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Abstract: 26 
  27 Hypoxia-induced signaling is important for normal and malignant hematopoiesis. The 28 transcription factor hypoxia-inducible factor-1α (HIF-1α) plays a crucial role in 29 quiescence and self-renewal of hematopoietic stem cells (HSCs) as well as leukemia-30 initiating cells (LICs) of acute myeloid leukemia (AML) and chronic myeloid leukemia 31 (CML). We have investigated the effect of HIF-1α loss on the phenotype and biology of 32 FLT-3ITD-induced myeloproliferative neoplasm (MPN). Using transgenic mouse models, 33 we show that deletion of HIF-1α leads to an enhanced MPN phenotype reflected by 34 higher numbers of white blood cells, more severe splenomegaly and decreased 35 survival. The proliferative effect of HIF-1α loss is cell-intrinsic as shown by 36 transplantation into recipient mice. HSCs loss and organ specific changes in number 37 and percentage of long-term hematopoietic stem cells (LT-HSCs) were the most 38 pronounced effects on a cellular level after HIF-1α deletion. Furthermore, we found a 39 metabolic hyperactivation of malignant cells in the spleen upon loss of HIF-1α. Some of 40 our findings are in contrary to what has been previously described for the role of HIF-41 1α in other myeloid hematologic malignancies and question the potential of HIF-1α as 42 a therapeutic target. 43  44 
 45 
 46 
 47 
 48 
 49 
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Introduction:  50 Hypoxia has been proposed to be a physiologic condition in the adult hematopoietic 51 stem cell (HSC) niche and previous publications have provided experimental evidence 52 for this hypothesis1. Additionally, it has been shown that hypoxia signaling, through 53 hypoxia-inducible factors (HIFs), is required for proper HSCs function, and that this 54 might be mediated by HIF-induced pyruvate dehydrogenase kinase (PDK) and vascular 55 endothelial growth factor (VEGF) expression2-4. Further dissection of the HIF signaling 56 pathway has indicated that HIF-1α, but not HIF-2α, seems to be the major player in 57 HSCs self-renewal5.  Interestingly, deletion of both members of the HIF family had 58 surprisingly little effect on hematopoiesis in steady state and functional HSC defects 59 were only apparent after serial transplantations5.   60 Normally, HIF-1α activity is regulated on a post-transcriptional, post-translational 61 level by oxygen dependent hydroxylation of two proline residues in the oxygen-62 dependent domain (ODD) of the HIF-1α subunit followed by binding of the von Hippel 63 Lindau (VHL) protein and degradation by the ubiquitination pathway6. Other 64 mechanisms than oxygen tension might regulate HIF-1α expression in the HSC niche. 65 Cytokines, like stem cell factor (SCF) and thrombopoetin (TPO) that are highly 66 expressed in the adult bone marrow (BM) niche have been shown to lead to HIF-1α 67 stabilization7, 8. Moreover, the homeobox gene Meis1, highly expressed in HSCs, also 68 stabilizes HIF-1α contributing to the quiescence of HSCs9. 69 Members of the HIF family have been proposed to be crucial for self-renewal of human 70 acute myeloid leukemia-initiating cells (AML-ICs). shRNA expression against HIF-1/2α 71 in human AMLs showed impaired engraftment in NOD/SCID mice10, 11. Whether HIF 72 was a direct target of the genetic alterations in the used AML samples has not been 73 
