residual smaller than ε — and out-

liers — having a residual larger than ε. Now apply The-

orems 2 and 3 to the inliers only.

Algorithms 2 and 3 (but not Algorithm 1) can be

used to optimize the truncated L1-norm. The only re-

quired modification is to evaluate solutions using the

truncated L1-norm rather than the standard L1-norm.

8 Experiments

All experiments are run on a Macbook Pro with a quad-

core CPU and 8GB RAM.

Line fitting. We first test our exhaustive search method

for affine line fitting in R3. The purpose of this experi-

ment is to investigate the local minima problems. More

quantitative results are given in the following experi-

ments. In this case, all the principal stationary points

can be solved for in closed form. For each experiment,

20 3D points with coordinates in [−1, 1] are generated

on a line and perturbed with Gaussian noise with stan-

dard deviation 0.1. In addition, we perturb 80% of the

points with uniform noise in [−1, 1] to be outliers. 100

random examples are tested using both our exhaustive

search algorithm with L1-norm and L1-Wiberg from

[18].

From Fig. 4, we can see that our method performs

better as a fairly large portion of errors (brown) fall

into the interval between 0 and 0.1 while most errors

for L1-Wiberg (grey) lie between 0.1 and 0.2. In every

single instance, our algorithm performs better (around

50% of the cases) or equally well compared to the L1-

Wiberg algorithm. This means that the L1-Wiberg gets

stuck in local optima roughly half of the instances. We

have made similar observations for other settings by

varying the inlier/outlier ratio and the dimensions, both

for affine and non-affine cases. Running time is 2s for

our methods and 0.03s for L1-Wiberg.

Fig. 4 Results on the affine line fitting in R3.

Affine Structure from Motion. We also tried N -view

structure from motion using the Oxford dinosaur se-

quence. For each instance we use 300 points in N con-

secutive views, where N varies from 2 to 10. This cre-

ates a data matrix of size 2N × 300 with up to 75%

missing data. Outliers with uniform noise on [−50, 50]

are added to 10% of the tracked points.

The 2-view SfM is exactly a hyperplane fitting prob-

lem, so we use Algorithm 1. For problems with more

than two views, we use Algorithm 3 with 106 iterations.

Running times are up to 3.8mins using our parallel

OpenMP implementation in C. As a comparison, we use

the C++ implementation of L1-Wiberg in [18], General

Wiberg in [30] and Matlab code of the Regularized L1-

Augmented Lagrange Multiplier method (RegL1-ALM)

in [39]. In our experiments, L1-Wiberg converges in no

more than 50 iterations, which takes up to 30 s, while

General Wiberg exhibits slower convergence. We set the

maximum number of iterations to 500, which results

in run-times up to 10.4mins. In a few cases, it does
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Fig. 5 Results on Affine Structure from Motion with vary-
ing number of views. The L1-Wiberg, General Wiberg and
RegL1-ALM run with truncated-SVD or all zeros initializa-
tion. Errors are given in pixels.

not even converge. The RegL1-ALM converges in 0.3

s. L1-Wiberg and General Wiberg are initialized using

the truncated SVD, while the RegL1-ALM is initialized

with all zeros in U and V . All follows the settings in

the original papers.

For each N = 2, 3, . . . , 10, all possible instances with

N consecutive views were tested. The Mean Absolute

Error (MAE) of inliers for each N is shown in Fig. 5.

The MAE of inliers is defined as

MAE =
1

|I|
∑

(i,j)∈I

|wij −
r∑

k=1

uikvkj | (23)

where I is the set of inliers, and |I| is the cardinality

of the set. We can see that our method clearly achieves

lower error in all the experiments. As the dimension

goes up, the percentage of missing data also rises, which

heavily affects the performance for General Wiberg, but

also for RegL1-ALM.

To compare the methods with the same running

time, we run the L1-Wiberg and RegL1-ALM with mul-

tiple random initializations. The General Wiberg is ex-

cluded in this comparison due to its weak performance

both in accuracy and complexity. To generate the ran-

dom initialization, we first scale the data matrix W so

that all the elements are around [−1, 1]. Then the el-

ements of U and V are sampled uniformly from the

interval [−1, 1]. We run the L1-Wiberg with 10 differ-

ent random initializations (including truncated SVD)

and RegL1-ALM with 1000 random initializations (in-

cluding setting U and V to zeros). This leads to roughly

the same running time for the three methods. The com-

parison is given in the Fig. 6. It turns out that trying

multiple random initializations leads to some improve-

ment for both L1-Wiberg and RegL1-ALM. But the
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Fig. 6 Results on Affine Structure from Motion with vary-
ing number of views. L1-Wiberg and RegL1-ALM are runned
with single or multiple random initializations. Errors are
given in pixels.

improvement is minor, especially for the RegL1-ALM

method, considering it runs with more random starts.

