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We have evaluated the efficiency of two popular end-point methods to calculate ligand-
binding free energies, LIE (linear interaction energy) and MM/GBSA (molecular mechanics 
with generalised Born surface-area), i.e. the computational effort needed to obtain estimates 
of a similar precision. As a test case, we use the binding of seven biotin analogous to avidin. 
The energy terms used by MM/GBSA and LIE exhibit a similar correlation time (~5 ps) and 
the equilibration time seems also to be similar, although it varies much between the various 
ligands. The results show that the LIE method is more effective than MM/GBSA, by a factor 
of 2–7 for a truncated spherical system with a radius of 26 Å and by a factor of 1.0–2.4 for the 
full avidin tetramer (radius 47 Å). The reason for this is the cost for the MM/GBSA entropy 
calculations, which more than compensates for the extra simulation of the free ligand in LIE. 
On the other hand, LIE requires that the protein is neutralised, whereas MM/GBSA has no 
such requirements. Our results indicate that both the truncation and neutralisation of the 
proteins may slow the convergence and emphasize small differences in the calculations, e.g. 
differences between the four subunits in avidin. Moreover, LIE cannot take advantage of the 
fact that avidin is a tetramer. For this test case, LIE gives poor result with the standard 
parametrisation, but after optimising the scaling factor of the van der Waals terms, reasonable 
binding affinities can be obtained, although MM/GBSA still gives significantly better 
predictive index and correlation to the experimental affinities. 
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Introduction
One of the most important challenges of computational chemistry is to accurately estimate the 
free-energy change of a biochemical reaction. For instance, in drug design, one is interested in 
the  binding  of  small  ligands  to  a  biomolecular  target,  usually  a  protein.  If  accurate  free 
energies could be estimated for this reaction by computational methods, billions of dollars 
could be saved because it would be necessary to synthesize fewer molecules.1,2 

Many methods are available to estimate free energies, ranging from simple scoring 
functions  that  are  fast,  but  not  very accurate,  to  rigorous free energy perturbation (FEP), 
which  are  accurate,  but  time-consuming.34 The  reason  for  the  latter  is  that  FEP requires 
extensive sampling using molecular dynamics (MD) or Monte Carlo methods on a series of 
intermediate, unphysical states. A class of methods that is intermediate in efficiency is the so-
called end-point methods, which still are based on physical laws and require sampling, but 
only of the reactants and the products, not of any intermediate states.5 However, even with 
perfect  sampling  these  method will  not  give  the  exact  result,  because  they  are  based  on 
several approximations. Therefore, such methods need to evaluated carefully to identify their 
strengths and weaknesses. 

Two  such  methods  are  LIE6,7,8 (linear  interaction  energy)  and  MM/GBSA9,10 
(molecular mechanics with generalised Born and surface-area solvation). LIE estimates the 
free energy for the binding of a ligand (L) to its target macromolecule (P) by simulating the 
free ligand in solution and the ligand–macromolecule complex (PL), using the relation7

 
G =   〈Eele

L–S〉PL − 〈Eele
L–S〉L   〈EvdW

L–S 〉PL − 〈EvdW
L–S 〉L  (1)

where  Eele
L–S  and  EvdW

L–S  are the electrostatic and van der  Waals intermolecular interaction 
energies between the ligand and the surroundings (S; i.e. protein and solvent), α and β are two 
parameters, and the angle brackets indicate ensemble averages from the simulations of either 
the free ligand or the complex, as indicated by the subscripts.  β  was originally set to 0.5,6 

because LIE was derived from the linear-response approximation. However, this value has 
later been refined to reflect the chemical nature of the ligand,7,11,12 based on FEP calculations. 
α  is  usually  set  to  0.18,13,14 but  this  value  has  been  much  debated  and  may  be  system 
dependent.5,8 In several studies, this parameter has been fitted to experimental data for each 
protein target  and ligand type.5 A third constant  term has also been suggested.15 but  it  is 
important only when estimating absolute free energies.13

MM/GBSA, on the other hand, estimates the free energy as9,10

G = G PL − G P − G L (2)

where each free energy is calculated from a sum of six terms

G = 〈E int  E ele  E vdW  Gsolv Gnp − TS MM〉 (3)

The three first terms are the molecular-mechanics (MM) internal, electrostatics, and van der 
Waals energies, Gsolv is the polar solvation energy, Gnp is the non-polar solvation free energy, T 
is the absolute entropy, and SMM is an entropy estimate from harmonic frequencies calculated 
at the MM level. The average in Eqn. 3 should in principle be calculated from three separate 
simulations PL, P, and L, but for stability reasons.16 it is more common to simulate only the 
complex. In that case, Eint cancels. In the MM/GBSA approach, the polar solvation free energy 
is  calculated  by  a  generalised  Born  (GB)  approach,  but  it  could  be  calculated  by  any 
continuum-solvation method.17 A common choice is the Poisson–Boltzmann method, giving 
the  MM/PBSA approach.  The  non-polar  solvation  free  energy  is  usually  estimated  by  a 
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relation to the solvent-accessible surface area (SASA).5

Because LIE and MM/GBSA are two popular end-point methods, it is interesting to 
compare them. This has been done a few times in the past.18,19,20,21 For the binding of biotin 
analogous to avidin, MM/PBSA was found to reproduce experimental results more accurately 
than  LIE.19 although  both  methods  were  less  accurate  than  FEP.22 However,  for 
acetylcholinesterase  huprine  inhibitors,  LIE gave  better  results  than MM/PBSA.18 For  the 
binding of eight hydroxamate inhibitors to gelatinase A, the two methods showed a similar 
performance.20 In all these studies, the LIE parameters were adjusted to an optimal fit. For the 
binding of fragment B of protein A to the Fc domain of immunoglobin G, LIE gave similar 
results to both MM/PBSA and MM/GBSA, but only one complex was examined, a protein for 
which it is not clear what α and β parameters should be used.21 Apparently, the accuracy of the 
two methods (i.e.  how well  they reproduce experimental results)  depends strongly on the 
systems studied and much larger test sets are needed before any general conclusion can be 
reached.

