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Bulk simulation of polar liquids in spherical symmetry
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Molecular simulations of strongly coupled dipolar systems of varying size have been carried out,
using particles confined inside a dielectric cavity and an image charge approach to treat the
dielectric response from the surroundings. A simple method using penalty functions was employed
to create an isotropic and homogeneous distribution of particles inside the cavity. The dielectric
response of the molecular system was found to increase as the number of particles N was increased.
Nevertheless, a significant surface effect remained even for the largest systems (N=10 000),
manifesting itself through a decrease in the dielectric constant of the system as the confining surface
was approached. The surface effect was significantly reduced by using a negative dielectric constant
of the surrounding dielectric medium, although accomplishing a full dielectric solvation of the
molecular system was not possible. © 2010 American Institute of Physics. [doi:10.1063/1.3352423]

I. INTRODUCTION

The simulation of Coulombic and dipolar bulk systems
poses a great problem due to the long-range nature of the
intermolecular interactions present in these systems. Several
ways have been proposed to overcome these obstacles, the
two most popular ones being the lattice summation technique
due to Ewald' and the reaction field (RF) technique due to
Barker and Watts.? In a recent paper,3 however, we showed
that both these techniques suffer from artifacts created by the
cubic symmetry, leading to an anisotropy of the simulated
system, which is unwanted in bulk simulations. Such effects
have been pointed out before for both biomolecular*” and
ionic® systems simulated using the Ewald summation tech-
nique, and attempts have also been made to overcome these
periodicity artifacts.”® A method that avoids the cubic sym-
metry of the Ewald and RF methods was developed by
Friedman® in 1975, whose ideas built on the so-called
method of images10 to represent the reaction field from a
dielectric medium outside a spherical cavity enclosing the
molecular system. Although Friedman’s method has been
tested in practice a few times,”‘12 it has not rendered much
interest in the simulation of Coulombic or dipolar systems,
largely due to the inherent inhomogeneity and anisotropy of
the systems. In particular, the study by Wang and Hermans'?
on water points out that (i) the surface effects become large
when the coupling between the molecular system and the
surrounding dielectric medium is large and (ii) to reduce the
surface effects, one has to limit the strength of the coupling
to the surroundings, leading to a smaller solvation of the
molecular system than desired.

In the present contribution, we will review the use of
image charges and dipoles as developed by Friedman for the
simulation of a simple dipolar system and assess a simple
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scheme to reduce the surface effects. Furthermore, we will
analyze the dielectric behavior of the simulated systems us-
ing dielectric fluctuation formulas developed recently.13

Il. THEORY
A. Electric fluctuations in dielectric media

In a previous paper,'3 we derived expressions describing
the electric multipole moment fluctuations in a dielectric me-
dium. One of the main results was that the probability distri-
bution P(Q) of the axial component of a spherical 2¢-pole
moment Qg (M, in our previous notation) of a spherical
subvolume inside a dielectric medium of infinite extension is
described by the Gaussian function

P(Q) = @e i, (1)
with the exponent & given by
20+1)? 1
go——2EDe 2)

2(e = DL€+ e+ €1 R KT

where Ry represents the radius of the sphere, ¢ the dielec-
tric constant of the medium, k Boltzmann’s constant, 7 the
absolute temperature, and Q,, the spherical electric multi-
pole moment defined by

Q(fm = f drp(r)rgcfm(ﬂ) . (3)
\%4

In Eq. (3), p(r) is the volume charge density at r and C,,({2)
represents Racah’s unnormalized spherical harmonics. The
Gaussian form of Eq. (1) means that the mean-square multi-
pole moment (Q?%:) can be expressed as

(0 =Ca™. (4)

In the case when the dielectric constant g4 of the sphere
and e, of the surrounding medium are different and the
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a)

FIG. 1. Schematic description of (a) the dielectric model and (b) the simulated systems. The dashed circle in the right panel indicates that Ry, appears as a

fitting parameter in the simulated systems.

reaction potential of the surrounding dielectric is applied at a
distance A outside the dielectric sphere [see Fig. 1(a)], a
small generalization of the derivation in Ref. 13 leads to the
following expression for (Q%O(A)):
E(Sdiel"- 1) +1
(e — DR 'KT
(€+1)(85ur_1) !
[(e + 1)85ur + €](Rdiel + A)2€+lkT

(0%(A)y =

(5)

By putting g4 = &4, =& together with A=0 in Eq. (5) and the
subsequent use of Eq. (4), one recovers Eq. (2).

