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OntheConvergence of IterativeLearningControl ?

M.Mahdi Ghazaei Ardakani a, Sei Zhen Khong b,a, Bo Bernhardsson a

aDepartment of Automatic Control, Faculty of Engineering (LTH), Lund University, SE 221 00 Lund, Sweden

bInstitute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN 55455, USA

Abstract

We derive frequency-domain criteria for the convergence of linear iterative learning control (ILC) on finite-time intervals that
are less restrictive than existing ones in the literature. In particular, the former can be used to establish the convergence of
ILC in certain cases where the latter are violated. The results cover ILC with non-causal filters and provide insights into
the transient behaviors of the algorithm before convergence. We also stipulate some practical rules under which ILC can be
applied to a wider range of applications.

Key words: Learning control; Iterative improvement; Convergence analysis; Transient stability analysis; Stability criteria.

1 Introduction

The main application of iterative learning control (ILC)
is to improve the reference tracking performance of a
system. In order to reduce the tracking error, the control
signal to the system is adjusted in each iteration by using
feedback information from previous iterations. In effect,
ILC finds an approximate system inverse for a specific
reference (Moore et al., 1989). An advantage of ILC is
that it does not require an explicit model of the transfer
function or even linearity of the system for finding the
inverse. Instead, it often uses the actual system as a part
of the algorithm. ILC has found successful applications
in many different fields (Ahn et al., 2007; Freeman et al.,
2012; Sörnmo et al., 2016), where accurate models of the
system and disturbances are difficult to obtain.

While the frequency domain is the preferred approach
for filter design and analysis of linear ILC (Wang et al.,
2014), the widely used convergence criterion applies,
only to strictly monotone convergence of the algorithm
(the 2-norm of the error between the current control sig-
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nal and its final value strictly decreases in each itera-
tion). Moreover, it is not theoretically clear to what ex-
tent the frequency criterion is applicable to a practical
ILC system where each iteration runs only over a finite-
time interval and to ILC systems with non-causal fil-
ters. To motivate this study, we demonstrate examples
for which the ILC converges but the classical frequency
condition cannot provide any indication of the conver-
gence property. Our analysis gives an explanation for
this mode of convergence.

We extend the work of Norrlöf and Gunnarsson (2002)
by introducing a less conservative criterion, hence re-
ducing the gap between the existing time-domain and
frequency-domain criteria. We also provide an analysis
of the transient behavior of the algorithm, which proves
useful when the convergence is not monotone. The con-
tributions of this article can be summarized as follows:

• Analysis of “convergence on finite-time interval” mo-
tivated by practical ILC where the trial length is finite.

• A less conservative frequency domain convergence cri-
terion than the one by Norrlöf and Gunnarsson (2002)
is derived (see Theorem 8)

inf
ρ>0

sup
ω

∣∣G(ρeiω)
∣∣ < 1.

The criterion is applicable to ILC systems with causal
as well as non-causal filters and for strictly monotone
convergence coincides with the classical result.

• The connection between time-domain and frequency-
domain criteria is established in a rigorous manner
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using Toeplitz operators.
• A frequency domain tool for understanding the tran-

sient behavior of ILC—i.e., the wave of convergence/
divergence—is introduced.
• A strategy to limit the growth of the transient errors

when the convergence is not monotone is proposed.

1.1 Previous work

ILC is a two-dimensional process, in the sense that the
dynamics are indexed by both time and iteration vari-
ables (Kurek and Zaremba, 1993). A standard approach
to analysis of linear and a certain class of nonlinear ILC
algorithms relies on the lifted-system framework, i.e.,
considering a time series as a vector (Bristow et al.,
2006). Norrlöf (2000) has extensively studied the the-
ory and applications of linear ILC. Time-domain crite-
ria as well as a classical frequency-domain criterion for
the convergence of the linear ILC algorithm have been
derived by Norrlöf and Gunnarsson (2002).

There have been many attempts to understand and
improve the convergence properties of the linear ILC.
Longman and Huang (2002) have noted that the algo-
rithm might practically diverge after an initial substan-
tial decay of the tracking error. Elci et al. (2002) have
introduced a non-causal filter, namely a zero-phase fil-
ter, in the algorithm to improve the transient behavior.
The transient properties of the convergence have been
studied in more detail by Longman and Huang (2002)
and Wang et al. (2014). Longman (2000) and Norrlöf
and Gunnarsson (2002) have commented on the poten-
tial convergence of the algorithm despite a transient
growth of the norm of the error, i.e., when the classical
frequency condition is not fulfilled.

