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SUMMARY

Protein dynamics play a crucial role in function, cata-
lytic activity, and pathogenesis. Consequently, there
is great interest in computational methods that probe
the conformational fluctuations of a protein. How-
ever, molecular dynamics simulations are computa-
tionally costly and therefore are often limited to
comparatively short timescales. TYPHON is a proba-
bilistic method to explore the conformational space
of proteins under the guidance of a sophisticated
probabilistic model of local structure and a given
set of restraints that represent nonlocal interactions,
such as hydrogen bonds or disulfide bridges. The
choice of the restraints themselves is heuristic, but
the resulting probabilistic model is well-defined and
rigorous. Conceptually, TYPHON constitutes a null
model of conformational fluctuations under a given
set of restraints. We demonstrate that TYPHON can
provide information on conformational fluctuations
that is in correspondence with experimental mea-
surements. TYPHON provides a flexible, yet compu-
tationally efficient, method to explore possible
conformational fluctuations in proteins.

INTRODUCTION

Over the past few decades it has become increasingly accepted

that proteins are dynamic molecules. Although many proteins

adapt unique and specific folds, their inherent flexibility is often

essential to the protein’s function. However, flexibility can also

lead to pathogenesis through misfolding, possibly leading to

the formation of aggregates and fibrils (Dobson, 2003; Teilum

et al., 2009a).

Computer simulations have emerged as important tools to

study the dynamics of proteins, complementing the data ob-

tained from biophysical experiments. A variety of methods are

available, ranging from detailed all-atom molecular dynamics

(MD) simulations (McCammon et al., 1977; Karplus andMcCam-

mon, 2002; Hess et al., 2008) to coarse-grained and approxima-

tive methods, such as normal mode analysis (NMA; Levitt et al.,

1983), elastic networks (Zheng et al., 2007), tCONCOORD (de
1028 Structure 20, 1028–1039, June 6, 2012 ª2012 Elsevier Ltd All ri
Groot et al., 1997; Seeliger and De Groot, 2009), and FRODA

(Jacobs et al., 2001; Wells et al., 2005). All methods come with

a trade-off between the level of detail and the computational

cost for obtaining useful information.

The concept behind MD simulations is to approximate the

physical forces acting on a protein and to calculate the motion

of particles in the system by applying Newton’s laws of motion

(McCammon et al., 1977; Karplus and McCammon, 2002;

Hess et al., 2008). Because the calculation of these physical

forces is computationally expensive, MD simulations are usually

limited to short timescales—typically in the range of hundreds of

nanoseconds. The high level of detail in MD simulations make

general physical conclusions viable (van Gunsteren et al.,

1996; Brooks et al., 2009). However, the timescales routinely

accessible through MD simulations rarely cover the full dynamic

range of proteins. Coarse-grained MD simulations sacrifice

certain atomic details to gain a computational advantage, thus

allowing longer simulation times or simulations of larger systems.

Merging multiple atoms into so-called beads or pseudoatoms is

a common approach to reduce the number of particles in the

system (Marrink et al., 2007). Another solution to overcome the

computational cost of MD simulations is to use faster computer

hardware. Shaw and colleagues were able to achieve a milli-

second simulation using custom built special-purpose hardware

(Klepeis et al., 2009; Shaw et al., 2010).

Many faster heuristic alternatives toMD have been developed.

The idea behind the elastic network (EN) models is that the

dynamics of folded, native proteins are rather limited compared

to unfolded dynamics and are overall governed by the interresi-

due contact topology (Bahar and Rader, 2005). Over the past

years, the computationally efficient EN models have replaced

the original harmonic potentials in many NMA approaches

(Bahar and Rader, 2005; Yang et al., 2009). In EN models, the

protein’s atoms are viewed as point masses that are inter-

connected by springs. Often, only the backbone Ca atoms are

included. Subsequently, a number of conformations are

sampled and a principal component analysis is performed on

the generated ensemble, yielding the normal modes (Levitt

et al., 1983). However, ensembles sampled from EN models

can be also used in different scenarios (Zheng et al., 2007);

vice versa, normal modes can be also calculated from ensem-

bles generated in MD simulations (Hess et al., 2008).

Other heuristic approaches that include atomic detail have

gained popularity over the past years. FRODA (Jacobs et al.,

2001; Wells et al., 2005) identifies rigid substructures in the
ghts reserved
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protein structure to reduce the degrees of freedom for the

subsequent simulation. Another widely used heuristic tool is

tCONCOORD (de Groot et al., 1997; Seeliger et al., 2007; See-

liger and De Groot, 2009), which has been successfully applied

in different contexts (Zachariae et al., 2008; Seeliger and de

Groot, 2010). Here, the input structure is analyzed to create

a network of constraints. Subsequently, tCONCOORD randomly

perturbs the atom coordinates within a box around their initial

positions in the native structure. Then, a Monte Carlo procedure

changes the perturbed atomic positions until they again satisfy

the constraints. In this procedure, the atomic positions are

subject to changes sampled from a uniform distribution. Conse-

quently, all the information is encoded in the constraint network;

in the absence of constraints, there is no information on how to

arrange the atoms.

Here, we present TYPHON, which adopts a probabilistic

approach to exploring conformational fluctuations in proteins.

TYPHON is based on two recent innovations: TorusDBN

(Boomsma et al., 2008) and BASILISK (Harder et al., 2010).

TorusDBN and BASILISK are probabilistic models of the confor-

mational space of a protein’s main chain and its amino acid side

chains, respectively. Both models are formulated as dynamic

Bayesian networks (DBNs) and make use of directional statistics

(Mardia and Jupp, 2000)—the statistics of angles and direc-

tions—to represent protein structure in a natural, continuous

space (Hamelryck et al., 2006; Boomsma et al., 2008; Harder

et al., 2010). Together, TorusDBN and BASILISK constitute

a probabilistic model of protein structure in atomic detail. This

model is generative; plausible protein conformations can be

efficiently sampled. Furthermore, TYPHON incorporates CRISP

(Bottaro et al., 2012), an efficient method for applying local

modifications to the protein’s conformation.

