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Abstract
We have studied the homolytic dissociation of a methyl radical from a model of methyl 

cobalamin. For this reaction, density functional theory with an atom-pairwise dispersion 
correction (DFT-D) gives a dispersion contribution to the bond dissociation energy (BDE) of 
22–51 kJ/mol depending on the functional, i.e. much more than common estimates for the 
total dispersion interaction energy of the methyl group in typical solvents. We show that this 
large energy correction results from many rather small (0–2 kJ/mol) interactions that arise 
between the ligand and the metal and the other ligands when a short metal–ligand bond is 
formed. The energy terms result mostly from atom pairs connected by two or three bonds, i.e. 
terms that normally are ignored or scaled down at the molecular mechanics level, and have 
large contributions from r–8 terms. The added dispersion energy diminishes the variation in the 
calculated BDE observed among various generalised-gradient approximation functionals, 
whereas a gap still persists to the results of hybrid functionals. Model calculations at the local 
MP2 and CCSD (second-order perturbation theory and coupled cluster theory with single and 
double excitations) levels are in agreement with the dispersion interactions estimated by DFT-
D (23–29 kJ/mol). However, both the DFT-D and the wavefunction-based results include 
middle-range correlation effects that vary much among different DFT methods owing to their 
different density-based description also in the short-range regime. Therefore, it is not 
meaningful to discuss which DFT method gives the most accurate estimate of the dispersion 
contribution to the BDE. Moreover, for a balanced treatment of dispersion during the binding 
reaction in solution, the dispersion energy of the ligand and the unbound complex with the 
surroundings needs also to be considered, which decreases the net dispersion contribution to 
binding by ~20 kJ/mol.

Key Words: Dispersion energy, DFT-D3, cobalamin, vitamin B12, ligand binding.
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Introduction
During the last decade, there has been a great interest in the development of approximate 

density-functional theory (DFT) approaches that model the physically and chemically 
important London dispersion1,2 interactions.3,4,5,6 It is clear that especially for large systems, 
these interactions are indispensable. Many approaches have been suggested to include 
dispersion in DFT, e.g. the DFT-D method (atom pairwise sum over r−6 and possibly r–8 

potentials),7,8,9,10 the non-local van der Waals functional,11,12,13 dispersion-corrected atom-
centred potentials,14 localized atomic potentials,15 and highly parametrised density 
functionals.16 Of these methods, the DFT-D approach has been most used, probably owing to 
its simplicity and that it contains an additive correction that is independent of the 
wavefunction or electron density. It has been implemented in many of the standard quantum 
mechanical (QM) software packages and it is also available as a stand-alone module.17

The effect of dispersion on non-covalent interactions (hydrogen-bonded or van der Waals 
complexes) is well-documented and the DFT-D method provides a great improvement in the 
accuracy, especially for van der Waals complexes.18,19,20 However, it has also recently been 
suggested that inter- and intramolecular dispersion is important for general thermochemistry 
and the binding of ligands to metal complexes.21,22 In fact, very large dispersion energies (30–
60 kJ/mol) are obtained for the binding of small ligands, such as CH3

, CO, O2, or NO to 
metal corrins or porphyrins23,24 or PtBu3 to Pd(0) complexes.25 However, the binding of ligands 
to metals involve the formation of a short metal–ligand bond; therefore, it becomes difficult to 
define and quantify dispersion which is normally considered as a long-range correlation 
effect. Moreover, short-range (static) correlation effects become important, which makes 
results sensitive to the choice of the approximate exchange-correlation functional in DFT.

Considering the importance of metal–ligand binding in biochemical and organometallic 
reactions and the size of this effect, it is of highest interest to assess the applicability of the 
DFT-D approach to the formation of metal–ligand bonds and to decide whether it gives 
accurate estimates of the dispersion energy in such situations. Moreover, we will discuss how 
such reactions are best studied and how they should be coupled to continuum-solvation 
methods to make the reactions balanced.

Methods

Model systems 
In this paper, we study the methyl cobalamin (related to coenzyme B12) system shown in 

Figure 1. In particular, we study the homolytic dissociation reaction:
CoIIICorImMe  CoIICorIm + Me (1),

where Cor is a corrin ring, Im is imidazole, and Me is a methyl group (CH3). This involves the 
homolytic cleavage of a Co–C bond, giving rise to CoII and a methyl radical.

In some cases, we have also studied a simpler model system, in which the corrin ring is 
replaced by four ammonia groups and Im by a fifth ammonia group:

CoIII(NH3)5(Me)  CoII(NH3)5 + Me (2)
For this reaction, we assume that all reactants have Cs symmetry (which affects the reaction 
energy by less than 1 kJ/mol), whereas for the reaction in Eqn. 1, no symmetry restraints were 
imposed.

DFT calculations
All DFT calculations were performed with the Turbomole 6.1 software26 and the def2-

SV(P) basis sets.27 Most calculations were performed with the Becke-1988–Perdew-1986 
functional (BP86),28,29 but several other functionals were also tested: PBE,30 TPSS,31 

3



BLYP,28,32 B97,33 TPSSH,34 B3LYP,35 PBE0,36 and BHLYP.37 Calculations with semi-local 
functionals were sped up by expansion of the Coulomb interactions in auxiliary basis sets, the 
resolution-of-identity (RI) approximation.38,39 The structures were optimised until the change 
in energy between two iterations was below 2.6 J/mol (10–6 a.u.) and the norm of the 
maximum norm of the gradients was below 10–3 a.u. All open-shell systems were treated with 
the unrestricted formalism.

