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DOCTORAL THESIS

Most of us go through life without giving much thought to the smallest blood 
vessels in the body - the capillaries. It is in these, extremely thin, only about 
5-7 thousandths of a millimeter thick, blood vessels that the exchange of 
important nutrients and water occur between the blood circulation and the 
different tissues in the human body. Among the most important substances 
that are transported to the tissue are, for example, oxygen and glucose without 
which the cells in the body cannot survive for very long. Similarly, the end-
products of the metabolic activity that occurs throughout the different tissues 
in the body, such as carbon dioxide and water, are transported away from 
the tissue. The aim of this thesis is to understand the basic mechanisms – the 
physiology - behind the transport of various substances that occur over the 
walls of capillaries - the smallest blood vessels in the body. In general terms, 
this is accomplished by constructing mathematical models which are then 
used to analyze experimental data from experimentally observed transport 
phenomena. The main focus will, in this thesis, be on the capillaries in the 
kidney and in the peritoneum - two very different kinds of blood vessels.

Carl Mikael Öberg
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Quantification of the electrostatic properties of the glomerular filtration barrier
modeled as a charged fiber matrix separating anionic from neutral Ficoll

Carl M. Öberg and Bengt Rippe
Department of Nephrology, University Hospital of Lund, Lund, Sweden

Submitted 1 November 2012; accepted in final form 7 January 2013

Öberg CM, Rippe B. Quantification of the electrostatic proper-
ties of the glomerular filtration barrier modeled as a charged fiber
matrix separating anionic from neutral Ficoll. Am J Physiol Renal
Physiol 304: F781–F787, 2013. First published January 9, 2013;
doi:10.1152/ajprenal.00621.2012.—In the current study we explore the
electrostatic interactions on the transport of anionic Ficoll (aFicoll) vs.
neutral Ficoll (nFicoll) over the glomerular filtration barrier (GFB)
modeled as a charged fiber matrix. We first analyze experimental
sieving data for the rat glomerulus, and second, we explore some of
the basic implications of a theoretical model for the electrostatic
interactions between a charged solute and a charged fiber-matrix
barrier. To explain the measured difference in glomerular transport
between nFicoll and aFicoll (Axelsson J, Sverrisson K, Rippe A,
Fissell W, Rippe B. Am J Physiol 301: F708–F712, 2011), the present
simulations demonstrate that the surface charge density needed on a
charged fiber matrix must lie between �0.005 C/m2 and �0.019
C/m2, depending on the surface charge density of the solute. This is in
good agreement with known surface charge densities for many pro-
teins in the body. In conclusion, the current results suggest that electrical
charge makes a moderate contribution to glomerular permeability, while
molecular size and conformation seem to be more important. Yet, the
weak electrical charge obtained in this study can be predicted to nearly
totally exclude albumin from permeating through “high-selectivity” path-
ways in a charged-fiber matrix of the GFB.

capillary permeability; fiber matrix; anionic Ficoll; charge selectivity

THE RELATIVE IMPORTANCE OF electrical charge in the sieving of
plasma proteins across the glomerular filtration barrier (GFB)
has been a matter of debate over the last few decades. The
seminal data of Brenner an colleagues (8, 10), using differently
charged dextran thus suggested that the glomerular transport of
negatively charged, sulfated dextran molecules be much lower
than that of neutral dextran of the same size (8). However,
several authors have questioned these results. Thus some
fractions of sulfated dextran seem to bind to plasma proteins or
glomerular cells (18, 33). In addition, it has been shown that
polysaccharides (such as dextran and Ficoll) exhibit a flexible
molecular conformation, making them hyperpermeable com-
pared with more rigid solutes, such as proteins, at least for
molecular radii approaching the pore radius (1, 12). Ficoll
apparently shows glomerular sieving characteristics some-
where between those of dextran and proteins (34). Several
findings also suggest that polysaccharides undergo significant
conformational changes during charge modification, making
them even more flexible. Hence, Asgeirsson et al. (2) con-
ducted an experiment investigating the glomerular sieving of
carboxymethylated (CM) anionic Ficoll (aFicoll) and “unmod-
ified” neutral Ficoll (nFicoll) in rats. The glomerular permea-

bility to negatively charged CM-Ficoll was markedly enhanced
compared with that of its neutral counterpart. In addition, size
separation using high-performance size exclusion chromatog-
raphy showed that the aFicoll tested eluted earlier than nFicoll,
indicating that the charge-modification process had indeed
increased the molecular radius (and altered the conformation)
of Ficoll (2).

Schaeffer and colleagues (16, 31) published experiments show-
ing that the difference in permeability between anionic and neutral
dextran was negligible. In contrast to these results, there are
extensive experimental results from both synthetic membranes
and the glomerulus that demonstrate that globular proteins are
selected based both on their size and charge (19, 34). Using
anionic 5.8- and 20-nm (pore radius) silicon nanopore mem-
branes, Fissell and colleagues (17) showed a charge-dependent
permselectivity for aFicoll. Using the same charge-modification
technique for CM-Ficoll, our own experiments have demonstrated
a reduced transport of aFicoll relative to nFicoll across the rat
GFB (4). Bhalla and Deen (6) published an elegant theoretical
model for the transport of charged solutes over a regular array of
charged fibers, and their results showed that the osmotic reflection
coefficient for BSA was much larger than that for an uncharged
system.

It is well-recognized that some of the major structural compo-
nents of the GFB (e.g., perlecan, agrin, entactin/nidogen, and
proteoglycans of the glycocalyx) and important plasma proteins,
such as albumin and orosomucoid, carry a net negative charge
during physiological conditions. Numerous experiments using
charged barriers have demonstrated large to moderate effects of
electrical charge in the hindrance of charged solutes, with the
difference being strongly dependent on the ionic strength of the
solution. Pujar and Zydney (27) showed that the clearance of BSA
through a 100,000 molecular weight cutoff membrane decreased
by nearly two orders of magnitude as the ionic strength (salt
concentration) was reduced from 150 to 1.5 mM. At physiologic
(“high”) ionic strengths the electrical field of the solute will be
condensed and the “screening distance” for charge at which
significant charge effects occur (i.e., the so-called Debye length,
being �8 Å at physiological ionic strength) will be reduced (9).
Isolated glomerular basement membranes (GBM) have failed to
show charge selectivity at physiological ionic strengths when
probed with neutral and negatively charged Ficoll (7). At the ionic
strengths of 1.0, 0.11, and 0.01 M, Johnson et al. (22) demon-
strated that the hindrance due to charge of BSA, ovalbumin, and
lactalbumin was moderate in a charged agarose gel. The partition
coefficient for BSA with an estimated net charge of �37 was
reduced from 0.67 to 0.47 when the ionic strength was lowered
from 1.0 to 0.11 M (22).

In the current study, the model of Johnson and Deen (23) as
modified by Jeansson and Haraldsson (21) is used to analyze
the sieving data for 20–35 Å (radius) aFicoll and nFicoll based

Address for reprint requests and other correspondence: B. Rippe, Dept. of
Nephrology, Lund Univ., Univ. Hospital of Lund, S-211 85 Lund, Sweden
(e-mail: Bengt.Rippe@med.lu.se).

Am J Physiol Renal Physiol 304: F781–F787, 2013.
First published January 9, 2013; doi:10.1152/ajprenal.00621.2012.
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on experimental data from Axelsson et al. (4) to determine the
charge density needed in a fibrous barrier to account for the
measured results. To our knowledge, this is the first attempt to
calculate the surface charge density of the GFB. It will be shown
that, in a randomly oriented anionic fiber matrix fitting to the
mentioned Ficoll data, if the difference between the sieving
coefficient of nFicoll and that of negatively charged albumin
would be due to charge only, this would require a very highly
charged barrier. In such a case, surface potentials exceeding �200
mV would be needed, which is equivalent to that of a charged
spherical 35.5 Å (radius) solute with a net charge of approxi-
mately �200. Still, the electrical charge of the GFB certainly has
a distinct effect on the glomerular permeability to charged solutes.
The importance of this charge effect relative to the size selectivity
will be explored in this study.

METHODS

Theory. The fiber-matrix model of Ogston supposes a barrier consist-
ing of a random array of fibers of thickness rf. The partition coefficient
was determined from

� � �0

�
g(h)dh (1)

where g(h) is the probability density function (PDF) for finding the
closest fiber at a surface-to-surface distance h from the solute sphere
with radius rs. For Ogston’s original model for random fibrous media,
the PDF is

g(h) �
2�(h � rf � rs)

rf
2 e��� (h � rf � rs)

rf
�2

(2)

Here � is the volume fraction of fibers, often expressed in terms of the
fractional void volume ε � 1 � �. As explained in Johnson and Deen
(23), a Boltzmann factor e�E(h)/kT can be introduced describing the
relative probabilities of various energy states in the solute-fiber
system.

� � �0

�
e�E(h) ⁄ kTg(h)dh (3)

where E(h) is the electrostatic free energy associated with moving a
charged sphere to a certain distance h from the fiber. The free-energy
was calculated from the expression

E(h) � �rrs�RT

F �2

�G (4)

where εr is the dielectric permittivity of the solvent and

�G � A1(	, 
, �)�s�f � A2(	, 
, �)�s
2 � A3(	, 
, �)�f

2 (5)

The nondimensionalized parameters �, �, �, �s, and �f are described
in Table 1. The coefficients Ai are given by

Ai(	, 
, �) � ai	
bi
�cie�di� (6)

where the coefficients are given by Table 1 in Johnson and Deen (23).
Charged fiber-matrix 	 large-pore model. The data were analyzed

using a modified version of the theoretical model by Johnson and
Deen (23), based on the extended Ogston model, as developed by
Jeansson and Haraldsson (21). In this model, the theoretical sieving
coefficients (
model) were calculated from the nonlinear global con-
vection/diffusion equation (30) according to

Table 1. Dimensionless coefficients

Dimensionless Coefficient Definition

� rs

rf
� rs�
� h�
�s rsF

�RT
qs

�f rfF

�RT
qf

Nondimensionalized coefficients for the fiber radius (rf), ratio of solute
radius to Debye length (�), separation distance (�), and the surface charge
densities of the solute (�s) and fiber (�f), respectively. Additional symbols are
explained in the text.

Fig. 1. Illustration of the electrical double layer in a
liquid at contact with a negatively-charged solid.
The zeta potential is the potential at the slipping
plane that separates mobile fluid from fluid that re-
mains attached to the solute.
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model � f fib

1 � �fib

1 � �fibe
�Pefib

� fL

1 � �L

1 � �Le�PeL
(7)

where ffib is the fractional volume flow (Jv,fib/Jv) through the fiber-matrix
pathway and fL � 1 � ffib represents the fraction of volume transported
via the large-pore system. The Peclet numbers are defined by

Pefib � f fib

GFR(1 � �fib)

PSfib
(8)

PeL � fL

GFR(1 � �L)

PSL
(9)

For the fiber-matrix pathway, the reflection coefficient was esti-
mated from the partition-coefficient (�) using the simple relation

� � (1 � �)2 (10)

The permeability-surface area coefficient was calculated from

PSfib � D
A0

�x
� (11)

For the large-pore system, the hydrodynamic estimates recom-
mended for porous membranes (Eqs. 16 and 18) by Dechadilok and
Deen (11) were used. The definitions of constants and symbols are
essentially the same as those used in the two-pore model according to
Rippe and Haraldsson (30). The hydraulic conductance through the
fibrous pathway was estimated using the Kozeny-Carman equation

LpS � �fib
�1A0,S

A0

A0

�x

rf
2�3

4G�(1 � �)2 (12)

where ε is the fractional void volume, � is the viscosity of the filtrate
(water) at 310° K, and G is the Kozeny constant. The fractional total
cross-sectional area over the large pores can be calculated using [cf.
also Eq. 27 in Rippe and Haraldsson (30)]

A0,L

A0,S
�

2�Lrf
2�3

�fibrL
2G(1 � �)2 (13)

Optimal values for the fractional fiber volume � � (1 � ε), A0/x,
rL, and �L were calculated with the nonlinear regression method of
Levenberg and Marquardt using the well-known MINPACK software
library (25) with standard settings. For the data analysis of the aFicoll,
only the fiber-matrix pathway was considered so that fL � 0 and the

nonlinear regression scheme was limited to the parameters � and
A0/x. Due to the confounding effects of the other model parameters,
only the barrier surface charge density (qf) was allowed to vary
between the charged and uncharged models. Taking into account that
the oncotic pressure gradient is different over different pathways (cf.
Eqs. 3–11; Ref. 29), the volume flux through a pathway i in a
heteroselective barrier can be approximated from

Jv,i � �i�LpS(�o � �i,albumin)�� � GFR� (14)

where �o � ��i�i is the osmotic reflection coefficient and a plasma
oncotic pressure � of 28 mmHg is assumed. The improper integral
in Eq. 3 was evaluated numerically using a 21-point Gauss-Kronrod
quadrature. Numerical calculations were performed using the software
package GNU Science Library (14).

Physical properties of aFicoll. The net charge of human serum
albumin during physiological conditions is �22 (26). By approximat-
ing its surface area to that of a sphere, using a Stokes-Einstein radius
of 35.5 Å, a surface charge density of approximately �0.022 C/m2

can be calculated. The electric charge of the aFicoll used in the
experiments has been quantified in terms of the zeta potential � (see
Fig. 1), which is the electric potential at the slipping plane, with values
of �40 mV and �45 mV for CM-Ficoll 70 and CM-Ficoll 400,
respectively (17). The surface charge density can be approximated
using the Grahame equation

qs � ��r� (15)

where ε r is the dielectric permittivity of the solvent and ��1 is the
Debye length. If assuming a relative permittivity of 74.3 for the
solvent at 310° K (13) and an ionic strength of 0.15 M, a surface
charge density of �0.033 C/m2 for Ficoll 70 and �0.037 C/m2 for
Ficoll 400 can be calculated. The general problem of estimating the
net charge of a protein is not trivial (35), but the use of the Grahame
equation provides a good estimate at high ionic strengths (9). Since
the perfusate used in the experiments consisted of both Ficoll 70 and
Ficoll 400, the surface charge density is estimated as the arithmetic
mean of the above values, i.e., �0.035 C/m2. This charge density is
equivalent to that of a 36 Å spherical molecule with a net charge of
approximately �37. As described in Axelsson et al. (4), aFicoll
showed a slight increase in molecular diameter as measured by the
difference in elution time. This effect was compensated for in the
current analysis by subtracting the measured difference in Stokes-
Einstein radius from the aFicoll data. In addition, the glomerular
filtration rate differed in the experiments using nFicoll from that in the
anionic group. To compensate for this, the same glomerular filtration
rate for both Ficoll species was used in the theoretical model.

Fig. 2. Glomerular sieving curves at different surface charge densities on the
fibers of the glomerular barrier modeled as a random fiber matrix characterized
by the (uncharged) physical properties listed in Table 2.

Table 2. Uncharged 5 Å fiber-matrix 	 large-pore
parameters

5 Å

Fractional void volume 0.884 � 0.001
A0/x, cm/g � 10�5† 15.87 � 0.74
A0,L/A0 � 106 0.12 � 0.0
LpS, ml �min�1 �mmHg 0.12 � 0.01
�L � 105 2.2 � 0.2
JvL/GFR (fL) � 105 10.8 � 1.1
JvL,iso, �l/min 0.05 � 0.01
Large-pore radius, Å 162.2 � 8.5
Kozeny constant (G) 5
Pearson �2 0.077 � 0.008

Values are given as means � SE. A0/x, effective pore area over unit
diffusion path-length; A0,L/A0, fractional large-pore area; LpS, hydraulic con-
ductance of the fiber array; �L, fractional large-pore hydraulic conductance; fL,
fractional large-pore volume flux; JvL,iso, “volume recirculation” term, see Ref.
31); �2, “goodness of fit”; GFR, glomerular filtration rate. Additional symbols
are given in the text. †Refers to g kidney for the rat glomerulus.
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Statistical Analysis

Parameter values are presented as means � SE. Differences among
the models were tested using a nonparametric Mann-Whitney test. A
Pearson �2-test was used for testing the “goodness of fit” for the data
fitted to the model. Significance levels were set at P � 0.05, P � 0.01,
and P � 0.001. All statistical calculations were made using the
computer software R version 2.14.2 for Linux.

RESULTS

Theoretical analysis. In Fig. 2, several different fiber surface
charge densities are simulated for a solute having a charge
density similar to that of albumin (�22 mC/m2) utilizing as
starting point the optimized parameters calculated for nFicoll
(or aFicoll) in an uncharged fiber matrix with characteristics
shown in Table 2 (4). The rightmost sieving curve is the
best-fitting curve to experimental data for nFicoll according to
the charged fiber-matrix 	 large-pore model. A very low value
(0.077) of the Pearson �2 indicates a good data fit to the model.
The leftmost curve represents an extreme scenario, where the
barrier has a surface charge of �200 mC/m2. With this charge, the theoretical aFicoll35.5Å sieving coefficient is on the order of

1·10�5 (cf. albumin). In Fig. 3, A and B, the importance of
ionic strength in screening the surface potential on a charged
solute is demonstrated by plotting the partition coefficient vs.
solute radii for different solute charge densities (qs) at low (Fig.
3A) and physiologic (Fig. 3B) ionic strengths. As expected, the
importance of charge on the partition coefficient is moderate at
physiologic (“high”) ionic strengths. In these plots, it can also
be seen that there is a slight difference between the original
Ogston model and the charged fiber-matrix model, even for an
uncharged molecule. However, this difference becomes negli-
gible at physiologic ionic strengths.

Data analysis. The sieving curves for the model best-fit
versus the experimental data are shown in Fig. 4. The opti-
mized model parameters for the uncharged random fiber-
matrix model are shown in Table 3, whereas the parameters for
the charged fiber-matrix model are shown in Table 4. Since the
Grahame equation only gives a rough estimate of the actual
surface charge density, two different solute surface charge
densities were used in the models, �0.022 C/m2 (albumin) and
�0.035 C/m2 (Ficoll approximation). Expectedly, a more an-
ionic solute resulted in a lower charge density for the filtration
barrier of about �5 mC/m2. Interestingly, assuming the solute
to have a charge similar to that of serum albumin gave values
for fiber charge in the vicinity of known surface charge
densities for many anionic plasma proteins. Only solute radii in
the range 20–35 Å were analyzed. Two different fiber radii, 5
and 10 Å, were used in the modeling. For the neutral Ficoll
data, the 5-Å fiber-radius model showed a better goodness of fit

Fig. 3. A: partition coefficient for different solute charge densities on a fiber
matrix with size-selective sieving characteristics listed in Table 2 at a low ionic
strength of 10 mM. A positively charged barrier enhances the transport of an
anionic solute. B: partition coefficient for different solute charge densities at a
high ionic strength (similar to that in plasma) of 0.15 M.

Fig. 4. Model fit to experimental sieving data for anionic Ficoll vs. neutral
Ficoll in the molecules of radius range 20 � ae � 35 Å.

Table 3. Uncharged fiber-matrix parameters

5 Å 10 Å

Fractional void volume 0.884 � 0.001 0.591 � 0.003
A0/x, cm/g � 10�5† 17.51 � 1.68 41.22 � 4.09
LpS, ml �min�1 �mmHg 0.13 � 0.01 0.14 � 0.01
Kozeny constant (G) 5 1
GFR, ml/min 0.65 � 0.05 0.65 � 0.05
Pearson �2 0.036 � 0.002** 0.048 � 0.002

Values are given as means � SE. Additional symbols are given in the text.
Statistical differences between 5- and 10-Å models: **P � 0.01. †Refers to g
kidney for the rat glomerulus.
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than the 10-Å model. It can also be seen that the fractional void
volume is much lower for the 10-Å model, which is to be
expected since the partition coefficient (Eq. 1) is an increasing
function of rf,, i.e., a more dense fiber array is needed for an
array of large fibers to achieve the same partition coefficient as
that of an array of thinner fibers. The hydraulic conductance
was calculated assuming a Kozeny constant of 5 for the 5
Å-model, which yields a reasonable value for hydraulic con-
ductance of the fiber array (LpS) of 0.13 ml·min�1·mmHg,
which is equivalent of a glomerular net pressure gradient of
5–7 mmHg. In the 10-Å model, a Kozeny constant of 1 was
needed to achieve a similar gradient.

