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Abstract 

Personality changes, psychiatric disturbances and cognitive abnormalities frequently 

characterise the prodromal phase in Huntington’s disease (HD), a devastating monogenic 

neurodegenerative disorder manifesting with abnormal motor movements and early death. 

Selective loss of medium-sized spiny striatal neurons has been related to the onset of motor 

symptoms but it does not completely explain the psychiatric and cognitive changes that often 

precede motor abnormalities. Here we review the evidence of synaptic and axonal dysfunction 

and neurite dystrophy preceding neuronal loss in HD patients and models. We discuss 

possible mechanisms leading to dysfunction of the axonal and synaptic compartments and 

identify potential novel targets for effective therapeutic intervention. 
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Background 

Huntington’s disease (HD) is a devastating hereditary disorder that manifests clinically in the 

4
th

 or 5
th

 decade of life with psychiatric, cognitive and motor dysfunctions relentlessly and 

inexorably progressing to death within 15-20 years of onset. HD follows an autosomal 

dominant pattern of inheritance with a prevalence of 4-10 per 100000 in Western European 

populations and it is caused by an unstable expansion of a CAG repeat close to the 5’ end of 

the IT15 (for “interesting transcript”) gene located on the short arm of human chromosome 4. 

HD is one of at least 9 disorders caused by an expansion in the length of a CAG repeat. 

Normal individuals have between 8-36 CAG repeats, coding for a polyglutamine (polyQ) 

stretch, at the N-terminus of the protein product of IT15, a 350 kDa protein called Huntingtin 

(HTT), whereas affected patients have more than 40 CAG repeats (HDCRG, 1993). 

The main neuropathological hallmark of HD is the selective degeneration of a subpopulation 

of striatal neurons, the GABAergic medium sized spiny neurons (MSSN), which leads to 

marked atrophy of the striatum, while other striatal neurons such as the large aspiny neurons 

and interneurons are relatively spared. Other affected neuronal populations include the 

pyramidal neurons of layers III and V of the cortex (Vonsattel, et al., 1985). Microscopically, 

HD is characterised by the formation of intranuclear and neuropil aggregates where N-

terminal fragments of mutant HTT (mHTT) with the expanded polyQ repeat localise. In 

general, intranuclear aggregates (NII) are bigger in size than neuropil aggregates, but the latter 

are related to mHTT toxicity, while larger NII probably form in an attempt of the cell to 

neutralise the toxic action of N-terminal soluble mHTT fragments (Arrasate, et al., 2004, 

Davies, et al., 1997, DiFiglia, et al., 1997, Saudou, et al., 1998).  

Since the discovery of the HD gene and mutation, the mechanism of mHTT toxicity to 

specific neuronal populations is still largely unclear. However, the subtle onset of behavioural 

and psychiatric symptoms long before motor impairment suggests that dysfunction of brain 
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connections controlling emotional and behavioural responses may characterise the early 

phases of the disease. Indeed synaptic and axonal dysfunction preceding cell loss have been 

shown, giving a possible explanation to early symptoms and potential novel therapeutic 

targets to defeat this devastating disorder. 

Here we will review reports of early axonal dysfunction in HD patients and in vivo and in 

vitro models, we will discuss the evidence of the mechanisms underlying this dysfunction and 

we will indicate how targeting pathology at this level promises to open a new avenue in the 

therapeutic treatment of HD. 

 

The normal role of huntingtin in the neurons 

Although gain of a toxic function of mHTT primarily causes pathology, a loss of HTT normal 

function is a contributory factor to HD pathogenesis (Borrell-Pages, et al., 2006, Cattaneo, et 

al., 2005). HTT is widely expressed in neuronal and non-neuronal tissues and is particularly 

abundant in neurons of the striatum and layers III and V of the cortex. Within the cell, it has a 

predominant cytoplasmic and perinuclear distribution, is associated to a variety of organelles 

including the Golgi complex and the mitochondrion and localises to vesicular structures such 

as microtubules and synaptic vesicles in neurites and synapses (Zuccato, et al., 2010). HTT 

distribution in a “beads on a string” fashion in axons and their terminals suggests a role in 

vesicle axonal transport (DiFiglia, et al., 1995, Sharp, et al., 1995). 

Hdh gene inactivation in mice results in developmental retardation and death between 

embryonic days 8.5 and 10.5 (Duyao, et al., 1995, Nasir, et al., 1995, Zeitlin, et al., 1995), 

supporting a role in embryonic development and an antiapoptotic function of HTT. 

Behavioural and cognitive defects in mice heterozygous for a targeted disruption in HTT exon 
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5 indicate a role of HTT in cognitive processes and suggest that partial loss of HTT function 

could contribute to the cognitive symptoms of HD patients (Nasir, et al., 1995). 

HTT is an essential component of the mitotic spindle (Godin, et al., 2010) and regulates 

nuclear processes such as gene transcription (Cha, 2007). BDNF transcription in cortical 

neurons, that provide this trophic factor via the corticostriatal pathway to the striatum, 

depends on cytoplasmic HTT, which binds to and reduces the translocation of transcriptional 

regulator REST avoiding its binding to the silencing DNA element RE1/NRSE, its activation 

and suppression of BDNF transcription (Zuccato, et al., 2001, Zuccato, et al., 2003). Loss of 

this function could in part lead to decreased BDNF trophic support (Zuccato, et al., 2001). 