DFT-D28 calculations were performed with Turbomole, whereas single-point DFT-D310 

calculations were performed with the stand-alone dftd3 program.17 
Single-point calculations with the polarised continuum model (PCM)40,41 were performed 

with the Gaussian-03 software,42 using the integral-equation formalism (IEF-PCM43) and the 
UAKS radii (united atom topological model for Kohn–Sham theory). The calculations were 
performed at the BP86/def2-SV(P) level of theory (but in variance to the electrostatic 
solvation energy, the non-polar solvation energy terms, cavitation, dispersion, and repulsion, 
are independent of the level of theory or basis set). As a solvent, we used either water (with 
built in parameters) or ethylene glycol with the following parameters: dielectric constant = 
40.245, but 2.05 at infinite frequency, radius = 2.51 Å, and density 0.0108 Å–3. However, the 
latter solvent is not thoroughly parametrised and it was not possible to specify all the 
parameters needed for PCM. Moreover, the molecule is less spherical than water (making the 
solvent radius ill-defined) and it contains several atoms, so it is less well-defined what the 
dispersion and repulsion parameters should be for the continuum solvent (many popular MM 
water models, e.g. TIP3P,44 make van der Waals interactions with only the oxygen atom). 
Therefore, only the results with water are discussed in the results section.

LMP2 and LCCSD calculations
Local correlation calculations, namely local second-order Møller–Plesset perturbation 

theory (LMP2)45 and local coupled-cluster singles and doubles (LCCSD)46 were carried out on 
the Co(NH3)5(Me)2+ complex in its closed-shell singlet state. The def2-TZVPP basis set27 was 
used throughout. Density-fitting (DF) approximations47,48 were used for both the Hartree–Fock 
and the correlation part, with the def2-TZVPP/JKFIT49 and def2-TZVPP/MP2FIT50 auxiliary 
basis sets, respectively. Localized Pipek–Mezey orbitals51 were used and the orbital domains 
were determined according to a natural population analysis occupation threshold of 
TNPA=0.03.52 All calculations were carried out with a development version of Molpro 
2010.2.53

Result and Discussion
In this paper we study the homolytic cleavage of the Co(III)–C bond for the standard 

CoCorImMe model of methyl cobalamin, shown in Figure 1, i.e. the reaction in Eqn. 1. This 
reaction has been thoroughly studied with a variety of DFT methods and it has been shown 
that the homolytic Co–C bond dissociation energy (BDE; i.e. the energy of the reaction in 
Eqn. 1) strongly depends on the functional used.54,55,56,57,58,59 In particular, dispersion-
uncorrected semi-local functionals like BP86 and BLYP give BDEs (140–160 kJ/mol) that are 
closer to the experimental result (15513 kJ/mol in ethylene glycol60,61) than do hybrid 
functionals like B3LYP and B3P86 (100–120 kJ/mol).56 The B1LYP functional gives an even 
lower BDE of 85 kJ/mol, illustrating that the BDE strongly depends on the amount of exact 
exchange in the functional. The effects of improved basis, treatment of the basis-set 
superposition error, relativity, solvation, zero-point vibrational energy, and thermal 
corrections have been considered, but do not change the results qualitatively.56 

However, Siegbahn and coworkers recently showed that with the DFT-D2 method in 
combination with the B3LYP functional, the BDE increases by 47 kJ/mol,23 which would 
bring the results of hybrid methods closer to the experimental result. At a first glance, such a 
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results seems spurious, considering that the estimated total dispersion energy of a methyl 
radical in solvents like cyclohexane, heptane, benzene, and water is 17–20 kJ/mol (i.e. the 
total dispersion interaction of a methyl radical with the surrounding solvent to infinity 
according to PCM calculations).

In this paper, we will analyse and explain how the dispersion energy can be so large in 
this complex and examine whether this is reasonable or not by comparison to wave function-
based calculations on smaller models. Moreover, we will discuss how balanced reaction 
energies can be obtained for reactions of this type in solution and enzymes.

DFT-D2 results
First, we calculated the BDE energy for the reaction in Eqn. 1 at the BP86/def2-SV(P) 

level. The result without any dispersion correction was 158 kJ/mol, in good agreement with 
previous results (156 kJ/mol with a different basis56). With a single-point DFT-D2 correction, 
the BDE increased by 47 kJ/mol, i.e. the same value observed by Siegbahn et al. (at the 
B3LYP level).23 With full geometry optimisation using BP86 and DFT-D2, the BDE remained 
at 205 kJ/mol.

The dispersion energy can be easily understood, because it is a simple sum of r–6 terms for 
all pairs of atoms in the molecule:

Edisp=s∑
i j

C ij

rij
6 f dmpr ij (3)

where rij is the distance between the atoms, Cij is the dispersion coefficient for the two atoms i 
and j, s is a functional-dependent scaling factor, and fdmp is a damping function. This is very 
similar to the dispersion part of the standard Lennard-Jones term used in most molecular 
mechanics (MM) force fields. The only difference is that in MM methods, this term is omitted 
or scaled down for atoms that are connected by 1–3 bonds. Such information is not available 
in QM calculations; instead the damping function is included, which gives a similar effect. 
Damping is necessary because of the singularity in the dispersion potential, which results 
from a break-down of the perturbation expansion on which Eqn. 3 is based (for a recent 
discussion of the effect of the damping function see ref. 62). Thus, DFT-D can be seen as a 
simple QM/MM method. 

To understand the large effect of dispersion on the BDE, we divided the dispersion energy 
into contributions from the various parts of the complex, viz. the methyl group (Me), Co, Im, 
and the Cor ring. The results in Table 1 show that the main contribution comes from 
interactions between the methyl group and the Cor ring (35 kJ/mol), but there are also large 
contributions from the interactions between the methyl group and Co (7 kJ/mol), as well as 
from the interactions between the imidazole group and the Cor ring (5 kJ/mol). The latter is a 
relaxation effect (i.e. it depends on the change in geometry between the Co(III) and Co(II) 
states) and may at first seem counter-intuitive, considering that the Co–NIm bond length is 
actually longer in CoCorImMe (2.17 Å) than in CoCorIm (2.13 Å). However, this is more 
than compensated by the fact that the Co ion resides essentially in the corrin plane in 
CoCorImMe, whereas it moves 0.15 Å out of it towards the imidazole ligand in CoCorIm. 
Thereby, the imidazole group actually comes closer to the corrin plane in the CoCorImMe 
complex. The other contributions are 1 kJ/mol or less.