The application of these probabilistic models in TYPHON

ensures that the structure remains protein-like on a local length

scale throughout the conformational sampling. The long-range

structure is maintained by imposing different types of distance-

based restraints, which are heuristic representations of nonlocal

interactions, such as hydrogen bonds. TYPHON uses Gaussian

distributions to implement the restraints, resulting in a valid

probabilistic description of the restraint network and the local

structure of proteins. This well-justified probabilistic formulation

differs from previous ad hoc approaches. TYPHON explores the

conformational space accessible to a protein, within the limits

imposed by the restraint network. In the absence of a restraint

network, sampling is solely guided by the probabilistic models

and results in an ensemble of extended conformations with

realistic local structure, conceptually reminiscent of an

‘‘unfolded state.’’

In short, TYPHON can be considered a null model of confor-

mational fluctuations, given a set of probabilistic restraints. We

again stress that our method is well justified, given a chosen

set of restraints; the biological relevance of the obtained confor-

mations will necessarily depend on the relevance of the heuristic

restraints. However, TYPHON provides default restraints, which

typically deliver good results for common applications, as dis-

cussed below.

In the following, we compare results obtained from TYPHON

with experimental measures describing the native ensemble of

folded proteins, including B-factors, nuclear magnetic reso-
Structure 20, 10
nance (NMR) order parameters, and residual dipolar couplings

(RDCs). The different measures allow us to investigate how

well TYPHON captures the flexibility of a folded protein. We

then demonstrate how local unfolding caused by the loss of

metal ions is correctly modeled by TYPHON. Finally, we show

how fluctuations of local structure can be investigated under

the control of the probabilistic models, which is an additional

attractive and innovative aspect of our approach.

RESULTS

Overview of TYPHON
TYPHON samples protein structures from a joint probability

distribution that includes local and nonlocal interactions

(described in more detail in the Experimental Procedures).

TYPHON incorporates several sophisticated probabilistic

models to maintain the local structure and uses simple Gaussian

restraints to maintain relevant nonlocal interactions. Although

the choice of these nonlocal restraints is heuristic, the resulting

joint probabilistic model is well defined and rigorous. In other

words, if a suitable restraint network can be chosen for the

problem of interest, TYPHON will typically deliver good results,

obtained from a well-defined probability distribution.

By default, TYPHON automatically detects the hydrogen bond

network. The geometry of the individual hydrogen bonds is

restrained using a simple model based on four distances

modeled by Gaussian probability distributions. Disulfide bridges

are, by default, treated in a similar way. By default, TYPHON also

restrains all distances between Ca atoms that are five or more

residues apart in the amino acid chain and within six Å of each

other. The latter restraints aim to capture general interactions

that stabilize the protein, such as the hydrophobic effect.

The user can manipulate and verify the restraint network. For

example, it is possible to disregard all hydrogen bonds involving

side chains or to add or remove restraints between arbitrary

atom pairs. In this manuscript, we use different restraint

networks to answer different questions. These networks range

from involving Ca atoms (see Experimental B-Factors) over

hydrogen bonds (see Generating a Native Ensemble) to a small

number of disulfide bridges (see Local Structure under the

Control of Probabilistic Models).

TYPHON is obviously limited with respect to modeling the

formation and dissolution of nonlocal interactions themselves,

as the restraint network is fixed throughout the sampling proce-

dure. However, the secondary structure can be, to some extent,

put under the control of the probabilistic models (see Local

Structure under the Control of Probabilistic Models), allowing

for formation and dissolution of certain hydrogen bonds, notably,

in helices.

Experimental B-Factors
The Protein Data Bank (PDB; Berman et al., 2000) currently

contains over 77,000 solved structures; the majority of them

are determined by X-ray crystallography. Experimental B-factors

associated with the atoms of a crystal structure often give a first

indication of the conformational fluctuations within a protein. The

B-factor reflects both the thermal vibrations of single atoms and

small structural differences between molecules in the crystal.

The latter contribution is of interest for inferring protein flexibility.
28–1039, June 6, 2012 ª2012 Elsevier Ltd All rights reserved 1029



Figure 1. Experimental B-Factors of Candida Antarctica Lipase B

The figure shows root-mean-square fluctuations calculated from the B-factors

taken from the crystal structure (PDB: 1tca; green line) and calculated from

a TYPHON simulation started from the same crystal structure (blue line). The

secondary structure elements are indicated by blue circles for a helices and

red squares for b strands. The lid region is indicated by the black bracket.

Figure 2. Experimentally Determined S2 Values (green) versus

Values Calculated from a TYPHON Ensemble (blue) for Ubiquitin
The S2 order parameter is an experimental measure arising from NMR

experiments that reflects flexibilities in the protein. It ranges from zero

(isotropic motion) to one (no motion). For comparison, the figure also shows

S2 order parameters calculated from an MD simulation (light blue) and a

tCONCOORD simulation (light red). The secondary structure is indicated by

red squares for b strands and blue circles for a helices. The fragmentation of

the lines is due to missing values for Ile23, Glu24, Asn25, Gln31, Ile36, Gly53,

Arg72, Arg74, Gly75, and Gly76 in the experimental data and for all proline

residues.

Structure
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In this test, we analyzewhether TYPHON is able to reproduce the

flexibility that is indicated by the B-factors of a protein.

TYPHON makes it possible to sample an ensemble of struc-

tures that is close to the native structure. We illustrate this with

the crystal structure of the 317-residue-long protein Candida

antarctica Lipase B (CalB; PDB: 1tca; Uppenberg et al., 1995).

CalB is an enzyme with industrial applications that adopts an

a/b fold. A short helix, consisting of residues 139 to 147, is sus-

pected to act as a flexible lid that is important for catalysis,

making it a prime subject of dynamics studies (Skjøt et al.,

2009). For comparison, we translated the experimental B-factors

of the crystal structure into root-mean-square fluctuations (rmsf)

using the following relation (Kuzmanic and Zagrovic, 2010):

RMSF2
i =

3Bi

8p2
;

where Bi is the B-factor for the i-th residue.

TYPHON used the crystal structure as sole input, from which

581 Ca/Ca Gaussian distance restraints were derived (see

the Experimental Procedures). The sampling ran for 50 million

iterations. Figure 1 shows RMS fluctuation calculated from the

experimental B-factors for the crystal structure and from 1,000

sampled conformations chosen with regular intervals. The over-

all flexibility along the sequence is well captured. The lid region

clearly displays a higher level of flexibility in correspondence

with its dynamic nature (Skjøt et al., 2009). The good agreement

with the experimental measure is also reflected in the Pearson

correlation coefficient, which is equal to 0.71.

