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Self-energy calculation of the hydrogen atom: Importance of the unbound states
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We present the calculation of the self-energy of the isolated hydrogen atom within the GW approximation
starting from the noninteracting Green’s function constructed from the exact wave functions of the hydrogen
atom. The error in the electron removal energy of the 1s state is found to be about 0.02 eV, which is much
smaller than what one would expect. This small error is explained by the cancellation of the self-screening errors
between different l contributions of the self-energy. The unbound continuum states are found to be crucial to get
the correct self-energy.

DOI: 10.1103/PhysRevA.85.042509 PACS number(s): 31.15.xm, 31.15.V−

I. INTRODUCTION

After the pioneering work by Hybertsen and Louie [1,2]
and Godby et al. [3], Hedin’s GW approximation [4–6]
has been widely used with great success in calculating the
excited states of many semiconductors and molecules. Most
of the calculations that have been performed so far are within
the so-called G0W0 approximation approach starting from a
noninteracting Hamiltonian, in most cases, the Kohn-Sham
Hamiltonian within the local-density approximation (LDA)
of density-functional theory [7]. The screened Coulomb
interaction is calculated from the polarization function, which,
within the G0W0 approach, has the same form as that of the
random-phase approximation (RPA).

Despite its success, the G0W0 approach is found to be
insufficient to treat localized states, such as the d bands of
transition metals [8] or the semicore states of semiconductors
[9]. One possible reason for this failure could be that, in
the G0W0 approximation or RPA, the polarization function
contains the unphysical self-screening effect where an electron
shields the field produced by itself [10]. In order to improve the
theory, careful analysis is required to identify the shortcomings
of the GW approximation, but because of the complexity
of the GW calculation due to the nonlocality and frequency
dependence of the self-energy, it is usually difficult to analyze
the self-energy in detail and sometimes it is even more difficult
to get converged results [11–13]. The hydrogen atom is one
of the few real systems where the exact eigenfunctions and
energies are known analytically, and it is an ideal system
for studying the self-screening problem because, for the 1s

state, the error arises entirely from the correlation part of the
self-energy. In this paper, we perform the GW calculation
of the hydrogen atom using those exact wave functions
and energies. We use the analytic form of both bound and
continuum eigenfunctions, therefore, the calculation is free
from the error coming from the incompleteness of the basis
set, and detailed analysis of the self-energy is possible without
any ambiguity. The standard LDA is known to yield a large
self-interaction error of ∼7 eV in the ionization energy. Nelson
et al. [14] performed the GW calculation of the hydrogen
atom, and they obtained the self-energy of 0.21 eV starting

*reis@faculty.chiba-u.jp

from the exact eigenstates. We obtain a much smaller value
of ≈0.02 eV, which is explained by the cancellation of the
self-energy components with different angular momenta.

II. METHOD

Our starting point is the Hamiltonian of the isolated
hydrogen atom (we use atomic units throughout this paper),

H = −1

2
∇2 + 1

r
. (1)

The eigenfunctions of this Hamiltonian consist of discrete
bound states and unbound states with continuum spectra. We
decompose the eigenfunctions into radial and spherical parts
as usual,

ψnlm(r) = φnl(r)Ylm(r̂). (2)

Here, φnl(r) is normalized as
∫ ∞

0 |φnl(r)|2r2dr = 1, and Ylm

is the spherical harmonics. The bound states with principal
quantum number n have the eigenenergy εnl = − 1

2n2 . The
analytic expression of φnl(r) can be found in standard
textbooks.

The continuum eigenstates with energy ε are labeled by
continuous variable k = √

2ε. Their analytic expression is [15]

φkl(r) = c(k,l)
(2kr)le−ikr

(2l + 1)!
F

[
i

k
+ l + 1,2(l + 1),2ikr

]
, (3)

with c(k,l) as the normalization constant,

c(k,l) =
√

8πk

1 − e−2π/k

l∏
p=1

√
p2 + 1

k2
, (4)

and F (α,γ,z) is the confluent hypergeometric function. The
continuum states are normalized as∫ ∞

0
φkl(r)φk′l(r)r2dr = 2πδ(k − k′). (5)

With these eigenstates, the completeness relation is written as

δ(r − r′) =
∞∑
l=0

[ ∑
n

φnl(r)φnl(r
′) +

∫ ∞

0

dk

2π
φkl(r)φkl(r

′)

]