Further division of the major terms shows that half of the Me–Cor interactions stem from 
C in Me (17 kJ/mol), whereas the other half is nearly equally divided between the three H 
atoms of Me (6 kJ/mol each). On the other hand, all the Me–Co interaction are attributed to 
the H atoms, giving 2 kJ/mol each. These three interactions are also the largest individual 
terms involving the methyl group. Thus, the individual Me–Cor interactions are small (up to 
–1.3 kJ/mol) but numerous. As can be seen in Table 2, they are dominated by interactions 
with the corrin NCor and CCCA atoms (i.e. the C atoms next to the NCor atoms; 26 kJ/mol).
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Going back to the MM perspective, we can conclude that all contributions from Me–Me 
(i.e. 1–3 interactions between the three HMe atoms in the methyl group) and Me–Co 
interactions, as well as the CMe–NIm/Cor and NIm–NCor (CMe is the C atom in the methyl group 
and NIm the N atom in imidazole) interactions represent 1–3 interactions (interactions between 
atoms separated by two bonds) that normally are ignored in MM calculations. They sum up to 
a BDE contribution of 11 kJ/mol, i.e. 24% of the total dispersion contribution to the BDE. 
Moreover, the HMe–NIm/Cor, CMe–CICA, CMe–CCCA, NIm–CCCA, and CICA–NCor (CICA is the two C 
atoms in imidazole next to NIm) interactions represent 1–4 interactions between atoms 
separated by three bonds, which normally are scaled down in MM. Those interactions sum up 
to 17 kJ/mol, i.e. 36% of the total dispersion contribution to the BDE. Therefore, 60% of the 
dispersion energy stems from interactions that are not included in a typical force field. 
However, the remaining contribution of 19 kJ/mol is still large and should not be problematic 
because it is long-ranged. Moreover, the scale factor for the 1–4 interactions is typically quite 
close to 1, e.g. 0.83 in the Amber force fields,63 indicating that about 14 kJ/mol of the 1–4 
interaction energy may also be reasonable (i.e. 33 kJ/mol in total).

This analysis allows us to understand the source of the large dispersion energy for the 
binding of a methyl group to cobalamin in DFT-D. The Co–C bond is short, 1.98 Å, which 
brings the methyl group in close contact to many atoms in the metal complex. In particular, 
the methyl group is close to the many atoms in the corrin ring, with four NCor atoms within 
~2.7 Å, eight CCCA atoms within 3.3–3.7 Å, and three Cmeta atoms with distances of 3.7–4.0 Å. 
All these inter-atomic distances are smaller than typical van der Waals contacts, e.g. what can 
be estimated for a methyl radical in solution. The dispersion effect is further enhanced by the 
fact that the geometry of complex hardly changes by the binding of the methyl group (i.e. that 
the binding site is vacant before binding), so that there is little change in the dispersion energy 
of the other groups upon binding (for complexes with more flexible coordination sphere, it is 
likely that the ligands come closer when one ligand dissociates, giving a larger dispersion 
energy in the dissociated complex). On the contrary, the only significant contribution from the 
other ligands in this octahedral Co complex is an increase in the BDE energy, owing to the 
movement of the Co ion towards the imidazole ligand in the five-coordinate state.

DFT-D3 calculations
Next, we performed single-point energy calculations with the more recent DFT-D3 

method.10 It is more accurate, in particular for metal-containing systems, but also more 
involved, including both r–6 and r–8 terms, of which the latter can be expected to be important 
for such short-range interactions observed in the CoCorImMe complex. The DFT-D3 
dispersion correction to the BDE for the BP86 functional is 6 kJ/mol smaller than the 
corresponding DFT-D2 correction, 41 kJ/mol. Interestingly, it is dominated by the r–8 term, 
27 kJ/mol, which is almost twice as large as the r–6 term, 14 kJ/mol. This indicates that the 
dispersion is dominated by short- or medium-range correlations for which the definition of the 
dispersion energy becomes less clear.

Next, we calculated the dispersion correction to the BDE with eight additional density 
functionals. As mentioned above, previous studies have shown that the calculated BDE 
depends strongly on the functional used, and especially the amount of exact exchange.56 The 
DFT-D3 dispersion correction also depends on the functional. It would be satisfactory if the 
variation in the calculated BDEs decreases when the dispersion correction is added. This 
would indicate that the missing dispersion or middle-range correlation, described by the r–8 

term, is the main cause of the difference between the functionals. 
As can be seen in Table 3, this is indeed the case in the group of semi-local generalised-

gradient approximation (GGA) functionals. Without the dispersion correction, the BDE varies 
between 128 kJ/mol (B97) and 173 kJ/mol (PBE). With D3-correction the span is reduced 
from 45 kJ/mol to 20 kJ/mol, and the calculated BDEs follow the order PBE (199 kJ/mol) > 
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BP86 > TPSS > BLYP > B97 (179 kJ/mol). Thus, there is a good anti-correlation between the 
BDE without dispersion and the dispersion correction (r2 = 0.81). 

However, if the hybrid functionals are included in the comparison, the correlation 
completely disappears (r2 = 0.01). As mentioned above, the calculated BDE is lower for all 
the hybrid functionals except TPSSH and follows roughly the amount of non-local Fock 
exchange (50% in BHLYP, 25% in PBE0, 20% in B3LYP, and 10% in TPSS), with the only 
exception of PBE0 and B3LYP, where the effect of the underlying functional reverses the 
rather small difference in the amount of Fock exchange. However, the DFT-D3 dispersion 
correction follows another order: B97 (51 kJ/mol) > BP86 > BLYP > B3LYP > TPSS > 
TPSSH > BHLYP > PBE0 > PBE (22 kJ/mol), showing little difference between the pure and 
hybrid functionals or the amount of Fock exchange. Therefore, the gap of the BDE between 
the GGA and hybrid functionals is not reduced by the D3-correction, and for the hybrids, the 
range of BDEs for the functionals is not improved at the DFT-D3 level, as opposed to the case 
of the GGAs.