HTT is present at the postsynaptic density where it interacts with postsynaptic density protein 

95 (PSD-95). At this level it is involved in the stimulation of activity-dependent transport of 

NF-kB out of dendritic spines and its translocation to the nucleus. This function is impaired in 

the presence of mHTT (Marcora and Kennedy, 2010). Previous data also implicated a 

postsynaptic role of HTT by interacting with N-methyl D-aspartate receptors (NMDAR) 

binding to PSD-95 and regulating NMDAR postsynaptic density (Smith, et al., 2005). 

Recently, a role of this interaction in mediating excitotoxicity in HD models has been shown 

(see below). Presynaptic roles of HTT, altered by the HD mutation, have also been 

documented (Rozas, et al., 2011) and could be affected by loss of normal HTT function. 

In the cytoplasm and in the axon, wild type HTT through HAP1 interaction acts in association 

with microtubule-dependent molecular motors such as kinesins, dynein and dynactin in the 

regulation of axonal transport and vesicle trafficking (Caviston and Holzbaur, 2009). In this 

way, HTT regulates the transport of synaptic vesicles, organelles, signalling and trophic 

factors such as BDNF (Gauthier, et al., 2004) and its loss impairs axonal transport in primary 

neurons (Her and Goldstein, 2008). HTT function in vesicle trafficking is also mediated by 

palmitoylation (Yanai, et al., 2006). HTT controls palmitoyl transferase activity of its 
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interaction partner huntingtin-interacting protein 14 (HIP14) (Huang, et al., 2004), therefore 

regulating palmitoylation of substrates such as SNAP25 and GluR1 (Huang, et al., 2011) and 

providing another checkpoint on trafficking of these molecules.  

Thus, vital cell processes are supported by the normal function of HTT and affected by its 

loss contributing to the overall toxicity in HD.  

 

Dystrophic neurites precede neuronal loss in HD  

As Alois Alzheimer observed in 1911, an invariable neuropathological finding in HD patients 

is the gradual and marked atrophy of the striatum, accompanied by the enlargement of the 

lateral ventricle, shrinkage of the cerebral cortex and the globus pallidus (GP), thinning of 

corpus callosum and abnormalities of hypothalamus (Vonsattel, et al., 1985). In a series of 

classical pivotal studies several distinguished morphological alterations of the neurites 

preceding neuronal loss were identified, particularly at the level of MSSN in post-mortem 

materials from medium to late stage HD patients. Morphological analysis of dendritic trees of 

surviving MSSN showed a mixture of regenerative and degenerative changes including 

recurving of terminal dendritic branches, abnormal growth and formation of new collaterals, 

and local increase or decrease in spine density, suggesting a biphasic development of 

dendritic pathology in MSSN, similar to what has been noted also in cortical neurons of 

Alzheimer’s disease (AD) patients and maybe related to cognitive decline (Graveland, et al., 

1985).  

Similar results were confirmed and extended in posmortem brain specimens from moderate 

and advanced grade HD patients using staining for Calbindin D28k (Calb), a calcium 

buffering protein abundant in MSSN and their axons (Ferrante, et al., 1991). In the reduced 

number of Calb positive MSSN that maintained cell body integrity, intensity of Calb staining 
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was increased at the terminal dendrites, while it was lost at the level of the axon and proximal 

dendrites (Ferrante, et al., 1991). A common feature of dystrophic neurites in a wide spectrum 

of neurodegenerative pathologies is amyloid precursor protein (APP) and ubiquitin (Ub) 

immunoreactivity (Cochran, et al., 1991). Ub and APP positive aggregates associated with 

dystrophic neurites and preceding neuronal loss in HD cortex (Cammarata, et al., 1993, 

Jackson, et al., 1995), and mHTT accumulation in neuritic aggregates in the cortex and 

subcortical white matter (Sapp, et al., 1997) imply an early pathological process possibly 

caused by impairment of axonal transport. Notably, the number of mHTT and Ub positive NII 

is higher in brain of patients affected with a juvenile form of the disease, whereas adult onset 

patients show less NII and a higher number of HTT and Ub positive dystrophic neurites 

(DiFiglia, et al., 1997). This observation dissociates the formation of NII from axonal 

pathology in HD and highlights the independent role that dystrophic neurites/axons play in 

HD pathology (Sapp, et al., 1999). Loss of enkephalin (ENK) immunoreactivity in the 

substantia nigra in the absence of cell loss (Waters, et al., 1988) and decreased density of 

ENK immunoreactive fibres in the external globus pallidus at presymptomatic age (Albin, et 

al., 1990) suggest degeneration of MSSN axonal projections. 