DISCUSSION

The essential result of the present modeling is that the
magnitude of negative charge present on the fibers in a charged
fiber-matrix model separating aFicoll from nFicoll in the intact
rat GFB (4) is predicted to be of the same order of magnitude
as that obtained for a majority of anionic proteins in plasma,
such as albumin or orosomucoid. At normal (physiologic) ionic
strengths, electrical charge effects thus appear to contribute
only moderately to glomerular permeability, whereas molecu-
lar size and conformation are more important. A factor of
�2–3 difference in the sieving coefficient, as in the current
study, is moderate compared with that of several other re-
searchers, both historically (8) and recently, for example in
Haraldsson et al. (19) where a factor of �20, for a solute
charge density similar to that of albumin, was suggested. This
does not deny the fact that in a more “tight” fiber matrix with
a higher size selectivity, as that assessed for neutral proteins
(corresponding to an equivalent small-pore radius of �37.4 Å),
a negative electrical charge may critically exclude albumin
from passing through “high-selectivity” pathways, redirecting
albumin to rare “large-pore” pathways (24). In terms of Debye
screening lengths (being �8 Å at physiologic ionic strength),
the charge effect in this study was found to be only �20% of
that predicted from the simple Debye-Hückel theory of ion-ion
interactions. Hence, using pore theory and adding 1.5 Å (20%
of 8 Å) to the molecules of radius of albumin (35.5 Å) and
subtracting 1.5 Å from the small-pore radius (37.4 Å) implies
that even the small charge effects obtained in the current study
will totally screen out albumin from the “small-pore” pathway,
thus, making the large-pore system the only pathway in the
GFB for proteins of a similar or larger size than albumin under
normal conditions. Leakage of albumin and large plasma
solutes may, however, occur across the small pores in condi-
tions where they are less selective, as has been observed in
dialyzer membranes (5) or in the GFB after high doses of
angiotensin II (3).

The mathematical model used in this study assumes a very
simple structure of the GFB as a negatively charged barrier

with random fibers (fiber matrix) and an idealized uniformly
charged spherical “hard” solute (21). Conceivably, the former
approximation should be more accurate for proteins than for
polysaccharide molecules, such as dextran or Ficoll. For op-
posing surface charges, the single fiber-single sphere approach
will tend to underestimate the restriction when there is signif-
icant interaction with several fibers, i.e., at a low void volume.
Therefore, this approach should be most accurate at small
Debye lengths (high ionic strengths) and/or at low fiber den-
sities. Technically, the construction of a more complex model
is always possible, but on the other hand, such models would
have an increasing number of phenomenological parameters
that would need to be approximated more or less arbitrarily,
since the exact structure of the GFB is not known. In addition,
a good model should be able to reproduce real experimental
data. Despite the simplicity of the model used in this study, it
shows a very good fit to the neutral Ficoll data for molecules
of radius 20–35 Å. Thus, in a functional sense, the real and
theoretical barriers are comparable. Only one model parameter,
the surface charge density (qf), was allowed to vary between
the charged and uncharged barriers (due to the confounding
effects of the other parameters). This may, in part, explain why
the model fit for the aFicoll data was not as good as that for
nFicoll since there are also small [cf. Axelsson et al. (4)]
differences in the other parameters.

Given the lack of charge selectivity of isolated GBM (7),
and the fact that the total abolition of the negatively charged
GBM proteoglycans, agrin, and perlecan does not seem to
affect the permeability of albumin across the GFB (15, 20), the
endothelial glycocalyx may be implicated as the major charge
barrier of the GFB. Actually, the best fit of nFicoll data to the
fiber-matrix model was for a fiber radius of 5 Å and a fiber
density of 11%, which would approximately fit the composi-
tion of a fiber matrix of glycoproteins, proteoglycans, and
glucosaminoglycans, rather than a matrix of the much thicker
collagen-IV and laminin molecules of the GBM. The glycoca-
lyx, representing a cell surface coat of the composition men-
tioned above, is important for several basic cell functions, such
as immunologic recognition of “self” and “nonself,” sensing of
shear stress, and the presentation of receptors and adhesion
molecules on the cell surface (32). The glycocalyx can be
regarded as a dynamic network in which soluble plasma
proteins and endothelial derived components are incorporated
to form an even larger endothelial surface layer (ESL). Being
in direct contact with the circulation, the ESL is continuously
remodeled due to both enzymatic and shear-induced shedding
(28). This means that the glycocalyx, and the ESL in toto, can
hardly be viewed as a static structure. Still, the glycocalyx may
be regarded as at least one of the structural candidates to the
charged fiber-matrix concept in this study.

Table 4. Charged fiber-matrix parameters

Parameters

Fiber radius (rf), Å 5 5 10 10
Solute charge density (qs), C/m2 �0.022 �0.035 �0.022 �0.035
Fiber charge density (qf), C/m2 �0.019 � 0.002 �0.004 � 0.002 �0.017 � 0.002 �0.005 � 0.001
Pearson �2 0.823 � 0.181 0.936 � 0.189 0.943 � 0.216 1.070 � 0.229

Values are given as means � SE. Additional symbols are given in the text.

F785ELECTROSTATIC PROPERTIES OF THE GLOMERULAR FILTRATION BARRIER

AJP-Renal Physiol • doi:10.1152/ajprenal.00621.2012 • www.ajprenal.org

 by 10.220.33.3 on S
eptem

ber 7, 2016
http://ajprenal.physiology.org/

D
ow

nloaded from
 

57

57



Examining glomerular permeability by studying the sieving
of plasma proteins is complicated by the fact that there is
extensive tubular processing of the glomerular ultrafiltrate with
almost complete tubular reabsorption of filtered proteins. Fur-
thermore, the sieving of a large number of proteins of discrete
molecules of radii (ae) has to be assessed to create a protein
glomerular sieving curve. We have therefore preferred to use
polysaccharides, uncharged and charged, as probe molecules,
to estimate the sieving properties of the GFB. Polysaccharides
are minimally processed by the renal tubule, and they allow the
assessment of sieving of molecules of a wide range of ae.
Unfortunately, polysaccharides in general apparently exhibit a
glomerular “hyperpermeability,” especially when ae ap-
proaches the radius of the size-selective structures in the GFB.
We have found, however, that Ficoll apparently behaves as a
hard sphere (cf. proteins) for � values (solute radius over pore
radius) �0.65, implying that Ficoll data and protein data are
similar for solutes up to a radius of 25 Å, i.e., across the
“small-pore equivalent” of the GFB. Furthermore, Ficoll and
proteins seem to be handled in a similar fashion for an ae

interval of 50–75 Å, i.e., in the equivalent “large-pore path-
way” (pore radius �120 Å). Thus, as already discussed above,
the size selectivity of the GFB measured using intermediately
sized Ficoll molecules of radius of 25–50 Å might be in error.
If instead the small-pore radius estimate determined for neutral
protein permeation across the GFB (24), i.e., 37.4 Å, were
correct, this implies that Ficoll molecules �37.4 Å would
actually permeate the membrane in an anomalous fashion,
conceivably by (increased) molecular deformability. In the
present study we found that the sieving coefficients for aFicoll
�35 Å in radius (for � approaching or exceeding 1) signifi-
cantly deviated from those predicted by the charged fiber-
matrix model, in that sieving coefficients for aFicoll ap-
proached those for nFicoll. A similar phenomenon has been
observed for aFicoll vs. nFicoll in artificial membranes (17).
This may indicate that charge restriction effects tend to be
markedly reduced in magnitude when the size of the charged
molecules approaches the size of the transport limiting struc-
tures of the barrier or that charge selectivity is much more
complex than predicted from a charged fiber-matrix model.

The present results suggest that electrical charge only makes
a moderate contribution to glomerular permselectivity and that
molecular size and conformation are far more important in this
respect. In fact, in the present study it was shown that a
supraphysiological surface charge density (qf), being nearly
�0.2 C/m2, is needed to account for the difference in the
sieving coefficients between nFicoll and (negatively) charged
albumin, if charge-dependent restriction were the only factor
affecting the glomerular sieving of albumin vs. Ficoll. For a
more compact fiber matrix than that fitting to the sieving
characteristics measured for nFicoll, i.e., a fiber matrix fitting
to (neutral) protein data, the moderate negative charge deter-
mined in this study may still critically affect the permeation of
albumin from blood to urine. In such a model, a weak electrical
charge will more or less totally exclude albumin from a
high-selectivity fiber matrix, to redirect it to some very rare
low-selectivity glomerular transport pathways.
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Öberg CM, Rippe B. A distributed two-pore model: theoretical
implications and practical application to the glomerular sieving of
Ficoll. Am J Physiol Renal Physiol 306: F844–F854, 2014. First
published February 12, 2014; doi:10.1152/ajprenal.00366.2013.—In
the present study, an extended two-pore theory is presented where the
porous pathways are continuously distributed according to small- and
large-pore mean radii and SDs. Experimental glomerular sieving data
for Ficoll were analyzed using the model. In addition, several theo-
retical findings are presented along with analytic solutions to many of
the equations used in distributed pore modeling. The results of the
data analysis revealed a small-pore population in the glomerular
capillary wall with a mean radius of 36.6 Å having a wide arithmetic
SD of �5 Å and a large-pore radius of 98.6 Å with an even wider SD
of �44 Å. The small-pore radius obtained in the analysis was close to
that of human serum albumin (35.5 Å). By reanalyzing the data and
setting the distribution spread of the model constant, we discovered
that a narrow distribution is compensated by an increased mean pore
radius and a decreased pore area-to-diffusion length ratio. The wide
distribution of pore sizes obtained in the present analysis, even when
considering electrostatic hindrance due to the negatively charged
barrier, is inconsistent with the high selectivity to proteins typically
characterizing the glomerular filtration barrier. We therefore hypoth-
esize that a large portion of the variance in the distribution of pore
sizes obtained is due to the molecular “flexibility” of Ficoll, implying
that the true variance of the pore system is lower than that obtained
using flexible probes. This would also, in part, explain the commonly
noted discrepancy between the pore area-to-diffusion length ratio and
the filtration coefficient.

two-pore model; log-normal distributed model; capillary permeabil-
ity; Ficoll; standard deviation

THE TWO-PORE MODEL of capillary permeability has been suc-
cessfully applied to describe the transport of water and plasma
solutes in a large number of different organs (8, 19, 26, 32, 33,
35, 36) and, recently, dialyzer membranes as well (7). The
classic two-pore model assumes that the transcapillary trans-
port of plasma solutes and water occurs over two distinct
porous pathways, small pores and large pores, each having a
fixed (discrete) pore radius. In contrast, distributed pore models
assume that the pore radii are continuously distributed around
a mean radius with a distribution spread [standard deviation
(SD)] (1, 7, 9, 11, 20, 21). In most distributed models, only the
small-pore system has been considered, whereas the large-pore
pathway has been modeled as an unselective shunt pathway,
theoretically allowing free passage of all solutes regardless of
molecular size [to our knowledge the only exception is (1),
where both the small-pore and large-pore systems are distrib-
uted]. However, when analyzing the glomerular transport of

large globular proteins using the discrete two-pore model,
Tencer et al. (36) found that there seems to be an upper size
limit for molecular radii on the order of �110–115 Å. This
implies that very large plasma proteins, such as IgM (molec-
ular radius: �120 Å), will not pass the glomerular filtration
barrier (GFB) at all under normal circumstances (36). Simi-
larly, while studying the glomerular transport of globular
proteins, Lund and colleagues (24) found a good fit for a
(discrete) large-pore radius (rL) of 110 Å.

Distributed pore models usually assume that the underlying
pore size distribution can be characterized by a log-normal
distribution, which has the advantage that it is defined only for
positive pore radii, in contrast to the standard (Gaussian)
normal distribution, which, if applied, would (per definition)
also include negative pore radii. Often, it has been noted that
biological mechanisms induce log-normal distributions, as
when, for instance, the causative effects are multiplicative
rather than additive (22). Indeed, the seminal work by Deen
and colleagues (11) indicated that the log-normal distribution
provides a better fit to the experimental data than other con-
tinuous distributions (i.e., normal distribution or gamma-dis-
tribution). In addition, the classic (discrete) two-pore model
(regarding the goodness of fit) is superior to either a log-normal
distributed model or an isoporous (single discrete pore radius)
model in describing glomerular transport data, especially in
nephrotic patients (11). Despite a superior goodness of fit (low
�2-value) to the experimental data (7, 11), the discrete two-
pore model typically shows a poor visual fit in the region
between �50 and 65 Å (cf. Ref. 34), which has been attributed
to the molecular flexibility of the Ficoll molecule in this region.
Due to the poor fit, data in this “knee” region are sometimes
excluded from regression analysis (34).

Most models for diffusion and filtration of solute molecules
over a porous (or fibrous) barrier assume that the solute
molecules behave like rigid spheres. Thus, compared with a
rigid sphere, flexible polysaccharide molecules, such as dex-
tran and, to a lesser degree, Ficoll, are hyperpermeable across
the GFB, whereas less flexible, globular proteins, such as
albumin, behave more similar to a rigid sphere (13, 14, 38). In
terms of the discrete pore model, this means that the small-pore
radius (rS) will be overestimated when analyzing the sieving of
polysaccharide probe molecules (7), while, to the best of our
knowledge, a similar overestimation of the mean pore radius
(u) in the distributed model has not been observed. Hence, it
has been noted that the mean small-pore radius for Ficoll in
distributed models is �35–39 Å, which is very close to that
obtained using the discrete two-pore model to describe protein
sieving data (�37 Å) (24). At the same time, the width of the
small-pore distribution [usually specified in terms of the geo-
metric SD (commonly denoted “s”)] has been quite large,
1.15–1.19, corresponding to an arithmetic SD (�S) of �5–7 Å.
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of Nephrology, Lund Univ., Univ. Hospital of Lund, Lund S-211 85, Sweden
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The reason behind the observed hyperpermeability of the Ficoll
molecule is not known. Conceivably, Ficoll may have several
intermediate shapes and/or an increased molecular deformabil-
ity, which may give the molecules an ability to change shape
under pressure (13). Interestingly, a recent study by Georgalis
et al. (16) indicated the coexistence of two closely spaced
diffusive modes in Ficoll 70 solutions.

A widely used parameter in pore theory is A0/�x (sometimes
denoted “fS/l”), which represents the total pore area available
for diffusive transport (A0) divided by the diffusion length
(�x). From this parameter, the total volume flow can be
approximated (e.g., by using Poiseuille’s law). Often, it has
been noted that the volume flow approximated from the diffu-
sive solute transport (A0/�x) differs from that actually mea-
sured experimentally [e.g., the glomerular filtration rate (GFR)
for glomerular capillaries]. This discrepancy is particularly
evident in nonglomerular capillaries, as previously reviewed
(31, 33), and in distributed pore models (20, 21, 34). In an early
pioneering experiment, Lambert et al. (21) studied the glomer-
ular sieving of radiolabeled polyvinylpyrrolidone and calcu-
lated values for A0/�x that were up to one order of magnitude
larger for the log-normal distributed model than that of the
discrete model. In addition, the mean pore radius was lower for
the distributed model (21). Jeansson and Haraldsson (20)
studied glomerular size selectivity in the mouse using Ficoll
and found a similar discrepancy between the two-pore model
and the log-normal distributed � shunt model. In line with
these results, our own experiments have yielded comparable
results for the log-normal distributed � shunt model (5, 7, 34).
The inflation of the A0/�x parameter leads to an inconsistency
among A0/�x [as calculated from the filtration coefficient
(LpS)] and the value for A0/�x as determined by the model
regression on sieving data. Indeed, similar inconsistencies have
been a classic controversy in the field of capillary physiology
over several decades [cf. “Pappenheimer’s pore puzzle” (29)].

It is reasonable to assume that there should be at least some
variation in the pore radii and also an upper size limitation in
the large-pore system. Thus, the present study aimed to com-
bine the two “classic” models for glomerular transport (two-
pore and log-normal � shunt) by the application and theoret-
ical analysis of a distributed two-pore model. The model was
used to analyze sieving data from Axelsson et al. (6) to
determine the mean pore radius and the distribution spread of
both the small-pore and large-pore systems in the GFB. The
discrete two-pore model typically yields lower values for LpS
and A0/�x and usually a mean small-pore radius that is �7–8
Å higher than that of the distributed � shunt model. Analysis
of data with the discrete two-pore model is equivalent to using
the distributed two-pore model with the spread parameter set to
unity. To discern the effects of using a constant spread, the data
were analyzed again setting the spread of the model constant.
This revealed if there were any other differences between
distributed and discrete (or fixed spread) pore modeling apart
from the previously noted differences in A0/�x and small-pore
radius.

Glossary

�i Fractional hydraulic conductance for the ith pore
population

�L Fractional hydraulic conductance for the large-
pore population (i.e., KfL/Kf)

�S Fractional hydraulic conductance for the small-
pore population (i.e., KfS/Kf)

� Viscosity of the solvent (in Pa·s) (e.g., �water 	
0.7 mPa·s)


 Sieving coefficient

j,data Experimental sieving coefficient of the data


j,model Theoretical sieving coefficient of the model
� Solute-to-pore radius ratio (e.g., ae/rs)

�L Arithmetic mean pore radius for the large-pore
population

�S Arithmetic mean pore radius for the small-pore
population

� Osmotic pressure gradient (in mmHg)
� Reflection coefficient
�f Solvent-drag reflection coefficient

�h,L Homoporous large-pore reflection coefficient
�h,S Homoporous small-pore reflection coefficient

�i,net Net osmotic reflection coefficient
�L Arithmetic SD for the large-pore population
�o Osmotic reflection coefficient

�o,net Ensemble osmotic reflection coefficient for all
solutes and all pathways

�S Arithmetic SD for the small-pore population
ae Molecular (Stokes-Einstein) radius (in Å)
A Effective surface area available for restricted

diffusion (i.e., A0 � A)
A0 Total cross-sectional pore area

A/A0 Diffusive transport restriction coefficient (effec-
tive-to-total area ratio)

Bn Analytical solution
c(x) Concentration profile along the length of the

pore (in mol/ml)
Ci Downstream (filtrate) concentration (in mol/ml)
Cp Plasma concentration (in mol/ml)
D Free diffusion coefficient (in cm2/min)

erf Error function
fL Fractional volume flux across the large-pore

population (i.e., JvL/Jv)
fS Fractional volume flux across the small-pore

population (i.e., JvS/Jv)
g(r) Log-normal probability density function
Gn Analytical solution (defined in Eq. 23)

GFR Glomerular filtration rate
GFB Glomerular filtration barrier

H Alternate notation of A/A0

HSA Human serum albumin
Jconvection Flux through convective transport

Jdiffusion Flux through diffusive transport
Js Total solute flux across the entire barrier (in

mol/min)
Jv Total volume flux across the entire barrier (in

ml/min)
Jvi Volume flux across the ith pore population in a

heteroselective barrier (in ml/min)
JvL Volume flux across the large-pore population (in

ml/min)
JvL,iso Isogravimetric flux for large-pore population (in

�l/min) (JvS,iso � �JvL,iso)
JvS Volume flux across the small-pore population

(in ml/min)
k Boltzmann constant
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Kf See LpS
Lp Total hydraulic conductivity (in ml·min�1·mmHg�1

·cm�2)
LpS Filtration coefficient; total hydraulic conduc-

tance (in ml·min�1·mmHg�1)
n Any real number
N Total number of pores per unit weight kidney (in

g) (or unit area for a membrane)
nHRP Neutral horseradish peroxidase

P Permeability coefficient; D/�x (in cm/min)
Pe Péclet number

PeL Péclet numbers for the large-pore system
PeS Péclet numbers for the small-pore system
PS Permeability-surface (diffusion capacity) coeffi-

cient (in ml/min)
PSL Permeability-surface (diffusion capacity) coeffi-

cient for the large-pore system
PSS Permeability-surface (diffusion capacity) coeffi-

cient for the small-pore system
�P Hydraulic pressure gradient (in mmHg)

�Pnet Net pressure gradient (�P � ��)
r Log-normally distributed radius
R Natural logarithm of r
s Geometric pore SD

sL Geometric large-pore SD
sS Geometric small-pore SD
S Barrier surface area (in cm2) per unit weight

kidney (or unit area for a membrane)
SD Standard deviation

T Temperature (in K) (body temperature � 310 K)
u Geometric mean pore radius

uL Geometric mean large-pore radius (in Å)
uS Geometric mean small-pore radius (in Å)
W Alternative notation of 1-�
x Distance (in cm)

�x Total barrier thickness (in cm)

METHODS

Experimental sieving data from Axelsson et al. (controls) (6) for
the rat glomerulus were analyzed using a novel extended two-pore
model where each pore population is distributed around a central
tendency, uS and uL, respectively, each with a small-pore and large-
pore SD (sS and sL, respectively). In summary, the mathematical
construction is identical to that of the discrete two-pore model with
the exception that the hindrance factors are calculated for a log-
normal distribution of pore sizes instead of single discrete pore sizes.