Wavefunction calculations
Now, we come to the most important question, viz. to what extent we can trust the DFT-

D3 results quantitatively. Unfortunately, this is hard to answer conclusively for such a 
relatively large and complicated system. For normal non-bonded systems, the dispersion 
energy can be estimated as the difference in Hartree–Fock (HF) and MP2 (or even better 
coupled-cluster theory) interaction energies. However, for transition-metal complexes, HF 
gives very poor results (for our CoCorImMe model, the BDE at the HF level is –178 kJ/mol, 
for example56) and the performance of MP2 can also be rather poor, typically worse than DFT, 
owing to the presence of extensive static correlation and orbital-relaxation effects. Therefore, 
more advanced (e.g. multiconfigurational) levels of theory are needed,64 but they are normally 
too expensive to use for such complicated complexes and the choice of the active space is 
problematic. Likewise, it is questionable if other methods to calculate various contributions to 
the interaction energy, e.g. the symmetry adapted perturbation theory,65 work properly for 
complexes involving the formation of a short metal–ligand bond.

Therefore, we decided to use local correlation methods. First, we employed the DF-LMP2 
method to calculate the dispersion contribution to the BDE energy. In order to avoid dealing 
with strong static correlation effects and to reduce the system size, we made use of a simpler 
model, viz. Co(NH3)5Me2+. Local correlation methods, besides having a lower computational 
cost than their canonical counterparts, also allow for a decomposition of the correlation 
energy: Because both occupied and virtual spaces are local, one can divide the excitations into 
different classes according to the orbitals involved.66 If one considers dispersion interactions, 
the natural physical picture will be that of an excitation involving two electrons, each in an 
occupied orbital of a different interacting fragment, being excited within the same fragment. A 
more detailed discussion of the different excitation classes can be found in Ref. 66.

In the problem at hand, it is difficult to exactly partition the occupied space into two 
distinct fragments because the methyl group shares a bond with the metal centre (the virtual 
space is not problematic because each virtual orbital is tagged to a single atomic centre). We 
circumvented the problem through the use of two separate calculations that should give well-
defined upper and lower bounds to the dispersion energy. In a first calculation, the Co–C 
orbital is considered to belong exclusively to the methyl fragment. All dispersion-type 
excitations are included, except those involving the bonding orbital and the Co orbitals. This 
value gives an upper bound to the dispersion interactions, because the orbital does not belong 
exclusively to the methyl. In a second calculation, the bonding orbital is neglected and only 
dispersion interactions involving the three C–H orbitals are included. This should give a lower 
bound and uses a similar definition to that used in a previous study of bridged dimers.67

With the def2-TZVPP basis set, we obtained dispersion energies of 25–29 kJ/mol. This is 
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slightly lower than what is estimated by DFT-D2 and DFT-D3 for the BDE reaction in Eqn. 2 
for the BP86 functional, 38 and 30 kJ/mol, respectively (Table 4).

Next, we repeated the same calculations with the DF-LCCSD method. We obtained 
slightly lower dispersion energies of 23–26 kJ/mol. This is expected, because MP2 normally 
overestimates dispersion, whereas CCSD underestimates it (owing to the lack of higher-order 
excitations). On the other hand, the basis set used is rather small, which often cancels the MP2 
overestimation. Therefore, we can estimate that the true dispersion for this complex is around 
27 kJ/mol.

However, as can be seen in Table 4 and in analogy with the results for the full model in 
Table 3, the DFT-D correction to the BDE strongly depends on the density functional used 
(15–46 kJ/mol for DFT-D3 and 21–45 kJ/mol for DFT-D2). As noted above, a significant 
portion of the dispersion effect is relatively short-ranged. Because the electronic part of the 
various density functionals employed performs differently in this regime (show a rather 
different repulsive behaviour), the DFT-D correction also has to correct for deficiencies of the 
density-based treatment. This view is also supported by the large contribution of the r–8 term 
to the BDE. Based on these results, it seems clear that the short-range part of the DFT-D 
dispersion energy is a model-dependent quantity that should not be overinterpreted. Only the 
(non-empirical) long-range part, which is more or less correct by construction, can be directly 
compared to long-range wavefunction-based results.10 

In passing, we note that a similar ambiguity exists in the interpretation of the MP2 or 
CCSD(T) calculations, which are based on an uncorrelated reference point (Hartree–Fock) 
and attribute all correlation effects as being of dispersive nature. This is seen for example in 
DF-LMP2 calculations on the full model system without the central Co ion (with an overall 
charge of –2 and maintaining the complex geometry). This removes the coordination of the 
methyl, providing a well-defined separation between the different orbital spaces. The energy 
separation scheme used above shows that only 46% of the correlation effect (of the 
interactions involving the methyl group) are actually of dispersive nature. With these aspects 
of the problem in mind, we consider the agreement between the employed wave function and 
DFT methods as being quite satisfactory. 

Reactions in solution
Finally, we point out that any reasonable electronic-structure method (e.g. DFT-D or 

CCSD(T)) takes into account only the new dispersion energy between the complex (CoCorIm 
in our case) and the ligand (Me), but not any interactions with the surroundings before and 
after binding. This is completely valid if the reaction takes place in a vacuum. However, most 
chemical reactions take place in solution and then this assumption becomes problematic, 
because the treatment of dispersion will be unbalanced, leading to a too large BDE (in the 
complex, dispersion interactions between CoCorIm and Me are included, but before binding 
these groups will have dispersive interactions with the solvent instead, which are ignored). 
Although this quenching effect of isolated molecule dispersion seems to be trivial, it is often 
overlooked in applications and hence considered in our example in more detail.