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addressed in these studies. On the other hand, Meis1, commonly overexpressed in 74 AML, induces HIF-1α stabilization, and accordingly, its deletion in transgenic mice 75 leads to HSCs exhaustion due to their inability to up-regulate HIF-1α9, 12.  76 Additionally, it has been shown that the t(9;21) fusion protein BCR-ABL signals 77 directly to HIF-1α leading to its activation13.  Deletion of HIF-1α in a murine model of 78 chronic myeloid leukemia (CML) showed that CML-initiating cells (CML-ICs) lacking 79 HIF-1α failed to generate leukemia in secondary transplanted mice arguing for an 80 important role of HIF-1α in CML-ICs self-renewal14.  81 Taking all these data into consideration, HIF-1α might be a good therapeutic target for 82 different types of leukemia if HSCs and leukemic initiating cells (LICs) had a different 83 requirement for HIF signaling. Since previous studies have used methods (shRNA 84 expression, unspecific inhibitors of HIF in human AML cells or retroviral 85 transduction/transplantation assays)10, 11 that could bear potential technical problems 86 in the evaluation of LICs self-renewal, we have tested the requirement of HIF-1α in 87 myeloproliferative neoplasms (MPN) using a FLT-3ITD transgenic mouse model. 88 Internal tandem duplications (ITD) in the FLT3 gene are found in approximately 25% 89 of AML cases, constitutively activating this receptor and predicting increased relapse 90 rates and reduced overall survival15. 91 Here, we show that loss of HIF-1α leads to an enhanced FLT-3ITD-induced MPN 92 phenotype, indicated by higher numbers of white blood cells (WBC) and myeloid cells, 93 more severe splenomegaly and a shorter survival. The increased proliferation is cell-94 intrinsic and this phenotype transplantable to primary recipient mice. Our data 95 question the role of HIF-1α as a target to eliminate LICs in MPN and show that loss of 96 HIF-1α can aggravate the disease.  97 
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Materials and methods: 98 
 99 
Transgenic mice 100 
Hif-1αflox/flox mice16 were crossed with the interferon-inducible Mx1-Cre mice17 and 101 with the knock-in Flt-3ITD mice18 to generate conditional knock-out Hif-1αflox/flox; Mx1-102 
Cre; Flt-3ITD/+ mice. All animals were bred and maintained in accordance with Lund 103 University’s ethical regulations (Ethical permit M86-12). 104 
 105 
Monitoring of mice and bone marrow transplantation assays 106 Leukemia development was analyzed by measuring myeloid cells and total WBC in 107 peripheral blood (PB) every 4 weeks. Myeloid cells were analyzed by flow cytometry 108 and WBC counts were determined by a cell counter (KX-21N, Sysmex, Norderstedt 109 Germany). 110 For HSC transplantation, 8 to 12-week-old B6SJL (CD45.1) recipient mice were lethally 111 irradiated with 900 cGy 4-15 hours prior to transplantation. BM c-kit+ cells from 112 donors (CD45.2) were isolated using the MACS® magnetic separation system and anti-113 c-kit magnetic beads (Miltenyi Biotec, Bergisch Gladbach, Germany). 5 x 105 c-kit+ cells 114 were injected into the tail vein of recipient mice accompanied by 2 x 105 freshly 115 isolated total BM supporting cells from B6SJL x C57BL/6J (CD45.1-CD45.2) mice. 116 Donor chimerism and myeloproliferative development were determined after 117 transplantation by PB analysis every 4 weeks.  118 For the transplantation of the cells kept in vitro, c-kit+ cells were cultured in serum free 119 expansion media (StemCell Technologies, Vancouver, BC, Canada) supplemented with 120 20 ng/mL murine interleukin 3 (PeproTech, Stockholm, Sweden), 50 ng/mL human 121 
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interleukin 6 (PeproTech), 50 ng/mL human TPO (PeproTech) and 50 ng/mL murine 122 SCF (PeproTech) for 48 hours before transplant. 123 Animals that had to be euthanized due to non-MPN-associated symptoms were 124 excluded from the survival analysis. 125 Deletion of Hif-1α was verified by polymerase chain reaction (PCR) analysis of DNA 126 from BM cells of primary animals using the following primers: HIFΔ-forward: 5’ –127 GCAGTTAAGAGCACTAGTTG-3’ and HIFΔ-reverse: 5’ –TTGGGGATGAAAACATCTGC-3’. 128  129 