1.2 Problem description

A general form of the discrete linear first-order ILC al-
gorithm is

yj = Trr + Tuuj (1)

ej = r − yj (2)

uj = Q (uj−1 + Lej−1) ; (3)

see Norrlöf (2000). Here j ∈ Z≥0 is the iteration index,
r, yj , and ej ∈ `2 are the reference, output, and tracking
error signals, respectively, uj ∈ `2 is the control signal.
The stable systems from reference to output and control
signal to output are denoted by Tr and Tu, respectively,
and Q and L are filters to be designed. The choice of u0
is free. Figure 1 depicts the ILC algorithm. Note that
in practice the trial length is finite, i.e., the system is
stopped after N samples and signal values at time n ∈
{0, . . . , N − 1} are stored. The filters Q and L do not
need to be causal since they operate on the signals of the
previous iteration.

Tu L Q
uj e uj+1ỹ

−

r̃ = (I − Tr)r

Fig. 1. Block diagram of an iterative learning controller.
Here, ỹ = y − Trr.

Let us define G(eiω) := Q(eiω)(1 − L(eiω)Tu(eiω)). The
classical sufficient condition for strictly monotone con-
vergence of ILC requires that (see for example Norrlöf
and Gunnarsson (2002))

|G(eiω)| < 1, ∀ω ∈ [0, 2π), (4)

where L(eiω), Tu(eiω), and Q(eiω) are the frequency rep-
resentations of the respective filters.

Given the definition of the ILC algorithm in (1)–(3) and
the fact that each iteration runs only over a finite-time
interval, n ∈ {0, . . . , N − 1}, our purpose is to find less
restrictive conditions for G that guarantee the conver-
gence of the algorithm, i.e., that the limits uj → u∞ and
ej → e∞ exist for the finite trial length.

The rest of the article is organized as follows: In Sec. 2,
we present a motivating example for which the ILC con-
verges but the classical condition cannot provide any
indication of the convergence property. The iteration-
domain dynamics for ILC are derived in Sec. 3 before
we delve into the issue of convergence. Section 4 starts
with a formal definition of convergence for iterative pro-
cedures and states our convergence results. In Sec. 5,
practical aspects concerning the transient behavior of
ILC when the convergence is non-monotone is discussed.
We propose qualitative measures that characterize the
convergence, and discuss the gap between the time- and
frequency-domain criteria in Sec. 6. We draw conclusions
in Sec. 7. Additionally, a list of useful results and defini-
tions as the background are collected in Appendix A.

2 Motivating example

Let us consider the following transfer functions

Tu(s) =
1

(s+ 1)(s2 + 0.8s+ 16)
, Tr(s) = 0, (5)

Q(s) =
10

s+ 10
, Ld(z) = 10k(1− 0.9z−1)za. (6)

We discretize Tu(s) and filter Q(s) by the zero-order-
hold (ZOH) method (see Åström and Wittenmark, 1997)
with sampling time h = 0.1 s. Figure 2 compares the
time responses of the systems corresponding to two ILC
scenarios where in 1) k = 0.8, a = 5 (System I) and in
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Fig. 2. The 4th, 12th, and 50th iterations for example (5)–(6):
The left column shows System I (blue curve in Fig. 3) and the
right column shows System II (green curve in Fig. 3). The
dashed black, solid green, blue, and red curves correspond
to the reference r, output y, control signal u, and error e,
respectively. In the left column, the error signal looks like
a growing wave which moves toward plus infinity as the
iteration number increases. However, in the right column the
wave does not move and the signals grow unbounded in the
time region of the trial.

scenario 2) k = 0.5, a = 8 (System II). After discretiza-
tion, Q is implemented as a zero-phase filter and hence
we get

G(eiω) = Qd(e
iω)Qd(e

−iω)
(
1− Ld(eiω)Tud(e

iω)
)
. (7)

In Fig. 3, the Bode plots for G(eiω) are illustrated. We
see that in both scenarios the condition |G(eiω)| < 1 is
violated. Nevertheless, System I appears to converge, at
least for the time region of interest, while System II does
not. The Bode diagrams corresponding to convergent
and non-convergent scenarios may seem counterintuitive
at first glance since the one with the highest peak in the
gain |G(eiω)| corresponds to the convergent case.