Theoretical background. The steady-state solute transport (Js, in
mol/min) across a semipermeable barrier can be described by the
convection-diffusion equation, as follows:

Js � Jdiffusion � Jconvection � �DA
dc

dx
� Jv(1 � �)c (1)

where D is the diffusion coefficient (in cm2/min), A is the effective
area (in cm2), Jv is the volume flux (GFR), � is the reflection
coefficient, and c(x) is the concentration (in mol/ml) as a function of
the distance x (in cm) from the plasma side of the barrier. Thus, Js is
the sum of the diffusive transport [according to Fick’s first law,
Jdiffusion � �DA � dc/dx (in mol/min)] and the convective transport
Jconvection (in mol/min) [the effective volume flux Jv � (1 � �) (in
ml/min) times the concentration (in mol/ml)]. All coefficients are
assumed to be constant. Equation 1 is a separable first-order ordinary

differential equation that can be integrated over the barrier [ad modum
Patlak et al. (30); see the APPENDIX), yielding

Js � Jv(1 � �)
cp � cie

�Pe

1 � e�Pe (2)

where Cp is the plasma concentration (in mol/ml) and Ci is the
downstream (filtrate) concentration (in mol/ml). The Péclet number
(Pe), the “convection-to-diffusion ratio” for a particular barrier-flux-
solute combination, is defined as follows:

Pe �
Jv(1 � �)

PS
(3)

where the permeability-surface area coefficient (PS; in ml/min) is
given by the following equation:

PS �
D

�x
A � D

A0

�x

A

A0
(4)

The latter equality is particularly useful since hydrodynamic estimates
give an expression for A/A0 rather than A/�x (33). The diffusion
restriction coefficient (A/A0) represents the restriction in the diffusive
transport due to the hindrance of the barrier. As an example, if A/A0 �
1/3, then the clearance of a solute from x � 0 to x � �x is only
one-third of that which would occur if there was no diffusive transport
restriction. Assuming an ideal spherical uncharged solute, D can be
estimated using the following Stokes-Einstein equation:

D �
kT

6�	ae
(5)

where k is the Boltzmann constant, T is the temperature (in K), � the
viscosity of the permeate (the permeate is assumed to have a viscosity
close to that of water, i.e., �0.7 mPa·s). and ae is the Stokes-Einstein
radius of the solute (in Å). In the present article, the term “radius” is
used synonymously with Stokes-Einstein radius unless otherwise
specified. During ultrafiltration, Js � Jv � Ci, so the sieving coeffi-
cient (
; equal to Ci/Cp) can be derived from Eq. 2, leading to the
following practical expression:


 �
1 � �

1 � �e�Pe (6)

The solute clearance (in ml/min) is simply Jv � 
. Thus, it is possible
to relate the ultrafiltrate concentration to the plasma concentration
using the following equation:

Cp � 
 � Ci (7)

It is important to note that the solution above (Eq. 2) is only valid if
Jv � 0. During zero flux conditions, Fick’s first law can be applied
directly, i.e., Js � �PS(Ci � Cp).

Log-normal distribution. The log-normal distribution has been
widely used in the characterization of the pore size distribution of both
synthetic and biological barriers. There has, however, been consider-
able differences regarding the proper functional form of the log-
normal probability density function as well as concerning the inter-
pretation of the distribution parameters (40). Arguably, the most
widely adopted distribution parameters are u and s. The functional
form for the probability density function for the log-normal distribu-
tion is then given as follows:

g(r, u, s) �
1

r ln(s)�2�
e�

1
2� ln(r) � ln(u)

ln(s) �2

(8)

The corresponding arithmetic mean (�) and standard deviation (�) (in Å)
can be calculated by � � u � s1/2 ln s and � � u � (s2 ln s � sln s)1/2,
respectively (40). In this article, both arithmetic (� and �) and geometric
(u and s) distribution parameters are presented in the data analysis. The

F846 A DISTRIBUTED TWO-PORE MODEL

AJP-Renal Physiol • doi:10.1152/ajprenal.00366.2013 • www.ajprenal.org

 by 10.220.33.1 on S
eptem

ber 7, 2016
http://ajprenal.physiology.org/

D
ow

nloaded from
 

65

65



arithmetic mean and SD must not be confused with the corresponding
moments for the standard normal distribution. The log-normal distribu-
tion is an asymmetric distribution with a positive skew.

Solute flux. The net 
 value for the filtration barrier was calculated
using the following equation:


 � fs

1 � �S

1 � �Se�PeS
� fL

1 � �L

1 � �Le�PeL
(9)

where fL � 1 � fS is the fraction of fluid flow passing the barrier via
the large-pore pathway (i.e., fL � JvL/GFR), �S and �L are the
reflection coefficients for the small-pore and large-pore systems,
respectively, and PeS and PeL are the Péclet numbers for the small-
pore and large-pore system, respectively. �S and �L values were
calculated using the following equations:

�S �
�0

�
r4g(r, uS, sS)�h,S(r)dr

�0

�
r4g(r, uS, sS)dr

(10)

and

�L �
�0

�
r4g(r, uL, sL)�h,L(r)dr

�0

�
r4g(r, uL, sL)dr

(11)

where �h,L and �h,S are the homoporous small-pore and large-pore
reflection coefficients, respectively. PeS and PeL were calculated
using the following equations:

PeS �
JvS(1 � �S)

PSS
(12)

and

PeL �
JvL(1 � �L)

PSL
(13)

PSS and PSL are calculated using the following equations:

PSS � D
A0,S

A0

A0

�x

�0

�
r2� A

A0
�

h,S

g(r)dr

�0

�
r2g(r)dr

(14)

and

PSL � D
A0,L

A0

A0

�x

�0

�
r2� A

A0
�

h,L

g(r)dr

�0

�
r2g(r)dr

(15)

where A0,S/A0 � 1 � A0,L/A0 is the fractional cross-sectional pore area
of the small-pore system and (A/A0)h,S and (A/A0)h,L are the (ho-
moporous) diffusive transport restriction coefficients (cf. Eq. 21) for
the small-pore and large-pore systems, respectively.

Volume flux. If no osmotic gradient exists over an heteroselective
barrier (i.e., � � 0), then the volume flux via the ith pathway is
directly proportional to the hydraulic conductance (�iKf) of the
pathway, as follows:

Jvi:���0 � i � GFR (16)

where �i � Kf,i/Kf is the fractional hydraulic conductance of the ith
pathway. If there is an osmotic gradient, then the Starling equilibrium
can be applied directly to the pathway, as follows:

Jvi � iKf(�P � �i,net��) (17)

where �i,net is the net osmotic reflection coefficient (i.e., effective �o

for all solutes for the ith pathway). Hence, if an osmotic gradient
exists over a heteroselective barrier, then the volume flow through

each pathway will be different from that predicted solely from the
hydraulic conductance of that pathway. This difference, known as the
isogravimetric flux (32), is thus:

Jvi,iso � Jvi � Jvi:���0 � iKf(�o,net � �i,net)�� (18)

where �o,net is the ensemble osmotic reflection coefficient for all
solutes and all pathways. The volume flux over the ith pathway in a
heteroselective filtration barrier is therefore:

Jvi � i � GFR � Jvi,iso � i[Kf(�o,net � �i,net)�� � GFR] (19)

In the calculations, the net reflection coefficients have been approxi-
mated to those of albumin and a net � of 28 mmHg has been
assumed. If the net reflection coefficient of a pathway is smaller than
the net osmotic reflection coefficient (for the barrier), then Jvi,iso will
be negative for that pathway and the flux (Jvi) will be smaller than that
predicted solely from the hydraulic conductance of that pathway. For
some pathways, Jvi may be negative, and a recirculation of volume
occurs. For a barrier that is nearly homoporous, such as the GFB,
Jvi,iso will typically be very small (28).

Hydrodynamic hindrance factors. The hydrodynamic hindrance fac-
tors recommended by Dechadilok and Deen for porous membranes (10)
were used and are repeated here for convenience. These expressions have
the advantage that they are properly averaged over the entire pore section
rather than being “centerline approximations.” The homoporous reflec-
tion coefficient was estimated from the following equation:

�h � 1 � W(�) � 1 � (1 � �)2
1 � 3.867� � 1.907�2 � 0.834�3

1 � 1.867� � 0.741�2

(20)

according to Ennis et al. (cf. Eq. 41 in Ref. 12). The diffusive transport
restriction coefficient was calculated from

A

A0
� H(�) � 1 �

9

8
�ln (�) � 1.56034� � 0.528155�2

� 1.91521�3 � 2.81903�4 � 0.270788�5

� 1.10115�6 � 0.435933�7 (21)

for � � 0.95 (Eq. 16 in Ref. 10). For more closely fitting solutes (� �
0.95), we used the following equation:

A

A0
� (1 � �)2

123

125�1 � �

� �5⁄2

(22)

according to the estimate by Mavrovouniotis and Brenner (cf. Eq. 71 in
Ref. 25). The hydrodynamic hindrance factors are bounded functions (per
definition) in the sense that A/A0 tends to zero and �h tends to unity when
� ¡ 1 and, in addition, that A/A0 tends to unity and �h tends to zero when
� ¡ 0. Since A/A0 vanishes for r � ae, the integrals in the numerators of
Eqs. 14 and 15 need only be evaluated from ae to �.

Analytic solutions. For the improper integrals in the denominators
of Eqs. 10, 11, 14, and 15, there exists the following analytic solution:

Gn(u, s) � �
0

�

rng(r)dr � une
n2ln2(s)

2 (23)

for any real number (n) that can be derived using integration by parts
(see the APPENDIX). The total cross-sectional area of a log-normal
distributed porous barrier with mean radius u and spread s can then be
calculated exactly as follows:

A0

�x
�

N

�x�0

�
�r2g(r)dr �

N

�x
�G2(u, s) �

N�u2

�x
e2 ln2(s) (24)

where N is the total number of pores per unit weight kidney (or unit
area for a membrane). Analogously, using Poiseuille’s law, Kf is given
by the following equation:
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Kf � N�0

� �r4

8	�x
g(r)dr �

N�

8	�x
G4(u, s) �

N�u4

8	�x
e8 ln2(s) (25)

If A0/�x is known, N cancels so that

Kf �
A0

�x

u2

8	
e6 ln2(s) (26)

With minor modifications of the proof of Eq. 23 (see the APPENDIX),
one can derive the following equation:

Bn(u, s, ae) � �ae

�
rng(r)dr

�
1

2
une

n2ln2�s	
2 
erf�n ln2(s) � ln� ae

u �
�2 ln(s)

� � 1 (27)

where erf is the error function. This thus makes it possible to solve
both Eqs. 14 and 15 completely for � � 0.95, as follows:

� A

A0
� �

�0

�
r2� A

A0
�g(r)dr

�0

�
r2g(r)dr

�

�ae

�
r2� A

A0
�g(r)dr

�0

�
r2g(r)dr

� �B2 �
9

16
aeu�ln

ae

u
� ln2 �s	�e

ln2�s	
2

�1 � erf� ln
ae

u
� ln2�s	

�2ln�s	 ��
�

9

16� 2

�
ae

2 ln�s	e�
1
2� ln�u	 � ln�ae	

ln�s	 �2

� 1.56034aeB
1 � 0.528155ae

2B0 � 1.91521ae
3B�1 � 2.81903ae

4B�2

� 0.270788ae
5B�3 � 1.10115ae

6B�4 � 0.435933ae
7B�5� ⁄ G2 (28)

Using Eq. 28, instead of approximating Eqs. 14 and 15 numerically,
reduced the computation time by �50%. If the distribution spread is
set to unity, then the above equations (Eqs. 23–28) reduce to those of
the discrete two-pore model. Thus far, it seems as if the distributed
two-pore model is identical to the discrete two-pore model when s
tends to unity. All that remains is to show that Eqs. 10 and 11 are
equal to �h,S and �h,L, respectively, when sS � sL � 1 and, in
addition, that Eqs. 14 and 15 reduce to the homoporous case also for
� � 0.95 (with the spread set to unity). This can be proven (see the
APPENDIX) using the dominated convergence theorem (39) using the
fact that both �h and A/A0 are bounded functions. The improper
integrals in the numerators of Eqs. 10 and 11 (and Eqs. 14 and 15 for
� � 0.95) were evaluated numerically using a 21-point Gauss-
Kronrod quadrature. Numeric calculations were performed using the
software package GNU Science Library (15).

Nonlinear regression. The theoretical sieving coefficients for each
model were fitted to the experimental data (327 data points) using the
nonlinear least-squares algorithm according to Levenberg and Marquardt
to calculate the optimal values of uS, sS, uL, sL, A0/�x, and �L that
minimize the weighted sum of squares (objective function), as follows:

� j�1
npoints 1


 j,data
2 �
 j,data � 
 j,model	2 (29)

using the MINPACK library with standard settings (27). This objec-
tive function provided a better goodness of fit (lower �2) than using
the ordinary sum of squares on log-transformed data. Because of the

limited data for higher solute radii, the large-pore fit was dependent on
the initial value (mainly of the large-pore spread sL). Therefore, a
large number of initial values were tried with sL ranging from 1.10 to
1.50. From these results, the best fit (lowest �2-score) was selected (cf.
also Ref. 11, where a similar method is used).

Statistical analysis. Parameter values are presented as means � SE.
A Pearson �2-test was used for testing the goodness of fit for the data
fitted to the discrete and distributed two-pore models. Statistical
differences between the different models (discrete; narrow spread:
sS � 1.05 and sL � 1.15; wide spread: sS � 1.10 and sL � 1.30) were
tested using a nonparametric Friedman test followed by post hoc
testing using a Wilcoxon-Nemenyi-McDonald-Thompson test. Holm-
Bonferroni corrections for multiple comparisons were made. Signifi-
cance levels were set at P � 0.05, P � 0.01, and P � 0.001. All
statistical calculations were made using the computer software R
(version 3.0.0) for Linux.

RESULTS

Experimental data analysis. The optimal parameters for the
distributed two-pore model analysis of the Ficoll data are
shown in Table 1. The corresponding arithmetic parameters are
�S � 36.9 Å and �S � 4.7 Å for the small-pore system and
�L � 106.6 Å and �L � 44.0 Å for the large-pore system. LpS
was calculated from A0/�x (per g kidney) in the distributed
model using Eq. 26. A value for LpS of 0.44 ml·min�1·
mmHg�1·g�1 corresponds to a mean pressure gradient of only
�1.5 mmHg, which is very low compared with measured
values (37). Figure 1 shows 
 versus ae for the experimental
data (dashed line) and the best fit for the regression of the
distributed two-pore model (solid line). The dotted line repre-
sents a simulated scenario where 1) A0/�x has been decreased
to �3 � 105 cm to match the 
 value of myoglobin (the value
of sS has very little effect in this range of solute radii) and
2) the spread of the small pore has been decreased to �1.017
to match the sieving data for four different proteins [human
myeloma dimeric �-chain (�-dimer, 28.4 Å), nHRP (30.4 Å),
HSA (35.5 Å), and neutralized HSA (35.0 Å)] and all other
parameters were set according to the best model fit for the
Ficoll sieving data. The fractional clearances of the proteins are

Table 1. Distributed two-pore parameters

Model Parameter Regression Result

uS, Å 36.6 � 0.3
sS, Å 1.13 � 0.00
uL, Å 98.6 � 4.2
sL, Å 1.49 � 0.03
A0/�x, �10�5* 20.6 � 2.1
LpS, ml·min�1·mmHg�1* 0.44 � 0.04
�L, �105 0.6 � 0.1
JvL/GFR, �105 9.3 � 1.2
JvL,iso, �l/min* 0.06 � 0.01
A0,L/A0, �106 0.4 � 0.1
A0,L, � 103 mm2 2.5 � 0.0
GFR, ml/min* 0.65 � 0.4
Goodness of fit, �2 0.147 � 0.018

uS, geometric mean small-pore radius; sS, geometric small-pore SD; uL,
geometric mean large-pore radius; sL, geometric large-pore SD; A0/�x, effec-
tive pore area over unit diffusion path length; LpS, hydraulic conductance
(calculated from A0/�x); �L, fractional large-pore hydraulic conductance; JvL,
volume flux across the large-pore population; GFR, glomerular filtration rate;
JvL,iso, isogravimetric flux for the large-pore population; A0,L/A0, fractional
large pore area; A0,L, cross-sectional area for the large-pore pathway (calcu-
lated from A0,L/A0 and A0/�x assuming a barrier thickness of 0.3 �m). *Gram
kidney.
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according to Lund et al. (24). Again, using Eq. 26 to calculate
LpS from the “protein curve” yields a filtration coefficient of
�0.06 ml·min�1·mmHg�1·g�1, corresponding to a mean pres-
sure gradient of �10 mmHg. In this simulated scenario, the
corresponding arithmetic parameters are �S � 36.6 Å and
�S � 0.6 Å for the small-pore pathway. The probability density
functions (Eq. 8) for the small-pore (dashed line) and large-
pore (dotted line) size distributions are shown in Fig. 2.

The data were reanalyzed using distributed two-pore models
where sS and sL were set to constant values. Figure 3 shows 

versus ae for this analysis. Along with the data (dotted line),
three different scenarios are shown where the spread of the
distributions have been held constant during the regression:
sS � 1.00 and sL � 1.00 (dashed line), sS � 1.05 and sL � 1.15
(solid line), and sS � 1.10 and sL � 1.30 (dashed-dotted line).
The knee region is expanded as the spread is decreased, leading
to an increasingly poorer fit in this region, as has been previ-
ously noted using the classic two-pore-model (34). Interest-
ingly, for the “wide” scenario (sS � 1.10 and sL � 1.30), a very
low �2-value (0.086) was obtained. The optimized model param-
eters for the three different scenarios are shown in Table 2. As
expected, as the spread of the model increases, both the small-
and large-pore radius get smaller and A0/�x gets larger for the
widest scenario. No other significant differences among the
three “fixed-spread” models were found. Despite the difference
between A0/�x in the groups, the fractional large-pore area
remains relatively constant. A0,L/A0 is larger for the “constant-
spread” models than that obtained in the full analysis above
(�0.4 � 10�6).

Theoretical analysis. Figure 4 shows the effect of altering
the breadth of the distribution by plotting several different
scenarios from the discrete case (sS � 1.00 and sL � 1.00,
dotted line) to increasingly wider distributions (sS � 1.05 and
sL � 1.15, dashed-dotted line; sS � 1.10 and sL � 1.30, dashed
line; and sS � 1.15 and sL � 1.45, solid line). For the
small-pore system, a more narrow distribution leads to a

Fig. 1. Sieving coefficient (
) versus Stokes-Einstein radius (ae) for the
experimental data (dashed line) and the best fit for the regression of the
distributed two-pore model (solid line). The dotted line represents a simulated
scenario were the small-pore spread (sS) and A0/�x have been decreased to
match the sieving data for five different globular proteins (according to Lund
et al. (24): myoglobin (myo; 19.4 Å), human myeloma dimeric �-chain
(�-dimer; 28.4 Å), nHRP (30.4 Å), neutralized HSA (nHSA; 35.0 Å), and HSA
(35.5 Å). See the Glossary for abbreviations.

0.1

0.08

0.06

0.04

0.02

Fig. 2. The probability density function (cf. Eq. 8) for the small-pore (dashed line)
and large-pore (dotted line) size distributions. The distributions are not to scale.

Fig. 3. Results of the analysis of the experimental data using constant values
for the small-pore and large-pore spread parameters. Along with the data
(dotted line), three different scenarios are plotted: sS � 1.00 and sL � 1.00
(dashed line), sS � 1.05 and sL � 1.15 (solid line), and sS � 1.10 and sL � 1.30
(dashed-dotted line). See the Glossary for abbreviations.
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steeper cutoff. As expected, with a wide distribution in the
large-pore system, the selectivity approaches that of the shunted
models (a horizontal line). It can also be seen that the tran-
sport of smaller solutes below 25 Å (such as VEGF and many
other small peptide hormones) is largely unaffected by the
width of the distribution of pore sizes.

To quantify the theoretical increase in A0/�x due to an in-
creased distribution spread, A0/�x was plotted as a function of the
distribution spread using Eq. 24 (Fig. 5A). Similarly, Fig. 5B
shows the GFR per gram kidney versus the distribution
spread plotted using Eq. 25 and assuming a net filtration
pressure of 10 mmHg. N was set to 1018 pores/g, and u was
set at 36.6 Å. When these theoretical predictions of the
increase of A0/�x and/or Kf, due to the distribution spread
only are compared, it can be seen that the theoretical
increase is much smaller than that obtained from the anal-
ysis of the experimental data (Table 2).

DISCUSSION

We have presented here an extended two-pore theory where
the porous pathways are continuously distributed according to
uS and uL and their corresponding sS and sL, thus considering
effects caused by an apparent (or actual) distribution in pore
sizes. The results of the data analysis revealed a small-pore
population with a wide distribution in pore sizes having an
arithmetic SD of �5 Å. Such a wide pore size distribution,
even when considering the electrostatic hindrance due to a
negative pore charge (28), would not be consistent with the
high selectivity to proteins normally characterizing the GFB
(24, 34). To account for this contradiction, we hypothesize the
following:

1. A large part of the variance in the distribution of pore
sizes in the present analysis is due to the molecular flexibility
of the Ficoll molecule, implying that the true variance of the
pore system is lower than that obtained when using a flexible
probe molecule.

2. The mean pore radius is near that of the true effective
radius of the GFB, implying that the highly selective filtration
barrier favors the filtration of Ficoll molecules having a “mean
radius” close to the actual mean pore radius.

3. The inflation of A0/�x (due to the wide distribution) can
be explained, almost entirely, by the flexibility of the molecule
(see below). Thus, the surface increase in distributed models
compared with discrete models is due to the flexibility of the
molecule, not the wide distribution of the pore population.