Flow cytometry analysis 130 Expansion of the MPN and engraftment of transplanted cells were monitored by flow 131 cytometry analysis of PB, BM and spleen cells. PB samples were lysed with ammonium 132 chloride (StemCell Technologies) prior to staining. 4,6 diamidino-2-phenylindole 133 (DAPI) (Sigma-Aldrich, St. Louis, MO, USA) or 7-amino-actinomycin D (7-AAD, BD 134 Pharmingen, San Diego, CA, USA) was used to exclude dead cells. For chimerism and 135 lineage analysis the following antibodies were used: Gr1-PE, -PECy5 (RB6-8C5), Mac1-136 PE, -PECy5 (M1/70), B220-PE, -APC, -PECy5 (RA3-6B2), CD3-PE, -PECy5 (145-2C11), 137 Ter119-PECy5 (TER-119), CD45.1-PECy7 (A20), Sca1-BV, -APC (D7), CD48-FITC 138 (HM48-1) and CD150-APC, -PECy7 (TC15-12F12.2) from BioLegend (San Diego, CA, 139 USA) and CD45.2-APCe780 (104) and c-kit-APCe780 (2B8) from eBiosciences (San 140 Diego, CA, USA).  141  142 For cell cycle analysis, cells were fixed in 0.4% formaldehyde (Merck, Darmstadt, 143 Germany) and permeabilized with 0.1% Triton-X (Sigma-Aldrich). Thereafter, cells 144 were stained with Ki-67-PE (B56) antibody (BD Pharmingen) and DAPI (Sigma-145 Aldrich). Cellular reactive oxygen species (ROS) production was analyzed using 146 
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CellROX® Deep Red Reagent (Life Technologies, Stockholm, Sweden); mitochondrial 147 ROS production was analyzed using MitoSOXTM Red mitochondrial superoxide 148 indicator (Life Technologies) at 2 μM concentration; mitochondrial activity was 149 evaluated using MitoTracker® Deep Red FM probe (Life Technologies) at 10 nM 150 concentration; apoptosis analysis was performed using the BD PharmingenTM PE 151 Annexin Apoptosis Detection Kit (BD Pharmingen); all according to manufacturer’s 152 instructions. Samples were analyzed using a FACSCantoII (BD Biosciences, Stockholm, 153 Sweden) and data was analyzed with FlowJo software (TreeStar, Ashland, OR, USA ). 154  155 
Histology 156 For morphological analysis, cells from BM and spleen were subjected to cytospin 157 preparation onto glass slides and PB smears were stained with May-Grünwald (Merck) 158 and Giemsa (Merck). For microscopic examination, an Olympus IX70 microscope and 159 an Olympus DP72 camera were used (Olympus, Tokyo, Japan).  160  161 
Statistical analysis 162 All data are expressed as the mean ± SEM. Differences between groups were assessed 163 by unpaired two-tailed Student’s t-test. Statistical analysis of survival curves was 164 performed using Mantel-Cox log-rank test. All analyses were performed with Prism 165 software version 6.0 (GraphPad Software, San Diego, CA, USA). Animal cohort size was 166 chosen according to the published literature and our previous studies. Since all 167 experiments were performed with mice homogeneous regarding strain and age, no 168 randomization method was used. Since this study did not include objective 169 measurements, no blinding was performed. 170 
 171 
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Results: 172 
 173 
Spontaneous deletion of Hif-1α by Mx1-Cre in the FLT-3ITD mice  174 To investigate the role of HIF-1α in FLT-3ITD-induced MPN and self-renewal of LICs, Flt-175 
3ITD knock-in mice were crossed with Hif-1α conditional knock-out mice and Mx1-Cre 176 mice to obtain Flt-3ITD/+; Hif-1αflox/flox; Mx1-Cre mice and Flt-3ITD/+; Hif-1αflox/flox control 177 mice (refer hereafter as Hif-1αΔ/Δ and Hif-1α+/+, respectively). The phenotype of the 178 FLT-3ITD-induced MPN mouse model resembles human chronic myelomonocytic 179 leukemia (CMML), with an expansion of the myeloid/monocytic compartment18. We 180 intended to delete the Hif-1α gene using poly(deoxyinosinic/deoxycytidylic) acid 181 (pIpC) for induction of the Cre recombinase under the control of the Mx1 promoter. 182 However, investigation of untreated mice showed that recombination had occurred 183 spontaneously, probably due to activation of signaling pathways downstream of the 184 