Our result in Theorem 8 explains the situation and says
that if there exists a ρ > 0 such that supω

∣∣G(ρeiω)
∣∣ < 1,

then we have convergence in the sense that u∞ and e∞
exist on the finite interval [0, · · · , N). In Fig. 4, where
supω |G(ρeiω)| is plotted against ρ, it can be seen that
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Fig. 3. Comparison of Bode diagrams for G(eiω): The fre-
quency response of System I (left column in Fig. 2) is in blue
and System II in green (right column in Fig. 2), respectively.
Both systems violate (4).
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Fig. 4. Comparison of ‖G(ρz)‖∞ for 0.96 < ρ < 2.72: The
blue and green curves correspond to System I and System II,
respectively. We prove in Theorem 8 that if the plot of
‖G(ρz)‖∞ vs. ρ > 0 goes below one, ILC converges on finite
time intervals.

the curve for System I goes below 1 for some ρ and thus
the ILC algorithm converges.

3 Iteration-domain dynamics

In order to analyze the convergence of the ILC sys-
tem (1)–(3), we derive the dynamics of the system in
the iteration domain. Furthermore, to take into account
the assumption of the finite-time intervals, we define the
truncated counterparts of the original operators.

Define the truncation operator as

(Πkx)[n] =

{
x[n], n < k

0, otherwise
(8)
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For an operator G : `2 → `2, we define the truncated
operator

Ḡ := ΠN (I −Π0)GΠN (I −Π0), (9)

where ΠN (I − Π0) sets the values of a signal outside of
{0, . . . , N − 1} to zero and the finite Toeplitz matrix

TN {i,j}(g) = g[i− j], i, j = 1, . . . , N, (10)

where g is the impulse response of G.

To summarize the notation, we use the symbols G, Ḡ,
G(z), g, and TN (g), which read as a bounded linear
time-invariant operator `2 → `2, a bounded linear time-
varying operator `2 → `2 operating on signals with a
finite support n ∈ {0, . . . , N − 1}, the transfer function
of a stable LTI system, which gives us the frequency re-
sponse when evaluated on the unit circle z = eiω, the im-
pulse response of G obtained by the inverse z-transform
of G(z), and the finite Toeplitz matrix corresponding to
Ḡ, respectively. For more detailed descriptions and some
fundamental results, the readers are advised to look at
the background in Appendix A.

Using the truncated operators, system equations (1)–(3)
can be rewritten as

uj+1 = Ḡuj + H̄r̃ (11)

ej = −T̄uuj + r̃, (12)

where Ḡ := Q̄(I − L̄T̄u), H̄ := Q̄L̄ and r̃ := (I − T̄r)r,
hence

uj =

j−1∑

i=0

ḠiH̄r̃ + Ḡju0 (13)

ej = (I − T̄u
j−1∑

i=0

ḠiH̄)r̃ − T̄uḠju0, (14)

where Ḡj denotes j times composition of Ḡ by itself
defined in (A.1).

It is desired that the outcome of the algorithm be inde-
pendent of the choice of initial input u0. Therefore, as
j tends to infinity, the response to the initial conditions
T̄uḠ

ju0 must vanish. Additionally, the forced response

due to the reference signal (I − T̄u
∑j−1
n=0 Ḡ

nH̄)r̃ should
be bounded on the desired interval.

Assuming ‖TN (g)‖2 < 1, (13) and (14) converge respec-
tively to

u∞ = (I − Ḡ)−1H̄r̃ (15)

e∞ = (I − T̄u(I − Ḡ)−1H̄)r̃, (16)

where (I−Ḡ)−1 is the operator `2 → `2 corresponding to

(I − TN (g))
−1

. The result can be derived by using Lem-
mas 12 and 15 in the appendix. Generally, whether the
residual e∞ is acceptable or not depends on the length
of the experiment, the signal r̃, and the norm of the op-
erator in (16).

Note that if T̄u is right invertible, we can express the
error as

e∞ = T̄u(I − Ḡ)−1(I − Q̄)T̄−1u r̃

Similarly, if L̄ is left invertible and Q̄ = q̄I, we have

e∞ = L̄−1(I − Ḡ)−1(I − Q̄)L̄r̃

Therefore, Q̄ = I results in e∞ ≡ 0. However, this choice
may not fulfill the convergence condition and degrades
the robustness of ILC (de Roover, 1996). Hence, there
is a trade-off between the convergence property and the
residual error.

4 Convergence of iterative procedures

Analysis of linear iterative procedures such as (11) can
be well understood using linear system theory (Norrlöf
and Gunnarsson, 2002). First, we formalize the notion of
convergence analogously to linear systems. Thereafter,
we state time and frequency domain criteria for conver-
gence.

Definition 1 We say an iterative procedure Ḡ, H̄ 6= 0

uj+1 = Ḡuj + H̄rj (17)

is convergent iff for all u0 ∈ `2 and iteration-independent
inputs rj ≡ r ∈ `2, there exists an equilibrium sig-
nal ue such that for any given ε > 0, there exists J =
J(ε, u0, r) ∈ Z≥0 such that

∀j > J ⇒ ‖uj − ue‖2 < ε.