We have shown that the classic (discrete) two-pore model
represents a special case of the distributed two-pore model
where both sS and sL are set equal to unity. With the use of
constant values for the spread parameters (sS and sL), our
results revealed that a smaller distribution spread leads to a
larger mean pore radius and a lower A0/�x parameter. This
result may be expected since 1) the discrete small-pore radius
is usually �43–47 Å (2, 4, 5, 7, 28), whereas a common value
for the mean pore radius of the log-normal � shunt model is
only �35–39 Å (5, 7, 34), and 2) A0/�x is typically two to three
times higher in the distributed models than what is commonly
found using the discrete two-pore model (5, 7, 34). Thus, in
line with previous results, the data analysis in the present
article yielded a high value for A0/�x (�21 � 105 cm/g) for the
distributed model, which leads to an unreasonably high value
for LpS (calculated from A0/�x). A more reasonable value
(�3 � 105 cm/g) was obtained using a simulated scenario
where the small-pore spread and A0/�x were lowered to match
the 
 values of five proteins. We also derived a practical

Table 2. “Constant-spread” analysis parameters

Discrete (sS � 1.00 and sL � 1.00) Narrow (sS � 1.05 and sL � 1.15) Wide (sS � 1.10 and sL � 1.30)

uS, Å 44.7 � 0.1 43.3 � 0.1‡ 40.0 � 0.1‡
uL, Å 141.3 � 7.0 128.0 � 5.7 113.3 � 7.9
A0/�x, �10�5* 7.2 � 0.5 7.1 � 0.9† 11.5 � 0.7†
LpS, ml·min�1·mmHg�1* 0.21 � 0.01 0.20 � 0.02† 0.28 � 0.01†
�L, �105 1.7 � 0.1 2.1 � 0.1 1.3 � 0.1
JvL/GFR (fL), �105 12.2 � 0.1 13.6 � 0.1 12.2 � 0.1
A0,L/A0, �106 1.7 � 0.2 2.3 � 0.4 1.3 � 0.3
A0,L, �103 mm2 3.7 � 0.0 4.9 � 0.4 4.5 � 0.0
Goodness of fit, �2 0.257 � 0.018 0.168 � 0.03 0.086 � 0.01‡

Values are given as mean � SE. *Gram kidney. †P � 0.05; ‡P � 0.01.

Fig. 4. Effects of altering the spread of the distribution. Several different
scenarios are plotted, from the discrete case (sS � 1.00 and sL � 1.00, dotted
line) to increasingly wider distributions (sS � 1.05 and sL � 1.15, dashed-
dotted line; sS � 1.10 and sL � 1.30, dashed line; and sS � 1.15 and sL � 1.45,
solid line). See the Glossary for abbreviations.
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equation (see Eq. 24) showing that A0/�x is, as expected,
directly dependent on the pore size distribution (both spread
and mean radius) so that an inflated distribution spread leads to
inflation in A0/�x as well. However, this theoretical increase in
A0/�x is much smaller than what could be expected from the
measured differences between the discrete and distributed
models. What is the reason behind the (often noted) inflated
A0/�x values in the distributed models? Interestingly, the larger
pore radius for the discrete two-pore model (compared with the
distributed model) leads to less restriction to the diffusive
transport (i.e., larger A/A0) in the small-pore system. As an
example, for a 30-Å solute, the small-pore A/A0 parameter is

�2.4 � 10�3 for the distributed two-pore model (using Eq. 28
with u � 36.6 Å and s � 1.13) compared with �7.4 � 10�3

for the discrete two-pore model (using Eq. 28 with u � 44.7 Å
and s � 1.00 or Eq. 21). This gives a factor of �3 between the
A/A0 parameters of the distributed and discrete models, which
is sufficient to explain (see Eq. 4) the discrepancy between the
distributed and discrete two-pore models in this article. In
conclusion, if the distribution in pore sizes is caused by the
flexibility of the solute, then the increased area is apparent and
does not reflect the real pore area of the membrane. Con-
versely, if there is an actual distribution in pore sizes, the
ultrafiltration coefficient of the barrier, as calculated theoreti-
cally (from A0/�x using Eq. 26), should more closely match the
measured ultrafiltration coefficient.

The selective mechanisms of the GFB are based on the
separation of molecular species depending on size, charge, and
conformation. Recently, we quantified the electrostatic prop-
erties of the GFB in terms of the surface charge density of the
barrier (in C/m2) and found it to be similar to that of known
surface charge densities for many proteins in the body (�5–20
mC/m2) (28). This is a much lower value than that suggested
by Haraldsson et al. (200 mC/m2) (17). Indeed, the latter
charge density would be required if most of the difference in
the glomerular permeability between Ficoll and globular pro-
teins were due to charge effects. If the wide distribution
measured in the present investigation represents the actual pore
size distribution in a weakly/moderately charged GFB (i.e.,
�5–20 mC/m2), then one would have to add �15–19 Å to the
effective radius of the albumin molecule to achieve the same
fractional clearance as that actually measured. In contrast, if
the distribution of pore sizes in the GFB is narrow, as is
proposed in the present study, then a “threshold effect” is
possible (due to the similarity of the mean small-pore radius,
36.6 Å, and molecular radius of albumin, 35.5 Å), so that even
a moderate surface charge density on the barrier (similar to that
on many plasma proteins) is sufficient exclude albumin from
passing through the small-pore system. According to the hy-
pothesis in this study, conformation plays a crucial part in how
molecular species are transported across the GFB. As an
example, bikunin, a 36-Å (radius) elongated protein, had �80
times higher fractional clearance (
) than albumin despite
similar size and charge (23).

The GFB is a dynamic barrier in which the permeability can
change dramatically even in a short period of time (2–5). The
physiological and pathophysiological mechanisms behind
the changes in permeability seem to be mediated primarily by the
large-pore system. Despite the apparent role of the large-pore
pathway in the regulation of the permeability of the GFB, very
little is known about the underlying mechanisms or the equiv-
alent biological structure. The permeability of the large-pore
system is typically increased when the glomeruli are injured by
disease [fL (equal to JvL/GFR) can increase several orders of
magnitude within minutes]. In contrast to peripheral capillar-
ies, the permeability of the large-pore system in glomerular
capillaries is normally very low. This means that, in healthy
glomerular capillaries, only very small amounts of large probe
molecules are filtered into the urinary space, making direct
measurement of the selectivity of the large-pore system diffi-
cult. Indeed, the value for the large-pore parameters in the
present analysis should be interpreted carefully due to the
limited range of the data in the large-pore region. In addition,

1               1.1              1.2              1.3              1.4              1.5             1.6

1               1.1              1.2              1.3              1.4              1.5             1.6

A

B

Fig. 5. A: A0/�x (in cm) plotted as a function of s using Eq. 24. B: GFR (in
ml/min) plotted as a function of s using Eq. 25 and assuming a net filtration
pressure of 10 mmHg. See the Glossary for abbreviations.
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the large SD (�44 Å) may involve other factors than those
suggested for the small-pore pathway above. For example, the
data itself show their greatest variation in the large-pore por-
tion of the sieving curve, which should contribute to the
observed variance in the pore size distribution. It has been
suggested that Ficoll400 is more similar to a random coil than
a hard sphere (13). In light of this, Ficoll400 may be an
inappropriate probe for measuring the size-selective properties
of the large-pore system. On the other hand, if the hypothesis
in this article is correct, as shown in Fig. 4 (and from the fact
that large Ficoll400 molecules have a similar 
 value as that of
HSA in Fanconi syndrome (37); see Fig. 1), fL can be predicted
with good accuracy using Ficoll400.

What are the physiological and pathophysiological roles of
the small-pore system? We (5) have recently reported mea-
surements of glomerular permeability during systemic angio-
tensin II infusion in rats. The analysis (using the log-normal
distributed � shunt model) showed that the width of the
small-pore distribution was markedly increased (corresponding
to an increase in �S from 4.9 to �7–8 Å) when high doses of
angiotensin II were administered. This increased heteroporos-
ity of the small-pore system can also be seen in puromycin
aminonucleoside nephrosis and is usually accompanied by a
marked increase in the large-pore permeability (fL) (18). In-
deed, the widening of the small-pore distribution may be a
general phenomenon, occurring after large increases in glomer-
ular permeability. In addition, widening of the small-pore
distribution (e.g., as shown in Figs. 3 and 4) may be a major
pathophysiological mechanism in selective proteinuria.

The distributed pore model presented in the present article
assumes a very simple structure of the glomerular capillary
wall with two different size-selective modalities: small- and
large-pore populations. If the experimental data were produced
using this “equivalent” barrier (i.e., instead of the rat glomer-
ulus), they would have the properties shown in Table 1. Given
what is known about the actual structure of the glomerular
capillary wall, the use of pores is obviously phenomenological.
Nonetheless, pore theory is arguably the most popular para-
digm for describing glomerular sieving and remains one of the
simplest ways to model the transport of both solvent (as
laminar flow) and solutes (using hydrodynamic restriction
coefficients). In addition, since the model in the present article
is based on established models and concepts, it is possible to
directly compare new results with previous findings. Despite
the differences in physical structure between the glomerular
capillary wall and the distributed two-pore model, both the
goodness-of-fit analysis and visual fit suggest that, in a func-
tional sense, the barriers are remarkably similar.

The actual distribution of the size-selective structures in the
GFB is not known. However, as shown in Fig. 1, over the
course of just a few angstroms, the 
 value (for proteins) was
reduced �200-fold from 0.13 (human myeloma �-dimer, 28.4
Å) to 6 � 10�4 (HSA, 35.5 Å). Arguably, such an impressive
cutoff is not consistent with a heteroselective small-pore path-
way unless the size distribution of the selective elements
(pores, fibers, slits, etc.) is very narrow. Thus, in the present
investigation, a narrow distribution in the small-pore system
(sS 	 1.017 and uS 	 36.6) matched the sieving data of five
globular proteins, giving an estimated 95.5% confidence inter-
val of 35.4–37.9 Å for the “real” pore radius, which has been
estimated by Lund et al. (24) to be 37.4 Å. In comparison, the

hydrodynamic (Stokes-Einstein) radius of HSA is �35.5 Å.
We (28) have previously reported that the electrostatic repul-
sion between the negative electric charge on the GFB and the
anionic sites on the albumin molecule may add only a few
angstroms to the apparent size of the albumin molecule. In-
deed, if the estimate of the actual pore radius in this article is
accurate, this means that albumin is effectively excluded from
the small-pore pathway in healthy glomerular capillaries. In
an ideal model for glomerular permeability, the GFR, as
predicted by the solute flow, should match the measured
GFR [thus resolving Pappenheimer’s pore puzzle (29)]. In
the present study, the measured GFR (0.65 ml·min�1·g�1) did
not match theoretical GFRs (calculated from GFR � LpS �
�Pnet) unless a very low �Pnet is assumed. Lowering sS and
A0/�x, as in the protein sieving scenario, leads to a better match
between the GFR as calculated from the solute flow and the
measured GFR.

In summary, we have shown that the permeability of the
GFB can be described by a distributed two-pore model, assum-
ing that the size-selective structures of the glomerular capillary
wall are log-normally distributed small-pore and large-pore
populations. In the case of Ficoll, there seems to be a distri-
bution effect related to the flexible structure of the molecule,
since the wide distribution obtained is inconsistent with the
high selectivity characterizing healthy glomerular capillaries.
Furthermore, both A0/�x and Kf are, as could be expected,
directly dependent the pore size distribution (both spread and
mean radius). Practical equations (Eqs. 24–26) for both of
these entities have been proved analytically, eliminating the
need for numeric approximations. These equations are by no
means limited to a capillary wall but are actually a generaliza-
tion of the Hagen-Poiseuille equation for any porous mem-
brane with a log-normal distribution of pore sizes. We have
also demonstrated that a smaller distribution spread leads to 1)
an increased mean pore radius and 2) a decreased A0/�x. The
latter effect is mainly due to the increased diffusive hindrance
of the small-pore pathway in the distributed two-pore model
leading to an inflation of A0/�x. Finally, we have shown that
the classic (discrete) two-pore model is actually a special case
of the distributed two-pore model where sS � sL � 1.00.

APPENDIX A

The Patlak equation. Define a function h(c) � [Jv(1 � �)c �
Js]/DA. Equation 1 can then be rewritten as follows:

dc

dx
� h(c) (30)

which can be integrated over the barrier, from the plasma concentra-
tion (Cp) to the interstitial concentration (Ci), as follows:

�cp

ci 1

h(c)
dc � �0

�x
dx (31)

where �x is the membrane thickness [i.e., c(�x) � Ci]. The result of
this integration is the following equation:

DA
ln�Jv(1 � �)ci � Js��ln�Jv(1 � �)cp � Js�

Jv(1 � �)
� �x (32)

which can be rewritten as follows:

Js � Jv(1 � �)
cp � cie

�Jv(1��)�x⁄DA

1 � e�Jv(1��)�x⁄DA
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Analytic solution. To find the primitive function of the integrand,
we start by using the integration of parts:

F(r) � � rng(r)dr �
1

2
rn erf� ln(r) � ln(u)

�2ln(s) �
� � 1

2
nrn�1 erf� ln(r) � ln(u)

�2ln(s) �dr (33)

The change of variables R � ln(r) gives the following equation:

� 1

2
nrn�1 erf� ln(r) � ln(u)

�2ln(s) �dr � � 1

2
nenR erf�R � ln(u)

�2ln(s)�dR

�
1

2
e

1
2�� ln(u) � nln2(s)

ln(s) �2

�� ln(u)

ln(s) �2� erf�R � ln�u	 � nln2(s)

�2ln(s) �
�

1

2
enR erf�R � ln(u)

�2ln(s)� (34)

where erf is the error function. Inserting erf into Eq. 33 gives the
following equation:

F(r) �
1

2
e

1
2�� ln(u) � nln2(s)

ln(s) �2

�� ln(u)

ln(s) �2� erf� ln(r) � ln(u) � nln2(s)

�2ln(s) �
(35)

so that

Gn(u, s) � �0

�
rng(r)dr � limr¡�F(r) � limr¡0F(r)

� e
1
2�� ln(u) � nln2(s)

ln(s) �2

�� ln(u)

ln(s) �2� (36)

which can be rearranged to the following equation:

Gn(u, s) � une
n2ln2(s)

2 (37)

When s tends to unity. Suppose f(r) is an integrable real-valued
bounded function. We wish to prove that

lims¡1�0

� e�
1
2� ln(r) � ln(u)

ln(s) �2

rln(s)�2�
f(r)dr � f(u) (38)

The change of variables X � k[ln(r) � ln(u)], where k � 1/ln(s), gives
the following equation:

lim
s¡1

�0

� e�
1
2� ln(r) � ln(u)

ln(s) �2

rln(s)�2�
f(r)dr � lim

k¡�
���

� e�
1
2

X2

�2�
f(ueX⁄k)dX (39)

Since f(r) is bounded, there is a real number (m) such that

� e�
1
2

X2

�2�
f(ueX⁄k)� �

m

�2�
(40)

for all k and all X. Under these conditions, the dominated convergence
theorem (39) is applicable so that the limit may be taken under the
integral sign, as follows:

lim
k¡�

���

� e�
1
2

X2

�2�
f(ueX⁄k) dX � ���

�
limk¡�

e�
1
2

X2

�2�
f(ueX⁄k) dX � f(u)

(41)
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ABSTRACT 

One of the many unresolved questions regarding the permeability of the glomerular filtration barrier 

(GFB) is the reason behind the marked difference in permeability between albumin and polysaccharide 

probe molecules such as Ficoll and Dextran. The difference in sieving coefficients between albumin 

and a Ficoll molecule of the same molecular radius (~36 Å) is ~2-3 orders of magnitude. Although this 

large difference in permeability has been attributed mainly to charge effects, we have previously 

shown that this would require a supraphysiological amount of charge on the filtration barrier, being 

about ~10 times more than the charge on the albumin molecule (~0.02 C/m²).  The classic 

heteroporous model by Deen, Bridges, Brenner and Myers (Deen et al, AJP Renal Physiology, 1985) 

was extended by introducing size distributions on the solute molecules, making them flexible in their 

conformation. Experimental sieving data for Ficoll, both from the rat glomerulus and from precision-

made nanopore membranes, were analyzed using the extended model. The variation in solute size was 

quantified in terms of the geometric standard deviation (gSD) of the solute size distribution. The 

barrier was quantified in terms of a small and large pore radii, diffusive area parameter (A0/Δx) and 

fractional conductance through large pores (aL). For the rat glomerulus (n=7) a small pore radius of 

36.2 Å ± 0.1 Å and a gSD for the Ficoll size-distribution of 1.16 ± 0.01 was obtained. For the 

nanopore membranes (n=16), a gSD of 1.24 (± 0.01) and a small-pore radius of 43 ± 2 was found. In 

the current study, we show, for the first time, that a variation of only ~16% in the size of the 

polysaccharide molecule is sufficient to explain the marked difference in permeability between 

albumin and Ficoll. In addition, we show that the effects of applying a size-distribution on the solute 

molecule are only evident when the molecular size is close to the size of the selective elements of the 

barrier. This is in line with experimental data both from the human glomerulus and from synthetic 

membranes. However, it is reasonable to assume that there is at least some variation in the pore radii 

and, thus, the gSD obtained in the current study is likely an overestimation of the "true" variation in 

the size of the Ficoll molecule. 

KEYWORDS: Heteroporous model, Sieving coefficient  
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GLOSSARY  

 

Ci(y) Solute (Ficoll) concentration at point y along the GC 

Cpr(y) Plasma protein concentration at point y along the GC 

D Distributed diffusion coefficient (cm
2
/min) 

D Free diffusion coefficient (cm
2
/min) 

EVF Erytrocyte volume fraction (Hematocrit) 

FC Fractional clearance (Clearance/GFR) 

FF Filtration fraction (GFR/RPF) 

fL Fractional large pore volume flow (1-fS) 

fS Fractional small pore volume flow (1-fL) 

G(r)  Solute size distribution (probability density function) 

GC Glomerular capillary 

GFB Glomerular filtration barrier 

gSD Geometrical standard deviation (distribution spread) 

HES Hydroxy ethyl starch 

HSA Human serum albumin 

Js(y) Trans-glomerular solute flux at point y along the GC 

Jv(y) Trans-glomerular volume flux at point y along the GC 

Kf Ultrafiltration coefficient (same as LpS) 

L Length of the GC 

LpS Hydraulic conductance of the GFB 

MAP Mean arterial pressure 

(y) Oncotic pressure at point y along the GC 

Pc Hydrostatic pressure at the afferent end of the GC (45 mmHg) 

79

79



4 
 

Pdrop(y) Hydrostatic pressure drop at point y along the GC (mmHg) 

PeL Solute Péclet number for the large-pore system 

PeS Solute Péclet number for the small-pore system 

Pi Hydrostatic pressure in Bowmans' space (10 mmHg) 

i Oncotic pressure in Bowman's space (~0 mmHg) 

PSL Solute diffusion capacity for the large-pore system 

PSS Solute diffusion capacity for the small-pore system 

Q(y) Renal plasma flow at the point y along the GC 

RA Afferent glomerular vascular resistance 

RGFB Hydraulic resistance of the GFB = 1/Kf 

RPF Renal plasma flow (mL/min) 

L Reflection coefficient for the small-pore system 

SNGFR Single nephron GFR 

SNKf Single nephron hydraulic conductance 

S Reflection coefficient for the small-pore system 

VEGF Vascular endothelial growth factor 

x Position across the GFB 

y Non-dimensionalized distance along the GC (Y/L) 

Y Position along GC 

Å 1/10 of a nanometre 
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INTRODUCTION 

 

Much of our knowledge about the permeability of the glomerular filtration barrier (GFB) is derived 

from experimental studies of the fractional clearance (FC=Clmarker/GFR) of polysaccharides such as 

Dextran [1, 29, 33], Polyvinylpyrrolidone [35], Polyethyleneoxide [1], HES [29], Pullulan [1]  and 

Ficoll [7, 26]. Such studies, along with studies of the FC of endogenous proteins [22, 32], have 

established 

1) the presence of at least two different trans-vascular pathways in the GFB [7, 13, 22, 32] and 

2) a seemingly systematic difference in FC between different marker molecules (polysaccharides 

and plasma proteins) of the same hydrodynamic (Stokes-Einstein) radius [1, 7, 34].  

The exact mechanisms behind these observations remain unknown despite decades of research. For 

example, the difference in FC (usually assumed to be equal to the glomerular sieving coefficient, GSC 

or ) between anionic human serum albumin (HSA) and Ficoll of the same hydrodynamic radius (~36 

Å) is typically 2-3 orders of magnitude. The difference between Dextran and HSA is even greater [7]. 

Thus, polysaccharides appear to be hyperpermeable with respect to a protein having the same apparent 

diffusion coefficient (SE-radius).  Furthermore, this hyperpermeability appears to be systematic and 

correlate with the intrinsic viscosity of the solute [1]. These differences have been ascribed to charge 

effects [19] as well as an effect of conformation or structure of the molecular species [1, 34]. 