In this paper, we will instead focus on the precision (i.e. the statistical uncertainty of 
the results) and efficiency (i.e. the computer time required to reach a given precision) of the 
two methods. The statistical precision is important when comparing ligand-affinity methods23: 
Congeneric ligands often have quite similar affinities and an order of magnitude difference in 
the binding constant corresponds to only 6 kJ/mol in the free energy of binding. If statistically 
significant differences should be discerned, a precision of 1–2 kJ/mol is therefore needed. 
Such a precision is also needed to make results obtained by different groups comparable24 and 
to avoid the temptation to rerun simulations that gave poor agreement with experiments. On 
the other hand, we have shown that once such a precision is reached, results  obtained by 
MM/GBSA are reproducible and not sensitive to the setup of the simulations, except for the 
protonation of residues very close to the ligand24 

In a previous paper, we developed a simulation protocol for MM/GBSA that gave a 
precision of 1 kJ/mol.23 In particular, we showed that it was more favourable to run several 
rather short  simulations instead of a single long one, as has been concluded also in other 
studies.25,26,27 By running a proper number of independent simulations, any precision can be 
reached. In this paper, we develop a similar protocol for LIE. This also allows us to discuss 
the efficiency of the two methods, i.e. to compare the computational effort needed to obtain 
results of the same statistical precision. If the methods give similar accuracy, of course the 
more efficient method is preferred. To facilitate the comparison, we use the same test case as 
for MM/PBSA, viz. the binding of seven biotin analogues to avidin. This test system has been 
studied  before  with  FEP,28 MM/PB(GB)SA,17,19,23,24,29,30,31,32,33 LIE  ,22 and  experimentally 
structures34 as well as affinities are available.35,36,37

Methods

System preparation
We have studied the binding of the seven biotin analogues in Figure 1 to avidin. Btn1–Btn3 
have a net charge of –1, whereas the other four ligands are neutral. The structure of avidin 
was taken from the 1avd crystal structure,34 which contains a co-crystallized biotin molecule 
in each subunit of the tetrameric protein. However, in this study we consider the binding of 
only a single ligand to the tetrameric protein. The six biotin analogues were built into the 
active site to mimic the binding mode of biotin, as been described previously.30 In LIE, it is 
essential  that the protein is  neutral.8 Therefore,  all  titratable residues were neutralised (all 
these residues are solvent exposed). This has shown to be the optimal approach to ensure that 
the complex and free ligand simulations have identical total charge, which is required if we 
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want to ignore long-range effects beyond the simulation sphere.38 The single histidine residue 
in each subunit was modelled to be protonated on the NE2 atom.30 The protein atoms were 
described by the Amber99SB force field39 and parameters for the ligands were taken from the 
Amber99 force field.30,40 Ligand charges were calculated with the RESP procedure,41 using 
ESP points calculated at the Hartree–Fock 6-31G* level and sampled with the Merz–Kollman 
scheme,42 as has been described before.30 

Two sets of systems were prepared for each protein–ligand complex, a full system and 
a truncated system. The full system was prepared by solvating the entire (tetrameric) protein–
ligand complex in a sphere with radius 47 Å (i.e. extending at least 10 Å outside the protein;  
in total ~43 925 atoms). The truncated system was prepared by solvating the complex in a 
26 Å sphere, centred on the ligand and thereafter, removing all residues more than 26 Å from 
the ligand (~8 325 atoms). Atoms between 26 and 24 Å were restrained in the simulations, by 
a harmonic restraint of 41.84 kJ/mol/Å2. The truncated system represents a more typical use 
of LIE.8 Likewise, two sets of free-ligand systems were created by solvating the ligand in a 
sphere with a radius of either 47 or 26 Å, because LIE requires that the simulations of the 
complex and the free ligand have the same size, so that the ignored interactions outside the 
simulated systems cancel.8 In  these simulations,  the geometrical  centre  of  the ligand was 
restrained to the origin using a harmonic restraint of 41.84 kJ/mol/Å2. In all simulations, the 
water  model  was  TIP3P.43 The  systems  were  prepared  with  a  combination  of  the  Qprep 
program of the Q simulation package, the Leap module of the Amber package, and in-house 
programs. 

Simulations
All MD simulations were run by the Q simulation package.44 All bonds involving hydrogen 
atoms were constrained with the SHAKE approach45 and a 2 fs time step was employed. The 
temperature was kept at 300 K using a Berendsen thermostat.46 The non-bonded cut-off was 
10 Å, except for interactions with the ligand, for which an infinite cut-off were applied. Long-
range  electrostatic  interactions  were  treated  with  the  local  reaction-field  approximation.47 
Water  molecules  at  the  surface  of  the  simulated  sphere  were  subjected  to  radial  and 
polarisation restraints.44,48

Prior to the MD simulation, the systems were minimised using the sander module of 
Amber  1049 using  100  steps  of  steepest  descent  and  with  a  harmonic  restraint  of  104.6 
kJ/mol/Å2  on all atoms except hydrogen and water atoms. This was followed by starting a 
number of independent 20 ps MD simulations with the same restraint as in the minimisation. 
Thereafter, an unrestrained MD simulation was carried out for 800 ps (full systems) or 1600 
ps (truncated systems) for each of the independent simulations. Snapshots were sampled each 
ps. Twenty independent simulations were employed for the free ligand and for each of the 
subunits of avidin (i.e. 20 + 80 in total).  These independent simulations were initiated by 
assigning  different  initial  random  velocities  to  all  atoms,  i.e.  the  velocity-induced 
independent-trajectory approach.24

Free energy estimates
The LIE interaction energies in Eqn. 1 (with an infinite cut-off, but without any long-range 
corrections)  were  sampled  by Q44 during  the  simulation  and  were  processed  by in-house 
scripts. β was set to 0.5 for the charged ligands and 0.43 for the other ligands,7 whereas α was 
set to 0.18 as default  for all  ligands13 although it  was also optimised (see below). A new 
parametrisation of  β  to include more chemical groups has been suggested,12 but it does not 
involve thioether and other groups in our ligand set. For the charged ligands, a correction to 
the neutralisation of the charged residues, ΔGcc, was estimated by placing a single charge at 
the position of the CG, CD, NZ, and CZ atoms of Asp, Glu, Lys, and Arg, respectively, and 
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calculating the Coulomb interaction between this charge and all atoms in the ligand for each 
snapshot, assuming a dielectric constant of 80, as suggested previously.38,50,51 We tested this 
correction also for the neutral ligands, but it was found to be negligible, ~0.1 kJ/mol. 

The MM/GBSA calculations were performed by the Amber 10 package on snapshots 
from the Q MD simulations.49 The Eele and EvdW energies in Eqn. 3 were calculated with the 
same force field as the simulation and with an infinite cut-off. The polar solvation free energy 
was estimated by the GB method of Onufriev, Bashford and Case,52 model I (OBCI, i.e. with 
α = 0.8, β = 0, and γ = 2.91). The non-polar solvation energy was estimated from the SASA 
according to  ∆Gnp  = γ SASA +  b, where γ = 0.0227 kJ/mol/Å2  and  b = 3.85 kJ/mol.53 The 
entropy was estimated by calculating harmonic frequencies at the MM level on a truncated 
and buffered  system (8 + 4  Å from the  ligand),  as  described previously,  to  improve the 
statistical precision of the estimate.32

Estimation of the correlation time
The  correlation  time  of  the  LIE  interaction  energies  was  estimated  with  the  statistical 
inefficiency method.54,55 In this procedure, the following measure is calculated

=
 2Y 


2
X 

(4 )

where  σ2(X) is the variance of the distribution {X}, i.e. the variance of the time series of a 
particular energy, e.g., E ele

L–S  in Eqn. 1, and σ2(Y)τ is the variance of the block average of {X}, 
where the block length is τ. This block average is calculated from

Y i =
1


∑
j=n−i1

n−i−1

X j (5)

Put in another way, {X} is divided into a number of non-overlapping segments, each with 
length τ. Once τ is so large that the successive values of Yi are statistically independent, Φ will 
become a constant and an estimate of the correlation time of {X}. This method is sensitive to 
equilibration,  long-time trends, and bumps in the data (increasing the apparent correlation 
time). Therefore, we divided the data into segments of 200 ps and calculated the correlation 
time within each segment separately. The correlation time of the whole simulation was then 
taken as the median of the calculated correlation time for the segments.