In QM calculations of biological reactions, it is common to estimate the effect of the 
surrounding solvent from some sort of continuum-solvation model, e.g. the polarised 
continuum model (PCM)68,69 or the related COSMO method,70 by solving the Poisson–
Boltzmann equation,71,72 or by the generalised Born approach.73,74 These methods primarily 
calculate the electrostatic part of the solvation energy.75 However, to obtain accurate estimates 
of the total solvation energy, also the non-polar part of the solvation energy needs to be 
included, viz. the cost of forming a cavity in the solvent and the dispersion and repulsion 
energy between the solvent and the solute.75 Unfortunately, it is seldom specified whether the 
non-polar part is included in the solvation energy or not. For example, in the calculations of 
Siegbahn et al.,23 only the polar part was included (Siegbahn, pers. commun.), making the 
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treatment of dispersion unbalanced when comparisons to solution-phase experimental data are 
made.

For a reaction in a homogeneous solvent, the dispersion energy for all reactants can be 
calculated by the PCM method. This would make the treatment of dispersion balanced in the 
reaction and the dispersion energy is treated at a similar level of approximation as the DFT-D 
energy, i.e. by MM r–6 terms.76 In particular, the PCM dispersion term is a pure energy term 
(not a free energy), calculated as the volume integral of the dispersion energy of the solute 
(treated as MM atoms) over the space not occupied by the solute and assuming a constant 
density of the solvent. This is probably the best approximation possible without any 
knowledge of the detailed solvent structure around the solute.

The PCM repulsion energy is calculated in the same way, i.e. as volume integrals over the 
Lennard-Jones r–12 terms of the QM atoms, treated in a MM manner and it is also a pure 
energy term.76 It should be included if we aim at reproducing the reaction in solution, 
including all solvent effects.

The last PCM term, the cavitation energy, is more problematic, because it is a free-energy 
term, including also the entropy cost of forming the cavity and reorganising the solvent 
around it. It is fitted to reproduce the total solvation free energy of non-polar compounds 
using a function of the radii of each of the solute atoms to the powers of 1, 2, and 3 (i.e. 
including both area and volume terms).77 On the other hand, it should be noted that neither of 
the four solvation terms (electrostatic, cavitation, dispersion, and repulsion) is experimentally 
observable alone, only the total solvation free energy.

For an enzyme reaction, the use of the non-polar PCM energy terms is less evident. In 
particular, it becomes questionable to include the cavitation energy if the reaction takes place 
in an active site that is buried inside the enzyme and is dehydrated before ligand binding. 
Then, the cavitation cost is paid already when the protein folds and it does not change during 
the reaction. However, the other two terms remain valid, although it is no longer evident what 
solvent should be used, because the surroundings is no longer homogeneous. A much better 
approach is to use QM/MM calculations, in which these terms are included in an atomistic 
(but not always in a thermodynamically averaged) way. However, if the ligand is taken from 
solution, it is once again evident that the best thing is to include all PCM terms for the pure 
solvent.

Going back to our Co–C bond cleavage in Eqn. 1, we obtain the PCM energies listed in 
Table 5. It can be seen that the electrostatic (polar) contribution to the BDE energy is only 
–2 kJ/mol. This is in agreement with previous results.56 Thus, the polar solvation energy has 
little effect on the BDE.

On the other hand, the dispersion contribution to the BDE is –22 kJ/mol. Thus, if we 
make a balanced treatment for all three reactants, the dispersion energy decreases to 25 and 
19 kJ/mol for DFT-D2 and DFT-D3 at the BP86 level, respectively. This shows that it is 
mandatory to consider the dispersion of all reactants, e.g. by using PCM solvation. The 
dispersion term comes almost entirely from the methyl group, whereas the contributions from 
the metal complex essentially cancel between the CoCorImMe and CoCorIm states. This also 
applies to the repulsion term, which is smaller than the dispersion, 6 kJ/mol, and has the 
opposite sign, as expected.

On the other hand, the cavitation energy is large and positive, 20 kJ/mol. The repulsion 
and cavity terms together more than counteract the dispersion term so that the free energy of 
the reaction in Eqn. 1 actually is disfavoured by solvation effects, but only by 2 kJ/mol. The 
reason for this is that the methyl radical is non-polar and has a low solvation in water – PCM 
predicts a hydration free energy of 7 kJ/mol, close to that of methane (8 kJ/mol78). However, 
this does not necessarily affect the BDE, which is the enthalpy (not free energy) of the 
reaction in Eqn. 1. Unfortunately, PCM does not provide any estimate of the division of the 
cavitation energy in enthalpy and entropy terms, so we cannot obtain any estimate of the 
effect of the total solvation energy on the BDE. Therefore, it is not yet possible to 
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conclusively decide which functional gives the best estimate of the BDE for methyl 
cobalamin.

A solution to this dilemma could be to consider instead the free energy of the Co–C 
dissociation. However, then we will encounter another major theoretical problem, viz. the 
change in translational and rotational entropy during ligand binding. The entropy in reactions 
treated by QM methods is normally estimated from the harmonic frequencies calculated with 
QM, using standard statistical mechanics methods and a rigid-rotor ideal-gas harmonic-
oscillator approximation.79 This means that the translational entropy is taken from the Sackur–
Tetrode equation, giving a penalty of ~50 kJ/mol when a ligand binds to a host. This fact has 
been much discussed, especially in the ligand-binding community.80,81,82,83,84 There is a 
consensus that this is an overestimate, owing to the ideal-gas assumption (a molecule has less 
freedom to translate and rotate in solution than in gas phase), but there is still no agreement by 
how much. It has been suggested that this energy should halved or reduced by ~32 kJ/mol,82 

but these estimates are very uncertain and it is not known how general they are. Therefore, it 
has to be accepted that theoretical estimates of binding free energies have an uncertainty of 
~30 kJ/mol.