Flt3 receptor, triggering an interferon response and leading to the expression of Cre 185 recombinase (Figure 1a and Supplementary Figure S1). Due to the very high 186 spontaneous deletion frequency of the floxed HIF-1α gene none of the mice were 187 treated with pIpC. 188 
 189 
FLT-3ITD-induced MPN is aggravated by the loss of HIF-1α 190 Primary Hif-1αΔ/Δ mice surprisingly showed a more severe FLT-3ITD MPN phenotype 191 than Hif-1α+/+ animals. While control mice suffered from a chronic MPN that mice 192 normally did not succumb to, Hif-1αΔ/Δ mice started to die at week 26 of age, reaching 193 50% of survival at week 68 (Figure 1b). This enhanced MPN phenotype was also 194 reflected in higher WBC counts (Figure 1c) and a higher percentage of Gr1+/Mac1+ 195 
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cells (myeloid cells) in PB at 8, 12, 16 and 20 weeks of age (Figure 1d-e and 196 Supplementary Figure S2). Blood smears also showed more mature granulocytes in 197 
Hif-1αΔ/Δ mice (Figure 1f).  198 20-week-old mice were sacrificed to analyze other MPN symptoms. Bones from mice 199 lacking HIF-1α presented pale aspect (femurs, tibiae and hips) (Figure 2a), probably 200 due to a combination of anemia (Table 1) and infiltration of myeloid cells in the BM. 201 FLT-3ITD-induced MPN in the absence of HIF-1α was characterized by a more severe 202 splenomegaly and hepatomegaly indicated by higher spleen and liver weights (Figure 203 2a-b) in Hif-1αΔ/Δ mice. Percentages of Gr1+/Mac1+ cells in BM and spleen were also 204 increased upon loss of HIF-1α (Figure 2c-d). Taken together, our data indicate that loss 205 of HIF-1α in an FLT-3ITD-induced MPN model accelerates disease progression and 206 aggravates its severity.  207  208 
Loss of HIF-1α affects cell cycle status of FLT-3ITD-induced MPN cells 209 To investigate whether higher number of myeloid cells in PB, BM and spleen was due 210 to increased proliferation or decreased apoptosis, we first investigated cell cycle status 211 in malignant myeloid cells from these tissues. Cell cycle analysis revealed that there 212 was a higher percentage of cycling cells in spleen (G2/S/M phase) of Hif-1αΔ/Δ mice 213 compared to controls (Figure 2e and Supplementary Figure S3). Interestingly we 214 observed no differences in BM cells from mice with different HIF-1α status. Overall 215 these data indicate that loss of HIF-1α in FLT-3ITD-induced MPN results in an increased 216 number of Gr1+/Mac1+ myeloid cells by enhance proliferation in spleen as shown by a 217 higher percentage of cycling cells, even when expressing maturation surface markers.  218 
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When studying cell death of these neoplastic myeloid cells, we observed that loss of 219 HIF-1α leads to a decrease in apoptosis both in BM and spleen (Figure 2f-g).  220 Our data point to a dual role of HIF-1α loss in the observed phenotype by increasing 221 the percentage of cells in active cycling and at the same time decreasing apoptosis 222 resulting in an overall more severe MPN phenotype.  223  224 
Loss of HIF-1α  leads to an organ-specific change in stem and progenitor cell 225 