 

In the words of Homer Smith: the actual value of the renal clearance of a particular substance reveals 

nothing about the physiological mechanisms by which it is excreted [30]. Surely, several mechanisms 

within the kidney can vary the FC to a value between 4-5 (i.e. FF
-1

, e.g. para-aminohippuric acid), 1 

(inulin) and ~10
-4

 (HSA) and even lower. The current view of a highly charge-selective GFB is based 

on the the pioneering experiments using negatively charged sulfated Dextran to measure charge-

selectivity in the GFB [8, 11]. It was later discovered [18, 29] that a portion of the sulfated Dextran 
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was bound to plasma proteins. Such binding can be expected to be in equilibrium with the surrounding 

blood plasma concentration and thus, when a small sample is diluted with water or buffer, a large 

portion of the bound marker will be released into the buffer solution. Notably, even for small Dextran 

molecules (~18Å) which are not sieved by the GFB, Chang et al [11] found a low FC of ~0.6 which is 

difficult to reconcile with the traditional concept of charge-selectivity accomplished by adding a few 

angstroms (a percentage of the Debye length) to the small-pore radius. Conceivably, such a low value 

indicates that at least a third of the sulfated Dextran marker was bound to proteins in these 

experiments. It should also however be noted that differently sized Dextran molecules show different 

degrees of binding [18]. Such protein binding has two effects on the observed FC of a substance. First, 

a lower FC than that of a neutral (non-bound) solute during normoproteinuric conditions will be 

observed and, second, during proteinuric conditions, the FC will increase, resulting in an apparent 

‘loss of charge selectivity’. Such problems are likely dependent on the type of charge modification 

used. For example, Schaeffer and colleagues found no difference in the FC between fluorescent 

negatively charged non-sulfated and neutral Dextran in the rat [29]. Similarly, results from our group 

showed only small differences in FC between anionic and neutral Ficoll [5]. Thus, when using non-

sulfated anionic polysaccharides as probe molecules, the charge-selectivity of the GFB is apparently 

small and cannot explain the observed difference in permeability between proteins and 

polysaccharides in the GFB. 

 

There seems to be agreement that the glomerular sieving coefficient equals unity (1) for solutes 

smaller than ~15 Å, i.e. having a radius close to that of Inulin (~13Å). Thus solutes < 15Å are not 

sieved at all by the glomerular barrier. This implies that any size distribution in the size-selective 

structures of the GFB would either have to be narrow (so that the number of smaller pores that could 

sieve smaller molecules is small) or that the distribution is strongly skewed towards higher molecular 

radii. However, a membrane having a strongly skewed distribution towards higher pore radii could not 

be highly selective for solutes close to the pore radius. By contrast, many studies using distributed 

pore models have rather consistently found a narrow distribution for the ‘small-pore’ population of 
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pores [13, 24]. In this article we derive a modification of the classical model by Deen, Bridges, 

Brenner and Myers from 1985 to describe both the bi-selective two-pore nature of the GFB and the 

behavior of a flexible spherical solute molecule. We introduce a theoretical construction of a 

distributed solute sphere, having a size that is described by a statistical distribution instead of using a 

fixed solid sphere radius. Such a size distribution can be expected to be a result both of the 

conformation and structure of the solute molecule. However, no attempt is made in the current article 

to distinguish between these two different phenomena. Indeed, for a polydisperse random coil 

polysaccharide molecule such as Dextran, these two effects may be very difficult to analyze separately 

in an experimental setting. We show that this model gives almost identical results compared to using a 

model with a distributed pore size [5] when analyzing experimental sieving data from the rat 

glomerulus. In addition, Ficoll sieving data from precision-made nanopore membranes were analyzed 

using the novel model. 
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MODEL DEVELOPMENT 

 

This section begins with a summary of the model originally developed by Deen, Bridges, Brenner and 

Myers [13] which has here been extended to include the effects of a ‘flexible’ solute molecule whose 

size is described by a statistical distribution rather than, as in previous models, having a fixed solute 

radius. Several of the differential equations are non-linear and must be evaluated using numerical 

techniques which, for the sake of clarity, have been moved to an appendix. The entire glomerulus is 

here represented by an idealized single capillary connected to the circulation via two resistances, an 

afferent resistance RA and efferent resistance RE, such that the effective average filtration pressure 

along the capillary is 10 mmHg. In other words, it is assumed that the renal autoregulatory 

mechanisms uphold a constant average filtration pressure under normal conditions and that the 

hydraulic conductance of the capillary wall is constant along its length and is given by 

SNKf=SNGFR/10 mmHg. The validity of the model is tested by analyzing the sieving of neutral 

Ficoll in an experimental rat model [5]. An entire rat kidney is modelled as having ~35000 such ideal 

capillaries in parallel. The spherical symmetry of the idealized glomerular capillary allows us to 

reduce the model to the case of two spatial variables: x in the direction of solute and volume flow and 

y in the direction of the blood flow. Moreover, the GFB is considered to be a homogenous porous 

membrane having two different pore-size populations and all transport phenomena are assumed to be 

in a steady-state (i.e. time-dependent changes are not considered). 

 

Fundamental Equations of Glomerular Transport 

 

Volumetric flux 

Conservation of mass is assumed, meaning that the mass (the water and solute matter) that enters the 

glomerulus must either leave the glomerulus via the efferent capillary or be ultrafiltrated through the 
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GFB. Thus it is assumed that neither water nor the solutes considered in this article accumulate or 

degrade within the glomerulus.  In other words, the change in renal plasma flow along the idealized 

glomerular capillary dQ(y)/dy must be exactly equal to the loss of volume due to glomerular filtration 

𝑑𝑄

𝑑𝑦
= −𝐽𝑣(𝑦)      (1) 

As can be seen, this equation requires knowledge of the volume flux Jv(y) in mL/min at every point y 

along the glomerular capillary. For simplicity, the position along the capillary y has been normalized 

to the total capillary length, y[0,1], so that y=0 represents the afferent end of the capillary and y=1 

represents the efferent end. Moreover, Jv(y) can be expected to decrease with increasing y as the 

pressure drops along the capillary and, also, as the protein content of the plasma remaining inside the 

glomerular capillary will increase as water is lost to the capsular space. This can be expressed using 

the a modified version of the Starling equilibrium 

𝐽𝑣(𝑦) =  𝐾𝑓([𝑃𝑐 − 𝑃𝑑𝑟𝑜𝑝(𝑦) − 𝑃𝑖] − [𝜋(𝑦) − 𝜋𝑖])    (2) 

According to this equation the volume flux at point y in the capillary is a result of the difference 

between the capillary pressure Pc, the capsular pressure Pi, the hydrostatic pressure drop along the 

capillary Pdrop(y) and the oncotic pressures in the plasma π(y) and in Bowman’s space πi. For all 

practical purposes πi  can safely be assumed to be zero, even during heavy proteinuria. The oncotic 

pressure in plasma π(y) can be calculated using the well-known empirical equation by Landis and 

Pappenheimer from 1963 but first we need to know the protein concentration at any point y. Since the 

glomerular filtrate is virtually a protein-free liquid, the plasma protein content Q(y)∙Cpr is assumed not 

to change along the capillary and thus 

𝑑(𝑄𝐶𝑝𝑟)

𝑑𝑦
=

𝑑𝑄

𝑑𝑦
𝐶𝑝𝑟 + 𝑄

𝑑𝐶𝑝𝑟

𝑑𝑦
= 0    (3) 

or stated differently 

𝑄(𝑦)𝐶𝑝𝑟(𝑦) = 𝑄(0)𝐶𝑝𝑟(0)     (4) 
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where Q(0) is the RPF and Cpr(0) is the protein concentration at the afferent end of the glomerular 

capillary. Re-arranging the above equations gives 

𝑑𝑄

𝑑𝑦
= −

𝑄(0)𝐶𝑝𝑟(0)

𝐶𝑝𝑟
2

𝑑𝐶𝑝𝑟

𝑑𝑦
     (5) 

Now we can apply the Landis-Pappenheimer equation at each point y 

𝜋(𝑦) = 𝑎1𝐶𝑝𝑟(𝑦) + 𝑎2𝐶𝑝𝑟
2 (𝑦)    (6) 

where a1 = 0.1629 mmHg/(g/L) and a2 = 0. 02935 mmHg/(g/L). It is here assumed that the small 

amounts of Ficoll administered make a negligible contribution to the osmotic pressure. By combining 

equation 1, 2, 5 and 6 we can now construct a single ordinary differential equation for the protein 

concentration along the GC 

𝑑𝐶𝑝𝑟

𝑑𝑦
= 𝐾𝑓

𝐶𝑝𝑟
2

𝑄(0)𝐶𝑝𝑟(0)
([𝑃𝑐 − 𝑃𝑑𝑟𝑜𝑝(𝑦) − 𝑃𝑖] − [𝑎1𝐶𝑝𝑟 + 𝑎2𝐶𝑝𝑟

2 ])  (7) 

The total plasma protein concentration at the afferent end Cpr(0) was assumed to be 57 g/L for a 

healthy Wistar rat, Pc and Pi was assumed to be 55 mmHg and 10 mmHg respectively, and a net 

pressure drop of 0.7 mmHg along the glomerular capillary was assumed 

𝑃𝑑𝑟𝑜𝑝(𝑦) = 0.7𝑦     (8) 

In lack of actual measurements (using for example paraaminohippuric acid), the RPF had to be 

calculated using equation 7 by fixed point iteration (see appendix). The glomerular vascular 

resistances can now be calculated as 

𝑅𝐴 =
𝑀𝐴𝑃−𝑃𝑐

𝑅𝑃𝐹
(1 − 𝐸𝑉𝐹)     (9) 

𝑅𝐺𝐹𝐵 =
1

𝐾𝑓
      (10) 

Since the post-glomerular pressure is not known, a value for RE could not be calculated. 
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Solute flux 

Similar to the volume flux, conservation of mass gives us the equation 

𝑑(𝑄𝐶𝑖)

𝑑𝑦
=

𝑑𝑄

𝑑𝑦
𝐶𝑖 + 𝑄

𝑑𝐶𝑖

𝑑𝑦
= −𝐽𝑠(𝑦)    (11) 

where Js(y) is the solute flux in mmol/min and Ci(y) is the plasma water concentration of the solute i, 

both at position y in the GC. Using equation 1, we can rearrange this equation to 

𝑑𝐶𝑖

𝑑𝑦
= −

𝐽𝑠(𝑦)−𝐽𝑣(𝑦)𝐶𝑖

𝑄(𝑦)
     (12) 

The local solute flux was calculated from two-pore equations 

𝐽𝑠(𝑦) = 𝑓𝑆𝐽𝑣(𝑦)
𝐶𝑖(1−𝜎𝑆)

1−𝜎𝑆𝑒−𝑃𝑒𝑆
+ 𝑓𝐿𝐽𝑣(𝑦)

𝐶𝑖(1−𝜎𝐿)

1−𝜎𝐿𝑒−𝑃𝑒𝐿
   (13) 

where fS and fL are the fractional small- and large-pore volume fluxes, respectively. Equation 13 is 

valid for unidirectional transport only,  i.e. when Js(y)=Jv∙Cb where Cb is the downstream Bowman’s 

space solute concentration (c.f. also eq 6 in [24]). However, bi-directional solute transport can be 

calculated using a bi-directional flux equation (cf. eq 2 in [9]). For example, VEGF produced by 

podocytes is transported in a ‘counter-flow’ fashion back to the endothelium demonstrating the 

relative superiority of diffusive transport over convective transport in GFB. Thus, the flow of the 

glomerular permeate can be likened to that of a slow flowing river and small substances can diffuse bi-

directionally as long as there is a concentration gradient due to the high diffusion capacities of small 

solutes. However, in the current case of a marker molecule (Ficoll), there is no need for a bi-

directional flux equation. 

 

The distributed solute sphere 

The free diffusion coefficient of the distributed solute sphere can be calculated from 

𝐷 = ∫ 𝐷∞(𝑟)𝐺(𝑟)𝑑𝑟
∞

0
     (14) 
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where G is a statistical distribution (a probability density function) of solute-sizes and D(R) is the 

free diffusion coefficient calculated from the Einstein relation 

𝐷∞(𝑅) =
𝑘𝑇

6𝜋𝜂𝑅
     (15) 

Here k is the Boltzmann constant, T is the body temperature (310°K), R is the solute hydrodynamic 

radius and  is the viscosity of water (~0.7 mPa∙s).  In other words it is assumed that the solute 

molecule has a hydrodynamic radius that can be described by a statistical distribution G(r). A useful 

distribution is the discrete distribution of n solute sizes 

𝐺(𝑟) = ∑ 𝑤𝑗𝛿(𝑟 − 𝑅𝑗)𝑛
𝑖=1      (16) 

where wj is the fractional amount (
n
j=1wj = 1) of the solute size Rj and (z) is the Dirac delta function. 

For example, for a molecule that has a symmetrical discrete size-distribution (w1,R1)=(0.2, 25Å), 

(w2,R2)=(0.6, 35Å) (w3,R3)=(0.2, 45Å) the diffusion coefficient can be calculated  from 

D=0.2D1+0.6D2+0.2D3 – giving a D2/D-ratio (or ‘frictional ratio’) of ~0.95. Thus this discretely 

distributed solute with mean radius 35Å has a slightly higher diffusion coefficient than a 35Å rigid 

sphere.  

 

In the current article we have chosen to use the log-normal (LN) distribution. This distribution is a 

nearly symmetrical distribution that is slightly skewed towards higher solute radii and is defined only 

for positive radii. The LN probability density function is  

𝑔(𝑅, 𝑎𝑒, 𝑔𝑆𝐷) =
𝑒

−
1
2

(
𝑙𝑛(𝑟)−𝑙𝑛(𝑎𝑒)

𝑙𝑛(𝑔𝑆𝐷)
)

2

𝑅 𝑙𝑛(𝑔𝑆𝐷)  √2𝜋
    (17) 

Here u is the average solute radius and gSD is the geometrical standard deviation. Using the analytical 

solution from [24] (cf. equation 37), the diffusion coefficient for the distributed solute sphere can now 

be written 
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𝐷 =  
𝑘𝑇

6𝜋𝜂𝑅
𝑒

𝑙𝑛2(𝑔𝑆𝐷)

2      (18) 

Thus, the diffusion coefficient is slightly larger for a LN-distributed molecule (s > 1) than that of a 

solid sphere (s=1) having radius R. However, the differences in the free diffusion coefficient between 

a rigid- and a LN-distributed sphere are small even for high values of gSD, being only a few percent. 

Such small deviations cannot explain why the restricted diffusion of Dextran has been found to greatly 

exceed the theoretically expected value [9] (i.e. that calculated from the Renkin equation) for a rigid 

sphere. As we will see, the differences in transport between the rigid and the distributed solute sphere 

are much larger when considering hindered transport. 

 

Hindered transport  

The small- and large-pore reflection coefficients (S and L) were calculated assuming log-normal 

distributed solute sizes (ae)  

𝜎𝑆(𝑎𝑒) = ∫ 𝑔(𝑅, 𝑎𝑒 , 𝑔𝑆𝐷)𝜎ℎ,𝑆(𝑅)𝑑𝑅
∞

0
    (19) 

𝜎𝐿(𝑎𝑒) = ∫ 𝑔(𝑅, 𝑎𝑒 , 𝑔𝑆𝐷)𝜎ℎ,𝐿(𝑅)𝑑𝑅
∞

0
    (20) 

and the Péclet numbers (PeS and PeL) are 

𝑃𝑒𝑆 = 𝐽𝑣(𝑦)
1−𝜎𝑆

𝑃𝑆𝑆
     (21) 

𝑃𝑒𝐿 = 𝐽𝑣(𝑦)
1−𝜎𝐿

𝑃𝑆𝐿
     (22) 

where the solute diffusion capacities were calculated from 

𝑃𝑆𝑆(𝑎𝑒) = ∫ 𝐷∞(𝑅)𝑔(𝑅, 𝑎𝑒 , 𝑔𝑆𝐷) (
𝐴

𝐴0
)

ℎ,𝑆
(𝑅)𝑑𝑟

∞

0
   (23) 

𝑃𝑆𝐿(𝑎𝑒) = ∫ 𝐷∞(𝑅)𝑔(𝑅, 𝑎𝑒 , 𝑔𝑆𝐷) (
𝐴

𝐴0
)

ℎ,𝐿
(𝑅)𝑑𝑟

∞

0
   (24) 
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In the above equations h,S(R), h,L(R), (A/A0)h,S(R), (A/A0)h,L(R) are the homoporous restriction 

factors as a function of solute radius R and were calculated according to equations 20-22 in [24].  

 

The above system of differential equations (Eqn. 1, 7 and 12) were simultaneously solved using a 

fourth order Runge-Kutta scheme. The sieving coefficient for Ficoll was then calculated as 

𝜃 =
𝑄(0)𝐶(0)−𝑄(1)𝐶𝑖(1)

𝐺𝐹𝑅∙𝐶𝑖(0)
     (25) 

where Ci(0) is the afferent solute (Ficoll) concentration and Ci(1) and Q(1) is the efferent solute 

concentration and plasma flow (Q(1) =RPF-GFR), respectively.  

 

Non-linear regression 

The pore model sieving coefficients were fitted to the same experimental sieving data from rats used 

in [24] (327 data points) for Ficoll solute radii between 15-80 Å. The non-linear least squares 

algorithm in the well-known MINPACK library was used with standard settings to calculate the 

optimal values of rS, rL, gSD, A0/Δx and fL, by minimizing the weighted objective function 

∑
1

𝜃𝑖,𝑑𝑎𝑡𝑎
2 (𝜃𝑖,𝑚𝑜𝑑𝑒𝑙 − 𝜃𝑖,𝑑𝑎𝑡𝑎)

2𝑛
𝑖=1     (26) 

Parameter values are presented as means ± SE. There was a tendency for the fit of the model to be 

dependent on the initial values selected, especially for the large-pore system. Therefore a large number 

of initial values were tried and the best fit having the lowest 
2
-score was selected, similar to the 

method in [12, 24]. 
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RESULTS 

 

Analysis of experimental data from the rat glomerulus and from precision-made nanopore membranes 

Plotted in Figure 1 is the model fit to the data from the rat glomerulus that were previously analyzed 

using the distributed two-pore model [24]. As can be seen, the fit is just as good as that obtained 

previously and thus there is no way of telling, from the analysis of Ficoll sieving coefficients alone, 

whether it is the pore sizes that are distributed or the solute sizes. Most likely there is variability both 

in the size of the selective elements of the GFB as well as in the size of the solute molecules. Similar 

to the previous study [24], a “protein sieving curve” was simulated by reducing the solute size 

distribution to near unity and lowering the A0/Δx parameter. Surely this latter simulation suggests that 

the greatest source of variability is in the size of the solute probe molecules in line with that 

hypothesized in [5] and that the glomerular barrier is a near perfect mechanical filter. The optimized 

two-pore model parameters for both the rat glomerulus and for the precision-made nanopore 

membranes are shown in Table 1.  The obtained pore-size for the nanopore membranes was ~7Å 

larger than that in the rat GFB and, also, the obtained gSD was larger, possibly indicating a greater 

variation in pore sizes in these membranes. There may also be other sources of variation in the data 

contributing to the obtained gSD. The obtained value for the surface area parameter A0/Δx (29 cm) 

was smaller than expected from the actual surface area and thickness of the membrane (81 cm). 

 

Simulations of rigid vs. flexible 20Å, 36Å and 60Å molecules 

In figure 2, the effects of varying the gSD parameter in the model is shown for three differently sized 

molecules having radii 20Å, 36Å (cf. albumin) and 60Å. Variation in the flexibility (gSD) of the small 

and large solute molecules has virtually no effect on their permeability across the GFB. The opposite 

holds true for the albumin sized 36Å molecule which displays a difference in  of nearly two orders of 
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magnitude when increasing the gSD from 1.00 to 1.15. Thus, by assuming a variation of ~15% of the 

size of the 36Å solute molecule, its permeability across the GFB increases 100-fold. 

 

Simulations of different gSD vs. Dextran data from the rat glomerulus 

The effects of altering the gSD of the solute sphere while keeping the other parameters of the model 

constant (as defined in Table 1) is shown in Figure 3. As expected, the permeability is increasing as 

the flexibility of the molecule is increased. For comparison, Dextran data from the rat glomerulus [6] 

was also plotted (dotted line). As seen, the experimental data seem to correlate well with a gSD = 1.37. 

It is also clear from this simulation that the cut-off  between the small- and large pore parts of the 

sieving curve becomes less well defined the more flexible the solute molecule is. This may explain the 

finding that Dextran sieving data typically yields a higher estimate for not only the small pore radius 

but also the large-pore radius when analyzed using the classic ‘discrete’ two-pore model [1]. 

 

Alterations of the glomerular sieving coefficient along the glomerular capillary 

The theoretical model in the current article also takes into account the loss of water along the 

glomerular capillary resulting from glomerular filtration. This causes a relative increase in the 

concentration of larger molecules along the length of the glomerular capillary (cf. also fig 2 in [13]). In 

Figure 4, the predicted variation of the plasma solute concentration along the glomerular capillary is 

plotted. The solute concentration (Ci) is expressed relative to its afferent arteriolar concentration CiA 

(at y=0). For smaller solutes, the concentration remains nearly constant along the capillary length, 

reflecting the fact that their glomerular clearance is similar to GFR. For larger solutes, having a 

clearance lower than GFR, the concentration increases along the capillary. For a 40 Å solute, the 

concentration at the efferent end of the capillary (at y=1) is ~35% higher than that at the afferent end. 