Conclusions
In this paper, we examine the recent suggestion23,24,25 that the binding of small ligands to 

metal complexes involves a dispersion component of 30–60 kJ/mol, i.e. much more than the 
total dispersion energy of the same ligand in solution. As a typical example, we have chosen 
the homolytic cleavage of the Co–C bond in the methyl cobalamin model CoCorImMe. 

We show that the large dispersion energy is caused by the formation of a short metal–
ligand bond that brings the ligand in close contact with many atoms of the other metal ligands, 
with distances that are shorter than for the free ligand in solution. Thus, the large dispersion 
energy is the sum of many rather small terms (<2.3 kJ/mol). However, 24% of the energy 
comes from atoms that are two bonds apart, i.e. interactions that normally are ignored at the 
MM level, and 36% of the energy comes from atoms that are three bonds apart, i.e. 
interactions that normally are scaled down at the MM level. This shows that these energies are 
sensitive to the damping function and that they mix in middle-range correlation effects. This 
is supported by the fact that the dispersion energy is dominated by the r–8 term in the DFT-D3 
approach and that the DFT-D energies calculated with different functionals vary much, e.g. 
from 22 to 51 kJ/mol for the CoCorImMe BDE.

Nonetheless, DF-LMP2 and DF-LCCSD calculations indicate that the DFT-D methods 
provide quite accurate estimates of the dispersion energy for this type of complexes, e.g. 23–
29 kJ/mol for the reaction in Eqn. 2, compared to 15–46 kJ/mol for DFT-D3 with nine 
different functionals. Because short-range dispersion is a model-dependent and not very well-
defined quantity, we recommend that results of DFT-D, as well as of local wavefunction 
calculations, should not be overinterpreted in this context.

Moreover, we also show that if the reaction does not take place in a vacuum, a direct 
application dispersion-including electronic structure methods alone will overestimate the 
effect of dispersion for the binding reaction because the dispersion energy of the unbound 
ligand and complex is ignored. We show that these energy terms can be estimated by the 
PCM method and that they will reduce the net dispersion energy by 22 kJ/mol. 

Strictly speaking, all PCM solvation energies should be included for a reaction in a 
homogeneous solvent (i.e. also the electrostatic, repulsion, and cavitation parts). However, it 
should be noted that the electrostatic and cavitation parts are free energies, containing entropic 
effects also. For enzyme reactions, it is better to use QM/MM methods to obtain atomistic 
detail and balanced reactions (but still PCM for the free ligand). Finally, we have also pointed 
out the problem of estimating the translational entropy of the free ligand, which may 
introduce an uncertainty of ~30 kJ/mol.

10



In conclusion, we show that DFT-D3 reasonably accounts for changes of dispersion-type 
inter- and intra-molecular correlation energies when ligands bind to metal complexes, but the 
reaction needs to be balanced by inter-molecular dispersion terms also for the unbound 
reactants in solution. 

Acknowledgements
This investigation has been supported by grants from the Swedish research council 

(project 2010-5025) and the Deutsche Forschungsgemeinschaft (International Research 
Training Group GRK 1422 “Metal Sites in Biomolecules: Structures, Regulation and 
Mechanisms”; see www.biometals.eu). It has also been supported  by computer resources of 
Lunarc at Lund University. R. A. M. gratefully acknowledges funding from the German 
Excellence Initiative through the Free Floater program of the University of Göttingen.

References

1 A. J. Stone, The Theory of Intermolecular Forces Oxford University Press, Oxford, 
1997.

2 I. G. Kaplan, Intermolecular Interactions Wiley, Chichester, 2006.
3 S. Grimme, J. Antony, T. Schwabe, and C. Mück-Lichtenfeld, Org. Biomol. Chem. 5, 

741 2007.
4 J. Gräfenstein and D. Cremer, J. Chem. Phys. 130, 124105 2009.
5 E. R. Johnson, I. D. Mackie, and G. A. DiLabio, J. Phys. Org. Chem. 22, 1127 2009.
6 T. Sato and H. Nakai, J. Chem. Phys. 131, 224104 2009.
7 M. Elstner, P. Hobza, T. Frauenheim, S. Suhai, and E. Kaxiras, J. Chem. Phys. 114, 

5149 2001.
8 S. Grimme, J. Comput. Chem. 25, 1463 2004.
9 P. Jurečka, J. Černý, P. Hobza, and D. R. Salahub, J. Comput. Chem. 28, 555 2007.
10 S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
11 Y. Andersson, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 76, 102 1996.
12 D. C. Langreth, M. Dion, H. Rydberg, E. Schröder, P. Hyldgaard, and B. I. Lundqvist, 

Int. J. Quantum Chem. 101, 599 2005.
13 T. Sato, T. Tsuneda, and K. Hirao, Mol. Phys. 103, 1151 2005.
14 O. A. von Lilienfeld, I. Tavernelli, U. Röthlisberger, and D. Sebastiani,Phys. Rev. Lett. 

93, 153004 2004.
15 Y. Y. Sun, Y.-H. Kim, K. Lee, and S. B. Zhang, J. Chem. Phys. 129, 154102 2008.
16 Y. Zhao and D. G. Truhlar, Acc. Chem. Res. 41, 157 2008.
17 http://toc.uni-muenster.de/DFTD3/getd3.html
18 Riley, K. E.; Pionak, M.; Cerny, J.; Hobza, P. J. Chem. Theory Comput. 2010, 6, 66-80.
19 Thanthiriwatter, K. S.; Hohenstein, E. G.; Burns, L. A., Sherrill, D. A. J. Chem. Theory 

Comput. 2011, 7, 88-96.
20 Burns, L. A.; Vázquez-Mayagoitia, A.; Sumpter, B. G.; Sherrill, C. D. J. Chem. Phys. 