Generating a Native Ensemble
Advances in nuclear magnetic resonance (NMR) spectroscopy

over the past decades made more detailed studies of dynamics

in proteins possible. The S2 order parameter is a measure arising

from NMR experiments describing the amplitude of motion of an

N-H vector (Lipari and Szabo, 1982). A backbone segment that is
1030 Structure 20, 1028–1039, June 6, 2012 ª2012 Elsevier Ltd All ri
unrestricted in its movement, usually in a region of high flexibility,

will have a low S2 value. For segments in more constrained or

rigid regions of the protein, the S2 value will be higher. Analyzing

S2 order parameters provides a more direct view on the

dynamics of a protein compared to the B-factors. In this test,

we analyze whether TYPHON is able to capture the fast

dynamics of a protein as implied by the S2 order parameters.

Ubiquitin is a well-studied protein in terms of its dynamics; its

relatively small size of 76 amino acids allows for both extensive

MD simulations as well as NMR studies. Ubiquitin consists of

a five stranded, twisted, and antiparallel b sheet with an a-helix

lying across. A number of recent publications discuss themolec-

ular recognition mechanisms using ubiquitin as a model system

(Lange et al., 2008; Wlodarski and Zagrovic, 2009; Long and

Brüschweiler, 2011).

TYPHON sampling started from a single crystal structure of

ubiquitin (PDB: 1ubi; Ramage et al., 1994), with 46 automatically

detected hydrogen bonds as restraints, and ran for 50 million

iterations. A total of 1,000 structures were sampled in regular

intervals. We also generated an ensemble of 1,000 structures

using tCONCOORD, starting from the same ubiquitin crystal

structure and using default settings. For further comparison,

we also included the order parameters calculated from an MD

simulation of ubiquitin (Maragakis et al., 2008).

Figure 2 shows the S2 order parameters calculated from the

TYPHON ensemble following Best and Vendruscolo (2004) and

order parameters obtained from an experiment by Tjandra

et al. (1995). The figure further shows order parameters calcu-

lated from a tCONCOORD ensemble obtained with default

parameters and from an MD simulation (Maragakis et al.,

2008). Overall, the S2 parameters calculated from the TYPHON
ghts reserved



Figure 3. Ca � CO RDC Values for Ubiquitin

The figure shows a comparison between experimentally determined Ca � CO

RDCs (green line) and RDCs calculated from a TYPHON ensemble using the

procedure described in Showalter and Brüschweiler (2007). (blue line), where

the RDCs are plotted on the y axis against the residue index on the x axis.

See also Figure S1.

Structure
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ensemble are in good agreement with the experimental

measurements; the correlation coefficient for the two curves is

0.73. The most rigid region is located in the well-ordered a-helix

between residues 23 and 33. This region is indeed rigid in the

TYPHON ensemble as well though overly so compared to the

experimental results (Tjandra et al., 1995). The terminal regions

are the most flexible (see Figure 2). Recently, it was found that

the increased flexibility in the C-terminus and in loop I between

the b1 and b2 strands is of importance for the molecular recog-

nition mechanism of ubiquitin (Lange et al., 2008; Wlodarski and

Zagrovic, 2009). The ensemble generated by TYPHON accu-

rately reflects the conformational fluctuations in these regions

of interest.

The order parameters calculated from the MD simulation

match the experimental values less well; the correlation coeffi-

cient is 0.52. Although the MD ensemble accurately reflects

the flexibilities in loop I, it does not well reproduce the fluctua-

tions in the C-terminus. The S2 order parameters calculated

from the tCONCOORD ensemble match the general trend of

the experimental curve. The correlation coefficient is 0.53, which

is also lower than for TYPHON. The generated ensemble

appears to overemphasize the flexibility in certain loops,

including the functionally important loop I—around residues 7

to 10. In addition, loop V—around residues 63 to 65—shows

considerable discrepancy. Leaving out the flexible C-terminal
Table 1. Statistics for the RDC Values Obtained from the TYPHON a

N � NH C

Correlation coefficient average RDC TYPHONa 0.91 0

Correlation coefficient average RDC tCONCOORDa 0.96 0

Correlation coefficient Crystal structure (1UBI)b 0.98 0
aCorrelation coefficients of the TYPHON and tCONCOORD ensembles with
bCorrelation coefficient between the crystal structure 1UBI and for all six R
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region, following Lindorff-Larsen et al. (2005), results in correla-

tion coefficients equal to 0.50, 0.55, and 0.28 for the MD,

TYPHON, and tCONCOORD ensembles, respectively. In conclu-

sion, TYPHON matches the experimentally determined order

parameters, indicating that the fast dynamics—as described

by the Lipari-Szabo S2 parameters—are well captured in the

generated ensemble.

Residual dipolar couplings (RDCs) probe the bond vector

geometry relative to an external magnetic field. Data acquisition

in a nematic phase solvent or in the presence of a paramagnetic

center can make measurement of RDCs in the solution state

possible (Tjandra et al., 1997; Banci et al., 2004). RDCs are

anisotropic quantities and thus average out when molecules

undergo isotropic rotational diffusion.

For ubiquitin, Cornilescu et al. (1998) obtained six sets of

backbone RDCs in a nematic phase solvent based on phospho-

lipid bicelles. The experimental data was obtained from the

Biological Magnetic Resonance Data Bank (BMRB entry:

6457; Ulrich et al., 2008). We used the same TYPHON and

tCONCOORD ensembles as in the previous section. Ensemble

averages were calculated from these ensembles using the

procedure described by Showalter and Brüschweiler (2007; Lin-

dorff-Larsen et al., 2005).

Figure 3 shows experimentally determined Ca � CO RDCs in

comparison with RDCs that are calculated from a TYPHON

ensemble. Figure S1 (available online) additionally shows corre-

lation plots for all RDCs. In general, there is a good correlation

between the values obtained from the TYPHON and the experi-

mental data (see Table 1). The agreement with experiment for the

TYPHON ensemble is comparable to the tCONCOORD

ensemble and the crystal structure (1UBI). However, Q-factors

for the TYPHON ensemble (0.37) are larger than for the

tCONCOORD ensemble (0.28) and the crystal structure (0.23),

suggesting better qualitative agreement of the tCONCOORD

ensemble (Lipsitz and Tjandra, 2004).