Error analysis
To measure  the  quality  of  the  free-energy estimates,  we use four  different  estimates:  the 
correlation coefficient between the predicted and experimental data (r2), Pearlman's predictive 
index (PI),56 the mean absolute deviation (MAD), and the mean absolute deviation from the 
best  correlation  line  through the  origin  (MADtr;  i.e.  MAD after  subtraction  of  the  mean 
signed  deviation).  These  measures  are  rather  meaningless  without  an  estimate  of  their 
statistical  uncertainty.  They were  obtained  by a  simple  parametric  bootstrap  simulation23: 
Each ligand was assigned a random normal-distributed affinity,  with a mean and standard 
deviation  obtained from the  free-energy estimates.  Then,  r2,  PI,  MAD, and MADtr  were 
evaluated and this procedure was repeated 10 000 times. The standard deviations of these re-
sampled sets  are reported as the standard errors of the quality  measures.  Throughout  this 
paper, all reported statistical uncertainties are standard errors of the mean, i.e. the standard 
deviation divided by the square root of the number of estimates. 
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Results
We have estimated the binding free energy of seven biotin analogues to avidin using the LIE 
and MM/GBSA approaches. Binding affinities obtained with MM/GBSA have already been 
published for these ligands.23 However, LIE requires calculations performed on neutralised 
spherical systems with only one ligand, and typically also for truncated systems. Therefore, 
the MM/GBSA calculations were rerun with the same settings as the LIE calculations to make 
the results completely comparable and also to allow for a comparison of the results obtained 
with the  two setups.  Calculations  were  performed both  on the full  avidin  tetramer  and a 
system truncated to 26 Å around the ligand of interest.

Before the comparison, we must decide how we best can obtain reliable and efficient 
free energies with a well-defined precision. This has already been done for MM/GBSA23 and 
here we perform a similar analysis for LIE. Following our previous study,23 as well as several 
other investigations,25,26 we will  not employ one single long simulation,  but instead many 
shorter independent simulations, generated by using different starting velocities. This gives a 
more reliable estimate of statistical  precision and we can obtain any desired precision by 
simply  employing  a  proper  number  of  independent  simulations,  because  the  standard 
deviation  of  the  mean  decreases  with  the  square  root  of  the  number  of  independent 
simulations  included  in  the  average.  Therefore,  we only  need  to  determine  the  sampling 
frequency of  the energy terms in Eqns.  1,  as  well  as  the  length of  the  equilibration  and 
production parts of the individual simulations.

Correlation time 
For all methods that average energies over a series of MD snapshots, it is essential to ensure 
that  the  consecutive  estimates  are  independent,  i.e.  that  sampling  is  not  too  frequent  – 
otherwise the statistical error will be underestimated. The correlation time of the four time 
series that are the basis of the LIE estimates (Eqn. 1) were calculated using the method of 
statistical  inefficiency.54,55 This  was  done  for  the  whole  800  ps  (full  system)  or  1600  ps 
(truncated system) simulations (including equilibration) and for all independent simulations of 
each ligand. 

We soon discovered that the original method is very sensitive to the drift during the 
equilibration period and also to occasional bumps in the data, which often are seen in long 
simulations, giving strongly increased correlation times (an example is shown in Figure S1). 
As a consequence, the estimated correlation time always increased when the simulation time 
was  increased.  Strictly  speaking,  this  shows  that  there  are  ns  time-scale  motions  in  the 
structure that may indicate that much longer equilibration and simulation times are needed to 
obtain truly uncorrelated data that are independent to the starting structure.57 However,  in 
standard LIE and MM/GBSA applications, it is assumed that simulations on a ns time-scale 
started  from  the  crystal  structure  provide  representative  structures  for  binding-energy 
calculations.8,10 Therefore, we decided to divide all simulations into segments of 200 ps, for 
which  a  separate  correlation  time  was  estimated  with  the  original  method.  This  gave 
correction times of 1–4 ps for most segments, but segments during the equilibration period 
and segments with bumps gave much higher values. The latter were ignored by taking the 
median of the segment estimates (cf. Figure S1).

With this approach, we obtained stable results for all systems, which are presented in 
Figure 2 as the cumulative frequency of the number of simulations (among the 80 or 20 
independent  simulations)  that  have  a  particular  correlation  time.  It  can  be  seen  that  the 
correlation time for the 〈EvdW

L–S 〉L  and 〈E ele
L–S〉L  terms are always 3 ps or less. The 〈EvdW

L–S 〉PL  

term has a slightly longer correlation time, up to 5 ps, whereas the 〈E ele
L–S

〉PL  term shows the 
longest correlation time, up to 18 ps for Btn5, but up to 7 ps for the other systems. The reason 
for the long correlation time for Btn5 is that this energy term shows a long-term oscillation 
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(see Figure S2). If segments of 160 or 100 ps are instead used, we obtain correlation times of 
4 and 2 ps, respectively.

In our previous study, we showed that the MM/GBSA energies have a correlation time 
of about 5 ps at which point 90% of the data were uncorrelated without discarding any data 
and 98% of the data if the first 100 ps of the simulations were discarded.23 However, this 
conclusion was based on only two ligands (Btn1 and Btn2) and with a somewhat different 
setup  (e.g.  octahedral  systems  treated  with  particle-mesh  Ewald  summation  and  no 
neutralisation). Therefore, we repeated the analysis also for MM/GBSA for all ligands. The 
results  in Figure 2e show that  the correlation time is  up to  7 ps,  but 90% of the data  is 
uncorrelated already at 4 ps.

Altogether, these data indicate that the correlation time is shortest for the free-ligand 
simulations (2–3 ps), slightly longer for the MM/GBSA results (~4 ps), and still somewhat 
longer for the  〈E ele

L–S〉PL  term (~6 ps). However, these differences are small and somewhat 
dependent  on  the  details  of  the  method  to  calculate  the  correlation  time.  Therefore,  we 
decided to use the same correlation time for both methods and also for the two types of LIE 
simulations, 5 ps.