×
+l∑

m=−l

Ylm(r̂)Y ∗
lm(r̂ ′). (6)
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In the GW approximation [4–6], the self-energy is written
as the product of the Green’s function G and the screened
Coulomb interaction W ,

	(r,r′; ω) = −1

2πi

∫ +∞

−∞
G(r,r′; ω + ω′)W (r,r′; ω′)dω′. (7)

The screened Coulomb interaction W satisfies the equation
W = V + V PW , where V is the bare Coulomb interaction
and P is the polarization function calculated as

P (r,r′; ω) = −i

∫ +∞

−∞
G(r,r′; ω + ω′)G(r′,r; ω′)dω′. (8)

The response function R is defined as

R(ω) = P (ω) + P (ω)V R(ω)

= [1 − P (ω)V ]−1P (ω), (9)

and with this R, W is also expressed as W (ω) = V +
V R(ω)V .

In the G0W0 approach, the Green’s function G appearing
in Eqs. (7) and (8) is replaced by the noninteracting Green’s
function G0. The polarization function then has the following
form:

P (r,r′; ω) =
∑
spin

occ.∑
i

unocc.∑
j

ψi(r)ψ∗
j (r)ψj (r′)ψ∗

i (r′)

×
[

1

ω − (εj − εi) + iη
− 1

ω + (εj − εi) − iη

]
.

(10)

Here, ψi(r) and εi are the wave functions and energies of
the noninteracting Hamiltonian, and η is an infinitesimal.
In this paper, we perform the G0W0 calculation with the
exact eigenstates in Eqs. (2) and (3). The frequency integral
appearing in Eq. (7) is evaluated by using the contour-integral
technique [3,16] in which the contour is chosen to be along the
imaginary frequency axis and the contribution from the poles
of the Green’s function is added separately. Thus, we need the
polarization function along the imaginary frequency axis as
well as the real axis.

Along the imaginary axis, we use the eigenfunction basis
to calculate the self-energy. Due to the spherical symmetry of
the system, the polarization P is expanded as

P (r,r′; iω) =
∑
l,m

∑
μ

�μl(r)Pμl(iω)�μl(r
′)Ylm(r̂)Y ∗

lm(r̂ ′),

(11)

where

�μl(r) = φ1s(r)φμl(r), (12)

Pμl(iω) = 1

4π

[
1

iω − μl + iη
− 1

iω + μl − iη

]

= − 1

4π

[
2μl

ω2 + 2
μl

]
. (13)

Here, μl = εμl − ε1s and the factor 1
4π

comes from
Yl=0(r̂)Y ∗

l=0(r̂ ′). We use greek letters to represent both bound
and unbound states (i.e., μ = n,k). In this expansion, P

is diagonal. We note that Pμl is an expansion coefficient
and is different from the matrix element of P in this
basis due to the nonorthogonality of �μl [i.e., Pμl(iω) 	=∫

�μl(r)Y ∗
lm(r̂)P (r,r′; iω)�μl(r ′)Ylm(r̂ ′)d3r d3r ′]. The re-

sponse function in Eq. (9) is expanded similarly, but it has the
off-diagonal coefficients Rμνl (μ 	= ν). The matrix elements
of the Coulomb interaction V in this basis are

Vμνl = 〈�μl|Vl|�νl〉
=

∫
�μl(r)Vl(r,r

′)�νl(r
′)r2r ′2dr dr ′, (14)

where

Vl(r,r
′) = 4π

2l + 1

rl
<

rl+1
>

. (15)

We discretize k and replace the integral over k by a discrete
sum.

Along the real frequency axis, Im Pkl(ω) = − 1
4δ(ω ± kl)

is a singular function of k, so instead of expanding P with the
eigenfunction basis, we expand the Coulomb interaction by
the spherical wave; using the expansion formula of the plane
wave,

eiq·r =
∑
l,m

4πiljl(qr)Ylm(r̂)Y ∗
lm(q̂), (16)

with jl(x) as the spherical Bessel function, the Coulomb
interaction is expanded as

V (r − r′) = 1

(2π )3

∫
d3q

4π

q2
eiq·(r−r′)

=
∑
l,m

∫ ∞

0
dq Vl(q)jl(qr)jl(qr ′)Ylm(r̂)Y ∗

lm(r̂ ′),

(17)

with Vl(q) = 8. The matrix elements of the polarization
function in this spherical-wave basis are calculated as