numbers 226 It has been previously shown that Flt-3ITD/+ mice present an expansion of multi-potent 227 progenitor cells (MPPs) and a severe decrease in long-term hematopoietic stem cells 228 (LT-HSCs) using either CD48/CD150 (SLAM) or FLT-3/CD34 staining of Lin-, Sca-1+, c-229 Kit+ (LSK) cells15, 19, 20. Having shown that deletion of Hif-1α leads to an enhanced FLT-230 3ITD-induced MPN we wanted to further characterize at which level of the 231 hematopoietic hierarchy the effects occur. For this reason we analyzed and 232 enumerated different hematopoietic stem and progenitor populations using staining 233 for LSK and SLAM markers. Since expression of FLT-3ITD leads to an expansion of 234 mature granulocytes in BM resulting in a change of cellular composition, both, 235 percentages and total numbers of cells were analyzed (Figure 3a-c and Supplementary 236 Figure S4). We observed the previously described reduction of LT-HSCs (LSK CD48- 237 CD150+) in FLT-3ITD expressing mice compared to wild type (wt) mice, but even to a 238 bigger extent when Hif-1α was deleted. When comparing BM cells from Hif-1αΔ/Δ mice 239 to controls, we found an expansion of the more mature compartment (LK cells: Lin- c-240 Kit+ Sca1-) and a progressive decrease towards LT-HCSs, through the different levels 241 of differentiation (LSK and MPPs (defined as LSK CD48- CD150-)). In spleen, the 242 
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scenario was different, showing an increment (although non-significant in some cases) 243 of cells of all these different undifferentiated populations in the Hif-1αΔ/Δ mice. 244 When analyzing cell cycle status of these populations, we only observed higher 245 percentage of cycling cells (G1-G2 phase) in Hif-1αΔ/Δ mice in the LSK population in 246 spleen (Figure 3d and Supplementary Figure S5). These results, together with data 247 presented in Figure 2e, indicate that the production of malignant cells in the Hif-1αΔ/Δ 248 mice occurs mainly in the spleen through proliferation of committed progenitors. 249 Thus, the lost of HIF-1α changes the phenotype of FLT-3ITD malignancies in terms of 250 proportions and location of primitive cells. 251 
 252 
The effect of HIF-1α loss on FLT-3ITD-induced MPN is cell-intrinsic  253 To investigate whether the aggravation of the FLT-3ITD-induced MPN by HIF-1α loss is 254 a cell intrinsic effect or a result mediated by cells in the microenvironment, and if this 255 loss results in a defect in LICs homeostasis and self-renewal, transplantation assays 256 were performed. To this end, c-kit+ BM cells from the different genotypes were 257 transplanted into lethally irradiated recipient wt mice.  258 The disease was transplantable and additionally, the acceleration of the MPN 259 phenotype by loss of HIF-1α was also observed in transplanted mice with Hif-1αΔ/Δ 260 cells, arguing for a cell-intrinsic effect of HIF-1α on FLT-3ITD-induced MPN (Figure 4a 261 and Supplementary Figure S6). However, the reduction in LT-HSCs observed in 262 transgenic animals (Supplementary Figure S6f) is more severe in transplanted mice 263 and accordingly, secondary recipients showed a loss of Hif-1αΔ/Δ donor contribution to 264 PB (Supplementary Figure S7). The fact that Hif-1αΔ/Δ FLT-3ITD MPN was transplantable 265 into primary recipients indicates that loss of HIF-1α did not result in a defect in LICs 266 
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engraftment, although the numbers of LT-HSCs are severely affected in primary 267 recipients. Whether the effect in the secondary recipients is due to a loss of LIC self-268 renewal or a displacement of LT-HSC by expanding MPPs in the bone marrow remains 269 elusive.  