2011, 134, 084107.
21 L. Goerigk, S. Grimme, A thorough benchmark of density functional methods for  

general main group thermochemistry, kinetics, and noncovalent interactions, Phys. 
Chem. Chem. Phys. (2011), 13, 6670 - 6688.

22 S. Grimme, J.-P. Djukic, Cation–cation “attraction”: When London Dispersion 
Attraction Wins over Coulomb Repulsion, Inorg. Chem., (2011), 6, 2619–2628.

23 Siegbahn, P. E. M.; Blomberg, M. R. A.; Chen, S.-L. J. Chem. Theory Comput. 2010, 6, 
2040-2044.

24 Chen, S.-L.; Blomberg, M. R. A.; Siegbahn, P. E. M. J. Phys. Chem. B 2011, 115, 
4066-4077.

25 McMullin, C. L.; Jover, J.; Harvey, J. N.; Fey, N. Dalton Trans. 2010, 39, 10833-10836.
26 Treutler, O.; Ahlrichs, R. J. Chem. Phys. 1995, 102, 346-354.

11



27 Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 7 (2005) 3297-3305.
28 Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
29 Perdew J. P. Phys. Rev. B 1986, 33, 8822-8824.
30 Perdew, J.P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77 (1996), 3865.
31 Tao, J., Perdew, J.P., Staroverov, V.N., Scuseria, G.E, Phys. Rev. Lett. 91 (2003), 

146401.
32 Lee, C., Yang, W., Parr, R.G., Phys. Rev. B 37 (1988), 785.
33 Grimme, S., J. Comput. Chem. 27, (2006), 1787
34 Staroverov, V.N., Scuseria, G.E, Tao, J., Perdew, J.P., J. Chem. Phys. 119 (2003), 

12129.
35 Becke, A.D., J. Chem. Phys. 98 (1993), 5648.
36 Perdew, J.P., Ernzerhof, M., Burke, K., J. Chem. Phys. 105 (1996), 9982.
37 Becke, A.D., J. Chem. Phys. 98 (1993), 1372.
38 Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Chem. Phys. Lett. 1995, 

240, 283-290.
39 Eichkorn K , Weigend F, Treutler, O , Ahlrichs R (1997) Theor Chem Acc. 97:119-126
40 Miertus, S; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117.
41 Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999-3093.
42 Gaussian 03, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. 

E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; 
Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; 
Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, 
M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, 
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; 
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; 
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; 
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, 
M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; 
Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, 
G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-
Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; 
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., 
Wallingford CT,

43 Tomasi, J.; Mennucci, B.; Cances, E. J. Mol. Struct. (Theochem) 1999, 464, 211.
44 Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. 

Chem. Phys. 1983, 79, 926-935.
45 Schütz, M.; Hetzer, G.; Werner, H.-J. J. Chem. Phys. 1999, 111, 5691.
46 Hampel, C.; Werner, H.-J. J. Chem. Phys. 1996, 104, 6286.
47 Polly, R.; Werner, H.-J.; Manby, F. R.; Knowles, P. J. Mol. Phys. 2004, 102, 2311.
48 Werner, H.-J.; Manby, F. R.; Knowles, P. J. J. Chem. Phys. 2003, 118, 8149.
49 Weigend, F. J. Comput. Chem. 2007, 29, 167.
50 Weigend, F.; Häser, M.; Patzelt, H.; Ahlrichs, R. Chem. Phys. Lett. 1998, 294, 143.
51 Pipek, J.; Mezey, P. G. J. Chem. Phys. 1989, 90, 4916-4926.
52 Mata, R. A.; Werner, H.-J. Mol. Phys. 2007, 105, 2753-2761.
53 Werner, H.-J.; Knowles, P. J.; Lindh, R.; Manby, F. R.; Schütz M., et. al., Molpro, 

version 2010.2, a package of ab initio programs (2010), see http://www.molpro.net
54 Andruniow, T.; Zgierski, M. Z.; Kozlowski, P. M. J. Am. Chem. Soc. 2001, 123, 2679–

2680.
55 Jensen, K. P.; Ryde, U. J. Mol. Struct. (Theochem) 2002, 585, 239-255.
56 Jensen, K. P.; Ryde, U. J. Phys. Chem. A 2003, 107, 7539-7545.
57 Kozlowski, P. M.; Zgierski, M. Z. J. Phys. Chem. B 2004, 108, 14163–14170.
58 Dölker, N.; Morreale, A.; Maseras, F. J. Biol. Inorg. Chem. 2005, 10, 509–517.

12



59 Kuta, J.; Patchkovskii, S.; Zgierski, M. Z.; Kozlowski, P. M. J. Comput. Chem. 2006, 
27, 1429–1437.

60 Martin, B. D.; Finke, R. G. J. Am. Chem. Soc. 1990, 112, 2419-xxx.
61 Martin, B. D.; Finke, R. G. J. Am. Chem. Soc. 1992, 114, 585-xxx.
62 S. Grimme, S. Ehrlich, L. Goerigk, Effect of the Damping Function in Dispersion 

Corrected Density Functional Theory, J Comput Chem, (2011), 32, 1456–1465.
63 Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; 

Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 
117, 5179-5197.