Pqq ′l(ω) =
∑

μ

Aμl(q)Pμl(ω)Aμl(q
′), (18)

where

Aμl(q) =
∫ ∞

0
�μl(r)jl(qr)r2dr. (19)

In practice, we first calculate the imaginary part of Pqq ′l(ω) and
then generate the real part of Pqq ′l(ω) via the Kramas-Kronig
transformation. The contribution from the continuum states to
Im Pqq ′l(ω) can be calculated analytically as∫ ∞

0

dk

2π
Akl(q)Im Pkl(ω)Akl(q

′)

= −1

4

∫ ∞

0

dk

2π
Akl(q)δ(ω − kl)Akl(q

′)

= − 1

8π

Ak0l(q)Ak0l(q
′)

k0
, (20)

where k0 = √
2(ω + ε1s) (ω > −ε1s). Along the real axis, we

discretize q.
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Finally, the correlation part of the self-energy of the 1s state
is calculated as

〈ψ1s |	c(ω)|ψ1s〉 = −1

2πi

∑
l,μ

2l + 1

4π

×
∫

C

dω′ 〈�μl|VlRl(ω′)Vl|�μl〉
ω + ω′ − εμl ± iη

, (21)

where +(−) signs correspond to the unoccupied(occupied)
states and C denotes the contour defined in Ref. [16].

The wave functions enter the calculation only through the
Coulomb matrix Vμνl in Eq. (14) and Aμl(q) in Eq. (19).
We calculate Vμνl and Aμl(q) analytically as performed by
Yamagami and Takada [17].

In this paper, we concentrate on the self-energy and the
quasiparticle energy of the 1s state ε

QP
1s . For the 1s state, the

(bare) exchange self-energy exactly cancels out the Hartree
term, therefore, ε

QP
1s is calculated as

ε
QP
1s = ε1s + 〈ψ1s |	c

(
ε

QP
1s

)|ψ1s〉. (22)

Since the exact electron removal energy should be equal to
ε1s , the true self-energy should satisfy 〈ψ1s |	c(ε1s)|ψ1s〉 = 0.
Therefore, we use 〈ψ1s |	c(ε1s)|ψ1s〉 as a measure of the error
in the GW approximation.

The calculations require two convergence parameters,
namely, the principal quantum number cutoff nmax and the
angular momentum cutoff lmax. In this paper, we set nmax = 10
and vary lmax up to l = 5.

III. RESULTS AND DISCUSSION

Figure 1 shows the correlation part of the self-energy at
ω = ε1s , the 1s state, by changing lmax up to l = 5. It can be
seen that, as lmax goes from l = 0 to l = 1, the error of the
self-energy or the quasiparticle energy drastically reduces by
around 0.6 eV, and by increasing lmax, the self-energy decreases
monotonically. The self-energy converges slowly with respect
to lmax, which is reminiscent of a similar problem in GW

calculations associated with summing over unoccupied states
[11–13]. Our estimated value for lmax → ∞ by extrapolation
is 0.02 ± 0.01 eV.

0 1 2 3 4 5

l
max

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

R
e

Σ
(

ω
=ε

1s
) 

(e
V

)

FIG. 1. The correlation part of the self-energy [Eq. (21)] of the 1s

state at ω = ε1s for various lmax’s calculated with nmax = 10. Energies
are in eV. The line is a guide for the eye.

TABLE I. Contribution of the selected states to the correlation
part of the self-energy [Eq. (23)] at ω = ε1s . Energies are in eV.

l = 0 1s + 1.09
2s −0.05

Unbound −0.23
Total + 0.78

l = 1 2p −0.09
3p −0.02

Unbound −0.46
Total −0.60

l = 2 3d ∼−10−4

Unbound −0.10
Total −0.10

As can be seen in Eq. (21), we can divide the self-energy
into the different (μ,l) components as

〈ψ1s |	c(ω)|ψ1s〉 =
lmax∑
l=0

∑
μ

	c
μl(ω). (23)

Each component 	c
μl(ω) shows the contribution of each

eigenstate to the self-energy through the Green’s function
appearing in Eq. (7), but the screened interaction W and the
polarization function P contain the contributions of all states.
In Table I, the values of 	c

μl(ω = ε1s) are shown for selected
states. Only the 1s component gives a positive contribution,
and all other unoccupied states give a negative contribution; the
l = 0 component contains the large error of +0.78 eV in total,
which mainly comes from the 1s contribution 	c

1s(ω), but most
of the error is canceled by the contribution of the states with
higher l, especially the states with l = 1. This shows that the
occupancy and symmetry of the states that form the Green’s
function in Eq. (7) play an important role in determining the
self-energy.