To facilitate the comparison between multipole moments
of different order €, it is convenient to introduce the scaled

quantity Q,(A) defined by
0,(8) = (Qf(ANRFZ™, (©)

where we have dropped the subscript m, since we will hence-
forth only be interested in the axial components of the elec-
tric multipole moments. It is clear from Egs. (5) and (6) that

QK(A) depends on the ratio A/R g, rather than on R and A
separately. The exclusion of the nonaxial components of the
multipole moments Qy,,, m# 0, from the analysis is moti-
vated by the spherical symmetry of the investigated systems,
leading to that all directions become equivalent.

B. The method of images

The so-called method of images is a standard strategy for
solving Poisson’s equation subject to certain boundary
conditions.'” The method gets its name from the fact that the
reaction potential of the induced surface charge density cre-
ated by a source charge ¢ near a dielectric discontinuity may
be represented by the potential from one or several image
charges, whose magnitudes and positions depend on the dis-
tance between ¢ and the dielectric discontinuity, the dielec-

tric constants of the dielectric media, and the shape of the
discontinuity.

In 1975, Friedman® derived an expression for the reac-
tion potential ¢, originating from a charged particle inside a
spherical cavity of radius R, with e=1 surrounded by a
dielectric medium with the dielectric constant gg,. It turns
out that ¢, can be written as a series expansion according to

¢r=¢(0)+¢(l)+¢(2)+... (7)
where
-1
o o 2 (8)

(gqur+ D

In this case, the image charge approximation proposed by
Friedman consists in putting ¢,=¢® and ¢, can then be
viewed as arising from a single image charge. Furthermore,
the higher terms in the expansion become zero in the limit
&gy — . For a high dielectric medium with a dielectric con-
stant similar to that of water, the error in ¢, introduced by
the zeroth-order truncation of Eq. (7) is less than 1%.’
Furthermore, the method can easily be extended to ideal
dipoles inside the cavity.9 In this case, the zeroth-order reac-
tion potential ¢© originating from a dipole w; at position r;
can be written as the sum of the potential of an image charge
g and an image dipole u!, both located at r;, according to

I';»k = I‘[(Rcav/r,-)z, (93.)

&qur— 1 Reyy COS 6

- ) 9b

q; PR - i (9b)
er—1(R 3

M= ( Cav) Mils (9¢)
ssur+ 1 i
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where 6 is the angle between u; and r;, and w;) and w; ; the
components of u; parallel and perpendicular to r;, respec-
tively. Due to the high accuracy of the image charge approxi-
mation for high dielectric media, the method seems suitable
for the simulation of waterlike systems. Henceforth, we will
refer to Friedman’s simulation technique as image boundary
conditions (IBCs).

Equation (9a) shows that for configurations where r;
=R, We get I; =r;, leading to a divergence in the interac-
tion energy. Hence, care needs to be taken so as to avoid
such configurations. One possible strategy is to confine the
particles within a sphere of radius R_.,+<<R.,, [see Fig. 1(b)],
thus enforcing that r;<<r;. Although this strategy helps
avoiding the divergence at r;=R,,,, configurations where the
source particle is close to the dielectric discontinuity, and
thus to its image particle, will still be energetically favored.
This will inevitably enhance the inhomogeneous density and
nonisotropic orientation of the particles near the cavity sur-
face; an effect which is unwanted if one wishes to simulate a
bulk liquid. To remedy this problem, we will use an energetic
penalty function u, given by

Upen(r, 0) = 1, (r) + ug(r)cos® 6, (10)

to create a uniform density and orientation distribution of the
particles. Further details about the radial and orientational
penalty functions u,(r) and ug(r)cos®> # are given in
Sec. III B.