Equilibration time
The next step is to determine the length of the equilibration period of the simulations, i.e. the 
part  of  the  simulation  that  is  excluded  in  the  averages.  Many  methods  are  available  to 
determine the equilibration time (teq).8,23,55,58 We have tested several different  variants,  e.g. 
including block averaging or reverse cumulative averaging with two different tests for normal 
distribution. Unfortunately, all methods to determine teq are sensitive to details and parameters 
of the algorithms. At the end, we decided to use the following scheme: For each ligand, we 
calculated  block  averages  of  either  the  MM/GBSA  binding  energy  or  the  LIE 
 〈Eele

L–S
〉   〈EvdW

L–S
〉  energy terms for the complex or free-ligand simulations for each 100 ps 

of the simulations. These averages were compared to the average over the last 400 ps (full 
system)  or  500  ps  (truncated  system)  of  the  simulation  and  if  the  difference  was  over 
2 kJ/mol, that block was rejected. The equilibration time was taken as the end of the last set of 
at least two consecutive rejected block, but including also isolated rejected blocks if they are 
one  or  two  blocks  away  from a  set  of  consecutive  rejected  blocks.  By  such  a  rule,  we 
disregard occasional isolated rejected blocks late in the simulation, because the aim of the 
equilibration period is to remove data with a drift at the beginning of the simulation, but not  
bumps later in the simulation. A minimum equilibration time of 100 ps was assumed for all 
simulations.  Several  examples  of  typical  equilibration  curves  and  our  selection  of  teq are 
shown in Figure S3.

For  the  present  comparison between LIE and MM/GBSA,  the  exact  length  of  the 
equilibration period is not of prime interest, but rather whether one of the two methods has a 
longer equilibration time than the other. However, for the present test case, we do not see any 
clear tendency: The two methods show similar equilibration time for (the complex simulation) 
of most ligands (eight out of the 7 + 7 simulations with full and truncated protein). When this 
is not the case, MM/GBSA gives the shorter equilibration time for two of the simulations and 
LIE  a  shorter  time  for  four  of  the  simulations.  Therefore,  we  decided  to  use  the  same 
equilibration time for both MM/GBSA and LIE (viz. the largest of the two individual values) 
to avoid that the comparison is biased by differences in the equilibration.

For the free-ligand simulations (which are relevant only for LIE), the equilibration 
time is  normally  shorter  than  the  complex.  However,  for  the  three  charged  ligands,  it  is 
notable that the free-ligand simulations give a quite large variation in the LIE energies, which 
quite often give rise to occasional isolated large deviations in block averages (cf. Figure S3e). 
However, since the simulations do not show any pronounced trends, only rejected blocks at 
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the beginning of the simulation were omitted (in accordance to the rule given above). 
The selected equilibration times are collected in Table S1. In variance to our previous 

investigation of MM/GBSA23 we allow for different equilibration times for different ligands, 
which is more realistic and economic. It can be seen that the equilibration times vary from the 
requested minimum of 100 ps up to 1000 ps for Btn3. During this process, we decided to 
increase  the  simulation  time of  the  truncated  systems from 800 to  1600 ps.  For  the  full 
systems, this could not be afforded (remember that 80 + 20 independent simulations were run 
for each ligand, giving a total simulation time of 1.12 μs). It is notable that the equilibration  
times are longer than in our previous MM/GBSA investigation, in which all simulations were 
judged to be converged after 100 ps.23 A typical example is shown in Figure S4. 

Length of production simulation and efficiency
We have now determined the correlation and equilibration times for our simulations of the 
seven ligands. What remains is to determine the length of the production simulation. This is 
somewhat  involved,  because  we  run  also  a  number  of  independent  simulations  for  each 
ligand. Therefore, we can improve the precision either by elongating the production time of 
each independent simulation or by increasing the number of independent simulations. The 
latter  is  more effective because the standard error of the final  estimate (average over the 
independent simulations) will decrease with the square root of the number of independent 
simulations, whereas the dependence on the production time is less clear, since the results are 
not fully independent (this is the reason why we use several independent simulations23). On 
the other hand, the independent simulations cost more, because an initial equilibration has to 
be  run.  Therefore,  to  reach  an  optimum  distribution,  we  need  to  consider  also  the 
computational cost of the simulations and energy calculations (which of course depend on the 
simulated system and the computer equipment). 

We will follow our previous suggestion to optimise the CPU time required to reach a 
certain precision, e.g. sav = 1 kJ/mol23 (but the comparison of the two methods will not depend 
on this limit). We can estimate the standard error of each independent simulation, ssimu, with a 
certain  number  of  production  snapshots,  nprod,  from  our  available  data.  The  number  of 
independent simulations (nav) needed to reach the desired precision is then simply
 

nav =
ssimu

2

sav
2 (6)

With these data, we can then calculate the required total CPU time: A 50 ps MD simulation 
takes  8  and 0.6 CPU hours  on a  single  3.0  GHz Intel  Xenon processor  for  the  full  and  
truncated systems,  respectively.  The MM/GBSA post-processing energies take ~0.25 CPU 
hours,  irrespectively  whether  full  or  truncated  systems  are  used  (because  the  time  is 
dominated by the entropy calculations, which are performed on truncated systems in both 
cases), whereas the LIE energies can be calculated without any overhead. Therefore, the time 
consumption for LIE is 

CPULIE = nav t eq cMD  nprod−1f cMD  (7)

 and for MM/GBSA

CPUMM/GBSA = nav t eq cMD  nprod−1 f cMD  nprod cene (8)

where  f is  the  sampling  frequency  (so  that  (nprod –  1)*f is  the  length  of  the  production 
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simulation), cMD is the cost of running the MD simulation and cene is the cost of doing a single 
MM/GBSA energy calculation. We can now calculate the CPU consumption as a function of 
nprod  using the equilibration  times and the sampling frequency determined in the  previous 
section, as well as ssimu obtained from the simulations. As can be seen in Figure S5, the CPU 
shows a minimum when nprod is varied, because the first term in Eqns. 7 and 8 depends on nav, 
which decreases as  nprod is increased, whereas the other terms depend on  nav *  nprod, which 
increases with nprod. This is the optimum value of nprod. Strictly speaking, the results depend on 
the  equilibration  time  (ligands  with  long  equilibration  times  prefer  somewhat  longer 
production times and therefore fewer independent simulations), but the dependence is rather 
week. Moreover, for some ligands it is also favourable to increase the sampling frequency. 
Therefore, we have optimised nprod and f separately for each ligand (Table S2). However, the 
results are quite similar if we average ssimu and the CPU time over all seven ligand (and then f 
= 5 ps is optimal; cf. Figure S5b). These averaged results are given in Table 1.