To analyze this point further, in Fig. 2, we plot each l

component of the self-energy, i.e., 	c
l (ω) = ∑

μ 	c
μl(ω) as

-1 -0.75 -0.5 -0.25 0
ω (hartree)

-0.10

-0.05

0.00

0.05

0.10

R
e 

Σ(
ω

) 
(h

ar
tr

ee
)

l=0
l=1
l=2
Total

FIG. 2. (Color online) The l components of the correlation part
of the self-energy up to l = 2 as a function of frequency. Only the
real parts are shown.
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a function of frequency. It can be seen that only the l = 0
component has peaks below ≈−0.9 hartree, which pulls up
the real part of the self-energy and explains the large positive
contribution of this component. The other l components do
not have the peaks there and are negative in the whole region
in Fig. 2 in accordance with the results in Fig. 1 and Table I.

This tendency can be qualitatively understood by noting
that, for the low-energy region, the response function Rl(ω)
can be written as a sum of discrete poles as

Rl(ω) =
∑

j

R
j

l

[
1

ω − �jl + iη
− 1

ω + �jl − iη

]
, (24)

where �jl are the poles of Rl(ω), which are essentially the
transition energy to the bound states, nl in Eq. (13), modified
by the Coulomb interaction. With this Rl(ω), 	c

μl(ω) for a
given (μ,l) state is calculated as

	c
μl(ω) = − 1

2πi

∑
j

∫
dω′ 2l + 1

4π

〈�μl|VlR
j

l Vl|�μl〉
ω + ω′ − εμl ± iη

×
[

1

ω′ − �jl + iη
− 1

ω′ + �jl − iη

]

=
⎧⎨
⎩

∑
j

1
4π

〈�1s |V0R
j

0 V0|�1s 〉
ω−(ε1s−�j0)−iη

, (μ,l) = 1s,∑
j

2l+1
4π

〈�μl |VlR
j

l Vl |�μl〉
ω−(εμl+�jl )+iη

, (μ,l) 	= 1s.
(25)

Thus, the positions of the poles in the self-energy, which give
the peak structure, depend on the occupancy of each state in
G0. The peaks below around −0.9 hartree in 	c

l=0(ω) in Fig. 2
are due to the poles of the occupied 1s component 	c

1s(ω)
located at ω = ε1s − �jl=0, where �jl=0 ∼ 0.4 hartree. For
the unoccupied states, Eq. (25) gives the poles ω = εμl + �j ,
which are located in the higher-energy region (outside the
energy range in Fig. 2), and these explain the negative
contribution for the l > 0 components.

The amplitude of the self-energy is determined by the
matrix element 〈�μl|VlR

j

l Vl|�μl〉, the numerator of Eq. (25).
As shown in Table I, for this system, the dominant error
is caused by the 1s component 	c

1s , which involves the
large self-overlap of the 1s state 〈ψ1sψ1s |VlR

j

l Vl|ψ1sψ1s〉.
In this system, however, this large error is canceled by the
contributions from the unoccupied states, especially unbound
states with l = 1. This shows that the unbound continuum
states have an important contribution to the self-energy. The
importance of the unbound states is also reported by Yamagami
and Takada in their paper on the helium atom [17].

To further analyze the effect of unbound states, in Fig. 3,
we show the self-energy calculated completely without the
continuum states, i.e., neither in the Green’s function nor in
the polarization function. In this case, the states with l > 1
affect the self-energy little due to the very small overlap with
the 1s state, and the resulting self-energy contains a large
error of + 0.59 eV. This result shows that the continuum
states affect both the Green’s function in the self-energy, as
shown in Table I, and the polarization function. To see the
effect of the continuum states on the polarization function, in
Figs. 4(a) and 4(b), we plot the polarization function Pqq ′l(ω)
defined in Eq. (18). The imaginary part of the polarization
[Fig. 4(a)] consists of two parts, namely, discrete peaks below

0 1 2 3 4 5

l
max

0.4

0.5

0.6

0.7

0.8

R
e

Σ
(

ω
=ε

1s
) 

(e
V

)

FIG. 3. The correlation part of the self-energy [Eq. (21)] at ω =
ε1s for various lmax’s calculated including only the bound states up to
nmax = 10. Energies are in eV. The line is a guide for the eye.