Alterations in dendritic spine density may be related to dysfunction of the corticostriatal 

glutamatergic input to the neostriatum (Cudkowicz and Kowall, 1990). MSSN receive their 

main excitatory input from two types of glutamatergic layer V cortical pyramidal neurons 

(Reiner, et al., 2010). One type of neurons, with only intratelencephalic corticostriatal 

connections (IT-type), innervates direct pathway neurons, which show a higher resistance to 

degeneration in HD. The second type of neurons, which send their main axons to the 

brainstem via the pyramidal tract (PT-type), preferentially innervates indirect pathway striatal 

neurons, the first to degenerate in HD (Fig. 1). Functional alterations in cortical pyramidal 

neurons, an increase in cortical excitability, or an altered expression of presynaptic and 
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postsynaptic glutamate receptors could lead to excessive glutamate stimulation and increased 

excitotoxicity (reviewed in (Cepeda, et al., 2007)). Cortical pathology has been detected in 

mildly affected patients and might precede and be more severe than striatal pathology 

(Cudkowicz and Kowall, 1990, DiProspero, et al., 2004). Severe loss of cortical and 

subcortical white matter in all degrees of HD has been reported (de la Monte, et al., 1988).  

In vivo neuroimaging methods have been used more recently to assess pathology in HD 

patients and gene carriers. The advantage of these methods is the non-invasiveness and the 

capability to detect changes both in the gray and the white matter at early time points. With 

this technology it has been possible to detect white matter atrophy in the prodromal period 

and reduction of fractional anisotropy, a measure of white matter integrity, possible 

consequence of axonal injury or withdrawal, in HD patients (Ross and Tabrizi, 2011). 

Diffusion tensor imaging has consistently shown evidence of white matter disorganisation at 

an early phase of HD, preceding striatal cell loss (Reading, et al., 2005, Weaver, et al., 2009). 

White matter abnormalities in early HD patients detected by magnetic resonance imaging 

(MRI) were correlated to cognitive dysfunction (Beglinger, et al., 2005). Whether white 

matter change is secondary to early neuronal degeneration of functional circuits, or is a 

primary event, has not been fully clarified (Ross and Tabrizi, 2011).  

Taken together these studies suggest that white matter alterations and presence of dystrophic 

neurites occur before cell loss, possibly as a result of aggregation of mHTT N-terminal 

fragments in axons and block of axonal transport. It is important to further clarify the spatio-

temporal relationship between neuronal death and neurite dysfunction. The answer to this 

question will have important therapeutic implications.  

 

Neuronal dysfunction in HD models 
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Identification of HD gene and mutation makes possible to reproduce the cellular mechanisms 

of the pathology in cell and animal models (HDCRG, 1993). Despite their limitations, these 

models provide a useful tool to study the cellular toxicity of the mutant protein in a short 

frame of time and a useful platform for testing potential pharmacological treatments. 

Various genetically modified mouse models expressing mutant human HTT protein have shed 

light on various aspects of HD pathology (Ferrante, 2009). Mouse models manifest motor and 

cognitive abnormalities resembling those seen in HD patients. In mice motor and behavioural 

symptoms often occur at a stage when there is no obvious neuropathological alteration, 

although at later stages severe atrophy of striatum, cortex, and other brain areas are detectable 

with histological techniques (Hickey, et al., 2008) and MRI imaging (Cheng, et al., 2011, 

Sawiak, et al., 2009). N-terminal mHTT aggregates form in the cell nucleus and in the 

neuropil where they may interfere with vital processes such as axonal transport and synaptic 

vesicle trafficking. Paradoxically, cell loss is absent in most models, or it occurs at very late 

stages. It seems likely that neuronal dysfunction rather than neurodegeneration is responsible 

for the behavioural phenotype of these mice (Crook and Housman, 2011).  

MSSN in striatum of the widely used R6/2 mice, which express an N-terminal HTT fragment 

with a 145 polyQ tract, (Mangiarini, et al., 1996), have a similar atrophic morphology to those 

of HD patients and are characterised by curved dendrites with decreased branch number and 

spine density and by the presence of small aggregates along dendrites and axons (Guidetti, et 

al., 2001, Klapstein, et al., 2001, Meade, et al., 2002). An electron microscopic (EM) study 

also showed an accumulation of HTT aggregates at the axon terminals accompanied by a 

reduction in the density of synaptic vesicles. Neuropil aggregates are smaller in size than NII, 

they accumulate progressively with time and they are visible in the cortex and the striatum in 

R6/2 mice (Li, et al., 1999).  N-terminal aggregates in the axons have been reported in KI 

mouse models with 72-80 CAG repeats inserted in the endogenous Hdh gene, where they 
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localise also to the GP and SN (Substantia nigra), two areas where NII are absent. This 

suggests that the neuropil aggregates locate within the long MSSN axons projecting from the 

striatum, even if the possibility remains that neurons within these regions form neuropil 

aggregates in the absence of any NII (Li, et al., 2000).  

EM analysis in the KI mouse models with 72-80 CAG repeats reveals presence of aggregates 

in axons undergoing degeneration, even if the number of degenerating axons found seems to 

be rather small and still at late time points (Li, et al., 2001). Axonal degeneration 

characterised by organelle disruption and myelin sheath fragmentation has been observed in 

HD mouse models where neuronal cell death is rarely present (Yu, et al., 2003), suggesting 

that it occurs earlier and independently from neuronal cell death. Reduction of expression of 

channel subunits, mainly localised to the axons, in HD mouse models in the absence of 

neuronal cell death also supports an axonal component in HD pathology (Oyama, et al., 

2006). Notably axons in sciatic nerves of asymptomatic R6/2 mice show signs of 

degeneration, even though these are subtle and rare (Wade, et al., 2008). How these changes 

in peripheral nerves relate to HD symptoms is not yet clear. 