It can be seen that for the complex simulation of LIE, it is most efficient to run short  
production simulations, ~50 ps, and instead run many independent simulations (91–135). For 
the free ligand, it is more efficient to run longer simulations (~300 ps) and fewer independent 
simulations (7–10). The reason for this is that the standard error of the free-ligand simulations 
is appreciably smaller for the complex simulations and that it decreases more with the number 
of snapshots. However, in both cases, the simulation time is shorter than typically is used with 
LIE, illustrating that long simulations underestimate the statistical uncertainty. On the other 
hand, the total simulation time, 7.4 + 2.3 ns for the truncated systems and 4.6 + 3.0 ns for the 
full systems, plus 10–140 ns equilibration, is much longer than normally used with LIE. The 
total  LIE  CPU times  are  1050 and 3900 CPU hours  for  the  truncated  and  full  systems, 
respectively. 

Looking  at  MM/GBSA instead,  we  see  that  also  for  this  method,  rather  short 
production simulations are most efficient, 25 and 45 ps for the truncated and full systems, 
respectively. This amounts to a total time of 3135 and 5983 CPU hours, respectively. Thus, 
this  analysis  indicates  that  LIE  is  more  efficient  than  MM/GBSA,  by  a  factor  3  for  the 
truncated systems and 1.5 for the full systems. Looking at the more detailed data in Table S2, 
it can be seen that for the truncated system, MM/GBSA requires between 1.7 and 6.7 times 
more CPU than LIE for the truncated system, whereas for the full system the ratios are 1.0–
2.4. 

From Eqns. 7 and 8, it can be seen that the CPU consumption depends on three terms, 
two of which are common to both methods,  whereas the last  one,  the cost of the energy 
calculations, only applies to MM/GBSA. This inherent difference between the two methods 
will always favour LIE and also lead to that MM/GBSA typically prefers a slightly lower nprod 

than LIE. However, the importance of this difference decreases with the size of the system, 
because for the truncated system the third term is 4–8 times larger than the second term, 
whereas for the full system, it is only 30–60% of the second term. 

On the other hand, this effect is counteracted by the fact that LIE requires simulations 
of both the free ligand and the complex, whereas MM/GBSA is based only on the simulations 
of the complex. If everything else were equal, this would compensate for the extra cost of the 
energy calculations and MM/GBSA would always be preferable.

However, a third factor is also important, viz. the standard errors (ssimu) of the various 
energies  and their  dependence on the number of  snapshots,  which will  affect  nav and the 
optimum  nprod.  As we will see below, there is little difference in the standard error of the 
MM/GBSA and LIE estimates of the binding energy from the simulations of the complex 
(although the various ligands show a rather large variation). However, the standard error for 
the free-ligand simulations are appreciably smaller than for the complex simulations and also 
shows a larger decrease with  nprod as can be seen in Figure S6. This leads to a lower total 
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number of  required snapshots  (nav *  nprod,)  for  the  free  ligand than for  the  complex (469 
compared to 1620 for the truncated system and 600 compared to 1001 for the full system). 
The combination of these three factors give the net efficiency illustrated in Table 1.

Affinity estimates
Next, we estimated the binding free energy for the seven biotin analogous using the optimum 
equilibration time and sampling frequency, but using all available snapshots for production 
(because these are the best estimates we can obtain with available data). For LIE, we used β = 
0.5 for the charged ligands (Btn1–Btn3) and 0.43 for the neutral ligands (Btn4–Btn7), and α = 
0.18 for all ligands. These values are usually denoted the standard parametrisation.13,14 The 
binding  free  energies  for  the  truncated  and  full  systems  are  shown  in  Tables  2  and  3, 
respectively. It can be seen that the results with the standard parametrisation are poor with 
negative predictive indices and negative correlation coefficients (although  r2 is positive by 
definition). This is because LIE predicts a higher affinity for the neutral ligands than for the 
charged ones.

Kollman and co-workers have studied a similar set of biotin analogues with the LIE 
method, but they obtained a reasonable, positive correlation.19 The reason for this is that they 
used  a  special  value  for  α (1.0),  fitted  to  the  experimental  data.  Using  the  standard 
parametrisation for their data (available for all our biotin analogues, except Btn3), we obtain a 
negative correlation and  r2 = 0.01.  Reported electrostatic  and van der  Waals  energies  are 
rather similar to ours with correlation coefficients (r2) of 0.57 and 0.96 (Table S3). The rather 
large difference in the electrostatic energy is probably caused by differences in the simulation 
setup: They employed smaller systems and neutralised only a minimum amount of titrable 
residues.19 

Therefore, we also tried to optimise the α value, keeping β at the default values. Since 
we use four different quality estimates (MAD, MADtr,  r2, and PI), we fitted  α to optimise 
each of these measures by varying α from –5 to +5 with increments of 0.05. The results are 
shown in Table 4 for the truncated system (the full system gave similar results). Optimising α 
against r2 gave unrealistic binding affinities because the correlation coefficient benefits from 
large energy differences, which are obtained when the energies are scaled up.  r2  converges 
asymptotically at  α  > 20, but as can be seen in Table 4, both MAD and MADtr are poor 
already at α = 5. 

Optimising α against PI gave a non-smooth dependence on α, although it gave similar 
results as when optimising against MADtr. On the other hand, fitting  α against MADtr and 
MAD gave a smooth, parabolic dependence on α. The fits gave optimal values of α = 0.70 and 
1.15,  respectively.  For  these  two  α  values,  PI  and  MADtr  differ  by  only  0.05  and  0.3, 
respectively, which probably are not statistically significant. On the other hand, MAD and r2 

differ significantly. We consider it more important to obtain good relative estimates (high r2) 
than absolute estimates (low MAD) and we therefore prefer the α value obtained by fitting to 
MADtr, 1.15. 

The LIE results using α = 1.15 are included in Tables 2 and 3 (column LIE (opt)), and 
are plotted in Figure 3. It can be seen that the largest error is found for Btn4. Kollman et al.  
also had problem with this ligand. They argued that the error comes from the fact that the 
protein needs to be reorganised to accommodate the ester group of Btn4 and that such a term 
is missing in the LIE approach.19

Finally,  we also  considered  the  correction  to  the  binding affinities  of  the  charged 
ligands from the omitted surface charges, ΔGcc.  For the truncated systems this amounts to 
~2 kJ/mol,  irrespectively of ligand and for the full  systems it  amounts to ~7 kJ/mol.  The 
largest contribution from a residue is ~2 kJ/mol,  showing that neutralisation do not affect 
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individual interactions so much. However, since avidin contains almost 100 charged surface 
residues, the sum is significant for the full systems. The effect of adding ΔGcc is shown in 
Table 2 for the truncated system, and as the correction is small, it hardly affects the result at 
all.  However,  for the full  system the correlation coefficient increases  to 0.50 and MADtr 
decreases to 14 kJ/mol (see Table 3). 