Although the reproduction of experimental data, such as

residual dipolar couplings and order parameters, serves as

a sanity check, it is difficult to make a quantitative assessment

of the physical timescales sampled (Showalter and Brüsch-

weiler, 2007). However, collectively, the results suggest that

TYPHON samples broader ensembles in some regions of ubiqui-

tin as compared to tCONCOORD. Regions that appear oversta-

bilized may be attributed to the employed restraints, suggesting

that TYPHON ensembles can be improved by input of expert

knowledge. In view of the excellent structural quality of the

generated decoys (compare section Quality of the Sampled

Structures), these observations support the interpretation of

TYPHON as a suitable ‘‘null model’’ of conformational fluctua-

tions in proteins for a given set of restraints; given the nonlocal
nd tCONCOORD Ensembles of Ubiquitin

O �NH Ca � Ha N � CO Ca � CO Ca � Cb

.90 0.92 0.94 0.93 0.90

.91 0.96 0.96 0.96 0.97

.96 0.93 0.99 0.99 0.97

the experimental data, respectively.

DC types.

28–1039, June 6, 2012 ª2012 Elsevier Ltd All rights reserved 1031



Figure 4. RMS Fluctuations Showing Dynamics of Ribonuclease A
The plot shows the RMS fluctuations measured from a set of PDB structures

(see Functional Dynamics of an Enzyme, green line), an ENManalysis (red line),

and a TYPHON simulation (blue line). The secondary structure elements are

indicated by blue circles for helical residues and red squares for strands.

Loop I, including residues 14–25, is indicated by the black bracket.

See also Figure S2, Movie S1, and Table S1.

Structure

A Null Model for Fluctuations in Proteins
restraints, the probabilistic models of local structure ensure a

thorough exploration of the remaining conformational space.

Functional Dynamics of an Enzyme
Ribonuclease (RNase) A is a pancreatic protein that cleaves

single-stranded RNA; its structural dynamics are essential for

its enzymatic function (Doucet et al., 2009; Formoso et al.,

2010). The protein has 124 residues and adopts an a/b fold

that consists of two domains flanking a catalytic site. In this

experiment, we analyze whether TYPHON can reproduce the

functional dynamics of RNase A. In addition, we compare the

TYPHON ensemble to results obtained from NMA.

We initialized TYPHON sampling from the RNase A crystal

structure (PDB: 7RSA; Wlodawer et al., 1988) and used the

automatically detected hydrogen bond network with default

settings, resulting in 76 hydrogen bonds and four disulfide

bridges. The sampling was run for 100 million iterations, from

which 1,000 structures were retained.

As a measure of the structural flexibility of RNase A, we

analyzed 132 experimentally determined structures with a

maximum of one point mutation (for a complete list see Table

S1). We superimposed the experimental structures using itera-

tive root-mean-square deviation (rmsd) minimization to the

average structure and calculated the rmsf of the Ca atoms. We

call this set the high-sequence similarity PDB ensemble (Best

et al., 2006).

In addition, we compare our result to the dynamics of the

enzyme according to the elastic network model (ENM), a

coarse-grained model of protein dynamics that has been used

to analyze collective motions, residue fluctuations, and confor-

mational changes (Tirion, 1996; Hinsen, 1998; Bahar and Rader,

2005; Ma, 2005; Kimber et al., 2010). In the ENM, the protein

structure is approximated as a network of coupled harmonic

oscillators between all Ca atoms closer than a specified cutoff
1032 Structure 20, 1028–1039, June 6, 2012 ª2012 Elsevier Ltd All ri
radius. The collective motions of the system can be then calcu-

lated using NMA. The ENM analysis was performed with the

elNémo server and default parameters, using an 8 Å cutoff

distance to identify elastic interactions (Suhre and Sanejouand,

2004). The server reports the rmsf calculated from the scaled

Eigen vectors of the first hundred modes.

The fluctuations found within the PDB and the TYPHON

ensembles (Figure 4) are in good agreement; the correlation

coefficient is 0.72. The overall flexibility pattern along the amino

acid chain indicates increased mobility in the same regions. The

amplitude of the fluctuations is, however, significantly larger

for the TYPHON ensemble, indicating that a large volume of

the conformational space is sampled. This again confirms the

interpretation of TYPHON as a suitable null model of conforma-

tional fluctuations for a given set of restraints. Notably, loop I—

consisting of residues 14 to 25—has a high degree of flexibility

(Figure 4). The dynamics of this loop are especially important

for the catalytic activity of the enzyme (Doucet et al., 2009;

Formoso et al., 2010). TYPHON sampling started from other

crystal structures of RNase A in the PDB yielded similar results

(PDB codes 3LXO [Doucet et al., 2010] and 2G8Q [Leonidas

et al., 2006]). In contrast, although having only a slightly lower

correlation coefficient to the PDB ensemble (0.67), the result

from the ENM analysis does not show an elevated flexibility in

this loop.

The dynamics of loop I is a requirement for the functional

dynamics of RNase A; RNase A has been shown to function

through a concerted motion between an open form that can

bind substrate and a closed form, where catalysis occurs (Watt

et al., 2007). To investigate how the TYPHON ensemble relates

to these motions, we performed a principle component analysis

on the TYPHON samples and isolated the main modes. The

first mode, which contains the most important variations of the

ensemble, indeed shows an opening and closing of the catalytic

cleft, lending further evidence that the TYPHON ensemble can

be used to explore enzyme dynamics. A video of the motion is

available online (see Movie S1).

Induced Change in Flexibility
Large-scalemotions ormajor changes in flexibility in proteins are

often induced by binding or releasing ligands. These ligands can

be as complex as multiatom substrates, inhibitors, or drugs or

as simple as single metal ions. In this test we use TYPHON to

simulate partial unfolding upon loss of metal ions. This applica-

tion illustrates how the probabilistic models ‘‘step in’’ to provide

information in the absence of restraints.