Evidence in Drosophila (Gunawardena, et al., 2003) and C. elegans (Parker, et al., 2001) as 

well as in cell lines and primary neurons suggest early neurite toxicity. N-terminal mHTT 

fragments form aggregates in neurites and cause degeneration (Li, et al., 2000, Li, et al., 

2001). Striatal neurons acutely or chronically expressing N-terminal HTT fragments 

containing polyQ repeats of various lengths are characterised by nuclear and neuritic 

aggregates, loss of neurofilament staining and neuritic degeneration that precede an apoptotic 

cell death not related to the formation of NII, although nuclear localisation may be important 

(Saudou, et al., 1998, Zala, et al., 2005). In neuronal cell lines N-terminal and full-length 

mHTT form aggregates at the level of the neurites and promote cell toxicity (Cooper, et al., 

1998). In addition, mHTT inhibits differentiation and neurite outgrowth in PC12 cells (Song, 
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et al., 2002, Wyttenbach, et al., 2001, Ye, et al., 2008). This effect may be mediated by a loss 

of ion channel subunits (Oyama, et al., 2006) or by an abnormal interaction of mHTT with 

binding partners such as HAP1 that promote neurite outgrowth (Li, et al., 2000, McGuire, et 

al., 2006, Rong, et al., 2006) through interaction with kinesin and regulation of axonal 

transport of BDNF (Gauthier, et al., 2004). 

Increased sensitivity to the toxic actions of excitatory amino acids in HD models has been 

widely documented and correlated to abnormalities in expression and function of NMDAR 

early during the disease progression and to profound abnormalities in NMDAR downstream 

signaling, culminating in excessive Ca
2+

 influx, mitochondrial membrane depolarization, 

caspase activation and ultimately cell death, accurately reviewed elsewhere (Fan and 

Raymond, 2007, Milnerwood, et al., 2010). This could be related to altered glutamate release 

at cortico-striatal synapses (Cepeda, et al., 2003), reduction in spine density and number 

(Klapstein, et al., 2001) and decreased expression of astrocytic glutamate transporter 

(Arzberger, et al., 1997). Notably, alterations of expression and trafficking of NMDAR 

subunits have been associated to an increased density of NMDAR containing the NR2B 

subunit at striatal extrasynaptic sites, where their activation triggers an apoptotic cascade (Fan 

and Raymond, 2007, Hardingham and Bading, 2010, Milnerwood and Raymond, 2010). The 

toxicity is mediated by an increased association of NMDAR/NR2B with PSD-95 in the 

presence of mHTT and enhanced extrasynaptic surface NMDAR expression (Fan, et al., 

2009). Recent evidence suggests that p38 activation contributes to mHTT-mediated 

enhancement of extrasynaptic NMDAR/NR2B/PSD-95 toxic signalling (Fan, et al., 2011, 

Fan, et al., 2012). Increased extrasynaptic NMDAR activity in HD models could have a 

negative impact on axonal cytoskeletal structure and axonal transport (Takeuchi, et al., 2005). 

In conclusion, neuritic and synaptic defects are common in a variety of animal and cell 

models of HD. The association of aggregates with vesicles and the importance of wild-type 
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HTT in synaptic function and axonal transport strongly suggest that a transport problem could 

be the trigger for synaptic dysfunction as well as for axon degeneration. Whether axon 

dysfunction precedes, follows, or causes synaptic pathology still awaits elucidation. 

 

Deficits of axonal function in HD 

All the subcellular compartments, including membrane organelles and cytoskeletal proteins, 

are trafficked in cells. Because they are in different forms, they are transported either 

bidirectionally or unidirectionally and either in fast axonal transport or slow axonal transport. 

It has been well characterized that all the membrane structures, such as synaptic vesicles, 

mitochondria and endosomes, are transported bidirectionally along microtubules, while 

cytoskeletal proteins, such as tubulin, actin and neurofilament, and different soluble proteins 

are shipped in slow axonal transport, the latter can further be subgrouped into slow 

component a and slow component b. 

Neurons are polarized cells with a complex and unique morphology. The long processes 

(axon and dendrites) extend far away from the cell body. The functional maintenance largely 

depends on sufficient and timely axonal transport, which ship proteins and different 

organelles from the cell body to the terminals. Meanwhile, the internalized proteins and 

signals or “wore-out” organelles are transported back from terminal regions to the cell body 

for retrograde signalling regulation and reparation. Considering normal fast axonal transport 

of membranous organelles, three types of functional components are required, --- intact 

microtubules; anterograde or retrograde transport motor proteins, kinesin and dynein; and 

membrane organelles (Fig. 2). Among them, transport motor proteins bind to microtubules 

and organelles at each side; however, the binding affinity and activity are highly regulated 

and ensure bidirectional trafficking of different organelles (Hirokawa and Takemura, 2005). 
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Therefore, it is understandable that either of these components being malfunctional will 

certainly affect normal axonal transport of membrane organelles. In this section we will 

discuss whether and to which extent each of them affects axonal trafficking in HD. 