The MM/GBSA estimates of binding free energies are also included in Tables 2 and 3, 
and are plotted in Figure 3. For the truncated system, MADtr is 16 kJ/mol, r2 = 0.76, and PI = 
0.95. The full-system estimates are slightly better (see Table 3). Comparing with LIE, the 
difference in MADtr is not statistically significant, but the better results for the correlation 
coefficient and the PI are statistically significant. This is because MM/GBSA do not have any 
problems with Btn4. It is notable that the LIE and MM/GBSA results are quite similar for the 
three charged ligands (differences less than 6 kJ/mol), whereas for the neutral systems, the 
difference is appreciably larger (27–35 kJ/mol), MM/GBSA always giving a less favourable 
binding.

The binding affinities obtained with the truncated and full systems are quite similar. 
For LIE, they differ by up to 12 kJ/mol, the results of the full system almost always being 
more positive. For MM/GBSA, the results differ by 1–10 kJ/mol in a less systematic way. 

Compared  to  our  previous  MM/GBSA binding  affinities,23 the  difference  is  1–
19 kJ/mol (for the full system), i.e. much larger than the statistical uncertainty. The difference 
is systematic in that the negative ligands give more negative affinities (by 5–12 kJ/mol) in the 
present  calculations,  whereas  the  neutral  ligands  give  more  positive  affinities  (by  1–19 
kJ/mol). As a consequence, the present simulations give a similar MADtr (16 compared to 15 
kJ/mol), but improved r2 (0.79 compared to 0.59) and PI (1.00 compared to 0.85). This shows 
that  the  MM/GBSA results  depend much stronger  on the  water  model  (TIP3P or  TIP4P-
Ewald),  the  treatment  of  long-range  electrostatics  (a  spherical  system with  reaction-field 
corrections  or  a  octahedral  system with  Ewald  summation),  and the  treatment  of  surface 
charges (neutralisation or not)  than on the placement of the explicit  water molecules,  the 
initial velocities, and the protonation and rotation of residues, which gave variations of less 
than 1 kJ/mol for Btn1 in a previous investigation.24 We have previously compared the results 
of  spherical  vs.  periodic  simulations  and  neutralised  systems  with  MM/PBSA,  but  the 
precision was too low to discern differences of relevant sizes.30

Precision
The statistical precision of the free-energy estimates is also shown in Tables 2 and 3 (standard 
deviation of the mean). It can be seen that LIE and MM/GBSA give similar uncertainties, 1–3 
kJ/mol. For the truncated system, LIE with fitted α and charge corrections gives a smaller 
uncertainty than MM/GBSA for five ligands. In general, the charged ligands show a slightly 
larger uncertainty than the neutral ligands. For the full systems, the precision is often slightly 
better (1–2 kJ/mol) and in most cases, MM/GBSA has a lower uncertainty than LIE (not for 
Btn3 and Btn5). This better precision of the full system is unexpected considering that the 
simulations are only half as long (0.8 ns compared to 1.6 ns). This shows that the intrinsic 
standard deviation of the data is larger for the truncated system than for the full system.

It should be noted that the LIE terms are scaled by the parameters α and β. Without 
this scaling the uncertainty of the LIE energies are larger than that of the MM/PBSA energies 
(and the two methods would become more equal in efficiency). The fact that LIE with α =1.15 
gives only a slightly larger uncertainty than with α = 0.18 (by 0.1–0.3 kJ/mol), although the 
van der Waals term is scaled up by a factor of 1.15/0.18  6, shows that the precision of LIE is 
strongly dominated by the electrostatic term. This is also the reason why the optimisation of 
the LIE procedure does not need to be redone with the optimised α value. 

It is somewhat disappointing that even with 80 + 20 independent simulations of 1.6 ns 
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length, we have not been able to reach a precision of 1 kJ/mol for four of the ligands. In fact,  
for  Btn1,  which  has  the  poorest  precision,  this  would  require  390  simulations  or  620 ns 
simulation time. It is also notable that the precision of the MM/GBSA results are worse than 
in our previous investigation,23 for which a precision of 1 kJ/mol was reached for all seven 
ligands with 20–50 300 ps simulations of the complex. This emphasizes a specific short-
coming of LIE for this tetrameric protein: With LIE, we can only simulate one ligand at the 
time, whereas for MM/GBSA, we could obtain four affinity estimates from the simulation of 
the complex with four ligands. We employed that opportunity in the previous study, but in this 
study, we used the same simulations for both LIE and MM/GBSA. Moreover, it seems that the 
convergence of the MM/GBSA energy terms is slower for a neutralised and truncated protein. 

Affinities of individual subunits
We  have  previously  shown  that  MM/GBSA  estimates  employing  several  independent 
simulations  gave  identical  affinities  for  the  four  subunits  in  avidin  within  statistical 
uncertainty.23 It is of interest to see if the same holds for also LIE. The binding free energies 
for  the  four  subunits  are  shown  in  Tables  5  and  6,  for  the  truncated  and  full  systems 
respectively, using α =1.15. It is evident that the four subunits do not give the same binding 
affinities for the truncated systems: The four subunits give results that differ by up to 21–36 
kJ/mol for the charged ligands and by 5–8 kJ/mol for the neutral ones. This is much more than 
expected from the standard errors of the estimates, 2–4 and 1–2 kJ/mol, respectively. On the 
other  hand,  subunits  B  and D  give  binding  affinities  that  are  the  same within  statistical 
uncertainty (the difference is less than 3 kJ/mol) and the same applies to subunits A and C, 
although the difference is up to 5 kJ/mol. This indicates that the differences are caused by 
differences in the subunits,  probably the fact that subunits A and C have one less amino-
terminal residue than subunits B and D in the crystal structure. 

Surprisingly, for the full systems, the differences between the subunits are smaller, 2–9 
kJ/mol,  with  no  difference  between  the  charged  and  neutral  ligands.  In  this  case,  the 
differences are statistically significant only for Btn5–Btn7. Subunits B and D still give very 
similar results (within 2 kJ/mol), whereas the differences for subunits A and C are larger, up to 
6 kJ/mol for Btn2 (but they are not statistical significant at the 95% level). 

These  large  differences  between  the  subunits  for  LIE  led  us  to  check  also  the 
MM/GBSA results. From Tables 6 and 7, it can be seen that MM/GBSA actually give similar 
differences between the subunits as LIE, 2–28 kJ/mol differences for the truncated systems 
and 2–18 kJ/mol for the full systems. This is a surprising difference compared to our previous 
results,23 which  most  likely  is  caused  by  differences  in  the  setup  of  the  two  sets  of 
calculations, in particular the neutralisation of surface charges, which may emphasize the one-
residue  difference  between  the  subunits.  Moreover,  it  is  clear  that  the  differences  are 
amplified by the truncation of the protein. This is an important issue that will be the subject of 
future investigations of other proteins. 