Definition 2 We say the convergence is strictly mono-
tone if in addition to Definition 1,

‖uj+1 − ue‖2 < ‖uj − ue‖2 . (18)

Remark 3 Definition 1 translates to uniform asymp-
totic stability of the lifted system described by matrices
G := TN (g) and H := TN (h),

uj+1 = Guj + Hr, (19)

where TN (g) is defined in (10) and u, r ∈ RN are defined
as

u := (u[0], · · · , u[N − 1])T ,

r := (r[0], · · · , r[N − 1])T .
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Note that the time references of inputs and outputs are
assumed to be the same and do not change from one
iteration to the next. Therefore, the representation of the
lifted system is independent of the relative degree of the
system.

Proposition 4 The iterative procedure (17) converges
according to

Definition 1 ⇐⇒ rad G < 1 (20)

Definition 2 ⇐⇒ σ̄ (G) < 1 (21)

PROOF. The first statement is a well-known result for
asymptotic stability of linear systems (19); see Rugh
(1996). For the proof of sufficiency of the second state-
ments see Norrlöf and Gunnarsson (2002). To show ne-
cessity, suppose that (20) holds, i.e., uj in (19) converges
to the limit ue satisfying ue = Gue + Hr. Suppose to
the contraposition that σ̄(G) ≥ 1 and let G = UΣVT

be a singular decomposition, where V = [V1, . . . ,Vn],
U = [U1, . . . ,Un] and Σ = diag(σ1, . . . , σn) with σ1 ≥
. . . ≥ σn. By choosing u0 = ue + V1, it follows that
u1 = ue + σ1U1, whereby (18) is violated.

Lemma 5 Given x ∈ `2 and ρ ∈ R, if y = Ḡx , then

ρ−[·]y = Ḡρ(ρ
−[·]x), (22)

where Ḡρ is the truncated operator corresponding to the

system Gρ(z) := G(ρz) using the def. (9) and ρ−[·] : Z→
R evaluated at n is equal to ρ−n.

PROOF. Let us denote the impulse response of Gρ by
gρ. From definition (10), we conclude ∀i, j ∈ [1, N ]

TN {i,j}(gρ) = gρ[i− j] = ρ−i+1g[i− j]ρj−1.

With P := diag(1, ρ, . . . , ρN−1), we get

TN (gρ) = P−1TN (g)P. (23)

Using the matrix representation of y = Ḡx according to
Lemma 12 in the appendix and multiplying both sides
from the left by P−1, we obtain

P−1y = P−1TN (g)PP−1x = TN (gρ)P
−1x,

which is (22) in its lifted form.

Lemma 6 Assume G(z) is a (not necessarily causal)
LTI system and there exists a ρ > 0 such that {|z| =
ρ} ⊂ ROC of G(z) and ‖G(ρz)‖∞ < 1. Then

lim
j→∞

Ḡju0 = 0, ∀u0 ∈ `2. (24)

PROOF. We prove the result for the equivalent
Toeplitz matrix representation of the system Ḡ accord-
ing to Lemma 12 in the appendix. Note that because of
the similarity transformation (23), TN (g) has the same
spectrum as TN (gρ). From Lemmas 14 and 16 in the
appendix, it follows

rad TN (g) = rad TN (gρ)

≤ ‖TN (gρ)‖2 ≤ ‖G(ρz)‖∞ < 1. (25)

The proof is completed by applying (20).

Remark 7 Considering Prop. 4 and Lemma 13 in the
appendix, (25) guarantees strictly monotone convergence
for the truncated operators if ‖G(ρz)‖∞ < 1 for ρ =
1. Therefore, the standard result for the convergence of
ILC (Norrlöf and Gunnarsson, 2002) for causal filters is
also applicable to non-causal filters.

The following theorem establishes a frequency-domain
criterion for the convergence of the ILC scheme (1)–(3).
It is more widely applicable than the standard criterion
in the literature (see for example Bristow et al. (2006);
Norrlöf and Gunnarsson (2002); Longman (2000)) in the
sense that it is not an asymptotic result for the case of
N →∞, covers ILC with non-causal filters, and applies
to the convergence according to Definition 1 as well as
Definition 2 by setting ρ = 1.

Theorem 8 Given an LTI systemG(z) with the impulse
response g, assume that there exists a ρ > 0 such that
{|z| = ρ} ⊂ ROC of G(z) and

‖G(ρz)‖∞ < 1. (26)

Then the following limits for ILC system (1)–(3) with
interval length of N hold:

lim
j→∞

uj = u∞ = (I − Ḡ)−1H̄r̃

lim
j→∞

ej = e∞ = (I − T̄u(I − Ḡ)−1H̄)r̃

where Ḡ := Q̄(I − L̄T̄u), H̄ := Q̄L̄ and r̃ =: (I − T̄r)r.