 

Impaired transport machinery 

In neurodegenerative diseases, including HD, protein misfolding is a common phenomenon, 

which is involved in protein aggregation. NII of mHTT frequently appear in the nuclei of 

neurons (DiFiglia, et al., 1997). As discussed above, mHTT aggregates could often be 

observed in other domains of a neuron, such as axons and synapses (Li, et al., 1999, Li, et al., 

2001, Sinadinos, et al., 2009). These protein aggregates can physically interfere with normal 

axonal trafficking of proteins and membrane bound organelles, such as synaptic vesicles and 

mitochondria. In C. elegans and Drosophila models of HD, expression of mHTT causes 

aggregate formation in axons and leads to impaired axonal trafficking of synaptic vesicles and 

mitochondria, by increased stalling of transported vesicles (Chang, et al., 2006, Gunawardena, 

et al., 2003, Li, et al., 1999, Li, et al., 2001, Parker, et al., 2001, Sinadinos, et al., 2009). 

Interestingly, cytoplasmic/neuropil expression and aggregate formation of mHTT rather than 

that in the nuclei possess more specific role in blocking axonal transport (Lee, et al., 2004), 

this is consistent with the notion that neuropil mHTT aggregates may physically interfere with 

axonal transport. In cortical neurons upon mHTT expression mitochondria trafficking is 

inhibited and deficits of movement is correlated to the size of aggregates (Chang, et al., 

2006). Therefore it is conceivable to hypothesize that a therapeutic approach to restore axonal 

function in HD is to inhibit the mHTT aggregate formation at least in this compartment. 

Intact microtubule is essential for normal function of axonal transport. HTT is associated with 

microtubules (Gutekunst, et al., 1995, Hoffner, et al., 2002). A normal and highly regulated 
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interplay between microtubules and molecular motors is crucial for an effective transport. 

Any alterations on this association will interfere with the normal axonal trafficking. Szebenyi 

and co-workers demonstrated that mHTT and its aggregates can affect microtubule stability 

and can also inhibit fast axonal transport and neurite outgrowth (Szebenyi, et al., 2003). 

Further studies demonstrated that impaired axonal transport is contributed by dysfunctional 

JNK signalling pathway in neurons (Morfini, et al., 2009). JNK normally phosphorylates 

kinesin-1, reducing its binding affinity to microtubules. Interestingly, JNK activation 

substantially increases in cells and animal models of HD (Morfini, et al., 2009). This will 

cause dissociation of the motor protein kinesin from microtubule tracks and in turn block 

axonal transport. In non-neuronal cells, mHTT expression and its aggregate formation impair 

insulin release and associate with high incidence of diabetes (Bjorkqvist, et al., 2005). More 

evidence has shown that mHTT disrupts insulin-containing granule transport by direct 

interference with -tubulin (Smith, et al., 2009). The underlying mechanism may be that 

mHTT exhibited enhanced, but aberrant interaction between HTT molecules and -tubulin 

compared to the wild-type HTT. This abnormal interaction raises the possibility that 

microtubule-dependent transport is disrupted by mHTT through a physical block and in turn 

makes the microtubule-based transport less effective in HD (Fig. 3). 

It has been showed that HTT associates with various membrane organelles, such as synaptic 

vesicles (Li, et al., 1999), endosomes (Li, et al., 2009) and mitochondria (Trushina, et al., 

2004) and even autophagosomes (Martinez-Vicente, et al., 2010, Ravikumar, et al., 2008). 

HTT binds to HAP1, a protein that is transported in axons and associates with p150
Glued

 

dynactin subunit, an accessory partner of dynein/dynactin motor protein complex (Vallee, et 

al., 2004) and the kinesin light chain (McGuire, et al., 2006). Therefore, HTT plays a key role 

in intracellular trafficking of these membranous organelles. Due to the widespread association 
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of HTT with different types of organelles in different neurons, it appears unlikely that the role 

of HTT in membrane trafficking is restricted to a specific organelle. 

 

Trafficking of BDNF-containing organelle in HD 

Brain-derived neurotrophic factor (BDNF) plays a key role in the survival of striatal neurons 

(Zuccato and Cattaneo, 2009). BDNF is decreased in the cells that express mHTT in different 

animal models (Gharami, et al., 2008, Zuccato, et al., 2001, Zuccato, et al., 2005) and patient 

brains with HD (Ferrer, et al., 2000). BDNF is synthesized as a protein precursor consisting of 

two domains, the prodomain and the BDNF domain (proBDNF) (Seidah, et al., 1996). The 

proBDNF is rapidly transported in neurons from the cell body to terminals and it is processed 

in the cells and become the matured form of BDNF, which then is released in the nerve 

terminals upon neuronal stimulations (Matsumoto, et al., 2008). Evidence has shown that the 

single nucleotide (Val66Met) polymorphism in the BDNF gene at codon 66 in the proBDNF 

sequence leads to a reduction of BDNF transport and activity-dependent release (Egan, et al., 

2003). Expression of mHTT with expanded polyglutamine can significantly reduce transport 

of BDNF. del Toro and co-workers used a live cell imaging technique (fluorescence recovery 

after photobleaching) and showed that mHTT impaired post-Golgi trafficking of BDNF in a 

form-specific manner (del Toro, et al., 2006). Val66Val-BDNF form is much more severely 

affected in trafficking and release by mHTT in contrast to Met66Val-BDNF. Therefore, it 

appears that different BDNF forms may be involved in differential trafficking machinery in 

axons and terminals.  