lll. MODEL AND METHODS

A. Molecular model

The molecular model system is composed of N particles
confined inside a spherical volume of radius R, at a tem-
perature 7. The potential energy U of the system is assumed
to be pairwise additive according to

N-1
U=2 E u,,(r,,)+22u (ry) (1)
i=1 j=i+l i=1 j=1

The direct interaction u;; between particles i and j is com-
posed of a Lennard- Jones (LJ) and a dipole-dipole potential
(also referred to as a Stockmayer potential) according to

Uij(rij) J(r )+ ’4 Tij)s (12)

with

o 12 o 6
LJ(r) 4E|:< ) —(—) ], (13)
VU rij

dd Ry 3(pi 1) (-1
iy (ry) = 3T
41e,

5
Tij Tij

}, (14)

where the size parameter o and interaction parameter € char-
acterize the LJ interaction, m; denotes the dipole vector of
particle i, r; is the vector between particle i and j, and rij
=|r;|. Furthermore, the image interaction energy u;; between
particle i and the image of particle j is given by

J. Chem. Phys. 132, 104507 (2010)

B
(riy)?

()= Lojpier;
u;(r) =
/ 24’7780 (rl])3 q]
3(pm; - ri/‘)(”‘i 'r;‘k/)
+ s ,
(’" ij)
where r,, q/, and ;L are given by Eq. (9), r denotes the
vector between particle i and the image of partlcle J, and
ri;=|rj;|. The factor 1/2 in Eq. (15) comes from the fact that
i
u;; represents a polarization interaction. Furthermore, the to-
tal electrostatic energy U, of the system is given by
N-1

Uel_ 2 2 dd(rzj)"'EEu”(rU (16)

i=1 j=i+l i=1 j=1

(15)

Throughout, we have used the LJ parameters 0=2.8863 A
and €=1.97023 kJmol™! and the dipole moment
1=0.34 397¢ A (corresponding to 0.65 atomic units) at tem-
perature 7=315.8 K, which is identical to the parameters
used in Ref. 3. In reduced units, the system is characterized
by the quantities u*=u/(4meye0”)?’=1.863 and
T"=kT/e=1.333.

For comparison, some results obtained from the same
system but simulated using the Ewald summation technique
are included in the study. Detailed specifications of these
simulations were given in Ref. 3. When nothing else is ex-
plicitly stated, the number density of the Ewald system is
~3% higher than that of the IBC systems.

B. Penalty function

To accomplish a uniform particle density and orientation
distribution within the confining sphere, a penalty function
Upen Was applied to each particle in the system in accordance
with Eq. (10). The functions u,(r) and u,(r) entering in Eq.
(10) were updated at regular intervals according to

(1) = ul~V(r) + kT In(p(r)/ ). (17)

ul(r) = W) + skT In[(p(r)/p)3(cos> 6),], (18)

where superscript k denotes the order of the iteration, p(r)
the number density at radial position r, p=N/(47R>_ ;/3) the
mean number density of the system, (cos? 6), the mean value
of cos? @ at radial position 7, and s an empirical parameter
varied between 0.5 and 0.7. Due to poor statistics for small
values of r, the penalty function u,., was only employed for
r=3 A.

C. Correspondence between the dielectric
and molecular models

We will now establish a link between the dielectric
model described in Sec. II A and the simulated system de-
scribed in Sec. II B. In both descriptions, R.,, denotes the
radius at which the surrounding dielectric medium with di-
electric constant g, starts. Since the confining potential of
the molecular model acts on the particle centers, the volume
accessible to the particles is somewhat larger than that rep-
resented by the radius R+ To map the dielectric radius R
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TABLE I. Some parameters and properties of the simulated systems.

Rconf Rcav Rdlcl 1 A
N (A) (A) (A) (A) (A)
1200 19.74 20.4-60.0 20.6 0.9 —0.2-39.4
3000 26.79 27.4-60.0 27.6 0.8 —0.2-32.4
10 000 40.02 40.6-60.0 40.8 0.8 —0.2-19.2
. . . S ¢
of the dielectric model onto the molecular fluid of the simu Qo= pi- VIriP(cos 6)], (21)

lated systems, we therefore expect the parameter & defined
by
o= Rdiel - Rconf’ (19)

to be larger than zero but smaller than the particle radius [see
Fig. 1(b)]. Furthermore, & is expected to be only weakly
dependent on the curvature of the simulated system.