Cu/Zn superoxide dismutase (SOD1) is a ubiquitous protein in

the cytoplasm that is associated with the neurodegenerative

disease amyotrophic lateral sclerosis (ALS). ALS results in paral-

ysis and respiratory failure within one to five years from onset

(Pasinelli and Brown, 2006). The oligomerization of SOD1 is

associated with a gain in toxic function. Experimental evidence

suggests that a loss of the two metal ions induces structural

changes to the monomeric form of SOD1 and subsequently

leads to pathogenic aggregation (Teilum et al., 2009b). However,

the exact pathway is still unknown. We used the PDB:2v0a

crystal structure as starting point for our experiments (Strange

et al., 2007). SOD1 consists of a b barrel with long loops connect-

ing the antiparallel strands. It contains a disulfide bridge and has
ghts reserved



Figure 5. Cu/Zn Superoxide Dismutase

(A) TYPHON ensemble obtained from the native monomer. The Cu and Zn ions

are shown as an orange and a purple sphere, respectively. The C57-C146

disulfide bridge is shown as a stick representation. The roman numerals

indicate the loop numbers. This ensemble corresponds to the blue line in (C).

(B) TYPHON ensemble obtained without the ions and with the disulfide bridge

reduced. This ensemble corresponds to the red line in (C).

(C) Shows the corresponding rmsf curves. The disulfide bridge is indicated as

a black line. The residues coordinating the metal ions are marked by orange

and purple circles for the copper and zinc ion, respectively.

See also Table S2.
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two associated metal ions: a copper ion that is coordinated by

four histidines (residues 46, 48, 63, and 120) and a zinc ion that

is coordinated by three histidines and an aspartate (residues

63, 71, 80, and 82).

Ding and Dokholyan (2008) performed a discrete MD analysis

of the SOD1 monomer. They systematically tested the effect of

losing metal ions and/or reducing the disulfide bridge. Each indi-

vidual event leads to a significant increase in flexibility; the two

most affected regions are both located in the long loop IV (Fig-

ure 5A). The region around Cys57, which is involved in the

disulfide bridge, is primarily affected by the loss of the disulfide

bridge. The loss of the metal ions primarily affects the regions

adjacent to the ion coordinating histidines. Other parts of the

structure seem mostly unaffected by either event. Following

this study, we analyzed the mobility of different forms of SOD1,

namely, the holo form with the C57-C146 disulfide bridge intact

and the apo monomer with the disulfide bridge reduced. Again,

we used only a single crystal structure as starting point. We set

up two different TYPHON experiments. For the apo experiment,
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we removed the automatically detected disulfide bridge and did

not include any restraints involving the metal ions. For the holo

experiment, we added the copper and zinc ions in the form of

distance restraints that maintain the mutual distances between

the four ion-coordinating atoms (see Table S2) and included

the disulfide bridge. The remaining restraint network, consisting

of 73 automatically detected hydrogen bonds, was identical

in both setups. For each setup we ran three experiments of

100 million iterations each and combined the generated struc-

tures for the final evaluation to ensure converged sampling.

Note that in the absence of the restraints concerning metal

ions and disulfide bridge, the relative influence of the probabi-

listic models of local structure on the sampled conformations

increases.

Figure 5 shows the results of the different experiments in

putty representation. The results show that the loss of the metal

ions and the reduced disulfide bridge leads to a significant

increase in flexibility, especially in the long loop IV between

residues 49 and 83 but also in the loops II, VI, and VII. The spike

in flexibility around residue 57 can be attributed to the reduced

disulfide bridge, which, in the native structure, covalently binds

this surface loop. The increased flexibility in other parts of the

protein is likely due to the loss of the metal ions. An interesting

observation is also the increased flexibility in loop II around

residue 25, which is not in direct contact with any of the mutated

sites. We speculate that the overall increased mobility in the long

loop IV and VI also influenced the flexibility in this region.

The results closely resemble those of Ding and Dokholyan

(2008), which were obtained from discrete MD simulations. A

TYPHON experiment requires about 20 hours, which would

allow scanning of larger sets of clinically known mutations

(Andersen et al., 2003). We point out that the increased mobility

in loop II was not observed in the MD study of Ding and

Dokholyan (2008), which illustrates that TYPHON can deliver

results that suggest starting points for new hypotheses or

follow-up studies. It should be noted that TYPHON only includes

the steric component of the ion loss; changes in electrostatics or

solvent accessibility are not directly accounted for. Nonetheless,

in this case, modeling the effect of the metal ions as simple

Gaussian restraints accurately reproduces the results obtained

from much more sophisticated simulations and leads to poten-

tially interesting and new observations.

Local Structure under the Control of Probabilistic
Models
The Gaussian restraints obviously do not allow for formation or

dissolution of nonlocal interactions; the restraint network is rigor-

ously fixed during the sampling procedure. However, certain

nonlocal interactions, such as hydrogen bonds in helices, can

be put under the control of the probabilistic models instead. In

practice, this means that certain conformational fluctuations of

the protein backbone on a local length scale could be investi-

gated. In this application, we explore and illustrate this approach

with a small helical protein and investigate helical mobility and

a=310-helix transitions.

The Mature T Cell Proliferation Gene 1 (MTCP1) is a

known oncogene that is linked to certain types of leukemia

(Barthe et al., 2002). The structure of the human p8MTCP1

protein has been solved by NMR and consists of three helices.
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Figure 6. Local Structure under the Control of Probabilistic Models

(A and B) Five representative structures of the simulation (A) with and (B)

without fixed secondary structure assignment. The disulfide bridges are

shown in stick representation and highlighted in (B).

(C and D) Secondary structure content of the simulation (C) with and (D)

without fixed secondary structure input. The secondary structure was

measured using DSSP. Color code: red is a-helix; yellow is 310-helix; gray is

b-turn; and blue is random coil.
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A stable a hairpin connecting helix I and II is covalently held

together by two disulfide bridges between residues 7, 38 and

17, and 28, respectively. A third less restricted and stable helix

(helix III) is also connected to helix II with a third disulfide bridge

between residues 39 and 50 (Barthe et al., 1997). MD simulations

indicate that helix III is fairly flexible with respect to the a hairpin

(Barthe et al., 2002).

We first investigate to what extent the helices move with

respect to each other. We therefore started from the first model

of a p8MTCP1 NMR ensemble (PDB: 2hp8; Barthe et al., 1997).

The experiment ran for 100 million iterations with the three

disulfide bridges as only restraints. However, we also imposed

the secondary structure of the native structure according to

DSSP (Kabsch and Sander, 1983) through TorusDBN (Boomsma

et al., 2008). This is a more flexible and ‘‘soft’’ way to restrain the

sampling, as the helical regions are allowed to bend or, to
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a certain extent, form and dissolve hydrogen bonds under the

influence of the probabilistic model.