Two recent studies have reported that association of HAP1 with proBDNF is required for the 

intracellular trafficking, axonal transport and activity-dependent secretion of proBDNF (Wu, 

et al., 2010, Yang, et al., 2011). It appears that HAP1 acts as a BDNF cargo-carrying 
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molecule analysed with mass spectrometry. Subcellular fractionation analysis showed that 

deletion of HAP1 influenced the distribution of pro-BDNF in the synaptosomal fraction, 

indicating that HAP1 plays a role in the trafficking of pro-BDNF-containing vesicles into 

synapses. mHTT decreases the association of HAP1 with pro-BDNF via interference with the 

interaction between HAP1 and proBDNF. Further evidence from the same research group 

showed that the proBDNF forms a complex with HAP1 and sortilin (Yang, et al., 2011). 

HAP1 null neurons exhibit defective movement of proBDNF-containing vesicles. Co-

immunoprecipitation and Western analyses showed that sortilin stabilizes the proBDNF-

HAP1 complex and therefore prevent proBDNF degradation. Reduced association among 

pro-BDNF, HAP1 and sortilin is observed in the HD brains, which may concomitantly result 

in impaired BDNF transport and increased degradation. 

It is worth mentioning that, in contrast to the function of mHTT, wild-type HTT itself 

enhances the transcription of BDNF via inhibition of the neuron restrictive silencer element 

(Zuccato, et al., 2003) and facilitates trafficking of BDNF-containing organelles in a 

phosphorylation-dependent manner (Colin, et al., 2008). Gauthier and colleagues 

demonstrated that HTT controls neuronal survival by enhancing BDNF vesicular transport 

along microtubules (Gauthier, et al., 2004). Using biochemical and real-time imaging 

techniques in cultured cortical neurons or neuroblastoma cells the authors demonstrated that 

HTT increased the transport efficiency of BDNF-containing vesicles along the microtubules. 

When expressing mHTT with 109 polyglutamines, BDNF transport is substantially reduced. 

Further study revealed that the underlying mechanism is that HAP1 induced the recruitment 

of HTT and p150
Glued

 into these BDNF-containing organelles. mHTT disrupts the association 

of the HTT/HAP1/p150
Glued

 key motor complex to microtubules. Decreased BDNF trafficking 

consequently causes a reduction in neurotrophic support and leads to neurotoxicity (Gauthier, 

et al., 2004).  
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Mitochondria dynamics in HD 

Mitochondria are cytoplasmic organelles and provide energy (ATP) to all the cells in the 

body, including neurons. It has been long believed that mitochondria are synthesized and 

formed in the cell body and shipped down to axons and dendrites to the synaptic sites and 

provide the energy needed locally because most mitochondrial proteins are encoded and 

localized in the nuclear genome. If so, efficient mitochondria transport and energy supply are 

essential for normal neuronal function. However, Hollenbeck and his colleague have 

demonstrated mitochondria biogenesis in distal segment of axons (Amiri and Hollenbeck, 

2008). After axotomy, they observed mtDNA replication in axons. Quantitative analysis 

estimated about one-third of total mtDNA replication occurring in axons of a neuron (Amiri 

and Hollenbeck, 2008). Therefore it is conceivable that effective mitochondrial trafficking as 

well as local biogenesis in axons and dendrites are vital for normal function of a neuron. 

Mitochondrial transport in axons takes place through a highly regulated plus- and minus-end 

directed movements along microtubules. The plus-end directed motor, kinesin, and minus-end 

directed motor, dynein, closely coordinate and control the bidirectional trafficking 

(Hollenbeck and Saxton, 2005). Many studies have shown that HTT is associated with 

mitochondria and tightly regulates mitochondria trafficking. Greenamyre and co-workers 

pioneristically showed direct evidence of mHTT effect on mitochondrial function (Panov, et 

al., 2002). They demonstrated direct association of HTT on mitochondrial membranes at 

electron microscopic level. In isolated lymphoblast mitochondria from patients with HD they 

detected a lower membrane potential compared to mitochondria from the control subjects. 