Simulated systems with the same R, (and the same N)
but with different values of R, were fitted using a single
value of R;.;. In the following, the simulated systems will be
referred to through their values of N and A, where the latter
is defined by

A= Rcav - Rdiel- (20)

Thus, A describes the strength of the coupling between the
molecular fluid and the surrounding dielectric medium of the
simulated systems, where A — 0 represents the full-coupling
limit and A — oo the zero-coupling limit.

D. Simulation aspects

The properties of the model systems were determined by
performing Monte Carlo (MC) simulations at constant num-
ber of particles, volume, and temperature. The particles were
enclosed inside a spherical volume of radius R, with a
hard-wall potential acting on the particle centers. The num-
ber of particles N in the system was N=1200, N=3000, and
N=10 000, and for each N a range of R,, was used. Further
details about the values used for the radii R, and R,, are
given in Table I. For most of the simulations, the dielectric
constant gy, of the surroundings was set to 100. In addition
to this, some simulations with N=1200 and A=0 (see Sec.
III C) were carried out using other values of gg,,.

The MC simulations were performed using the standard
Metropolis algorithm]4 with a translational displacement pa-
rameter of 0.5-0.7 A and a rotational displacement param-
eter of 20°-25°. Each simulation involved 10°-10°® MC
steps, each consisting of one trial move per particle. The
integrated MC/molecular dynamics/Brownian dynamics
simulation package MOLSIM (Ref. 15) for molecular systems
was employed throughout. Statistical uncertainties were cal-
culated using block averaging by subdividing each simula-
tion into ten equally sized blocks.

E. Fluctuating multipole moment analyses

The contribution to the axial 2¢-pole moment Q;, from
dipole i located at r;={r;, 0;, ¢;} is given by

where Py(cos 6) represents the €:th order Legendre
polynomial. The moment Qo=X,0; and its square Q%O for
1=¢=4 of the molecular system was sampled 3 (for
N=1200 and N=3000) and 1000 (for N=10 000) times after
each MC step using different orientations of the external
Cartesian coordinate system.

The scaled simulated multipole moments Q[(A) were
graphically fitted to the function given by Egs. (5) and (6)
with Ry as the only fitting parameter. In principle, the di-
electric constant gy, of the medium inside the cavity is also
a fitting parameter; however, it turns out that the behavior of

Qe(A) is relatively insensitive to 4., given that g, is large.
Hence, we chose to use gg4;,=100 for all the fittings, leaving
Rg;e1 as the only parameter to be fitted.

In addition, the mean-square multipole moments (Q%())
were sampled for spherical subvolumes of varying radii, cen-
tered at the center of the simulated system. These analyses
were made using systems with A=0. Thereafter, the values
of (Qﬁ()) were used to calculate the dielectric constant € using
Egs. (2) and (4). It should be noted that Eq. (2) is strictly
only valid in the case when the dielectric constants &g, and
&g, Inside and outside of the dielectric sphere, respectively,
are identical, which is not necessarily the case when sam-
pling (Q%m) near the confining surface. Nevertheless, it
should give a reasonable approximation to the true value of
g4ie» and it is indeed not possible to determine the relation-
ship between &g, and e, a priori using the fluctuation ap-
proach used here.