PROOF. The limits of (13) and (14) need to be cal-
culated. For the proof, we use the corresponding matrix
representation of the truncated systems, e.g., TN (g) in-
stead of Ḡ according to Lemma 12 in the appendix. First
note that

lim
j→∞

j−1∑

i=0

T iN (g) = P−1
(

lim
j→∞

j−1∑

i=0

(
PTN (g)P−1

)i
)
P

=P−1
(
I − PTN (g)P−1

)−1
P = (I − TN (g))

−1
.

(27)
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To derive (27), we have used the fact that
∥∥PTN (g)P−1

∥∥ ≤
‖G(ρz)‖∞ < 1, and Lemma 15 in the appendix. More-
over, according to Lemma 6,

lim
j→∞

T jN (g) = 0. (28)

Substituting (27) and (28) into the limits of (13) and
(14) as j →∞ completes the proof.

5 Practical considerations

When ‖G(z)‖∞ > 1, the ILC lacks the strictly monotone
convergence property. Hence, the norm of the signals
may grow as iterations proceed. This section provides
some insights into this transient behavior and suggests
a solution to upper bound the growth of the error under
a certain condition.

Theorem 9 GivenG(z) with the impulse response g, let
uj+1 = Ḡuj for some u0 and j ∈ Z≥0. Then for every
ρ ≥ 1 for which {|z| = ρ} ⊂ ROC of G(z), there exists a
C > 0 such that

∀n ∈ Z,∀j ∈ Z≥0, ‖Πnuj‖2 ≤ Cρn ‖G(ρz)‖j∞ . (29)

PROOF. We split ρ−[·]uj such that

∥∥∥ρ−[·]uj
∥∥∥
2

=
∥∥∥Πnρ

−[·]uj
∥∥∥
2

+
∥∥∥(I −Πn)ρ−[·]uj

∥∥∥
2
.

(30)

Furthermore, note that when ρ ≥ 1,

ρ−n ‖Πnuj‖2 ≤
∥∥∥Πnρ

−[·]uj
∥∥∥
2
. (31)

Combining (30) and (31) results in

ρ−n ‖Πnuj‖2 ≤
∥∥∥ρ−[·]uj

∥∥∥
2
−
∥∥∥(I −Πn)ρ−[·]uj

∥∥∥
2
.

(32)

Considering (32) and Lemma 5, we obtain

‖Πnuj‖2 ≤ ρn
∥∥∥ρ−[·]uj

∥∥∥
2
≤ ρn ‖TN (gρ)‖j2

∥∥∥ρ−[·]u0
∥∥∥
2
.

(33)
Note that ‖ρ−[·]u0‖2 is constant. By considering
Lemma 16 in the appendix, the final result follows .

Remark 10 If for some ρ > 1, ‖G(ρz)‖∞ < 1, The-
orem 9 intuitively means that the iteration operator Ḡ
can shift the energy distribution of a signal only toward
plus infinity. Define ũj := uj − ue, which results in
ũj+1 = Ḡũj. By equating the right hand side of (29) to

ε, for a given n ∈ Z≥0 and ∀ε > 0, we can find J such
that ‖Πnũj‖2 ≤ ε for all j > J . For j > J ′ > J , (29) im-
plies that n can be increased. Hence, the norm of a larger
interval is guaranteed to be less than ε. This resembles a
wave traveling to the right. Assuming ‖G(ρz)‖∞ < 1 for
0 < ρ < 1, a similar relation to (29) can be derived for
‖(I −Πn)ũj‖2, so the wave moves toward minus infinity.

With the result of Theorem 9 in mind, let us reexamine
the example in Sec. 2. In Fig. 2 for the convergent case,
the growing wave is pushed toward the right as the num-
ber of iterations increases while for the non-convergent
case the signals grow unbounded in the time region of
the trial.

Assuming the conditions of Theorem 9 are fulfilled for
ρ > 1, we can employ a strategy to only feed “safe in-
puts” and set the remaining inputs to a bounded signal.
This way, a possibly growing tail of the control signal
can be truncated, since we know that its energy distri-
bution can only be shifted to plus infinity. Additionally,
since we have assumed that (1) is stable, setting the re-
moved part of the signal to a bounded signal is harmless.
More specifically, a good choice is

uj [n] =

{
Q (uj−1 + Lej−1) [n], 0 ≤ n < jd̂

Tu(1)−1(1− Tr(1))r[n], jd̂ ≤ n < N,
(34)

where the steady-state solution to (1) is used for the
unsafe region.