This increase is similar for larger solutes (data not shown) having a similar glomerular clearance.  
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In order to investigate how the transport of small vs. large molecules is affected by this effect, the 

glomerular sieving coefficients of four differently sized solute molecules was plotted in Figure 5 as a 

function of the relative position along the glomerular capillary. The model parameters obtained above 

for the rat glomerulus were assumed. Although the permeability of the glomerular capillary wall is, 

according to the current theory, the same along its length, the sieving coefficient will increase slightly 

along the capillary due to the fact that the volume flux is reduced along the capillary length. Especially 

for larger solutes, the sieving coefficient can increase near the efferent end of the glomerular capillary, 

corresponding to a factor ~3 for a 40 Å solute (cf. also figure 2 in [22]). This effect is analogous to the 

changes in transport that occur when the glomerular filtration rate is altered [28]. Again, for small 

molecules, the GSC does not vary along the glomerular capillary since the clearance is essentially the 

same as that for water (GFR).  
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DISCUSSION 

 

In the current study, the classic heteroporous model by Deen, Bridges, Brenner and Myers [13] was 

extended by introducing size (radius) distributions on the solute molecules, making them flexible in 

their conformation. By contrast, in the original model, the size-distribution was only applied to the 

pores while the solute molecules were assumed to be ideal rigid spheres. The extended theoretical 

model was used to analyze experimental sieving data ( vs. SE-radius) for Ficoll, both from the rat 

glomerulus and from precision-made nanopore membranes [15, 16]. Through the years, many other 

theories and models have been proposed for glomerular filtration. Thus, in the review by Haraldsson, 

Nystrom and Deen [19], a charged fibrous membrane having a surface charge density of 200 mC/m
2
 

(equivalent to that of a molecule the size of HSA with a net valence of ~200) is proposed to explain 

the difference in sieving coefficients between Ficoll and 36 Å anionic albumin. Similar to the current 

model, the GFB is also a mechanical filter, but with a less size-selective, but highly charged, small-

pore pathway. Actually, a more primitive variant of this model can be achieved by simply adjusting 

the dimensions of the charged solute molecule and charged pore using the Debye screening length as 

in Munch et al [23]. Using an ‘Ogston gel’ as a small-pore system, Smithies (re-)discovered that the 

transport of albumin is almost entirely diffusive [31] and suggested this to be an anti-clogging 

mechanism (at least for albumin) in the glomerulus along with the constant sweeping of the filter by 

red blood cells – effectively preventing concentration polarization. Thus, since clogging does not seem 

to occur in the GFB, the main barrier towards macromolecules is likely close to the luminal end of the 

GFB. In addition, plasma proteins are, themselves, likely part of the filter as removing them from the 

perfusate seems to increase permeability [17, 20]. A modification of the pore model was presented by 

Hausmann and colleagues which suggest that a strong electrical field being ~1600 V/m is generated in 

the GFB which hinders the transport of anionic species by means of electrophoretic forces [21]. 

However, some of the assumptions in their model has recently been questioned [27].  
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The bi-selective nature of the GFB becomes clear when analyzing the permeability for a wider range 

of solute sizes [18, 32]. The first cut-off occurs at molecular radii between 35-50Å [18, 24]. It is 

generally assumed that this ‘small-pore’ pathway is the major renal barrier towards serum albumin 

[18, 25, 31]. The transport of smaller solutes is entirely filtration flow-limited during normal 

conditions (e.g. inulin) so most of the transport is by means of convection for these solutes. As the 

small pore starts to sieve the solute, diffusive transport will start to dominate the transport. Thus, the 

transport of a molecule the size of albumin (~36Å) is almost entirely diffusive. The small-pore system 

can easily be replaced by a fiber-matrix giving essentially the same result [31] as using pores. If the 

small-pore system has a sharp cut-off, then even a relatively small amount of charge-selectivity could 

possibly have a large impact for molecules that are close to the pore radius and thus a so called ‘fringe-

effect’ has been hypothesized [25]. Loss of charge-selectivity, rather than an increase in large-pore 

selectivity, could then give rise to isolated albuminuria. The second cut-off is not well characterized 

but an upper size-limit has been estimated to ~100-120Å [24, 32]. Large pores can be expected to be 

very rare, accounting only for 1 large pore per 10
7
 of the small pores in a healthy glomerulus. Often, 

when analyzing polysaccharide sieving data, a so called ‘shunt’ is used as a simplified large-pore 

pathway [6, 28]. Nevertheless it is this ‘large pore’ pathway that is affected when the glomeruli are 

injured by disease [2-4, 18] whereas the small-pore pathway seems to be unaffected. Furthermore, a 

number of studies from our group show that the increase in permeability for molecules having a 

hydrodynamic radius > 50Å can occur only minutes after administration of a pharmacological 

challenge (for example angiotensin II [4] or atrial natriuretic peptide [2]), only to return to baseline in 

a matter of 30 min. Such rapid and dynamic changes are perhaps more compatible with a transient 

alteration in the cytoskeleton of the epi- and endothelial cells of the GFB [4] rather than a more 

permanent structural alteration.  

 

In conclusion, we show, for the first time, that a variation of only ~16 % in the size of an ideal 

spherical solute molecule is sufficient to explain the observed difference in glomerular permeability 

between negatively charged human serum albumin and neutral Ficoll36Å. In addition, we show that 
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the effects of assuming a distribution in the size of the solute molecules are only evident when the 

molecular mean radius is close to the pore radius. This is in line with experimental observations both 

from the glomerulus [22] and from synthetic membranes [16]. The modeling proposed here suggests 

that molecular size and conformation are far more important than electrical charge for the glomerular 

permeability of macromolecules. 
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APPENDIX 

 

Calculation of RPF 

The glomerular capillary was defined on a partition of equidistant points i  [0, N]. Equation 1 and 7 

was then discretized using a fourth order Runge-Kutta scheme as follows 

𝐽1 =  𝐾𝑓(𝑃𝑐 − 𝑃𝑖 − 0.7𝑖∆𝑦 − [𝑎1𝐶𝑝𝑟,𝑖 + 𝑎2𝐶𝑝𝑟,𝑖
2 ])   (27) 

𝐴1 = −∆𝑦 ∙ 𝐽1     (28) 

𝐵1 = −∆𝑦 ∙
𝐶𝑝𝑟,𝑖

2

𝑄(0)𝐶𝑝𝑟(0)
𝐴1     (29) 

𝐽2 =  𝐾𝑓(𝑃𝑐 − 𝑃𝑖 − 0.7(𝑖∆𝑦 +
∆𝑦

2
) − [𝑎1(𝐶𝑝𝑟,𝑖 +

𝐵1

2
) + 𝑎2(𝐶𝑝𝑟,𝑖 +

𝐵1

2
)2])  (30) 

𝐴2 = −∆𝑦 ∙ 𝐽2     (31) 

𝐵2 = −∆𝑦 ∙
(𝐶𝑝𝑟,𝑖+

𝐵1

2
)

2

𝑄(0)𝐶𝑝𝑟(0)
𝐴2     (32) 

𝐽3 = 𝐾𝑓(𝑃𝑐 − 𝑃𝑖 − 0.7(𝑖∆𝑦 +
∆𝑦

2
) − [𝑎1(𝐶𝑝𝑟,𝑖 +

𝐵2

2
) + 𝑎2(𝐶𝑝𝑟,𝑖 +

𝐵2

2
)2])  (33) 

𝐴3 = −∆𝑦 ∙ 𝐽3     (34) 

𝐵3 = −∆𝑦 ∙
(𝐶𝑝𝑟,𝑖+

𝐵2

2
)

2

𝑄(0)𝐶𝑝𝑟(0)
𝐴3     (35) 

𝐽4 = 𝐾𝑓(𝑃𝑐 − 𝑃𝑖 − 0.7(𝑖 + 1)∆𝑦 − [𝑎1(𝐶𝑝𝑟,𝑖 + 𝐵3) + 𝑎2(𝐶𝑝𝑟,𝑖 + 𝐵3)2])  (36) 

𝐴4 = −∆𝑦 ∙ 𝐽4     (37) 

𝐵4 = −∆𝑦 ∙
(𝐶𝑝𝑟,𝑖+

𝐵3

2
)

2

𝑄(0)𝐶𝑝𝑟(0)
𝐴4     (38) 
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The initial points (i=0) were Q0 = RPF and Cpr,0=57 g/L. The next points on the grid was calculated 

from 

𝑄𝑖+1 = 𝑄𝑖 +
𝐴1

6
+

𝐴2

3
+

𝐴3

3
+

𝐴4

6
    (39) 

𝐶𝑝𝑟,𝑖+1 = 𝐶𝑝𝑟,𝑖 +
𝐵1

6
+

𝐵2

3
+

𝐵3

3
+

𝐵4

6
    (40) 

The difference in the modeled glomerular filtration rate (Q0-QN) and the measured GFR can be written 

as 

𝐹(𝑅𝑃𝐹) = 𝑄0 − 𝑄𝑁 − 𝐺𝐹𝑅     (41) 

To find RPF, the minimum of this equation was approximated using the gradient descent method. 

 

Numerical solution of the differential equations for Glomerular Transport 

After the calculation of the RPF, Equation 12 was also discretized according to 

𝐶1 = −∆𝑦 (𝑓𝑆𝐽1
𝐶𝑖(1−𝜎𝑆)

1−𝜎𝑆𝑒−𝑃𝑒𝑆
+ 𝑓𝐿𝐽1

𝐶𝑖(1−𝜎𝐿)

1−𝜎𝐿𝑒−𝑃𝑒𝐿
)   (42) 

𝐶2 = −∆𝑦 (𝑓𝑆𝐽2
(𝐶𝑖+

𝐶1

2
)(1−𝜎𝑆)

1−𝜎𝑆𝑒−𝑃𝑒𝑆
+ 𝑓𝐿𝐽2

(𝐶𝑖+
𝐶1

2
)(1−𝜎𝐿)

1−𝜎𝐿𝑒−𝑃𝑒𝐿
)   (43) 

𝐶3 = −∆𝑦 (𝑓𝑆𝐽3
(𝐶𝑖+

𝐶2

2
)(1−𝜎𝑆)

1−𝜎𝑆𝑒−𝑃𝑒𝑆
+ 𝑓𝐿𝐽3

(𝐶𝑖+
𝐶2

2
)(1−𝜎𝐿)

1−𝜎𝐿𝑒−𝑃𝑒𝐿
)   (44) 

𝐶4 = −∆𝑦 (𝑓𝑆𝐽3
(𝐶𝑖+𝐶3)(1−𝜎𝑆)

1−𝜎𝑆𝑒−𝑃𝑒𝑆
+ 𝑓𝐿𝐽3

(𝐶𝑖+𝐶3)(1−𝜎𝐿)

1−𝜎𝐿𝑒−𝑃𝑒𝐿
)   (45) 

𝐶𝑖+1 = 𝐶𝑝𝑟,𝑖 +
𝐶1

6
+

𝐶2

3
+

𝐶3

3
+

𝐶4

6
    (46) 

For simplicity, the initial concentration C0 was assumed to be unity. 
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LEGENDS 

 

 

Figure 1 

Glomerular sieving coefficient () vs. Hydrodynamic radius for the best-fit of the theoretical model 

(solid line) to the experimental data (dashed line). A simulated scenario is also shown (dotted line) 

where the gSD of the solute molecule and A0/Δx has been reduced to match the GSC of five different 

plasma proteins (from Lund et al [22]): myoglobin (myo: 19.4 Å), human myeloma dimeric -chain 

(-dimer; 28.4 Å), neutral horse-radish peroxidase (nHRP; 30.4 Å), neutral HSA (nHSA; 35.0Å), and 

HSA (35.5 Å).  

 

Figure 2 

Effects of varying the gSD parameter for three differently sized molecules having radii 20Å, 36Å (cf. 

albumin) and 60Å. Variation in the flexibility (gSD) of the smaller 20 Å and the larger 60 Å solute 

molecules has virtually no effect on their permeability across the GFB. The opposite holds true for the 

36Å molecule which has a radius close to the pore radius. 

 

Figure 3 

Effects of altering the ‘softness’ (gSD) of the solute while keeping the other parameters of the model 

constant (as defined in Table 1). For comparison, Dextran sieving data from the rat glomerulus (from 

[6]) is also shown (dotted line). The experimental data seem to correlate well with a gSD = 1.37. 
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Figure 4 

Theoretical increase in the concentration of differently sized Ficolls along a glomerular capillary. 

Solute concentration is expressed relative to that in the afferent end of the capillary. The concentration 

of larger Ficolls are increasing as the water content of the glomerular capillary blood plasma escapes 

due to glomerular filtration. The protein concentration at the afferent end of the capillary was assumed 

to be 57 g/L which in the current simulation lead to a concentration of ~77 g/L at the efferent end (cf. 

also [10]).  

 

Figure 5 

Theoretical variation in glomerular sieving coefficients of differently sized Ficolls with position (y) 

along a glomerular capillary. The differences observed for the larger Ficolls are caused by the increase 

in their concentration as is shown in Fig 4. 

 

Figure 6 

Theoretical pressure profile along the length of the glomerular capillary. A pressure drop of 0.7 mmHg 

across the entire length of the capillary was assumed [14]. The pressure was assumed to be 45 mmHg 

at the afferent end of the capillary and 10 mmHg in Bowman’s space, similar to that found 

experimentally [10]. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Table 1 – Two-pore model parameters 

 

 

Model parameter 

 

 

 

Rat  

Glomerulus 

Nanopore 

Membrane 

 

Small pore radius (rS), Å 

 

 

36.2 ± 0.5  43 ± 2 

 

Geometric S.D. (gSD) 

 

 

1.16 ± 0.01 1.24 ± 0.01 

 

A0/Δx, cm 
 
 

 

 

24∙10
5
 ± 7∙10

5
 † 29 ± 7 

 

LpS, mL min
-1

 mmHg
-1

 † 

 

 

0.065 ± 0.04 † 2.2∙10
-5

 ± 0.2∙10
-5

 

 

Large pore radius (rL), Å 

 

 

152 ± 7 - 

 

JvL/GFR × 10
5
 

 

 

9 ± 1 - 

 

RPF, mL min
-1

  

 

 

2.6 ± 0.2 †
a
 - 

 

Jv, mL min
-1

 † 

 

 

0.65 ± 0.4 † 2.3∙10
-3 

± 0.2∙10
-3

 

 

Goodness of fit, χ
2 

 

 

0.15 ± 0.02 0.24 ± 0.06 

 

 

See Glossary for abbreviations. † refers to g kidney. 
a
 Theoretical estimation (see appendix). 
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ABSTRACT 

 

In the current study, an extended three pore model (TPM) is presented and applied to the problem of 

optimizing APD with regard to osmotic water transport (UF), small/middle-molecule clearance and 

glucose absorption. Simulations were performed for either intermittent APD (IPD) or tidal APD 

(TPD). IPD was simulated for fill and drain volumes of 2 L, while TPD was simulated using a tidal 

volumes of 0.5L, 1 L, or 1.5L with full drains and subsequent fills (2 L) occurring after every fifth 

dwell. A total of 25 cycles for a large number of different dialysate flow rates (DFR) were simulated 

using 3 different glucose concentrations (1.5%, 2.27% and 3.86%) and 3 different peritoneal transport 

types: slow (PET D/Pcrea < 0.6), fast (PET D/Pcrea > 0.8) and average. Solute clearance and UF were 

simulated to occur during the entire dwell including both fill and drain periods. It is demonstrated that 

DFRs exceeding ~3L/h are of little benefit both for UF and small-solute transport while middle-

molecule clearance is actually enhanced at higher DFRs. The extended model is compared with 

clinical data with good agreement. The simulations predict that large reductions (>20%) in glucose 

absorption are possible by using moderately higher DFRs than a standard 6x2L prescription and by 

using shorter optimized ‘bi-modal’ APD regimes that alternate between a glucose-free solution and a 

glucose containing solution. Further research should assess whether such optimized regimes are 

feasible and safe, since the possible reductions in glucose absorption appear to be significant. 

 

 

KEYWORDS: Dialysis efficiency, Automated peritoneal dialysis, Transport, Urea kinetics, Water 

transport  
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INTRODUCTION 

 

Automated peritoneal dialysis (APD) is peritoneal dialysis performed with the aid of a mechanical 

device (a cycler), freeing the patient or caregiver from the repetitive and tedious labor of replacing 

spent dialysis fluid manually. APD is usually performed during the night when the patient is asleep, 

followed by a ‘dry day’ or a single long daytime dwell (‘wet day’). Compared to conventional 

techniques, such as continuous ambulatory peritoneal dialysis (CAPD), APD offers the possibility to 

use increased dialysate flow rates (DFR) which would either be impractical or impossible to 

accomplish manually. Increasing the dialysate flow rate (DFR) by using more frequent exchanges will 

typically improve the efficiency of APD [14]. However, an increased DFR will increase the time spent 

filling and draining the peritoneal cavity, reducing the efficiency of the dialysis at higher DFRs [6, 

25]. Thus, too frequent exchanges will reduce the efficiency of the dialysis and lead to a reduced cost-

efficiency due to the increased consumption of dialysis fluid. 

 

There are three exchange techniques of peritoneal dialysis, intermittent (IPD), tidal (TPD) and 

continuous (CPD) technique [19]. The latter requires the use of dual catheters and has only rarely been 

used. In IPD, each dwell is followed by a complete drain after which the peritoneal cavity is filled 

again with fresh dialysate. The outflow of drained fluid is bi-phasic, having a ‘fast-phase’ with flows 

~350 mL/min  and a ‘slow-phase’ with significantly lower flows, being only 30-40 mL/min. The 

separation between the fast and slow outflow phase is called the transition or break point which 

usually occurs after ~5 min after a 2L dwell [19]. In TPD, after an initial fill volume (of usually 2L), 

only a portion of the initial fill volume is drained and replaced by fresh dialysis fluid during each 

cycle. Thus, there is always a certain minimal amount of dialysate (the 'reservoir volume') that stays in 

contact with the peritoneal membrane throughout the dialysis session, after which the peritoneal cavity 

is drained completely. A prescription of TPD is usually defined by the percentage of the initial fill 

volume drained from the patient, e.g. 50% Tidal APD for a 2L initial volume means that 1L is cycled 

with 1L reserve volume remaining in the peritoneal cavity. In addition to draining the tidal volume, 

cyclers usually allow the prescriber to drain a surplus amount of fluid to compensate for the expected 
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ultrafiltration (UF) in order to avoid overfilling the peritoneal cavity with the accumulated 

ultrafiltrated volume. Thus, the tidal drain volume (TDV) is usually larger than the tidal fill volume 

(TFV). However, in clinical practice, it is nearly impossible to exactly match the predicted UF with 

the actual UF and, thus, a certain amount of “overdrain” or overfill is unavoidable. 

 

The TPM was originally derived directly from patient data, some of which were published in 1990 

[20], focusing on the most difficult task of PD modeling, namely to model UF volume as a function of 

time. The first head-to-head comparison of the TPM in its original version vs. conventional models 

(the Pyle & Popovich model) was done by Vonesh & Rippe [24], fitting the two fundamentally 

different models to rather detailed patient data. It was shown that the two models’ ability to predict UF 

volume curves for 360 min were identical. The P&P model operated with high reflection coefficients 

to small solutes. It also utilized an albumin oncotic pressure term, contributing to the total fluid loss 

from the peritoneal cavity, whereby the lymph flow (parameter) became 0.54 ml/min in the P&P 

model (compared to 0.3 ml/min in the TPM). Although mathematical predictability was excellent, 

using non-TPM reflection coefficients and an inflated lymph flow parameter, problems with the P&P 

model turned up when simulating drained volume vs. times curves for Icodextrin. Furthermore, in 

dwells lasting longer than 6 hrs, the rate of final reabsorption became too large. This was the reason 

why the P&P model was abandoned for the purpose of UF simulations in favor of the TPM in 

Vonesh’s later models (cf. PD-Adequest) [23]. A slightly extended version of the TPM has been very 

extensively validated by Haraldsson in 1995 [7], and later by its use in the computer software PDC
®
. 

The Haraldsson modification of the TPM included an initial inflation parameter for small solute PS 

values, essentially operating during the first hour of the dwell. Since PS to glucose was not inflated 

during the entire dwell, the term “final reabsorption rate” had to be increased from ~1.1 to ~1.5 ml/min 

to fit measured UF data (cf. [20, 24]). Haraldsson also increased the PS for urea by 20% from the 

theoretical value, but a further inflation actually seems appropriate. Furthermore, there was essentially 

an uncoupling between the hydraulic conductance (LpS) and the diffusive parameter, A0/Δx (if there 

was more than a 5% deviation of calculated UF volume vs. measured UF volume, which regularly 

occurred). The TPM is thus very well validated, and especially suitable for modeling of Icodextrin [6] 
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and long (>6 hrs) dwells, which is problematic with most other models. Validation is itself very 

problematic because of the high scatter in input data, especially in UF data. Vonesh et al [4] noted that 

the level of precision (standard deviation) in differences between two measured values was 707 ml/day 

for UF. Given such variability in input data, actually most models can be made to fit experimental 

data. 