IV. RESULTS AND DISCUSSION
A. Density profiles and orientational ordering

Figure 2(a) shows the relative density profile p(r)/p,
where p is the mean number density of the system, and the
orientational distribution function 3{cos’ 6),. It is clear that
the system without penalty functions (solid curves) is highly
inhomogeneous and anisotropic; further analysis show that
the particles are nearly close-packed at the cavity surface. In
contrast, the density profile and orientation distribution ob-
tained using the penalty function (dashed curves) maintain
nearly constant values of unity, demonstrating that this order-
ing almost entirely vanishes. The disappearance of the aniso-
tropic structure is confirmed by the results of Fig. 2(b),
where the probability distribution P(cos 6) for the outermost
2 A of the molecular system is shown. The systematic devia-
tion of P(cos 6) from 1/2, which corresponds to an isotropic
system, is at most ~1%. The isotropic distributions were
reached after 20 iterations of u, and u, each consisting of
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FIG. 2. (a) Relative density p(r)/p and orientation distribution 3{cos? ), and (b) probability distribution of cos @ for the outermost 2 A of an IBC system of
N=3000 particles with A=0 without (solid curves) and with (dashed curves) converged penalty functions u, and u,, according to Egs. (17) and (18). The

contact value of p(r)/p is ~39.

1000 MC steps, in total corresponding to about 48 h of simu-
lation time on a standard PC for the largest (N=10 000) sys-
tem. The simplicity and robust convergence behavior of the
scheme leads us to the conclusion that the method prescribed
here is a feasible one for creating a homogeneous and iso-
tropic structure within the cavity.

In addition to the analysis of the structure of the system
with respect to an external frame, the radial distribution
function g(r) and the probability distribution P(cos 6y4) of
the angle 6, formed by the dipole directions of two neigh-
boring particles were analyzed. To enable a comparison be-
tween results from IBC and Ewald systems of equal density,
an additional simulation using Ewald summation was carried
at the density obtained by averaging the particle density in-
side a sphere of radius 35 A centered at the origin of the IBC
system with N=10 000. For this Ewald simulation, N
=3000 particles and box length a=43.212 A were used;
other parameters were identical to those given in Ref. 3.

r/ A

Figure 3(a) displays an excellent agreement between the two
radial distribution functions, demonstrating a virtually iden-
tical radial structure of the two systems. Furthermore, Fig.
3(b) shows a very good agreement between the two angular
distribution functions, even though a small discrepancy be-
tween the IBC and Ewald results is visible. This difference is
reduced if the particles residing close to the surface in the
IBC system are excluded from the analysis (data not shown),
indicating that there is a remaining small effect of the surface
on the dipole-dipole orientation. Nevertheless, these results
show that the radial and angular distributions of the IBC and
Ewald systems are essentially identical.

B. Electric fluctuations

In Fig. 4, we present the reduced multipole moment fluc-

tuations Q((A) as a function of the reduced parameter
A/R . The values of Ry and & obtained from the fits are

P (cos 0,,)

cos 6,

FIG. 3. (a) Radial distribution function g(r) and (b) probability distribution P(cos 644) of the dipole-dipole angle 6y, of particles separated at most 4.2 A for
a system simulated using IBCs (solid curves) and Ewald summation (dashed curves). Homogeneous and isotropic distributions are also shown (dotted curves).
For the IBC system, central particles located closer than 7, [15.0 A for g(r) and 4.2 A for P(cos 44)] to the confining surface were excluded to avoid overlap
between the sampling sphere and the surface. In (a), the two curves fully overlap each other.
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FIG. 4. Reduced multipole moment fluctuations O(A) as a function of the reduced parameter A/R gy, from theoretical predictions according to Eqs. (5) and

(6) (solid curves) and simulation (symbols) at indicated €. The error bars correspond to one standard deviation. The theoretical values at A=0 are QI(O)

=0.042, 0,(0)=0.045, 04(0)=0.046, and 0,(0)=0.047.

presented in Table I. For the smallest values of R ,,— R onf
R becomes larger than R, thus making A <<0. This is of
course theoretically ill-posed, but as long as R .t <R,y it is
nevertheless possible to simulate these systems. As assumed,
the difference between the dielectric and confining radii, &
=~0.6(c/2), is essentially N-independent, with only a weak
effect arising from the curvature of the confining potential.
The dielectric model predicts increased multipole mo-
ment fluctuations as A/Ry;, is reduced, with a pronounced
maximum at A/Rg,=0. Hence, as the coupling between the
central region and the surrounding dielectric medium is en-
hanced, the probability of thermal fluctuations involving
larger electrostatic moments increases. As can be seen from

Fig. 4, the simulated values of Q/(A) are in quantitative
agreement with those predicted by the dielectric model for
A/R g1 > 0.05. However, at A/R ;1 <0.05 the simulated fluc-
tuations for 1 =€ =4 are (i) smaller than predicted by the
dielectric model and (ii) N-dependent with a better agree-
ment as N is increased. The latter observation indicates that
the deviation from dielectric behavior may be due to the
finite number of particles available to form the electric mo-
ments, which puts a limit on the magnitude of the fluctua-
tions.