Conclusions
In this study, we have designed a simulation protocol for the LIE method to reach a certain 
level of statistical precision in the predicted affinities, in the same way as in a previous study 
with  MM/GBSA.23 Our  results  indicate  that  for  this  biotin–avidin  system,  a  sampling 
frequency of ~5 ps and equilibration times of 0.1–1.0 ns are appropriate. By optimising the 
CPU time, we also suggest that rather short simulations should be used for the complex (50 ps 
after  equilibration),  but  longer  for  the  free  ligand,  ~300  ps.  Then,  a  proper  number  of 
independent simulations should be run until the desired precision is obtained. The sampling 
frequency and equilibration times are probably similar for most systems, whereas the length 
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of the production simulation may depend on the simulated system and the computational 
equipment.  Considering the long equilibration times observed for some systems, it  would 
probably have been better to first run one long equilibration of each avidin–ligand complex 
(1–5 ps), before the independent simulations were started by using different sets of starting 
velocities. Then, the equilibration for the individual simulations could most likely have been 
reduced, as was observed for galectin-3 with MM/GBSA.23

In parallel, similar calculations have been performed with the MM/GBSA approach, 
based on the same simulations. This allows us to compare the efficiency of these two popular 
end-point methods. We have reached several interesting conclusions:

• The correlation time of the LIE and MM/GBSA energies is similar.
• The equilibration time varies heavily with the ligand, but the two methods seem to 

require similar equilibration times.
• In general, LIE seems to be more efficient than MM/PBSA by a factor of 2–7 for the 

truncated systems, but by a factor of 1.0–2.4 for the full system (i.e. it gives the same 
statistical precision with a computational effort that is lower by these factors). The 
lower efficiency of MM/GBSA comes from the extra time required for the entropy 
calculation,  which  more  than  compensates  for  the  fact  that  LIE  requires  an  extra 
simulation (of the free ligand).

• On the other hand, in variance to MM/GBSA, LIE contains one empirical parameter, 
α. If the standard value (α = 0.18) is used, LIE gives very poor results for this test  
case, with negative correlation and PI. However, if α is fitted, LIE and MM/GBSA 
give similar MADtr, ~16 kJ/mol, although MM/GBSA still outperforms LIE for r2 and 
PI. This is mainly due to LIE problems with a single ligand, Btn4.

• LIE is more restrictive in the setup of the simulation: It requires that the size of the 
simulated systems is the same for the complex and the free ligand and also that the 
protein is neutralised in the simulations. Our results indicate that this neutralisation 
may slow the convergence and make the result different for the four subunits in avidin. 

• Moreover, LIE simulations are typically performed on truncated systems with a radius 
of ~25 Å.8 Our results indicate that such a truncation may also slow the convergence 
and emphasize differences between the subunits.

• The change of the water model,  the treatment of long-range electrostatics, and the 
neutralisation  of  the  protein  have  a  quite  large  effect  on  the  MM/GBSA binding 
energies (1–19 kJ/mol), much larger than the initial solvation, the starting velocities, 
as well as the protonation and rotation of residues.23 It remains to show with larger test 
sets which of these setups is preferred, but for the present systems, the current setup 
gives a somewhat better correlation and PI compared to the experimental results.

Thus, we can conclude that LIE is inherently more effective than MM/GBSA (giving a certain 
precision  at  a  smaller  expense  in  computation  time),  at  least  for  the  present  test  case. 
Considering that the avidin tetramer is rather large and that LIE is typically run on truncated 
proteins, it is likely that this conclusion is valid also for other proteins, although more tests are 
required to confirm this. However, if the entropy term in MM/GBSA is ignored, as have been 
done in many studies,5,59,60MM/GBSA is expected to become the more effective method. This 
might be an interesting alternative for MM/GBSA, especially as the entropy term has been 
criticized61 and it limits both the precision and the CPU consumption. 

On the other hand, we have seen that LIE depends on an empirical parameter and that 
it has more restrictions on the setup of the calculations. Clearly, MM/GBSA is disfavoured by 
the LIE setup used in this study, giving a slower convergence, and it may be more effective 
with  a  more  typical  MM/GBSA setup.  In  particular,  MM/GBSA may  obtain  four  energy 
estimates from each snapshot for this tetrameric protein. Even more seriously, it is clear that 
the setup of the calculations quite strongly affects the results. It remains to be shown on much 
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larger and more diverse test  sets  which of the setups are more realistic and which of the 
MM/GBSA and the LIE methods give the more accurate results.
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Table 1. Optimum estimates of nprod and nav, together with the corresponding sav (kJ/mol) and 
CPU (h) estimates for LIE and MM/GBSA, following the procedure described in the text 
(Eqns. 6–8), using f = 5 ps and the teq values listed in Table S1, and averaging ssimu and CPU 
over all seven ligands. nav and CPU are calculated for a desired precision of (sav = 1 kJ/mol). 

System Method nprod nav ssimu CPU

Truncated MM/GBSA 6 366 19.1 3135

LIE PL 12 135 11.6 1000

LIE L 67 7 2.6 54

LIE total 142 1053

Full MM/GBSA 10 168 13.0 5983

LIE PL 11 91 9.6 3218

LIE L 60 10 3.1 715

LIE total 101 3933

18



Table 2. Binding free energies for the various methods on the truncated systems in kJ/mol. A 
negative r2 indicates that r is negative. 

LIE LIE (ΔGcc) LIE (opt) LIE (ΔGcc,opt) MM/GBSA

α 0.18 0.18 1.15 1.15

With ΔGcc no yes no yes

Btn1 -9.7 ±2.0 -11.7 ±2.0 -117.1 ±2.2 -119.0 ±2.2 -125.2 ±2.3

Btn2 2.4 ±2.0 0.3 ±2.0 -107.9 ±2.2 -109.9 ±2.2 -105.3 ±2.7

Btn3 -5.7 ±1.6 -7.7 ±1.6 -105.8 ±1.7 -107.8 ±1.7 -111.4 ±1.8

Btn4 -19.7 ±1.0 -19.7 ±1.0 -133.2 ±1.3 -133.2 ±1.3 -98.1 ±1.1

Btn5 -10.9 ±0.7 -10.9 ±0.7 -86.6 ±0.9 -86.6 ±0.9 -54.2 ±2.3

Btn6 -16.4 ±0.5 -16.4 ±0.5 -86.0 ±0.7 -86.0 ±0.7 -58.6 ±1.3

Btn7 -11.7 ±0.7 -11.7 ±0.7 -45.0 ±0.7 -45.0 ±0.7 -14.2 ±0.7

MAD 34.7 ±0.5 34.7 ±0.5 52.4 ±0.6 53.3 ±0.6 37.4 ±0.7

MADtr 24.8 ±0.6 24.8 ±0.6 16.2 ±0.5 15.7 ±0.4 16.2 ±0.6

r2 0.27 ±0.08 0.27 ±0.08 0.38 ±0.02 0.41 ±0.02 0.76 ±0.01

PI -0.70 ±0.15 -0.70 ±0.15 0.69 ±0.02 0.69 ±0.02 0.95 ±0.01
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Table 3. Binding free energies using various methods on the full systems in kJ/mol. A 
negative r2 indicates that r is negative. 