To determine the range of safe inputs, consider the model
G(z) = cz−d, i.e., g[n] = cδ[n−d] where δ[·] is the Dirac
delta function. According to this model,

gj [n] = cjδ[n− jd]. (35)

Thus, the norm of the signal is multiplied by c and shifted
d steps along the time axis in each iteration. Obviously,
after sufficiently many iterations, the energy of the signal
lies outside of the interval of n ∈ {0, . . . , N − 1}. By
setting the right hand side of (29) in Theorem 9 to less
than or equal to ε, we derive

n ≤ ln ε− lnC

ln ρ
− j ln ‖G(ρz)‖∞

ln ρ
.

By comparison with model (35), we conclude that a good

choice for d̂ in (34) is

d̂ = − ln ‖G(ρz)‖∞
ln ρ

. (36)

Therefore, a rule of thumb for calculating d̂ is obtained
by substituting ρ with ρ∗ := arg minρ ‖G(ρz)‖∞ in (36).
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Fig. 5. Safe-feed strategy for non-minimum phase system
(37): From top to bottom, iterations 5, 10, and 100 are illus-
trated. The signals shown are the reference (dashed black),
input (blue), output (green), and error (red). For the right

pane, the safe-feed strategy (34) is employed with d̂ = 5,
while for the left pane it is not.

Figure 5 shows an example of the application of the safe-
feed strategy (34). The system is non-minimum phase
and Q(s) is the same as in (6),

Tu(s) =
s− 5

(s+ 1)(s2 + 0.8s+ 16)
, Tr(s) = 0, (37)

Ld(z) = −6
1− 2.7z−1 + 2.5z−2 − 0.8z−3

1− 0.5z−1 − 0.3z−2
z5.

Without the safe-feed strategy, the amplitude of signals
grows rapidly as shown in the left pane of Fig. 5. How-
ever, by employing the safe-feed strategy the transient
behavior is kept under control.

Early termination schemes are also advisable since, as it
has been reported by other authors, divergence might ap-
pear after many iterations (Longman and Huang, 2002).
In the case of ‖G(z)‖∞ ≥ 1, more precautions must be
taken considering the inherent lack of robustness.

6 Discussions

A number of qualitative measures for the convergence
of (17) can be deduced from the plot of ‖G(ρz)‖∞
versus ρ. First of all, according to (25), the value
infρ>0 ‖G(ρz)‖∞ is an upper bound for the spectral
radius of the finite Toeplitz matrix, indicating the ex-
ponential decay rate of the slowest transient mode of
ILC applied on a finite-time interval. Based on (36), the
larger ρ∗ or ‖G(ρ∗z)‖ the longer it would take for the
growing wave to disappear. We can also define

Ω := {ρ| ‖G(ρz)‖∞ < 1 ∧ |z| = ρ ⊂ ROC of G(z)},
ρ` := inf Ω, ρh := sup Ω,

i.e., ρ` is the first crossing of 0 dB and ρh is the last
one. If the control signal is weighted by an exponential
function with rate ρ < ρ`, the weighted signal appears to
grow and shift toward plus infinity. On the other hand,
weighting by ρ > ρh results in a growing signal that
moves toward minus infinity.

The frequency domain criterion provides an intuitive
way to judge the convergence of ILC and facilitates the
design process. Moreover, its evaluation can be compu-
tationally advantageous compared to the time-domain
criteria. Iterative algorithms are often employed to solve
for the largest eigenvalue or to calculate the H∞ norm.
Given a system with state dimension n, the cost of
computing the H∞ norm scales with O(n3) per itera-
tion (Vandenberghe et al., 2005). On the other hand, to
compute the largest eigenvalue of a lifted system for the
interval length of N , the cost per iteration for general
algorithms is roughly O(N2). Thus, the time-domain
criteria scale poorly with the interval length N , while
the the frequency domain computation is independent
of N .

Even when ρ is not set to one, the search over a range
of ρ can be done efficiently. Firstly, note that very large
values of ρ are not interesting since they imply poor
transients. Secondly, the valid range of ρ is constrained
by {|z| = ρ} ⊂ ROC of G(z). Let |p1| ≤ |p2| ≤ . . . ≤
|pn| denote the poles of G(z). Since the ROC must be
a connected region, if G is causal |pn| < ρ and if G
is non-causal, |pi| < ρ < |pi+1| for some pi. Thirdly,
note that as a consequence of the Hadamard three-circle
theorem (Lang, 2013), log ||G(ρz)||∞ is strictly convex
in log(ρ) if G(z) is not a pure delay or forward shift.
These facts allow for a fast evaluation of (26) using, for
example, a bisection method.