Similar phenomena also observed in brain mitochondria isolated from a full-length mHTT 

transgenic mouse model (YAC72) of HD. More interestingly, the decreased mitochondrial 

membrane potential, due to impaired mitochondrial calcium handling, occurred much earlier 

than the onset of motor deficits. In live-cell imaging with cultured cells, expression of mHTT 
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induces a shift of mobile mitochondria into the stationary status, while the velocity of 

mitochondria is significantly decreased, particularly at the sites where mHTT aggregates 

locate (Chang, et al., 2006, Trushina, et al., 2004). Similar phenomena are also observed in 

the transgenic mouse models of HD. Moreover, the severity of impairment of mitochondria 

trafficking is closely related to the age of the animal. Loss of mitochondria motility 

diminishes ATP production and increases oxygen radical formation with age. It appears that 

both gain-of-function (of mHTT) and loss-of-function (of wild-type HTT) can cause 

trafficking defects of mitochondria. Using a KI (Q150) mouse model of HD, Orr et al. 

demonstrate that even prior to aggregate formation, the interaction of soluble mHTT with 

mitochondria increases with age and interferes with the association of motor proteins (kinesin, 

p150 and HAP1) with mitochondria (Orr, et al., 2008). 

Dynamics of mitochondrial fission and fusion are highly regulated and kept in balance in the 

physiological condition. Mitochondrial fusion protects cells from toxic insults by diluting the 

toxin contents. A recent post-mortem study showed that mitochondrial fission and the related 

genes and gene products, (DRP1 and FIS1) in HD brains appeared increased compared to the 

control non-HD subjects. Similarly to what happens in patients, also in cell models of HD 

mitochondrial fragmentation and cristae disruption were observed, accompanied by increased 

DRP1 dephosphorylation and association to mitochondria and by an increased susceptibility 

to apoptotic stimuli (Costa, et al., 2010). Conversely, the genes and gene products regulating 

mitochondria fusion (Mfn1 and Mfn2) decreased in HD (Shirendeb, et al., 2011), implying 

impaired mitochondrial dynamics in HD.  

 

Vesicular transport in HD 
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In synapses, besides mitochondria and some specific organelles such as BDNF-containing 

organelles mentioned above, many more membrane organelles exist. Most abundant portions 

are synaptic vesicles that store different neurotransmitters and neuropeptides. These 

organelles are formed in the cell body and transported into the synaptic sites and also undergo 

vesicular recycling in the synapses. It is well known that HTT is associated with synaptic 

vesicles (DiFiglia, et al., 1995) and endosomes (Velier, et al., 1998). Upon expression of 

mHTT the number of immobilized vesicles progressively increased. The motility of mobile 

vesicles also slowed down (Trushina, et al., 2004). When transmitters are released in the 

synaptic sites the membrane of synaptic vesicles will be endocytically retrieved into 

endosomes. In a recent study, Li et al. used fibroblasts from human HD patients to study the 

effects of mHTT on recycling vesicles (Li, et al., 2009). They observed that mHTT inhibited 

Rab11 activity and led to deficits in vesicle biogenesis at recycling endosome. Similar 

changes are also observed in a KI (Q140/Q140) mouse model of HD (Li, et al., 2009). 

Expression of dominant active Rab11 can normalize Rab11 activity and partially rescue 

glutamate-induced cell death (Li, et al., 2009). In line with the dysfunction of Rab11 upon 

mHTT expression, additional neuronal dysfunction is also reported on aberrant trafficking of 

the neuronal glutamate transporter EAAC1 (Li, et al., 2010) and on dendrite spine loss and 

neurodegeneration (Richards, et al., 2011). 

Although HTT is widely present in different types of cells inside and outside the central 

nervous system, more robust neuropathology and cell death occur in the neurons of the 

striatum. Therefore it is interesting to understand whether HTT functions differently with any 

regional or cell-type preferences. In the context of axonal transport, does mHTT affect one 

type of neuron more than another? Her and Goldstein recently addressed this issue. They 

found that mHTT and loss of normal HTT selectively impaired intraneuronal trafficking of 

the striatal and hippocampal neurons, but not cortical neurons (Her and Goldstein, 2008). The 
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authors use APP-YFP and BDNF-mCherry to label two types of organelles in cultured 

neurons of the striatum, cerebral cortex or hippocampus of KI (Hdh150Q) mice or HTT KO 

(Hdh
Flox

) mice. Very interestingly, they found that in the mHTT (150Q) expressing neurons 

the movement of APP and BDNF is impaired in striatal and hippocampal neurons in contrast 

to the cortical neurons. Loss of HTT impairs APP-containing organelle trafficking and the 

counter-expression of wild type HTT, rather than mHTT, normalizes APP transport in all 

three types of neurons. These data indicate that axonal transport in cortical neurons is more 

resistant to mHTT, in contrast to the striatal and hippocampal neurons. It is unexpected that 

no alterations are observed for HAP1, p150
Glued

, kinesin and dynactin, which previously have 

been reported to be altered by mHTT expression or loss of HTT. More experiments are 

needed to clarify whether other molecules may be involved here and to reconcile this data 

with previous evidence suggesting defective transport of BDNF in cortical neurons expressing 

mHTT (Gauthier, et al., 2004, Zala, et al., 2008). 

 

Conclusions and Perspectives  

Neuronal dysfunction, neuritic dystrophy and synaptic abnormalities often precede neuronal 

death in HD patients and models and correlate with behavioural and cognitive impairment. 