64 Radon, M.; Pierloot, K. J. Phys. Chem. 2008, 112, 11824-11832.
65 B. Jeziorski, R. Moszynski, K. Szalewicz Chem. Rev. 94, 1887-1930 (1994)
66 Schütz, M.; Rauhut, G.; Werner, H.-J. J. Phys. Chem. 1998, 102, 5997.
67 Riedel, S.; Pyykkö, P.; Mata, R. A.; Werner, H.-J. Chem. Phys. Lett. 2005, 405, 148-

152.
68 Miertus, S; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117.
69 Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999-3093.
70 Klamt, A.; Schüürmann, G. J. Chem. Soc. Perkin Trans. 2, 1993, 799.
71 Warwicker, J.; Watson, H. C. J. Mol. Biol. 1982, 157, 671.
72 Sharp, K. A.; Honig, B. Curr. Opin. Struct. Biol. 1995, 5, 323.
73 Hoitjink, G. J.; de Boer, E.; Van der Meij, P. H.; Weijland, E. P. Recl. Trav. Pays-Bas 

1956, 75, 487.
74 Bashford, D.; Case, D. A. Annu. Rev. Phys. Chem. 2000, 51, 129-152.
75 Orozco, M.; Luque, F. J. Chem. Rev. 2000, 100, 4187-4225.
76 Floris, F., ; Tomasi, J. J. Comput. Chem. 1989, 10, 616-627.
77 Cossi, M.; Tomasi, J.; Cammi, R. Int. J. Quant. Chem. Quant. Chem. Symp. 1995, 29, 

695-702.
78 Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2005, 1, 1133-

1152.
79 Jensen, F. Introduction to Computational Chemistry, 2nd Ed. J. Wiley & Sons, 2006.
80 Amzel, L. M. Proteins Struct Funct Genet 1997, 28, 144.
81 Carlsson, J.; Åqvist, J. J. Phys. Chem. B 2005, 109, 6448-6456.
82 Rulisek, L.; Jensen, K. P.; Lundgren, K.; Ryde, U. J. Comp. Chem. 2006, 27, 1398-

1414.
83 Irudayam, S. J.; Henchman, R. H. J. Phys. Chem. B 2009, 113, 5871-5884.
84 Singh, N.; Warshel, A. Proteins 2010, 78, 17224-1735.

13



Table 1. Dispersion contributions to the various complexes (Co3 = CoCorImMe and Co2 = 
CoCorIm) and to the net BDE from the various parts of the molecule, viz. the methyl group 
(Me), the imidazole ring (Im), the Co ion, and the corrin ring (Cor). The results are based on 
single-point DFT-D2 energy calculations on the BP86/def2-SV(P) structures.

Co3 Co2 Me BDE

Me Me -1.7 -2.6 -0.9

Me Im -1.0 1.0

Me Co -7.0 7.0

Me Cor -34.9 34.9

Im Im -9.8 -9.8 0.0

Im Co -9.9 -10.1 -0.2

Im Cor -44.7 -39.3 5.4

Co Co 0.0 0.0 0.0

Co Cor -40.7 -40.8 -0.1

Cor Cor -154.1 -154.2 -0.2

Sum -303.7 -254.2 -2.6 46.9
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Table 2. Contributions to the dominant Me–Cor BDE dispersion term from the various atoms 
in the methyl group (CMe and the three HMe atoms) and the corrin ring (the four NCCA atoms, 
the eight CCCA atoms next to the N atoms, the three meta Cmeta atoms that connect the five-
rings, the remaining eight CB atoms, the two HA atoms bound to CA atoms, the three HM 
atoms bound to the CM atoms, and the 16 HB atoms bound to the CB atoms). The atom 
names are shown in Figure 1. The results are based on single-point DFT-D2 energy 
calculations on the BP86/def2-SV(P) structure of CoCorImMe.

CMe HMe

NCor 4.7 7.0

CCCA 7.8 6.4

Cmeta 1.8 1.7

CB 1.5 1.3

HA 0.7 0.7

HM 0.1 0.1

HB 0.5 0.5

Sum 17.1 17.7
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Table 3. BDE (kJ/mol) for the reaction in Eqn. 1 calculated with nine different DFT methods, 
with or without the DFT-D3 dispersion correction (Disp). All energies were calculated on the 
structures optimised with BP86/def2-SV(P).

Functional BDE Disp BDE+Disp

PBE 173.0 21.8 194.8

BP86 158.1 41.1 199.2

TPSS 153.7 30.2 184.0

BLYP 143.9 44.2 188.1

B97 127.9 51.4 179.3

TPSSH 132.4 29.6 162.0

B3LYP 106.9 36.1 143.1

PBE0 113.7 23.1 136.8

BHLYP 33.8 29.3 63.2
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Table 4. DFT-D2 and DFT-D3 dispersion corrections to the BDE (kJ/mol) for the reaction in 
Eqn. 2 calculated with nine different DFT methods. All energies were calculated on the 
structures optimised with BP86/def2-SV(P) with Cs symmetry. No DFT-D2 parametrisation is 
available for the TPSSH and BHLYP functionals.

DFT-D2 DFT-D3

PBE -26.8 -14.7

BP86 -37.5 -30.4

TPSS -35.8 -21.4

BLYP -42.9 -32.9

B97 -44.7 -46.1

TPSSH -21.3

B3LYP -37.5 -27.2

PBE0 -21.5 -16.4

BHLYP -22.3
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Table 5. Continuum-solvation contributions (kJ/mol) to the various reactants and the BDE in 
Eqn. 1, divided into electrostatic (El), cavitation (Cav), dispersion (Disp), and repulsion (Rep) 
energies. Tot is the sum of these four terms. The contributions are calculated for water solvent 
at the single-point BP86/def2-SV(P) level of theory with PCM and UAKS radii.

El Cav Disp Rep Tot

Co3 -188.3 192.8 -208.2 60.4 -143.3

Co2 -188.7 187.5 -210.6 63.1 -148.7

Me -1.6 25.5 -20.1 3.1 6.9

BDE -2.1 20.2 -22.4 5.9 1.6
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Figure 1. The structure of CoIIICorImMe optimised at the BP86/def2-SV(P) level with atom 
names marked.
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TOC Graphics
With local correlated and continuum-solvation methods we discuss the large DFT-D 
dispersion contributions to metal binding.
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