Even though the agreement between the dielectric and
molecular models improves as the size of the simulated sys-

tem is increased, the simulated values of Q{(O) for N
=10 000 are still only half of those predicted by the dielec-
tric model, given that the true value of & is close to 100.
This observation shows that the dielectric coupling is indeed
very strong, in the sense that one needs to simulate systems
with N> 10 000 to reach the dielectric limit.

C. Energetics

The total electrostatic energy per particle U, /N of the
simulated systems as a function of A for different system
sizes is presented in Fig. 5. For values of A larger than about
1 A, Uy/N is (i) independent of A and (ii) significantly dif-
ferent for systems of different size. Observation (i) implies
that the coupling to the surrounding dielectric medium is
negligible already at A=1 A, and observation (ii) can be
attributed to the influence of the surface; in a smaller system,
a larger fraction of the particles resides near the surface,
where they experience a poorer solvation. Decreasing A to a
sub-Angstrom level leads to smaller Uy/N due to better sol-

S -11.5 —
£
2 i
=
N 12— ——o N=1200 —
> +— N=3000
o—— N= 10000 -
-12.5 | —
| ! | ! | ! | ! |
0 0.5 1 1.5 2
A (A)

FIG. 5. Total electrostatic energy per particle U, /N of the simulated sys-
tems as a function of A at indicated values of N.
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FIG. 6. Dielectric constant ¢ as a function of the radius R of the sampling sphere obtained from Egs. (2) and (4) using electric moment fluctuations of order
1=¢=4 from simulated systems at indicated N and A=0. The error bars represent one standard deviation. Included also are results from simulations
performed using the Ewald summation technique with N=100 000 (dashed curves).

vation of the particles near the surface, and as A —0, Uy/N
of the three systems essentially converge to the same value.
The fact that the size dependence of U /N is strongly re-
duced as the system becomes more solvated is an indication
that the system behaves energetically as a bulk system. This
is also a further indication that the penalty functions previ-
ously described are successful in creating a bulklike structure
of the system.

D. Dielectric constant

In Fig. 6, we present the dielectric constant & of the
molecular system calculated for spherical volumes of differ-
ent radii using Eqgs. (2) and (4). The dielectric constants were
calculated at A=0 from the fluctuating electric moments with
1 =¢ =4 for different system sizes. Furthermore, we include
the corresponding results obtained from a simulation using
the Ewald summation technique with N=100 000. This sys-
tem size allowed us to sample & for sampling radii of up to
30 A without any significant influence from the periodicity
effects.’ From the results obtained using IBCs we make the
following observations:

(1) The dielectric constant initially increases as the radius
R of the sampled sphere grows. However, as the bound-
ary of the molecular system is approached, & decreases.
This boundary effect was previously observed by Wang
and Hermans,12 although it is much less pronounced in
the present study, due to the stronger coupling to the
surroundings used here.

(2) The dielectric behavior of the system is not converged
at a length scale of 30 A, in accordance with what we

have previously observed from simulations using the
Ewald summation technique.3

(3) As the order € of the electric moment used for the
calculation of ¢ is increased, the value of the dielectric
constant at a given radius R becomes smaller. This is
also in accordance with what we have observed before
using the Ewald and RF techniques3 and indicates that
the dielectric behavior exhibits a slower convergence
for moments of higher order.

(4) The IBC results start to diverge from the Ewald results
around R=R_.;/2. If one assumes that the presented
Ewald results are free from surface artifacts, this gives
an indication of the range of the surface effects in the
IBC scheme.