ω = 1
2 hartree due to the excitation to the bound states and

the continuum spectra due to the continuum states. The latter
contribution, as seen in Fig. 4(b), increases the real part of
the polarization for small ω, and this affects the screened
interaction W . Without the continuum states, the static (ω = 0)
value of the polarization is small for l > 0, indicating that these
bound states do not contribute much to the screening process.

The importance of the continuum states may also be
understood by considering the Thomas-Reiche-Kuhn or

0 1 2 3 4
ω (hartree)

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

l=0
l=1
l=2

0 1 2 3 4
ω (hartree)

-0.05
-0.04
-0.03
-0.02
-0.01
0.00
0.01

l=0
l=1
l=0 (bound only)

l=1 (bound only)

(a) Im P(ω)

(b) Re P(ω)

FIG. 4. (Color online) (a) The imaginary part of Pqq ′ l(ω) at q =
q ′ = 4. (b) The real part of Pqq ′ l(ω) up to l = 1. The results obtained
by including only the bound states are also shown for comparison.
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0 5 10 15 20

nmax

0.40

0.45

0.50

0.55

0.60

0.65

0.70

FIG. 5. The f -sum rule [the left-hand side of Eq. (26)] calculated
with only the bound eigenstates up to n = nmax. The line is a guide
for the eye.

f -sum rule for an isolated system [18–20],

2
∑
N

(EN − E0)|〈N |xi |0〉|2 = 1 (26)

for xi = x,y,z, which can be derived by considering the
commutation relation [xi,pj ] = iδij . Here, |0〉 is the ground
state of the system, and N runs over the whole eigenstate with
eigenenergy EN . In Fig. 5, we show the contribution of the
bound states to the left-hand side of Eq. (26) as a function of
the principal quantum number cutoff nmax. The bound states
account only for 0.56 of the total, and the contribution of the
unbound states is as large as ≈0.43, which is also confirmed by
a direct calculation using the wave functions in Eq. (3). Noting
that this quantity is essentially determined by the overlap
between the 1s state and the unoccupied p states, this large
contribution of the continuum states also shows the importance
of the continuum states with l = 1 in the self-energy and the
polarization as shown in Table I and Fig. 4.

The error of ≈0.02 eV in the 1s removal energy, obtained
in this paper, is unexpectedly small. This may be partly due
to the fact that we use the exact hydrogen wave functions,
which are free from the self-interaction effect. Indeed, when
the LDA wave functions, which contain the self-interaction
error, are used, the error becomes much larger as found by
Nelson et al. [14]. Similar results were obtained by Fernandez
[21] in the GW calculation of a simple model system. Our
value of 0.02 eV, however, is considerably smaller than the

error of 0.21 eV obtained by Nelson et al., who also used the
exact wave functions in their calculations.

Finally, we discuss the implication of our results; our find-
ing is that, the dominant source of the error in the self-energy
for the 1s state is the term containing the overlap between itself,
namely, the term 	1s(ω) ∝ 〈ψ1sψ1s |Wc|ψ1sψ1s〉; however,
unlike the self-interaction appearing in the LDA, due to the
frequency dependence or dynamical nature of the screening
interaction, most of this self-screening error is canceled by
the negative contribution of the components with different
symmetries, especially continuum states with l = 1, which
have large overlap matrix elements with the 1s state. Although,
in the general case, the self-energy is also affected by many
other parameters, we expect this kind of cancellation would
still occur in other systems. However, for more localized
states, for example, d orbitals in transition metals or semicore
states, the contribution of the term including the self-overlap
(i.e., 〈ψdψd |Wc|ψdψd〉) is very large, and it pushes up their
energy level significantly; incomplete cancellation of this
contribution may be the main reason that the G0W0 approach
cannot describe the localized states well. This point will be
investigated in future papers.

IV. CONCLUSIONS

To summarize, we have performed the self-energy calcu-
lation of the hydrogen atom using the analytic form of the
exact eigenstates and have found the very small error of the
electron-removal energy for this system, which is explained by
the cancellation of the self-screening error due to the different
signs of the self-energy components with different angular
momenta.

We have also found the important contribution of the
continuum states to the self-energy. Accurate treatment of
unoccupied states within a finite basis set is a significant
problem of GW calculations [22–26], and we have shown
that the f -sum rule would be one useful measure to check the
quality of a given basis set.
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