Despite the absence of restraints, besides those involving the

three disulfide bridges, all helices remain stable throughout

the sampling. Figure 6A shows five representative structures

from the ensemble. Helix I and helix II are tightly fixed by the

interhelical disulfide bridges, which only allow limited move-

ments. Helix III is only tethered by a single disulfide bond in

the beginning of the helix, which results in higher flexibility. As

indicated in Figure 6A, helix III slightly tilts away from the other

two helices, a behavior that also has been observed in MD simu-

lations (Barthe et al., 2002).

Figure 6C shows the secondary structure content over the

course of the first experiment. The consistent red bars show

that all three helices remain fully helical throughout the sampling.

In the beginning of helix III, we observe transitions between

a- and 310-helix, which is again in agreement with the results

of a MD simulations (Barthe et al., 2002).

In the second experiment, we investigate the stability of the

helices themselves. We again included restraints concerning

the three native disulfide bonds. However, this time we did not

provide any secondary structure information to TorusDBN. In

other words, this means that TorusDBN still enforces protein-

like conformations but does not require them to be helical.

Again helix I and helix II remain stable throughout the sampling

as indicated by the consistent red bars in Figure 6D. This is not

surprising because both helices are covalently connected near

their respective start and end. The entire protein structure is,

however, significantlymore flexible, expressed by themovement

of the helices with respect to each other (compare Figure 6B). In

contrast to helices I and II, helix III quickly unfolds up to residue

50, where it is covalently attached to helix II via a disulfide bridge.

In addition to the unfolding helix III, we observe significant

differences compared to the first experiment in the loop regions.

In particular, for loop II, which connects helix II and III and

stretches from residue 39 to 47, we observe a transition to an

a-helix. The terminal 18 residues of helix III readily unfold (see

Figure 6D), which points to a difference in stability between the

first two and the third helix.

This experiment strikingly demonstrates the possibilities of

probabilistic models. In the first experiment, which includes the

disulfide bridges and secondary structure information, we

observed specific movements of the helices with respect to

each other and transitions from an a- to a 310-helix in the begin-

ning of helix III. Both observations concur with the results

obtained fromMD simulations (Barthe et al., 2002). In the second

experiment, which includes the disulfide bridges but not the

secondary structure information, we obtained some information

on the relative stability of the helices themselves. Helices I and II

remain stable, whereas helix III readily unfolds. Again, this

difference in stability is in accordance with MD simulations

(Barthe et al., 2002).

Quality of the Sampled Structures
To evaluate the quality of the structures, we analyzed 50 random

structures from an RNase A ensemble, generated as described

previously, using PROCHECK (Laskowski et al., 1993). For com-

parison, we generated 50 tCONCOORD (Seeliger et al., 2007)

samples for the same protein (starting from PDB: 7rsa). The
ghts reserved



Table 2. Quality Assessment of Structures Generated by

TYPHON

Residues in Regions tCONCOORD TYPHON

Most favored (%) 69.8 88.1

Additionally allowed (%) 26.3 10.8

Generously allowed (%) 3.1 0.7

Disallowed (%) 0.7 0.5

f=j G factor �0.93 �0.24

c1 G factor �0.26 0.10

Overall G factor �0.69 �0.13

The table lists the results of a PROCHECK analysis of a set of TYPHON

and tCONCOORD samples. Well-refined structures usually have 90%

or more of all residues in the most favored regions. The G factor is

a log odds score; higher numerical values denote higher quality.

See also Documents S2 and S3.
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detailed PROCHECK reports can be accessed as Documents S2

and S3.

The Ramachandran map divides the main chain’s conforma-

tional space, as parameterized by the 4 and j angles, in different

regions, some sterically more favorable than others (Ramachan-

dran et al., 1963). Well-refined protein structures are expected to

have 90% or more of the backbone dihedral angles in the most

favorable regions. The PROCHECK analysis indicates that the

TYPHON samples are of good quality; over 88% of all angles

are in the most favored regions. In contrast, the tCONCOORD

samples have less than 70% of the backbone angles in these

favored regions (Table 2).

PROCHECK’s G factor is a measure of how well the analyzed

structures match the observed distributions of bond lengths,

bond angles, and dihedral angles in crystal structures and is

expected to be �0.5 or higher for well-refined structures. Also

in this respect, TYPHON samples have a higher quality than do

tCONCOORD samples; the G-factor is �0.13 versus �0.69.

The G factor takes the side-chain quality into account; in this

respect, TYPHON undoubtedly benefits from the detailed

side-chain modeling in BASILISK (Harder et al., 2010).

Additionally, we performed a WHATIF (Vriend, 1990) packing

analysis of the TYPHON and tCONCOORD ensembles of RNase

A. The structures generated by TYPHON have an average

packing environment score of �1.495. Those generated by

tCONCOORD have an average score of �1.944. As well-refined

structures have a score around �0.5, both methods might be

improved in this respect.

Computational Efficiency
TYPHON is computationally efficient. The ubiquitin experiments

used in this study were performed on a regular desktop

computer (Intel Core i7, 2.8GHz) and ran for around 10 hr on

a single CPU core. The human p8MTCP1 protein experiments

comprising 100 million iterations ran for about 15 hr. Naturally,

the runtime increases as the number of restraints in the network

grows, though extensive caching in the calculations minimizes

this effect to an extent. With increasing protein size, more itera-

tions will be necessary to achieve a comparable level of conver-

gence. Although a parallelization of a single run onto multiple

cores is not possible in the current implementation, it is possible
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to perform several TYPHON experiments in parallel to obtain

better statistics.

DISCUSSION

In this paper we present TYPHON, a probabilistic approach to

explore conformational fluctuations in proteins. TYPHON incor-

porates detailed probabilistic models of the conformational

space of a protein’s main chain and its amino acid side chains

(Boomsma et al., 2008; Harder et al., 2010) and an efficient local

backbone resampling algorithm (Bottaro et al., 2012). During

sampling by TYPHON, the conformational space is restricted

by a set of restraints imposed on the structure. These restraints

typically concern nonlocal interactions, such as hydrogen

bonds, disulfide bridges, or interactions with metal ions. The

protein structure on a local length scale, including main chain

and side chains, is controlled by the probabilistic models.