Observation 1 is indeed surprising, given that the dielec-
tric medium outside the molecular system has a dielectric
constant of 100, which is higher than any of the values cal-
culated for the molecular system. This result further empha-
sizes the need for a very strong coupling to the surrounding
medium by using a small value of A. One possible explana-
tion for this observation is that the surrounding medium is
approximated as a dielectric continuum, and as such only
responds to the homogeneous part of the electrostatic field of
the molecular system, neglecting polarization of higher or-
der. Furthermore, observation 4 indicates that the range of
the surface effects in the systems simulated using IBCs is
similar to that found in Ewald simulations.” One point that
needs to be stressed is the slight uncertainty in the density of
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FIG. 7. The quota (e4,—1)/(gg,+1) as a function of &y, According to
Eq. (9), this quota determines the strength of the coupling between the
molecular system and the dielectric surroundings.

the IBC systems, compared with the well-defined density of
the Ewald system, which could also have an effect on the
dielectric constant.

E. The effect of varying =,

Figure 7 shows the quota (gy,—1)/(gg,+1) as a function
of &y,. According to Eq. (9), in the image charge approxi-
mation this quota determines the strength of the electrostatic
coupling between each particle in the molecular system and
the dielectric surroundings. For a vacuum surrounding (&g,
=1) the value of the quota is 0, whereas a value of 1 repre-
sents a conducting surrounding (&g,,= = °). The quota then
continues to increase toward infinity as ey, approaches —1

J. Chem. Phys. 132, 104507 (2010)

from below, corresponding to a continuously increasing cou-
pling strength. In other words, a dielectric constant less than
—1 implies that the resulting reaction field is stronger than
the primary field that causes the response, but still pointing
in a direction opposing the latter.

In Fig. 8, we present data of how the simulated dielectric
constant & of the molecular system depends on the dielectric
constant gy, of the surrounding medium, starting from &g,
=100. From these results, the following observations can be
made:

(1) As the dielectric response of the surroundings is in-
creased, the dielectric constant of the outer parts of the
molecular system increases, thus reducing the boundary
effects discussed above.

(2) The effect of varying e, becomes smaller as the order
€ of the multipole moment used for calculating ¢ is
increased.

(3) At gy, ~-20, the dielectric constant as calculated from
the dipole moment fluctuations is greatly increased, in-
dicating the appearance of a ferroelectric phase.

Observation 1 suggests that the use of a stronger dielec-
tric response of the surroundings than that expected from the
molecular system, even resorting to negative values of &y,
can be a way to reduce the surface effects present in the IBC
method. The use of a negative dielectric constant for the
surroundings may seem unphysical, since this is clearly not
representative of the macroscopic value of & for the molecu-
lar system being simulated. However, it was shown in a re-
cent study16 that the local dielectric response in a strongly
polar liquid indeed corresponds to a negative value of €.

120 120
100 [— — 100 [— —
80 — 80 — —
w 60 [— — w 60— —
40 |~ — 40 — —
20 |- — 20 — —
S I BT B ol
0 10 20 30 0 10 20 30
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| . l=3 ] | - Ewald I=4 _
100 Ewald 100 100
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FIG. 8. Dielectric constant ¢ as a function of the radius R of the sampling sphere obtained from Egs. (2) and (4) using electric moment fluctuations of order
1={¢=4 from simulated systems with N=1200 and A=0 at indicated &,. The error bars represent one standard deviation. Included also are results from
simulations performed using the Ewald summation technique with N=100 000 (dashed curves).
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Since the solvation of the outermost layer of molecules oc-
curs on a length scale of a few angstroms, it should indeed be
more appropriate to use the local rather than the expected
macroscopic value of gg,. As for observation 2, we attribute
this to the fact that the solvation of the higher order moments
becomes increasingly more short-range in its character. A
consequence of this is that it becomes harder to accomplish a
bulklike representation of the boundary between the molecu-
lar system and the dielectric continuum as € is increased,
which is reflected in the fact that the higher order moments
become increasingly more difficult to solvate. The problems
in removing the surface effects for the higher order moments
once again stresses the difficulties present in trying to fully
solvate a molecular system using a dielectric continuum sur-
rounding.