While the frequency domain representation is widely ac-
cepted as an approximation for a practical ILC system
where each iteration has a finite duration (Norrlöf and
Gunnarsson, 2002; Longman, 2000), its implication for
the frequency domain criterion (4) has not been clari-
fied. From Lemma 16 in the appendix, it becomes ev-
ident how ‖G(z)‖∞ approximates σ̄ (G). Namely, the
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maximum singular value of a finite Toeplitz matrix is
upper bounded by σ̄ (T∞(g)), which is equal to the in-
finity norm of the system. Thus, the criterion (4) is suf-
ficient even for the convergence of a practical ILC algo-
rithm. Moreover, when g ∈ `1 according to Lemma 17,
as N →∞ we have equality and hence the criterion (4)
in this case is both sufficient and necessary for monotone
convergence.

The criterion for non-monotone convergence is closely re-
lated to the results by Schmidt and Spitzer (1960), which
states that ifG has a finite impulse response (FIR), then

lim inf
N→∞

radTN (g) ≤ lim sup
N→∞

radTN (g) ≤ inf
ρ>0
‖G(ρz)‖∞ .

However, this criterion cannot be used for evaluating
the convergence of long sequences, i.e., when N is large.
The reason is that (20) does not guarantee robustness
against perturbations. Specifically, the spectral ra-
dius cannot reliably describe the convergence behavior
of large Toeplitz matrices and instead, the pseudo-
spectrum should be considered (Reichel and Trefethen,
1992). In our opinion, this can clarify some of the gaps
observed between the theoretical and practical conver-
gence of ILC reported in the literature. The lack of
robustness can manifest itself as the divergence of ILC
that starts at a distant sample in time after a number
of iterations. Hence, either a shorter time interval or an
early termination strategy should be considered.

7 Conclusion

The time domain criterion states that ILC converges if
and only if the spectral radius of TN (g) corresponding
to the lifted system fulfills radTN (g) < 1. For strictly
monotone convergence, it is necessary and sufficient
that the largest singular value is less than one, i.e.,
σ̄ (TN (g)) < 1. These conditions have sufficient fre-
quency domain counterparts applicable to ILC systems
with causal as well as non-causal filters.

Our main result states that (non-monotone) convergence
of ILC on finite-time intervals is implied by

inf
ρ>0

sup
ω

∣∣G(ρeiω)
∣∣ < 1,

which is less conservative than supω
∣∣G(eiω)

∣∣ < 1. In
other words, for non-monotone convergence, the crite-
rion ‖G(z)‖∞ < 1 can be evaluated on any circle in the
region of convergence with radius larger than zero. The
criterion implies that the spectral radius of the corre-
sponding finite Toeplitz matrix TN (g) is less than one.
In this case, repeated composition with the operator G
shifts the energy distribution of the control signal toward
plus or minus infinity if ‖G(z)‖∞ ≥ 1 but ‖G(ρz)‖∞ < 1
for some ρ > 0.

Our treatment clarified the source of approximation in
using the frequency domain criterion. Practical con-
siderations were also discussed, whereby it is advisable
to employ safe-feed and early-termination strategies
in an ILC system. Rigorous extensions of the main re-
sults to the multi-input-multi-output (MIMO) case as
well as analyzing scenarios with non-repetitive distur-
bances (Mishra et al., 2007; Ruan et al., 2008) are parts
of future research. The H∞ perspective as it has been
taken by Doh and Ryoo (2008) could be helpful for such
extensions.
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P., Tenghamn, R., 2016. Frequency-domain iterative
learning control of a marine vibrator. Control Engi-
neering Practice 47, 70–80.

Vandenberghe, L., Balakrishnan, V. R., Wallin, R.,
Hansson, A., Roh, T., 2005. Interior-point algorithms
for semidefinite programming problems derived from
the KYP lemma. In: Henrion, D., Garulli, A. (Eds.),
Positive Polynomials in Control. Springer, Berlin, Hei-
delberg, pp. 195–238.

Wang, D., Ye, Y., Zhang, B., 2014. Practical Iterative
Learning Control with Frequency Domain Design and
Sampled Data Implementation. Springer, Singapore.

A Background

Some useful results from systems theory are presented
in this section. We define

`p :=
{
f : Z→ R

∣∣∣ ‖f‖p`p :=

∞∑

n=−∞
|f(n)|p <∞

}
,

where |·| denotes the absolute value.