In this study, we show that TYPHON is able to generate

structural ensembles that closely resemble native ensembles

described by experimental measures. This includes fluctuations

as measured by S2 order parameters, as well as measured by

RDC values. The RNase A study shows not only that TYPHON

captures the functional dynamics in the correct regions but also

that a principal component analysis of the results is feasible to

identify large-scale motions. The analysis of the superoxide dis-

mutase results shows that TYPHONcanbeused tomodel effects

due to the gain or loss of a ligand, including partial unfolding.

Its computational efficiency makes TYPHON a promising tool

for larger screening efforts, for example, of known mutations

with clinical relevance. Another interesting application lies in

generating suitable candidate structure for docking experi-

ments, allowing for some degree of flexibility in the binding

pocket (Henzler and Rarey, 2010). The high quality of the

generated structures indicates that no irrelevant parts of the

conformational space are explored. On the other hand, TYPHON

thoroughly samples the relevant conformational space.

The results of the human p8MTCP1 protein experiments demon-

strate another strength of our approach. With only a minimal set

of restraints defined for the system, the effect of the probabilistic

models becomes obvious. They control the local structure and

maintain the overall secondary structure, while still allowing for

significant conformational fluctuations. It should be noted that

it is also possible to run TYPHON without explicitly defining the

secondary structure, leading to significantly broader sampling.

In the current implementation, TYPHON keeps the constraint

network fixed during the sampling. As a next step, it would be

advantageous to allow more flexibility in the restraint network,

such as the dissolution or formation of arbitrary hydrogen bonds

as the sampling progresses. However, this will require the devel-

opment of a suitable probabilistic model of nonlocal interactions

in proteins and its seamless combination with the probabilistic

models of local structure. Fortunately, important theoretical

progress was recently made in this respect (Hamelryck et al.,

2010). Another interesting addition would be to include informa-

tion from experimental data (Olsson et al., 2011).

Availability
TYPHON is available as part of the Phaistos package and can be

obtained freely from SourceForge under the GNU public license
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Figure 7. Restraint Network

Depicted are three different calculated networks

for ubiquitin (PDB 1ubi).

(A) A network that includes all hydrogen bond

types (red: backbone hydrogen bonds; purple:

backbone-side-chain hydrogen bonds; and

yellow: side-chain-side-chain hydrogen bonds),

as well as Ca contacts (green).

(B) A network that includes only the backbone

hydrogen bonds.

(C) A network that only includes Ca contacts. The

cutoff was 7 Å. Theminimum sequence separation

between the residues in the chain was two.

See also Figure S3.
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(http://sourceforge.net/projects/phaistos/). Currently the Phais-

tos package is limited to single chain proteins. However, support

for multiple chains will be added in the next release.
EXPERIMENTAL PROCEDURES

Overview

The TYPHON network calculation starts from a full atom protein structure,

including all of the hydrogen atoms. A restraint network is either loaded from

an input file or created in accordance with the protocol described in the

following section. In the course of the sampling, the dihedral angles in both

themain chain and the side chains aremodified under the control of TorusDBN

(Boomsma et al., 2008) and BASILISK (Harder et al., 2010), respectively. An

efficient local moves method makes subtle movements of the protein back-

bone possible (Bottaro et al., 2012) and also affects the bond angles in the

backbone (see Protein Backbone Move).

Restraint Network Calculation

TYPHON currently supports three classes of restraints involving hydrogen

bonds, disulfide bridges, and distance restraints between arbitrary atoms. In

the absence of any user input, the program suggests a network using default

parameters, which are described in the following paragraphs. This default

network is mainly based on biologically relevant restraints, such as hydrogen

bonds and disulfide bridges. To stabilize parts of the protein that are naturally

stabilized by effects that are not modeled explicitly, TYPHON also connects

residues that are far apart in the amino acid sequence but close in space.

The user can edit the generated network by adding, removing, or modifying

restraints between arbitrary atoms.

We evaluate all potential hydrogen bonds using the DSSP hydrogen bond

energy (Kabsch and Sander, 1983). Following Kabsch and colleagues, we

discard all candidates with a DSSP energy higher than �0:5ðkcal=molÞ. If an
atom has multiple potential hydrogen bonding partners, only the one with

the lowest energy is retained. Following the general idea of the DSSP

hydrogen bond energy, the hydrogen bond geometry is modeled using four

distances. For backbone-backbone hydrogen bonds, these respective

distances are explained in more detail in Figure S3. For hydrogen bonds

involving side chains, the corresponding standard hydrogen bond acceptors

and donors are used; asparagine, aspartate, glutamine, and glutamate can

act as hydrogen bond acceptors; arginine, asparagine, glutamine, histidine,

lysine, serine, threonine, tryptophan, and tyrosine can act as hydrogen bond

donors.

Disulfide bridges are required to have a Sg/Sg distance of 3 Å or less.

Similar to hydrogen bonds, the geometry of the disulfide bond is also modeled

by four distances consisting of the Sg/Sg, Cb/Sg, Sg/Cb, and Cb/Cb

distances.

The last class of restraints that are detected by default connects residues

that are far apart in the amino acid sequence but close together in space.

These restraints stabilize parts of the protein that are naturally stabilized by

effects not accounted for explicitly in TYPHON, such as hydrophobic interac-

tions. Residue pairs that are five or more residues apart in the sequence but

within six Å (Ca/Ca distance) are modeled by a Gaussian probability distribu-
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tion on the distance between the twoCa atoms. The distance in the input struc-

ture is used as mean m. The variance s2 is set proportional to the square of the

distance:

s2 =
�m
6

�2

:

This value was chosen by trial-and-error and produces reasonable results. It

allows for more flexibility with increasing distance.

The automatically detected restraints will not always yield the best results,

especially when modeling large-scale movements. To keep the framework

flexible and utilize the expert knowledge of the researcher, TYPHON allows

modifying the restraints and adding distance restraints between arbitrary

atom pairs in the structure. In that way, the researcher may additionally stabi-

lize certain parts of the structure or allowmore flexibility in other parts. It is also

possible to remove automatically detected restraints, for example, when

a certain hydrogen bond is known to be weak.