Assuming that the results from the Ewald simulation
well represent a “true” bulk system, the most realistic results
employing IBC’s are obtained using a surrounding dielectric
medium with e,,=-50. It should be noted, however, that a
considerable system size dependence was observed when
making the corresponding analysis (data not shown) for sys-
tems with larger N. In particular, the ferroelectric phase ap-
peared at more negative values of g, corresponding to a
weaker coupling with the surroundings (see Fig. 7), as N was
increased. One may therefore regard &, as an empirical pa-
rameter that should be adjusted for the particular system un-
der study in order to minimize the surface effects.

V. CONCLUSIONS

The present study shows that it is indeed possible to
simulate a bulklike system using IBCs and obtain radial and
angular distributions virtually identical to those obtained
from applying the Ewald summation. To reduce the effects of
the hard wall confining the molecular system, we have found
that (i) the response from the surrounding dielectric medium
has to be applied very close to the boundary of the molecular
system and (ii) properly adjusted penalty functions are effec-
tive in suppressing inhomogeneous and anisotropic distribu-
tions of particles near the hard wall. Furthermore, we have
found that using a dielectric continuum with the same dielec-
tric constant as that of the molecular system to describe the
surroundings does not provide a sufficiently strong solvation
of the simulated system. This solvation deficiency could
partly be remedied by using a stronger coupling between the
molecular system and the surroundings, manifested in a
negative dielectric constant of the surrounding dielectric me-
dium.

For the systems investigated (N = 10 000), the extension
of the region free from boundary artifacts scales approxi-
mately linearly with the length-scale of the system. However,
(i) the increasingly improved correspondence between the
dielectric model and the simulated data at increasing N (Fig.
4) and (ii) the fact that our model system approaches a true
macroscopic system in the thermodynamic limit, with or
without a dielectric correction at the boundary, implies that
the extension of the region affected by the boundary should
become negligible as N—oo. In the case of the Ewald sum-
mation technique, the effects of the imposed periodicity of
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the infinite system extends into volumes of radius R=L/4,
with L being the side length of the primary box.” Thus, the
region affected by the boundary conditions scales linearly
with the length scale of the simulated system also in this
case. However, for the Ewald summation technique there are
no arguments that this length-scale dependence should be
weakened as N —  and no such weakening was observed for
N=300000.”

The observed slow convergence behavior of £ with the
radius R of the sampling sphere emphasizes the need of
simulating very large systems to reach bulk dielectric behav-
ior, and from the present results it is indeed not possible to
draw any conclusions about when this behavior will be
reached. Since this was observed also for systems simulated
using the Ewald and RF methods, and hence seems to be a
method-independent effect, we argue that this slow conver-
gence is a true physical property of strongly polar systems.

It should be noted that simulating more realistic molecu-
lar liquids such as water using the IBC approach is not as
straightforward as simulating a simple Stockmayer fluid. In
particular, the design of penalty functions would need to be
taken extra care of, and maintaining the proper hydrogen-
bonding structure would probably not be possible close to
the confining surface. Furthermore, we have not assessed the
dynamics of the IBC system as compared with, for example,
a system simulated using the Ewald summation technique.

Regarding the computational performance of the various
methods described above, it should be mentioned that sys-
tems simulated using IBCs exhibit an O(N?) scaling behav-
ior, whereas the classic implementation of the Ewald method
scales as O(N*?), thus making the latter method more ap-
pealing from a computational point of view. However, in the
same way as the Ewald method has been optimized to yield
an O(N log N) behavior using the so-called particle-particle
particle-mesh Ewald method,"” it is possible to optimize the
IBC scheme to facilitate the simulation of significantly larger
systems.

In conclusion, we have demonstrated here that systems
simulating using IBCs in practice suffer from boundary ef-
fects of range and magnitude similar to what was previously
found for the Ewald and RF techniques, even though the
effects originate from very different sources. Whether the
IBC or Ewald/RF technique is best suited for simulating di-
electric properties of molecular systems thus remains an
open question.
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