 

The classic TPM does not describe the inflow or outflow phase of the dwell. However, at higher 

dialysate flows, a significant part of the exchange time is spent either filling or draining the peritoneal 

cavity. In the current study, we present an extended 3PM having an additional compartment, allowing 

simulation also of the drain and fill phases of the dwell. The extended model is used to optimize the 

treatment with APD with regard to osmotic water transport (UF), small/middle-molecule clearance 

and glucose absorption. The results demonstrate that the ‘metabolic cost’ in terms of glucose 

absorption can be significantly reduced by using slightly higher DFRs than usually prescribed and a 

‘bi-modal’ regime where relatively short dwells containing a high glucose concentration are combined 

with longer dwells containing no or a low glucose concentration. In addition, it is demonstrated that 

these regimes make it possible to shorten the total treatment time while achieving the same or better 

small-solute transport and UF. However, this will of course occur at a higher cost of treatment.  
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RESULTS 

 

Urea clearance 

In Figure 1, the simulated urea clearance as a function of DFR is plotted for the different techniques 

(IPD,TPD75/50/25) and different transport types: Fast (red line), Average (black line), Slow (blue 

line) for three different glucose concentrations:1.5% (dotted line), 2.27% (solid line) and 3.86% 

(dashed line). At low to moderate dialysate flow rates (< 2-3L/h) the intermittent technique provides 

slightly higher clearances than the tidal technique. For slow transporters, higher volume flows become 

ineffective (reach a plateau) at lower DFRs compared to average and fast transport types. Thus, for 

small solute transport, there is little benefit in exceeding 2L/h for a slow transporter. For the lower 

tidal volumes (TPD50 and TPD25), the urea clearance is lower in the leftmost part of the curve 

compared to the other modalities, demonstrating a relative inefficiency of low tidal volumes at lower 

DFRs. The right-most value for each curve represents the maximal flow rate possible at the chosen fill 

and drain flow rates (i.e. all time is spent either filling or draining the peritoneal cavity) and is, 

expectedly, higher for the tidal technique. The results for the other small solutes, creatinine, sodium 

and phosphate are very similar to the urea results (data not shown) although the transport of sodium 

more closely follow the UF curve (as is expected since ~80% of sodium is transported via convection). 

 

Osmotic water transport (UF) 

In Figure 2, the osmotic water transport, or “UF”, per session hour is shown as a function of DFR. 

Expectedly, in absolute terms, the UF is higher for the slow transporters due to the slower dissipation 

of glucose, improving the average osmotic pressure gradient. The peak values occur at similar DFRs 

compared to the urea clearance vs. DFR curves in Fig. 1. At first glance, this might seem a bit 

surprising, since it is at these DFRs that the glucose absorption is at its greatest. However, the 

increased glucose dissipation at these high DFRs will be more than well compensated by the influx of 
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fresh dialysis fluid. Thus the glucose gradient will be maintained despite increasing absorption. Thus, 

it is the addition of fresh dialysis fluid that will increase both UF and clearance of small solutes at 

higher DFRs. The inefficiency at higher flows is due to the fact that, in relative terms, more time is 

spent filling and draining the peritoneal cavity, leading to a decrease in both UF and small solute 

clearance. Again, fast transporters will benefit from slightly higher DFRs while there is no benefit for 

slow transporters usinf DFRs > 2L/h. 

 

Osmotic water transport (“UF”) efficiency 

The osmotic transport of water (“UF”) during PD occurs at a “metabolic cost”, in terms of glucose 

absorption. In Figure 3 the UF in mL per gram glucose absorbed (or “UF efficiency” [2]) is plotted as 

a function of DFR. The UF efficiency is markedly improved by increasing the DFR up to about 2L/h 

after which a plateau is reached and small or no further improvements are attained. For DFRs lower 

than 1L/h, the UF efficiency drops rapidly. The higher glucose concentrations are far more efficient in 

achieving UF. Thus, at a DFR of 2L/h, the patient will absorb more than twice the amount of glucose 

for the same amount of UF using the 1.5% solution compared to the 3.86% solution.  

 

Small-solute transport efficiency (mmol UreaR per g glucose absorbed) 

In Figure 4, the small solute transport efficiency (in mmol urea removed per g glucose absorbed) as a 

function of DFR is plotted. Similar to the osmotic efficiency above, the removal reaches an early 

plateau at DFRs higher than 2L/h. However, concerning the glucose strength, the situation here is the 

opposite compared to the UF efficiency curves. The higher glucose concentrations are much less 

efficient in achieving urea transport. Thus, the patient will absorb almost twice the amount of glucose 

per mmol of urea removed using a 3.86% solution instead of a 1.5% solution. Apparently, for both 

UF- and transport efficiency, there seems to be little benefit in increasing the DFR over 2L/h. 
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Middle molecule transport vs. DFR 

In Figure 5, the clearance of 2-microglobulin as a function of DFR is shown. In comparison to the 

results for the small-solute transport, no peak or decrease in clearance was observed at higher DFRs 

for the tidal techniques. Furthermore, the smaller tidal volumes are clearly beneficial for middle-

molecule transport.  

 

Comparison with clinical studies 

In Table 2, the extended 3PM  is compared with the study by Aasaröd and colleagues [1]. There is 

good agreement between the model and the clinical measurements, although there seems to be a 

tendency for the model to underestimate the clearances at higher DFRs. 

 

Osmotic efficiency 

The osmotic efficiency expressed in terms of UF per liter dialysis fluid ”consumed” as a function of 

DFR is shown in Figure 6 for the different techniques, transport types and different glucose 

concentrations. The extreme points to the left in the curves represent the lowest DFR at which the 

dialysis fluid will be efficient at removing water from the patient. Similarly, increasing the DFR to 

very high values means that a lot of dialysis fluid is spent for very little UF. Thus, from an economical 

point of view, the highest osmotically efficient DFR should be the extreme points in Figure 2. 

Intervals for these extreme points are ‘osmotically efficient’ and have been compiled Table 3. 

 

Optimization Examples 

The simulation results for UF efficiency and transport efficiency suggest that the overall glucose 

absorption can be decreased by alternating between short “UF dwells” and longer “Removal dwells”. 

In Figure 7, a standard prescription of 6x2L 1.36% glucose with a duration of 9 hours is compared 
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with scenarios were each dwell is optimized for either UF (using 3.86% glucose) or small-solute 

transport (using 0% glucose) keeping the glucose absorption low. The treatment time for the two latter 

scenarios was chosen to fit the UF and urea transport of the “standard prescription”. The 

corresponding transport parameters are shown in Table 4.  
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DISCUSSION 

 

We have here presented an extended 3-pore model and applied it to a clinical problem: how to 

optimize APD with regard to maximizing UF and small-solute transport and, at the same time, 

minimizing the metabolic cost in terms of glucose absorption. The computer simulations were 

performed for different techniques (IPD, TPD25/50/75), different transport types (Slow, Average, 

Fast) and three different glucose concentrations (1.5%, 2.27% and 3.86%). To the best of our 

knowledge, these are the first simulations of this kind. We have demonstrated that the ”metabolic 

cost” in terms of both urea removal and UF per gram glucose absorbed is improved at somewhat 

higher DFRs (>2L/h) than is usually prescribed. The relative inefficiency of increasing DFR above 

3L/h is demonstrated in these simulations with the only exception being middle-molecular transport, 

which, according to the current results, is actually improved at higher DFRs and lower tidal volumes. 

It is also clear, from these simulations that the metabolic efficiency, in terms of removal of small 

solutes per g glucose absorbed, is higher for lower glucose concentrations. The opposite holds true for 

UF in mL per g glucose absorbed which is higher for higher glucose concentrations. These properties 

can be expected á priori simply on the basis of the difference in the clearance of glucose from the PC 

and the osmotic flux of water to the PC and are not consequences of the TPM per se. Thus, relatively 

short ‘fluid removal dwells’ containing a high glucose concentration take advantage of the fact that 

ultrafiltration is much larger in the initial part of the dwell while longer 'diffusion' dwells containing 

no glucose can be used to obtain sufficient small-solute removal using the fact that the reabsorption 

rate is far lower than the initial flow rates in a glucose containing dwell. Also, the higher DFR used in 

these dwells seems to facilitate middle-molecule removal. 

 

Glucose sparing optimization techniques 

In light of the increasing number of type II diabetic patients on PD treatment, the systemic glucose 

absorption associated with PD has become a growing concern. However, while glucose sparing 
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techniques improves the metabolic control in diabetic patients, low-glucose regimes may apparently 

lead to an increased risk of extracellular fluid volume expansion [12], presumably due to the lower 

amount of UF associated with these regimes. Optimizing a single PD dwell will typically mean finding 

a balance between UF and small solute removal. However, since APD is based on several subsequent 

dwells, this allows for optimizing single dwells for either solute transport (low or, preferably, no 

glucose) or UF (high glucose) keeping the glucose absorption as low as possible during each dwell. 

Thus, the fact that weak glucose solutions provide more solute removal per g glucose absorbed and 

strong glucose solutions provide more UF per g glucose absorbed [2] can be used to optimize APD 

with regard to minimizing glucose absorption. Of course, such a strategy will lead to higher glucose 

concentrations for the ”UF-dwells” than would be used in a ”balanced” approach and exposing the 

peritoneal tissues to higher glucose concentrations may have undesired effects. On the other hand, the 

systemic glucose exposure can be far lower (see table 3) and the contact time with the stronger glucose 

solution can be kept relatively short (see figure 7).  

 

The 3-pore model of peritoneal dialysis 

A number of different variants of the TPM have been in use over the years. The three-pore concept 

was early included into the PD-Adequest model to be able to properly model UF [23, 24], especially 

for Icodextrin [17]. Common modifications of the model is to employ the old Pyle & Popovich (P&P) 

concept, namely that of a high lymphatic reabsorption term, low values for LpS and high values for 

the small solute reflection coefficients. The apparent advantage of such models is that the PS for 

glucose can be kept at a low value throughout the dwell. However, since the disappearance rate of the 

crystalloid osmotic gradient is about twice that of the intraperitoneal glucose concentration (rate 

constants 0.01 vs. 0.005, respectively) [8, 24], the original TPM uses a constantly inflated PS value for 

glucose during the entire dwell exclusively for UF simulations. Because small solute reflection 

coefficients can be kept low in the TPM, it is possible to model the osmotic behavior of Icodextrin and 

to have a fully operating Starling balance in this model [17]. As already discussed above, for short 
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dwells the old P&P concept or the KI modification of the TPM (KI-TPM) [22] work mathematically in 

an excellent way as compared to the original TPM. However, for longer dwells, this model, as well as 

the KI-TPM, will not work properly. The final reabsorption rate from the peritoneal cavity will be 

much too high (~3 ml/min). For short dwells, simulated during APD, the difference among the various 

versions of the TPM will be small.  

 

Conclusions 

The current simulations using an extended TPM indicate that the glucose absorption of APD-

prescriptions can be greatly reduced by using moderately higher dialysate flows and utilizing a bi-

modal treatment regime. The side-effects of such a treatment regime compared to standard regimes 

with higher glucose absorption are, however, not known. Further research should assess whether such 

optimized bi-modal regimes are feasible and safe, since the possible reduction in glucose absorption 

appear to be significant. By using DFRs higher than standard prescriptions (~1.5-2L/h), improvements 

in small-solute clearance and UF are also possible, although the relative benefits in UF and Kt/V seem 

to be relatively small compared to the increased cost of the treatment. It would, however, appear that 

the current model slightly underestimates the urea clearance at higher DFRs. Of course, higher DFRs 

will achieve the same UF and urea removal in a shorter period of time compared to standard 

treatments, although at a higher consumption of dialysis fluid. By contrast, using DFRs lower than 

1L/h would appear to increase the glucose absorption in relation to the achieved UF and small-solute 

removal. Thus, according to the current results, considering both the metabolic cost in terms of 

glucose absorption per mL UF and the efficiency of the treatment in terms of small solute transport 

and UF: a “UF efficient” and economical DFR for most patients should lie between 1-3 L/h. 
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METHODS 

 

During peritoneal dialysis, the net volume flow across the peritoneal membrane, at any time t from the 

start of the filling phase, is assumed to be the sum of 6 different volume flows 

𝑑𝑉𝐷

𝑑𝑡
=  𝐽𝑣,𝐶 + 𝐽𝑣,𝑆 + 𝐽𝑣,𝐿 − 𝐿 + 𝐽𝑓𝑖𝑙𝑙 − 𝐽𝑑𝑟𝑎𝑖𝑛 (1) 

In this equation, Jv,C, Jv,S, and Jv,L represent the net flow of water (in mL/min) across the aquaporines, 

the highly selective pathways (“small pores”) and the weakly selective pathways (“large pores”), 

respectively. In the 3-pore model, the flows in equation 1 are assumed to vary only as a function of 

time and are directed into the peritoneal cavity when positive. The net lymphatic clearance from the 

peritoneal cavity to the circulation is denoted L (in mL/min) and is typically on the order of 0.2-0.3 

mL/min when measured as a clearance to the circulation [18]. The clearance of an intraperitoneal 

volume marker is, however, larger than this value, which has been the source of much discussion [15]. 

The value of L is coupled to the reflection coefficient of glucose (and thus αc) and to Kf, which can be 

used to estimate a plausible range for these parameters [20].  

The model in the present work has been extended to include also the fill and drain phases of the dwell. 

Thus, Jdrain and Jfill represent the flows of volume (in mL/min) to and from the source of dialysis fluid, 

respectively. The change in the intra-peritoneal concentration of a solute i (denoted dCD,i/dt in 

mmol/mL/min) at any time t is dependent on three separate terms 

𝑑𝐶𝐷,𝑖

𝑑𝑡
=

𝐽𝑠,𝑆,𝑖+𝐽𝑠,𝐿,𝑖

𝑉𝐷
− 𝐶𝐷,𝑖

 𝐽𝑣,𝐶+𝐽𝑣,𝑆+𝐽𝑣,𝐿+𝐽𝑓𝑖𝑙𝑙

𝑉𝐷
+

𝐶𝐵,𝑖𝐽𝑓𝑖𝑙𝑙

𝑉𝐷
 (2) 

The first term is the change in intra-peritoneal concentration caused by the flow of solutes (through 

small and large pores, Js,S,i and Js,L,i in mmol/min) in and out of the peritoneal cavity. As can be seen, a 

positive solute flow is directed into the peritoneal cavity, increasing the concentration in the dialysate. 

The second term represents the dilution/concentration due to volume flux in and out of the peritoneum. 

Only water flows that affect the dialysate concentration are included in this term (i.e. L and Jdrain are 
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not included). The last term is the change in concentration due to the inflow of fresh dialysate Jfill 

having a concentration CB,i (in mmol/mL). The change in concentration in the drain resevoir of solute i 

(dCB,i(t)/dt in mmol/mL/min) is given by 

𝑑𝐶𝐵,𝑖

𝑑𝑡
=

𝐽𝑑𝑟𝑎𝑖𝑛𝐶𝐷,𝑖−𝐽𝑓𝑖𝑙𝑙𝐶𝐵,𝑖

𝑉𝐵
−

𝐶𝐵,𝑖

𝑉𝐵

𝑑𝑉𝐵

𝑑𝑡
 (3) 

The change in reservoir “bag” volume VB is simply 

𝑑𝑉𝐵

𝑑𝑡
=  −𝐽𝑓𝑖𝑙𝑙 + 𝐽𝑑𝑟𝑎𝑖𝑛 (4) 

Thus, the concentration in the reservoir does not change during the fill phase (dCB,i/dt = 0). This 

equation implies that the drain compartment is identical to the compartment with fresh dialysis fluid 

which is not the case in actual practice. However, since drain fluid and fresh dialysate are never 

mixed, there is no need for more than one “reservoir” compartment in the model. Hence, the 

compartment VB acts as a source during the fill phase and as a collector of drain fluid during the drain 

phase. The initial conditions for the simulations are 

𝑉𝐷(0) = 𝑉𝑟      (5) 

𝐶𝐷,𝑖(0) =  𝐶𝑝,𝑖     (6) 

𝐶𝐵,𝑖(0) = 𝐶𝐼,𝑖      (7) 

𝑉𝐵(0) = 𝑉𝐼      (8) 

where Vr is the residual volume, VI the fill/instilled volume (at the start of the fill phase) or 0 at the 

start of the drain phase), CI,i is the dialysis fluid concentration of solute i,  Cp,i is the plasma 

concentration of solute i which is assumed to be constant during the dwell. The ordinary differential 

equations (ODE) 1-4 above, along with the initial conditions, represent the initial value problem (IVP) 

to be solved in order to obtain the unknown functions VD(t), CD,i(t), VB(i) and CB,i(t).  
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Volume and solute flow in the 3PM 

The solute flow (in mmol/min) over each pathway is calculated according to the Patlak equation 

𝐽𝑠,𝑆,𝑖 = 𝐽𝑣,𝑆(1 − 𝜎𝑠,𝑖)
𝐶𝑃,𝑖−𝐶𝐷,𝑖𝑒

−𝑃𝑒𝑆,𝑖

1−𝑒
−𝑃𝑒𝑆,𝑖

    (8) 

𝐽𝑠,𝐿,𝑖 = 𝐽𝑣,𝐿(1 − 𝜎𝐿,𝑖)
𝐶𝑃,𝑖−𝐶𝐷,𝑖𝑒

−𝑃𝑒𝐿,𝑖

1−𝑒
−𝑃𝑒𝐿,𝑖

    (9) 

where PeS,i=JvS(1-σS,i)/PSS,i an PeL,i=JvL(1-σL,i)/PSL,i are the Péclet numbers (the ratio between the 

maximum convective and diffusive clearance for solute i) for the small and large pore pathway, 

respectively. The mass transfer area coefficients, PSS,i and PSL,i (in mL/min), are either set according 

to Table 1 or calculated according to pore theory PS=D·A0/Δx·A/A0 where A/A0 is the diffusive 

restriction factor (cf. also [13]) and D is the free diffusion coefficient. The reflection coefficients are 

calculated according to theory [17]. The volume flow (mL/min) is calculated using Starling equilibria 

over each parallel pathway 

𝐽𝑣𝐶 = 𝛼𝐶𝐿𝑝𝑆(Δ𝑃 − 𝑅𝑇 ∑ (𝐶𝑝,𝑖 − 𝐶𝐷,𝑖)𝑁
𝑖=1 )    (10) 

𝐽𝑣𝑆 = 𝛼𝑆𝐿𝑝𝑆(Δ𝑃 − 𝑅𝑇 ∑ 𝜎𝑆,𝑖(𝐶𝑝,𝑖 − 𝐶𝐷,𝑖)𝑁
𝑖=1 )   (11) 

𝐽𝑣𝐿 = 𝛼𝐿𝐿𝑝𝑆(Δ𝑃 − 𝑅𝑇 ∑ 𝜎𝐿,𝑖(𝐶𝑝,𝑖 − 𝐶𝐷,𝑖)𝑁
𝑖=1 )   (12) 

where αC, αS and αL are the fractional hydraulic conductances for the different pathways (see Table 1), 

R is the gas constant and T is the body temperature (310°K). Thus, the osmotic reflection coefficients 

are assumed to be the same for osmosis and solute transport (cf. also [5, 10]). In this publication a 

filtration coefficient (LpS) of 0.074 mL/min/mmHg was assumed for a patient A0/Δx of 25000 

centimeters. For different peritoneal transport types LpS was scaled accordingly. To account for the 

recruitment/loss of peritoneal surface area due to a high/low IPV, an area factor was multiplied to all 

PS-values and LpS according to Keshavia et al [11]. 

𝑎𝑓 = 16.18(1 − 𝑒−0.00077∙𝑉𝐷(𝑡))/13.3187    (13) 
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Thus, the mass transfer area coefficients and the filtration coefficient were inflated for volumes > 2250 

mL and vice versa. 

 

Pressure dynamics in the 3-pore model 

The average capillary hydrostatic pressure was calculated according to a pre-to-post-capillary 

resistance ratio (PTP=Ra/Rv) of 8:1. This ratio may be a bit low, but in the current simulations this will 

matter very little. Thus, given the mean arterial pressure (MAP) and the large-vein pressure (Pv) of the 

patient, the capillary pressure is calculated according to the well-known equation  

𝑃𝑐 = 𝑓𝑅𝑣 ∙ 𝑀𝐴𝑃 + 𝑓𝑅𝑎 ∙ 𝑃𝑣     (14) 

where fRa = 1-fRv and fRa = PTP/(PTP+1) are the fractional pre-capillary and post-capillary 

resistances, respectively. The net hydrostatic pressure gradient is simply 

Δ𝑃 = 𝑃𝑐 − 𝐼𝑃𝑃     (15) 

where the intra-peritoneal pressure (IPP) was assumed to be dependent only on the intraperitoneal 

volume (IPV). Here we used a modified equation by Twardowski et al [21] for the supine position. 