To further simplify this process, TYPHON can generate a PyMOL (Schrö-

dinger, 2010) script that visualizes the restraints. This makes it possible to

quickly detect regions that need manual, expert interaction. Figure 7 shows

different restraint networks visualized using the generated PyMOL script.

Unstable Hydrogen Bonds

Hydrogen bonds that are in direct contact with solvent molecules are known to

be significantly less stable than those that are well shielded. Fernandez and

colleagues (Fernández and Berry, 2002; Fernández et al., 2002; Fernández

and Scott, 2003; Fernández, 2010) proposed the concept of dehydrons, insuf-

ficiently shielded hydrogen bonds that are more likely to break. They showed

that the number of the carbonaceous groups, CHn, in a shell around the

hydrogen bond is a good estimate of water accessibility. tCONCOORD incor-

porates this convenient measure to judge the stability of a hydrogen bond

(Seeliger et al., 2007). We extended their approach, which was only formulated

for backbone hydrogen bonds, to apply to hydrogen bonds involving side

chains as well. We therefore moved the centers of the two spheres composing

the dehydration shell to the donor nitrogen and the acceptor carbon atoms

(Fernández and Berry, 2002; Fernández et al., 2002; Fernández and Scott,

2003; Fernández, 2010). We recalibrated the measure using counts of

carbonaceous groups derived from a set of high-resolution crystal structures

previously used as training data for BASILISK (Harder et al., 2010). Following

Fernandez and colleagues (Fernández and Berry, 2002; Fernández et al.,

2002; Fernández and Scott, 2003; Fernández, 2010), we defined the threshold

between weak and strong hydrogen bonds as the 4% percentile of the counts.

This resulted in thresholds equal to 14, 9, and 7 for backbone-backbone, back-

bone-side-chain, and side-chain-side-chain hydrogen bonds, respectively. All

weak hydrogen bonds are removed from the restraint network by default.

Protein Backbone Move

TYPHON sampling is usually started from the native state of a protein, that is,

from a densely packed, compact structure. To capture the subtle movements

and flexibilities in compact proteins, it is important to propose local updates of

the backbone conformation. A local move only affects a limited part of the

protein backbone—such as a stretch of five residues—whereas the rest of

the protein remains unchanged.
ghts reserved
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In TYPHON, we use a recently developed type of local move called CRISP

(Bottaro et al., 2012). Similar to other methods (Go and Scheraga, 1970;

Dodd et al., 1993; Hoffmann and Knapp, 1996; Ulmschneider and Jorgensen,

2003), a local move consists of a concerted rotation of the bond and dihedral

angles of the backbone atoms of neighboring residues. Each move involves

four elementary steps:

(1) Choose a random stretch in the protein chain.

(2) Prerotation: Propose a set of bond and dihedral angle variations in the

first N � 6 degrees of freedom.

(3) Postrotation: Calculate the six remaining degrees of freedom such that

the loop closes.

(4) Calculate the bias introduced by performing such a nonrandom modi-

fication of the chain. The bias calculation is important when themethod

is used in a Markov chain Monte Carlo sampling scheme to ensure

detailed balance.

This geometrical problem is tackled in an original manner. We derived an

analytical solution for the postrotational step, thus avoiding the tedious numer-

ical solution of a system of six equations for the six unknown degrees of

freedom. The analytical solution is used to derive an efficient strategy to

draw tentative updates of the chain. This scheme makes it possible to contin-

uously control the angular variations of all degrees of freedom involved. The

CRISP method thus improves on previous concerted-rotation methods in

which, to satisfy all geometrical restraints, tentative updates of the chain are

often radically different from the original structure or introduce a suboptimal

local structure.

Protein Side-Chain Move

To propose a new side-chain conformation, we use our previously developed

probabilistic model of side-chain conformational space, BASILISK (Harder

et al., 2010). BASILISK is a dynamic Bayesian network that makes it possible

to sample side-chain conformations for all relevant amino acids in continuous

space. By default, TYPHON resamples a single, randomly picked residue at

a time, proposing an entirely new set of c angles for the side chain. Both the

bond length and the bond angles remain unchanged. To have a roughly equal

amount of accepted changes affecting side chains and backbone, TYPHON

on average resamples five side chains for every backbone move because

a local move affects five backbone residues.

Sampling Strategy and Scoring Functions

For sampling, we use a classic Markov chain Monte Carlo (MCMC) approach.

According to the Metropolis-Hastings (Metropolis et al., 1953; Bishop, 2006)

sampling scheme, a proposed X0 structure is accepted with the following

likelihood:

PaccðX/X0Þ=min

�
1;
PðX 0ÞQðX0/XÞ
PðXÞQðX/X 0Þ

�
;

where PaccðX/X0Þ is the probability of accepting to move from structure X to

structure X0; PðXÞ and PðX0Þ are the probabilities of X and X0, respectively;
QðX/X0Þ and QðX0/XÞ are the probabilities of proposing to move from X

to X0 and from X0 and X, respectively. PðXÞ is defined as

PðXÞfPRðRÞPTðTjAÞPBðBjAÞDðXÞ;
where A is the amino acid sequence; PRðRÞ is the probability density of the

restraint network R, consisting of the product of the probability densities of

the individual Gaussian restraints; PTðTjAÞ is the density of the backbone

angles T according to TorusDBN; PBðBjAÞ is the probability density of the

side-chain angles B according to BASILISK; and DðXÞ is a clash term that is

either one or zero. This simple clash function is introduced to avoid close

contacts between atoms. We reject every structure with one or more atom

pairs below a specific distance cutoff. The exact cutoff distance depends on

the atoms involved: 1.5 Å for a hydrogen atom and any other atom; 1.8 Å for

Sg atoms, to allow disulfide bridges; and 2.3 Å for any other atom pair.

The proposal distributions consist of resampling of side-chain conforma-

tions using BASILISK (Harder et al., 2010) or local moves using CRISP (Bottaro

et al., 2012). To facilitate smooth local perturbations of the backbone chain,

CRISP allows for small variations of the backbone bond angles. Each angle
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is modeled by an atom specific Gaussian distribution with parameters chosen

in accordance with the bond-angle term of theOPLS-AA force field (Jorgensen

et al., 1996; Kaminski et al., 2001).

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures, two tables, one movie, and

two documents and can be found with this article online at doi:10.1016/j.str.
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