LIE LIE (ΔGcc) LIE (opt) LIE (ΔGcc,opt) MM/GBSA

α 0.18 0.18 1.15 1.15

With ΔGcc no yes no yes

Btn1 -2.5 ±1.5 -9.5 ±1.5 -109.3 ±1.7 -116.4 ±1.7 -123.5 ±1.4

Btn2 9.3 ±1.4 2.1 ±1.4 -103.6 ±1.6 -110.7 ±1.6 -114.4 ±1.4

Btn3 2.5 ±1.1 -4.2 ±1.1 -94.2 ±1.3 -100.9 ±1.3 -106.3 ±1.5

Btn4 -14.2 ±1.3 -14.2 ±1.3 -121.0 ±1.6 -121.0 ±1.6 -93.3 ±1.1

Btn5 -9.7 ±0.9 -9.7 ±0.9 -82.7 ±1.1 -82.7 ±1.1 -56.2 ±1.2

Btn6 -15.0 ±0.7 -15.0 ±0.7 -81.3 ±0.9 -81.3 ±0.9 -53.6 ±0.7

Btn7 -13.0 ±0.8 -13.0 ±0.8 -43.0 ±0.9 -43.0 ±0.9 -13.5 ±0.8

MAD 38.9 ±0.4 35.9 ±0.4 45.8 ±0.5 48.8 ±0.6 36.7 ±0.5

MADtr 27.6 ±0.4 24.2 ±0.4 15.9 ±0.5 14.1 ±0.5 16.1 ±0.4

r2 0.53 ±0.06 0.33 ±0.08 0.39 ±0.02 0.50 ±0.03 0.79 ±0.01

PI -0.75 ±0.04 -0.75 ±0.11 0.69 ±0.02 0.69 ±0.04 1.00 ±0.01
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Table 4. Results for LIE obtained after optimising the α parameter with respect to the four 
quality measures MAD, MADtr, r2, and PI.

Optimised measure  α MAD MADtr r2 PI

MAD 0.70 17.9 16.5 0.23 0.64

MADtr 1.15 52.4 16.2 0.38 0.69

r2 5.00 377.0 91.9 0.50 0.61

PI 1.10 35.3 16.2 0.34 0.69

Kollman et al.24 1.00 35.3 16.3 0.34 0.65
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Table 5. Binding free energies (kJ/mol) for each subunit of avidin in the truncated 
simulations. For LIE, α = 1.20 was used.

LIE MM/GBSA

A B C D A B C D

Btn1 -132.1 ±2.3 -99.6 ±3.0 -135.8 ±3.1 -100.8 ±2.7 -128.9 ±3.2 -112.8 ±3.5 -136.2 ±4.0 -120.6 ±2.8

Btn2 -121.9 ±3.4 -92.5 ±3.8 -124.6 ±3.2 -92.5 ±2.6 -107.0 ±2.0 -86.0 ±2.7 -104.4 ±1.1 -96.9 ±2.3

Btn3 -116.1 ±2.7 -95.6 ±2.4 -115.6 ±3.0 -96.0 ±2.3 -89.8 ±4.7 -115.3 ±2.4 -97.3 ±5.7 -110.6 ±2.0

Btn4 -137.0 ±2.5 -133.5 ±1.9 -131.9 ±2.4 -130.3 ±2.1 -99.8 ±1.4 -98.1 ±1.6 -99.5 ±1.6 -100.3 ±1.5

Btn5 -83.5 ±1.8 -89.3 ±1.4 -83.0 ±1.5 -90.6 ±1.4 -45.5 ±2.7 -66.6 ±2.7 -39.1 ±3.7 -63.4 ±1.7

Btn6 -86.3 ±1.1 -86.7 ±1.2 -82.9 ±1.6 -88.1 ±1.1 -58.6 ±3.0 -58.9 ±1.3 -52.7 ±2.0 -56.6 ±1.6

Btn7 -41.5 ±0.8 -48.1 ±0.6 -42.2 ±1.0 -48.0 ±0.6 -9.1 ±1.0 -21.3 ±0.7 -10.2 ±0.8 -20.5 ±0.8
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Table 6. Binding free energies (kJ/mol) for each subunit of avidin in the simulations of the 
full system. For LIE, α = 1.15 was used.

LIE MM/GBSA

A B C D A B C D

Btn1 -108.8 ±2.9 -109.2 ±1.8 -109.1 ±2.9 -110.3 ±2.4 -116.8 ±3.4 -122.3 ±1.2 -121.5 ±2.7 -118.2 ±2.8

Btn2 -106.8 ±3.0 -103.5 ±1.9 -101.2 ±2.9 -102.7 ±2.6 -119.0 ±1.6 -112.4 ±0.7 -105.1 ±1.6 -101.5 ±1.6

Btn3 -95.0 ±3.1 -95.9 ±1.4 -91.2 ±2.6 -94.7 ±1.4 -100.4 ±4.2 -102.6 ±1.1 -99.5 ±3.2 -103.2 ±0.7

Btn4 -117.9 ±2.6 -124.4 ±1.9 -118.1 ±2.6 -124.2 ±1.9 -92.3 ±2.2 -91.9 ±2.0 -93.7 ±2.0 -93.7 ±2.1

Btn5 -77.9 ±1.6 -87.0 ±1.4 -80.0 ±1.8 -86.3 ±1.3 -51.0 ±2.6 -61.2 ±1.4 -48.3 ±1.9 -58.6 ±1.8

Btn6 -78.9 ±1.4 -83.1 ±0.9 -77.6 ±1.3 -85.1 ±1.2 -49.9 ±1.1 -56.0 ±0.8 -49.4 ±1.4 -58.2 ±0.9

Btn7 -39.6 ±1.8 -46.8 ±0.5 -37.9 ±1.5 -47.0 ±0.4 -9.4 ±1.2 -17.4 ±0.8 -7.7 ±1.3 -19.2 ±0.4
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Figure 1. The seven biotin analogous studied, a) biotin (Btn1), b) to g) Btn2–Btn7. The 
numbers shown are experimental affinities in kJ/mol.36 
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Figure 2. Correlation time of interaction energies of the truncated systems (the results for the 
full systems are similar), a) 〈EvdW

L-S
〉L , b) 〈EvdW

L-S
〉PL , c) 〈E ele

L-S
〉L , d) 〈E ele

L-S
〉PL , and e) 

〈GMM/GBSA 〉
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Figure 3. Correlation between predicted and experimental free energies of the seven biotin 
analogues for the truncated systems. The LIE results are obtained with α = 1.15 and with the 
ΔGcc corrections.
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