𝐼𝑃𝑃 = 4.7 + 
𝑉𝐷(𝑡)

690
      (16) 

Note that the intercept used here is higher than that obtained in the study by Twardowski et al since 

the IPP for a total IPV of 2250 mL is here assumed to be 8 mmHg [9] in the supine position. However, 

in a patient naïve to peritoneal dialysis, a lower (negative) intercept can be expected. Furthermore, IPP 

might not be a completely linear function of IPV especially in the lower and higher ranges. In the 

current article, a MAP of 90 mmHg was used and, further, it is assumed that the large-vein pressure is 

equal to the intra-peritoneal pressure (Pv = IPP). This last assumption has been the subject of some 

controversy [16] since the net effect of this assumption is that variations in IPP has an almost 

negligible effect on trans-peritoneal volume flux. 
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Temporal discretization and numerical solution of the 3-pore IVP 

To solve equations (1-4) numerically, we implement a fourth order Runge-Kutta scheme. If N 

represents the total number of solutes included in the simulation, the scystem of equations (1-4) can be 

re-written  

𝑑𝑉𝐷

𝑑𝑡
=  ℱ(𝑡, 𝐶𝐷,1, 𝐶𝐷,2, … , 𝐶𝐷,𝑁) 

𝑑𝐶𝐷,𝑖

𝑑𝑡
= 𝒢(𝑡, 𝐶𝐷,𝑖, 𝐶𝐵,𝑖 , 𝑉𝐷) 

𝑑𝐶𝐵,𝑖

𝑑𝑡
= ℋ(𝑡, 𝐶𝐷,𝑖, 𝐶𝐵,𝑖, 𝑉𝐵) 

where F, G and H are functionals (“functions of functions”) corresponding to the right-hand side of 

equations 1-3 and i = 0,1, … , N. We proceed by defining all functions of interest (VD(t), CD,i(t), VB(i) 

and CB,i(t)) on Q+1 equally spaced grid points over the total simulation time [0,τ] with a time-step Δt= 

τ/Q. The grid points are labeled k=0,1,2 … Q with k=0 representing the initial values. The functions 

are then calculated on the grid points CD,i,k=CD,i(kΔt), CB,i,k=CB,i(kΔt) and VD,i,k= VD,i(kΔt). Starting 

with the initial value (k=0) the next grid point (k+1) is calculated according to 

𝐾1 =  Δ𝑡 ∙ ℱ(𝑘Δ𝑡, 𝐶𝐷,1,𝑘, 𝐶𝐷,2,𝑘, … , 𝐶𝐷,𝑁,𝑘) 

𝐿1,𝑖 =  Δ𝑡 ∙ 𝒢(𝑘Δ𝑡, 𝐶𝐷,𝑖,𝑘 , 𝐶𝐵,𝑖,𝑘 , 𝑉𝐷,𝑘) 

𝑀1,𝑖 =  Δ𝑡 ∙ ℋ(𝑘Δ𝑡, 𝐶𝐷,𝑖,𝑘 , 𝐶𝐵,𝑖,𝑘, 𝑉𝐷,𝑘) 

𝐾2 =  Δ𝑡 ∙ ℱ (𝑘Δ𝑡 +
Δ𝑡

2
, 𝐶𝐷,1,𝑘 +

𝐿1,1

2
, 𝐶𝐷,2,𝑘 +

𝐿1,2

2
, … , 𝐶𝐷,𝑁,𝑘 +

𝐿1,𝑁

2
) 

𝐿2,𝑖 =  Δ𝑡 ∙ 𝒢(𝑘Δ𝑡 +
Δ𝑡

2
, 𝐶𝐷,𝑖,𝑘 +

𝐿1,𝑖

2
, 𝐶𝐵,𝑖,𝑘 +

𝑀1,𝑖

2
, 𝑉𝐷,𝑘 +

𝐾1

2
) 

𝑀2,𝑖 =  Δ𝑡 ∙ ℋ(𝑘Δ𝑡 +
Δ𝑡

2
, 𝐶𝐷,𝑖,𝑘 +

𝐿1,𝑖

2
, 𝐶𝐵,𝑖,𝑘 +

𝑀1,𝑖

2
, 𝑉𝐷,𝑘 +

𝐾1

2
) 
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𝐾3 =  Δ𝑡 ∙ ℱ (𝑘Δ𝑡 +
Δ𝑡

2
, 𝐶𝐷,1,𝑘 +

𝐿2,1

2
, 𝐶𝐷,2,𝑘 +

𝐿2,2

2
, … , 𝐶𝐷,𝑁,𝑘 +

𝐿2,𝑁

2
) 

𝐿3,𝑖 =  Δ𝑡 ∙ 𝒢(𝑘Δ𝑡 +
Δ𝑡

2
, 𝐶𝐷,𝑖,𝑘 +

𝐿2,𝑖

2
, 𝐶𝐵,𝑖,𝑘 +

𝑀2,𝑖

2
, 𝑉𝐷,𝑘 +

𝐾2

2
) 

𝑀3,𝑖 =  Δ𝑡 ∙ ℋ(𝑘Δ𝑡 +
Δ𝑡

2
, 𝐶𝐷,𝑖,𝑘 +

𝐿2,𝑖

2
, 𝐶𝐵,𝑖,𝑘 +

𝑀2,𝑖

2
, 𝑉𝐷,𝑘 +

𝐾2

2
) 

𝐾4 =  Δ𝑡 ∙ ℱ(𝑘Δ𝑡 + Δ𝑡, 𝐶𝐷,1,𝑘 + 𝐿3,1, 𝐶𝐷,2,𝑘 + 𝐿3,2, … , 𝐶𝐷,𝑁,𝑘 + 𝐿3,𝑁) 

𝐿4,𝑖 =  Δ𝑡 ∙ 𝒢(𝑘Δ𝑡 + Δ𝑡, 𝐶𝐷,𝑖,𝑘 + 𝐿3,𝑖, 𝐶𝐵,𝑖,𝑘 + 𝑀3,𝑖, 𝑉𝐷,𝑘 + 𝐾3) 

𝑀4,𝑖 =  Δ𝑡 ∙ ℋ(𝑘Δ𝑡 + Δ𝑡, 𝐶𝐷,𝑖,𝑘 + 𝐿3,𝑖, 𝐶𝐵,𝑖,𝑘 + 𝑀3,𝑖, 𝑉𝐷,𝑘 + 𝐾3) 

𝑉𝐷,𝑘+1 = 𝑉𝐷,𝑘 +
𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4

6
 

𝐶𝐷,𝑖,𝑘+1 = 𝐶𝐷,𝑖,𝑘 +
𝐿1,𝑖 + 2𝐿2,𝑖 + 2𝐿3,𝑖 + 𝐿4,𝑖

6
 

𝐶𝐵,𝑖,𝑘+1 = 𝐶𝐵,𝑖,𝑘 +
𝑀1,𝑖 + 2𝑀2,𝑖 + 2𝑀3,𝑖 + 𝑀4,𝑖

6
 

𝑉𝐵,𝑖,𝑘+1 = 𝑉𝐵,𝑖,𝑘 + Δ𝑡(𝐽𝑑𝑟𝑎𝑖𝑛 − 𝐽𝑓𝑖𝑙𝑙) 

The total simulation time (τ) was chosen so that a total of 25 subsequent dwells was simulated with a 

timestep of 0.001 min. This short timestep was chosen so that the error in fill/drained volume would 

be less than 0.1 mL per dwell. 

 

Regulation of fill/drain cycles 

In the current simulations, a fill flow rate of 200 mL/min was used. For the drain phase, drain flow 

rates of 350 mL/min (fast-phase) and 36 mL/min (slow-phase) were implemented with a transition 

point (break point) at an intraperitoneal volume of 381 mL [3, 4]. Each cycle starts with a fill phase 

followed by a dwell phase which lasts for a pre-determined dwell time (DT) after which the drain 

132

132



phase starts. The whole duration of the cycle, consisting of the fill-, dwell- and drain-time is referred 

to as the exchange time (ET). For IPD, the drain phase ends when the calculated intra-peritoneal 

volume for the next grid point is less than the residual volume (VD,k+1 < Vr) after which either a new 

cycle starts or the simulation ends. Depending on the time-step chosen, this leads to a small error since 

the actual volume left in the peritoneal cavity after a cycle will always be larger than (or equal to) Vr. 

The drain phase terminates when the calculated volume for the next grid point is less than the sum of 

the residual volume and the tidal reserve volume (VD,k+1 < Vr + TRV).  
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LEGENDS 

 

Figure 1 

Simulated urea clearances as a function of DFR for the different techniques (IPD,TPD75/50/25), 

different transport types: Fast (red line), Average (black line), Slow (blue line) and three different 

glucose concentrations:1.5% (dotted line), 2.27% (solid line) and 3.86% (dashed line). 

 

Figure 2 

Osmotic water transport (UF) per session hour as a function of DFR for the different techniques 

(IPD,TPD75/50/25), different transport types: Fast (red line), Average (black line), Slow (blue line) 

and three different glucose concentrations:1.5% (dotted line), 2.27% (solid line) and 3.86% (dashed 

line).  

 

Figure 3 

Osmotic water transport (UF) in mL per gram glucose absorbed (or “UF efficiency”) plotted as a 

function of DFR for the different techniques (IPD,TPD75/50/25), different transport types: Fast (red 

line), Average (black line), Slow (blue line) and three different glucose concentrations:1.5% (dotted 

line), 2.27% (solid line) and 3.86% (dashed line). 

 

Figure 4 

The small solute transport efficiency (in mmol urea removed per g glucose absorbed) as a function of 

DFR for the different techniques (IPD,TPD75/50/25), different transport types: Fast (red line), 
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Average (black line), Slow (blue line) and three different glucose concentrations:1.5% (dotted line), 

2.27% (solid line) and 3.86% (dashed line). 

 

Figure 5 

The clearance of 2-microglobulin as a function of DFR for the different techniques 

(IPD,TPD75/50/25), different transport types: Fast (red line), Average (black line), Slow (blue line) 

and three different glucose concentrations:1.5% (dotted line), 2.27% (solid line) and 3.86% (dashed 

line). 

 

Figure 6 

Osmotic water transport (UF) in mL per liter dialysis fluid ”consumed” as a function of DFR for the 

different techniques, transport types and different glucose concentrations.  

 

Figure 7 

Simulated scenarios were each dwell is optimized for either UF (using 3.86% glucose) or small-solute 

transport (using 0% glucose) keeping the glucose absorption low. The corresponding transport 

parameters are shown in Table 3.  
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 

  

145

145



Table 1. Three-pore model parameters 

Parameters used for computer simulations of intraperitoneal volume vs. time V(t) curves 

according to a three-pore model of membrane selectivity 

Small pore radius (rs) (Å) 43 

Large pore radius (rL) (Å) 250 

Fractional small pore UF-coeff. (s) 0.900 

Fractional transcellular UF-coeff. (c) 0.020 

Fractional large pore UF-coeff. (L) 0.080 

Ultrafiltration coefficient (LpS) (mL/min/mmHg) 0.074 

Osmotic conductance to glucose (LpS g) (L/min/mmHg) 3.6 

”Unrestricted” pore area over unit diffusion distance for small pores (A0/X)s (cm) 25,000* 

PS for glucose (mL/min) 15.4 

PS for urea (mL/min) 26.0 

PS for "Na" and "anion" (mL/min) 4.5 

PS for phosphate (mL/min) 10.2 

Peritoneal lymph flow (L) (mL/min) 0.3 

Transperitoneal oncotic pressure gradient (prot) (mmHg) 22 

Peritoneal residual volume (Vr) (mL) 250 

Serum urea conc. (mmol/L) 20 

Serum creatinine conc. (μmol/l) 660 

Dialysis fluid sodium conc. (mmol/L) 132 

Serum sodium (and sodium associated ”anion” conc.) (mmol/L) 140 

Serum glucose conc. (mmol/L) 6.5 

Dissociation factor for “Na+” and “anions” 0.93 

*) 25,000 cm was used for an average peritoneal transport type, 40,000 cm for high transporters and 

15,000 cm for low transporters.  
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Table 2. Comparison with clinical data 

DFR IPD Clurea TPD 50% Clurea 

1.1 L/h 14.3* mL/min (14.9) 13.3 mL/min (13.9) 

1.6 L/h 16.9 mL/min (17.0) 15.9 mL/min (16.2) 

2.7 L/h 20.9 mL/min (18.8) 19.9 mL/min (19.1) 

 

Results from the clinical study by Aasaröd et al, 1994 (Average PET D/Pcrea = 0.77) for IPD and 

TPD50 compared with the values predicted by the extended 3PM (within parenthesis). *) The Clurea 

was significantly higher for IPD in the clinical study. There were no significant differences for the two 

higher DFRs. 
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Table 3. Effective DFR intervals  

Intermittent technique Slow Average Fast 

1.5 % 0.7 L/h – 2.7 L/h 1.0 L/h – 3.0 L/h 1.5 L/h – 3.5 L/h 

2.27% 0.5 L/h – 2.7 L/h 0.7 L/h – 3.0 L/h 1.0 L/h – 3.5 L/h 

3.86 % 0.3 L/h – 2.7 L/h 0.5 L/h – 3.0 L/h 0.7 L/h – 3.5 L/h 

75% tidal technique Slow Average Fast 

1.5 % 0.7 L/h – 4.1 L/h 1.0 L/h – 4.5 L/h 1.8 L/h – 5.5 L/h 

2.27% 0.5 L/h – 4.1 L/h 0.9 L/h – 4.5 L/h 1.0 L/h – 5.2 L/h 

3.86 % 0.3 L/h – 4.0 L/h 0.5 L/h – 4.4 L/h 0.7 L/h – 5.1 L/h 

50% tidal technique Slow Average Fast 

1.5 % 0.8 L/h – 4.7 L/h 1.0 L/h – 5.1 L/h 1.8 L/h – 5.9 L/h 

2.27% 0.5 L/h – 4.7 L/h 0.8 L/h – 5.1 L/h 1.0 L/h – 5.9 L/h 

3.86 % 0.3 L/h – 4.7 L/h 0.5 L/h – 5.0 L/h 0.8 L/h – 5.8 L/h 

25% tidal technique Slow Average Fast 

1.5 % 0.7 L/h – 4.4 L/h 1.3 L/h – 4.8 L/h 1.8 L/h – 6.0 L/h 

2.27% 0.5 L/h – 4.3 L/h 0.7 L/h – 4.8 L/h 1.0 L/h – 5.3 L/h 

3.86 % 0.3 L/h – 4.3 L/h 0.5 L/h – 4.7 L/h 0.7 L/h – 5.2 L/h 

 

The lower limit represents the DFR at which a maximum UF per L dialysis fluid used is attained (see 

Fig. 6). Using a lower DFR than this value will be lead to less UF per L/dialysis fluid spent. Also, 

DFRs lower than 1L/h will increase the glucose absorption in relation to the achieved UF (see fig. 3). 

The high part of the interval is the DFR at which a maximum UF as a function of DFR is reached. 

Using a higher DFR will give less UF while spending more dialysis fluid. Note also that the peak 

values of the urea vs. DFR curves (Fig. 1) are very similar to the maximas of the UF vs. DFR curves 

(fig. 2). 
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Table 4. Bi-modal regimes compared with a standard 6x2L regime 

Regime UreaR UF Glucose abs. Decrease Total time 

6x2L 1.36% 158 mmol 458 mL 41.5 g 0 % 540 min 

4x2L 3.86% + 4x2L 0% 158 mmol 456 mL 33.8 g -19% 510 min 

5x2L 3.86% + 5x2L 0% 157 mmol 457 mL 32.3 g -22% 475 min 

 

Simulated ‘bi-modal’ regimes were each dwell is optimized for either UF (using 3.86% glucose) or 

small-solute transport (using 0% glucose) keeping the glucose absorption low. The IPV vs. time 

curves for the different scenarios are shown in Figure 7. Additional examples can be found in a 

Supplemental material. 
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SUPPLEMENTAL MATERIAL 

 

 

Simulated scenarios using a 5% glucose dialysis fluid. A reduction of up to 27% of the glucose 

absorption was obtained compared to the “standard prescription”. 

  

150

150



 

Simulated scenarios using a 6% glucose dialysis fluid. A reduction of up to 33% of the glucose 

absorption was obtained compared to the “standard prescription”. 
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Glossary

22 Symbols

A effective surface area available for restricted diffusion (i.e. A0 ≥ A)
A0 total cross-sectional (pore) area
AL effective large pore diffusion area
AS effective small pore diffusion area
Å length unit (Å= 10−10 m)
A
A0

diffusive transport restriction coefficient (effective/total area ratio)
ae Molecular (Stokes-Einstein) radius (Å)
c speed of light (2.997925 · 108 m/s)
Δcs solute concentration gradient Δcs = cos − cis
cis solute concentration in the “inner solution”
cos solute concentration in the “outer solution”
c(x) concentration profile along the length of the pore (mol/mL)
c̄ average radial solute concentration inside the pore
c̃(β) radial solute concentration profile
C0 see Cp
Ci downstream (filtrate) concentration (mol/mL)
CL see Ci
Cp plasma water concentration (mol/mL)
D free diffusion coefficient (cm²/min)
Di Diffusion coefficient of solute i
D2O Heavy water
E(x) Electric potential field
Ecap Electric potential (voltage) in the capillary lumen
F Faraday constant (9.64846 · 104 C/mol)
fL fractional volume flux across the large-pore population (i.e. Jv,L/Jv)
fS fractional volume flux across the small-pore population (i.e. Jv,S/Jv)
G Lag coefficient (cf. [])
H Diffusive hindrance factor, see A

A0
.

Ji Phenomenological flows
153153



Js total solute flux across the entire barrier (mol/min)
Jv total volume flux across the entire barrier (mL/min)
Jv,i volume flux across the i:th pore population in a heteroselective barrier (mL/min)
Jv,L volume flux across the large-pore population (mL/min)
Jv,S volume flux across the small-pore population (mL/min)
k Boltzmann constant (1.38066 · 10−23 J/K)
K Drag coefficient (the increased drag due to the presence of the pore walls)
Kc Intra-pore convective hindrance
Kd Intra-pore diffusive hindrance (KdD is the average intra-pore diffusion coefficient)
Ke Intra-pore electro-diffusive hindrance (KeD zie

kT is the average intra-pore electric mobility)
Kf see LpS
Lik phenomenological coefficients relating the driving force to its effect on the flows
Lp total hydraulic conductivity (mL min- mmHg- cm-)
LpS filtration coefficient; total hydraulic conductance (mL min- mmHg-)
ṅs Solute flow
ṅw Solvent (water) flow
N Local solute flux
Ni(t) molar amount of D2O in the inner compartment
Ni

s molar amount solute in the inner compartment
Ni

w molar amount solvent (water) in the inner compartment
N̄ Average solute flux over the pore section
NA Avogadro constant (6.02205 · 1023 mol−1)
P permeability coefficient; D/Δx (cm/min)
PA see PS
PS diffusion capacity (mL/min)
ΔP Hydraulic pressure gradient (mmHg)
R Gas constant (kNA = 8.31441 J/K/mol)
rS Small pore radius (Å)
rL Large pore radius (Å)
S Entropy
s geometric pore standard deviation
sL geometric large-pore standard deviation
sS geometric small-pore standard deviation
T temperature (°K) body-temperature = °K
u geometric mean pore radius
uL geometric mean large-pore radius (Å)
uS geometric mean small-pore radius (Å)
U Terminal velocity of the solute sphere (cm/min)
V Water flux velocity inside the pore (cm/min)
v̄ Average fluid velocity inside the pore (cm/min)
Vi Volume of the inner compartment (inside the frog egg)
Δx total barrier thickness (cm)
Xi Phenomenological forces
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23 Greek letters

αi fractional hydraulic conductance for the i:th pore population
αL fractional hydraulic conductance for the large-pore population (i.e. Kf,L/Kf)
αS fractional hydraulic conductance for the small-pore population (i.e. Kf,S/Kf)
β fractional radial position ( r

rp ) of the solute in relation to the pore radius rp
γ molar fraction
σ Staverman (homoselective) reflection coefficient []
σd solvent-drag reflection coefficient
σf see σd
σo osmotic reflection coefficient
σS homoporous small-pore reflection coefficient
σL homoporous small-pore reflection coefficient
η viscosity of water (0.7 mPa · s)
λ solute to pore radius ratio (e.g. ae

rS
)

µ frictional coefficient
Δµs Solute chemical potential
Δµw Solvent (water) chemical potential
νs partial molar volume of the solute
νw partial molar volume of the solvent (water)
ξz modified “reflection coefficient” for steady state ion transport
Δπ osmotic pressure gradient (mmHg)
Φ Partition coefficient
Φd Thermodynamic dissipation function
Ψ(x) Potential energy of radial interaction (see also [])
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DOCTORAL THESIS

Most of us go through life without giving much thought to the smallest blood 
vessels in the body - the capillaries. It is in these, extremely thin, only about 
5-7 thousandths of a millimeter thick, blood vessels that the exchange of 
important nutrients and water occur between the blood circulation and the 
different tissues in the human body. Among the most important substances 
that are transported to the tissue are, for example, oxygen and glucose without 
which the cells in the body cannot survive for very long. Similarly, the end-
products of the metabolic activity that occurs throughout the different tissues 
in the body, such as carbon dioxide and water, are transported away from 
the tissue. The aim of this thesis is to understand the basic mechanisms – the 
physiology - behind the transport of various substances that occur over the 
walls of capillaries - the smallest blood vessels in the body. In general terms, 
this is accomplished by constructing mathematical models which are then 
used to analyze experimental data from experimentally observed transport 
phenomena. The main focus will, in this thesis, be on the capillaries in the 
kidney and in the peritoneum - two very different kinds of blood vessels.

Carl Mikael Öberg
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