Neuropathological evidence of neuritic dysfunction, Ub and APP immunoreactivity and the 

presence of aggregates in the neuropil led to the hypothesis that axonal transport defects were 

the basis of neuronal dysfunction since the early studies (Jackson, et al., 1995). Abnormalities 

in axonal transport at several levels have been found more recently, confirming this original 

hypothesis. A failure in axonal transport will reduce delivery of critical cargoes to the most 

distal sites first, explaining synaptic abnormalities as well as the increased susceptibility of 

long axonal projections and supporting the notion of HD as a “dying back” type of 
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neurodegeneration (Han, et al., 2010). The precise spatio-temporal relationship between 

axonal and synaptic degeneration however still needs to be clarified. 

The extended shape and vulnerable nature of axons makes them a target for insults caused by 

an aggressive extracellular environment. Microglia activation is a hallmark of many 

neurodegenerative diseases where inflammatory responses play an important part in the 

disease pathogenesis. In HD, activated microglial cells expressing mHTT have been found in 

striatum, cortical and subcortical areas and white matter and the number of these cells 

increase as the disease progresses (Moller, 2010).  Microglia activation affects the neurons 

and their long axons in several ways, such as releasing cytokines or altering phagocytic 

responses, and induces neuritic beading associated with collapsed cytoskeletal and motor 

proteins having a detrimental effect on axonal transport (Takeuchi, et al., 2005). This toxicity 

appears to be mediated by increased glutamate release accompanied by a redistribution of 

NMDA receptors to extrasynaptic sites (Hardingham and Bading, 2010). Indeed memantine, 

an antagosit which blocks extrasynaptic NMDAR with high affinity while maintaining 

synaptic NMDAR transmission, is a promising novel therapeutic strategy (Okamoto, et al., 

2009). 

Future therapeutic strategies in HD must aim at targeting early synaptic and axonal 

dysfunctions as well as at fighting neurodegeneration at the later stages of the pathology. 

Axonal transport defects have to be corrected to achieve effective treatment. Solubilisation of 

axonal and cytoplasmic aggregates and removal of the blockage to axonal transport may be 

one such possibilities (Ravikumar, et al., 2008). Stabilisation of microtubules, rail of axonal 

transport, could be another way to improve defects in HD (Dompierre, et al., 2007). In 

addition, new knowledge about the molecular players regulating axonal and synaptic 

degeneration is emerging quickly (Coleman and Freeman, 2010). Shedding light on these 
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mechanisms may offer yet further therapeutic possibilities to sustain the normal activities of 

axons and synapses. 

In conclusion, a vast body of evidence indicates that dysfunction of the synapse as well as the 

axon, particularly a disruption in axonal transport, may be the cause of several symptoms 

occurring early in HD, and therefore may offer a target for future treatment of this devastating 

disorder. 

Abbreviations: 

1. HD= Huntington’s disease 

2. AD= Alzheimer’s disease 

3. HTT= human huntingtin protein 

4. HTT= human huntingtin gene 

5. IT15= interesting transcript 15 

6. mHTT= mutant human huntingtin with an expanded polyQ tract 

7. Hdh= mouse huntingtin gene 

8. polyQ= polyglutamine 

9. MSSN= striatal GABAergic medium-sized spiny neurons 

10. NII= intranuclear aggregates 

11.  KI = knock-in 

12. KO = knock-out 

13. GABA = gamma-aminobutyric acid 

14. NMDA = N-Methyl-D-aspartic acid 

15. NF-κB = nuclear factor kappa-light-chain-enhancer of activated B cells 
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16. BDNF = Brain-derived neurotrophic factor 

17. JNK = c-Jun N-terminal kinase 

18. ENK = enkephalin 

19. Calbindin D28k = Calb 

20. NMDA = N-methyl D-aspartate  

21. NMDAR =  N-methyl D-aspartate receptors  

22. PSD-95 = postsynaptic density protein 95  

23. DRP1 = dynamin-related protein 1 

24. FIS1 = fission protein 1 
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Figure Legend 

Fig. 1. Schematic representation of the cortical input to striatal neurons and of the major 

projections of striatal MSSN. The direct and indirect loops of the basal ganglia are 
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represented on different parts of the brain, for clarity. The location of intranuclear and 

extranuclear mHTT aggregates, of dystrophic neurites and of fiber loss is also represented. 

Str= Corpus Striatum, Thal=Thalamus, STN= Subthalamic nucleus, GPi= Globus Pallidus 

(internal segment), GPe= Globus Pallidus (external segment), SNpc= Substantia Nigra (pars 

compacta), SNpr= Substantia Nigra (pars reticulata). 

 

Fig. 2. Schematic drawing indicating the machinery of fast axonal transport in a matured 

neuron. The anterograde motors, kinesins, transport vesicular organelles from the cell body to 

the terminals along microtubules (to the direction of plus end), while dynein transport 

membrane organelles retrogradely along microtubules (to the direction of minus end).  

 

Fig. 3. Schematic drawing showing a model of how mHTT affect microtubule-based axonal 

transport. mHTT (B) binds more strongly to -tubulin than does wild-type HTT (A), thereby 

accumulating over time on the microtubules. This causes a physical block to transport and 

gradually makes intracellular transport less efficient. The figure is adapted from our previous 

publication (Smith et al., 2009). 
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