It also verifies, as claimed in [39], that it is hard to find

a better solution using random initializations compared

with the solution by setting U and V to be all zeros.

One possible reason is that the algorithm first solves U

with respect to V . In vision application, the number of

elements in V is usually very large, leading to a huge

search space of V . So 1000 random initializations on

V might be relatively very few, from which it is hard

to find a better solution. As seen from Fig. 6, the other

two methods do not gain much by trying different start-

ing point given the same amount of running time. Our

method still achieves lower errors.

To further examine the quality of our solutions, we

run the random search algorithm 10 times, each with

10000 iterations, to check if the same optimal is ob-

tained. Taking an example of 3-view SfM, we plot the

result in Fig. 7. We found that different random searches,

although not leading to exactly the same solution, give

very similar low errors. In this case, our random search

has achieved lower error than our competitors in no

more than 100 iterations.

We also tested on the 3-view data with different out-

lier ratios. The data setup is the same as above, but we

add varied percentage of outliers to the data from 10%

up to 50%. For our method, we use the random search

with truncated L1-norm. All the methods are affected

by the increasing outliers, see Fig. 8. The chance of

our method to sample an outlier-free minimal set is de-

creased with increasing outlier ratio. Still we achieve

smaller median errors of inliers.

Photometric Stereo. In [2], a set of 102 images (size

588 × 552 pixels) of a gourd was used to estimate the
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Fig. 7 Quality of our solutions. The random search is run
for 10 times with each red solid curve representing the cur-
rent best error vs. the number of iterations. The grey, blue
and orange dotted lines are the results for the other three
methods.
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Fig. 8 Results on 3-view Affine Structure from Motion with
varying outlier ratios. Errors are given in pixels.

3D shape and the surface reflectance properties using

a sophisticated data-driven photometric stereo model.

In contrast, we use a standard Lambertian model and

a subset of eight random images to demonstrate that it

is still possible to obtain a good estimate of 3D surface

shape by using the truncated L1-norm; see Fig. 2(c).

Deviations from the Lambertian model such as specu-

larities are handled by the robust choice of norm.

As the number of pixels is usually very large in the

experiment, that is, of order 106, the computation of

the L1-projection, that is, estimate V given U for all

the points in each iteration in Algorithm 3 are quite

time consuming. Here we adopt a strategy that in each

iteration, we compute the surface normal v for only a

subset of points. In our experiment, we define this sub-

set as the set of points on the down-sampled image with

the down-sampled factor 4. It turned out the error on

this subset of points is a good approximation of the er-

ror of all the points. And it gives a large speed up in the

algorithm. Note that when estimating U we randomly

sample the data from the original image. And the final

solution is still for the image of the original size.

As a baseline, we compare with the RegL1-ALM in

[39]. We also tried the L1-Wiberg of [18] and General

Wiberg of [30], but none of those was possible to run on

such a large problem. For our method, the truncation

threshold is set to ε = 0.05. It should be noted that each

iteration of our method takes 0.3 s, and we use 15000 it-

erations. The running time for RegL1-ALM is just 35 s.

To make a fair comparison with respect to the running

time, we also use the multiple random initializations

for RegL1-ALM and pick out the best solution. Here

we run it with 1000 different random starting points,

which gives roughly the same running time.

The result of our 3D shape estimate is given in

Fig. 2(c) and the detected specularities are shown in

Fig. 9. Visual inspection shows that our solution basi-

cally captures the correct saturated points. The RegL1-

ALM has very similar visual results so we omit them

here. If we calculate the average truncation error per

pixel, our method achieves a mean absolute error of

0.0049 while the mean absolute error of RegL1-ALM is

0.0052.

Fig. 9 Results on photometric stereo. Three of eight input
images where points with absolute residuals above ε = 0.05
are marked in green.

9 Conclusions

We have presented an alternative way of solving the

factorization problem under the L1-norm which also

applies to the truncated L1-norm. The method is in-

dependent of initialization, trivially parallelizable and

as our empirical investigation of low-dimensional prob-

lems show, often the optimal solution is obtained. Com-

pared to iterative methods based on local optimiza-

tion, the quality of our solution is significantly better in

terms of lower error. Our experimental results demon-

strated that the local minima problem is not satisfac-

torily solved by the iterative methods.

The method we propose in the paper resembles the

standard RANSAC algorithm in [19] in many ways.

Therefore, many of the developments for RANSAC [13,
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14] could also be applied to our framework as well.

For example, it may be worthwhile to develop a guided

search strategy for finding principal stationary points.

This is left for future work.
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