A linear operator G : `2 → `2 is said to be bounded if

‖G‖`2→`2 := sup
‖x‖`2=1

‖Gx‖`2 <∞.

The product of x ∈ `2 and y ∈ `2 is defined as

(xy)[n] := x[n]y[n].

Given an x : Z→ R, denote the z-transform of x by

X(z) = Zx :=

∞∑

n=−∞
x[n]z−n,

and the inverse z-transform denoted byZ−1 satisfies x =
Z−1X. The set of values of z for which the z-transform
converges absolutely is called the region of convergence
(ROC) of the z-transform.

Given a linear time-invariant (LTI) G : `2 → `2 that is
possibly non-causal, denote by g : Z→ R the impulse re-
sponse/convolution kernel of G. In particular, note that
Gx = g ∗ x for any x ∈ `2, where ∗ denotes the convolu-
tion operator defined as

(x ∗ y)[n] =

∞∑

m=−∞
x[m]y[n−m].

We define G(z) := Zg. If G is a bounded LTI operator,
then

{|z| = 1} ⊂ ROC of G(z).

Define

L∞ :=
{
G(z)

∣∣∣ ‖G(z)‖∞ := sup
ω∈[0,2π)

|G(eiω)| <∞
}
.

Hereafter, we denote byG(z) the transfer function corre-
sponding to a bounded LTI operator, i.e., G(z) ∈ L∞. 1

Define Gj as

G0 = I,

Gj+1 = G ◦Gj , (A.1)

where I denotes the identity operator and ◦ the compo-
sition of two operators.

Lemma 11 (Kreyszig, 1989) Given a bounded linear
time-invariant operator G : `2 → `2, it holds that

‖G‖`2→`2 = ‖G(z)‖∞ .

Given the definition of the truncation operator (8), an
operator is causal if for all k ∈ Z

ΠkG(I −Πk) = 0. (A.2)

1 In this article, we do not explicitly specify the ROC for
stable systems since it can unambiguously be determined.
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Lemma 12 Given x ∈ `2 and Ḡ as defined in (9), if
y = Ḡx then

y = TN (g)x, (A.3)

where x,y ∈ RN are the input and output signals con-
verted into vectors, e.g., x = {x[0], · · · , x[N − 1]}.

PROOF. Define x̄ := ΠN (I − Π0)x. For 0 ≤ i < N ,
we have

y[i] =

∞∑

j=−∞
g[i− j]x̄[j]

=

N−1∑

j=0

g[i− j]x[j] =

N−1∑

j=0

TN {i,j}(g)x{j}, (A.4)

which proves the result.

Note that the operator Ḡ can be represented by a matrix
by converting the input and output signals to vectors.
In this case, Ḡ : `2 → `2 is a linear time-varying system
with a Toeplitz matrix representation TN (g) ∈ RN×N .
The infinite-dimensional Toeplitz matrix corresponding
to the operator G is denoted by T∞(g).

The spectral radius and the largest singular value of T ∈
RN×N are defined, respectively, as

rad(T ) := max
i
|λi (T ) |, (A.5)

σ̄(T ) :=
√

rad(TT ∗). (A.6)

where λi(T ) denotes an eigenvalue and T ∗ the transpose
of T .

Lemma 13 (Horn and Johnson, 2012, Sec. 5.6) If T ∈
RN×N , then

‖T‖2 := sup
u6=0

‖Tu‖
‖u‖ = σ̄(T ) (A.7)

Lemma 14 (Kreyszig, 1989, Theorem 7.5-2) Given a
matrix T ∈ RN×N ,

radT ≤ ‖Tn‖ 1
n , ∀n ∈ Z>0

Lemma 15 (Horn and Johnson, 2012, Sec. 5.6) Given
a matrix T ∈ RN×N , if ‖T‖2 < 1, then

lim
j→∞

j∑

n=0

Tn = (I − T )
−1
.

Lemma 16 (Böttcher and Grudsky, 2005, p. 177) For
a transfer function G(z) and its corresponding Toeplitz
matrix TN (g) and for all n ∈ Z≥0, it holds

‖TnN (g)‖2 ≤ ‖TN (g)‖n2 ≤ ‖T∞(g)‖n2 = ‖G(z)‖n∞ .
(A.8)

Lemma 17 (Böttcher and Grudsky, 2005, Theo-
rem 8.1) If g ∈ `1, then

lim
N→∞

‖TnN (g)‖2 = ‖T∞(g)‖n2 = ‖G(z)‖n∞ . (A.9)

For an arbitrary function f , by f [·] we denote a mapping
Z → R which when evaluated at a point n ∈ Z results
in f(n).
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