270 Previous studies, investigating the role of HIF-1α in CML, have used a retroviral 271 transduction/transplantation model that requires cycling of the hematopoietic stem 272 and progenitor cells (HSPCs), which is normally induced by in vitro culturing in the 273 presence of cytokines. To test whether these experimental differences could explain 274 the conflicting results between our experiments and previously published data, we 275 cultured c-kit+ BM cells in presence of cytokines, as normally performed when using 276 the transduction/transplantation method, and transplanted afterwards. Mice 277 transplanted with in vitro cultured Hif-1αΔ/Δ BM cells showed, not only, a similar 278 phenotype regarding the expansion of myeloid cells over time, but also a shorter 279 survival (P=0.0046)(Figure 4b and Supplementary Figure S8a-b). Mice transplanted 280 with Hif-1αΔ/Δ cultured BM cells started to die of progressive MPN around week 20 281 with most of the animals dead by week 40, while no animal died in the control group. 282 To evaluate the level of competition in our transplantation experiments, we calculated 283 the number of LT-HSCs injected in each group. According to the obtained values in 284 Figure 3 of c-kit+ cells and LT-HSCs in wt, Hif-1α+/+ and Hif-1αΔ/Δ animals, we estimated 285 that the ratio of competitor:donor cells was 1:3 for Hif-1αΔ/Δ and 1:65 for Hif-1α+/+ cells 286 respectively. Beside the higher competition in the Hif-1αΔ/Δ group, we observed similar 287 levels of donor contribution to the myeloid compartment 20 weeks post-288 transplantation (Supplementary Figure S8c). To analyze donor contribution to the 289 other cell lineages discarding the effect of the percentage variation when one 290 
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population is highly increased, we calculated donor contribution to each lineage in 291 total number of cells. We observed equal contribution to the T cells from Hif-1α+/+ and 292 
Hif-1αΔ/Δ animals. However, we observed more contribution from Hif-1αΔ/Δ donor cells 293 to myeloid and less to B cell lineage most likely due to the MPN phenotype resulting in 294 an expansion of myeloid cells at the expense of B-cells (Supplementary Figure S8d).  295 In summary, our data indicate that FLT-3ITD-induced MPN is cell-intrinsic and 296 transplantable, independently of HIF-1α status. Self-renewal of LICs was not lost even 297 when cells were cultured in vitro for 48 hours prior to primary transplantations, 298 although LT-HSCs numbers are highly reduced in recipient mice transplanted with Hif-299 
1αΔ/Δ. 300  301 
HIF-1α status influences mitochondrial activity and ROS levels in FLT-3ITD-302 
induced MPN 303 Mitochondrial respiratory chain constitutes the main intracellular source of ROS in 304 most of the tissues. Because HIF-1α status influences the metabolism of cells3, which 305 could affect the malignant properties of the FLT-3ITD cells, we examined mitochondrial 306 membrane function and levels of ROS of these neoplastic myeloid cells. Two different 307 tests showed an increment of cellular and mitochondrial ROS levels in Hif-1αΔ/Δ mice in 308 BM and an opposite effect in spleen (Figure 5a-b).  309 According to mitochondrial membrane function, we found three well-defined different 310 populations, named as M1, M2 and M3 (Figure 5c). Whereas in BM there was an 311 increase in the population with less mitochondrial activity (M1) when Hif-1α is 312 deleted, we observed a reduction of this population in the splenic myeloid cells. This 313 
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could be indicating that high ROS production is a result of higher mitochondrial 314 function caused by higher metabolic activity of Hif-1αΔ/Δ cells. 315 Together this data could indicate a metabolic adaptation of these malignant cells to 316 their new niches and an improvement of their tumorigenic capacities (less quiescence 317 and more proliferation) when HIF-1α is lost in these cells. 318   319 
Discussion:  320 Hypoxia signaling, mainly mediated by transcription factors HIF-1α and HIF-2α and 321 their target genes, has been shown to play an important role in stem cell biology, 322 particularly in normal and malignant HSPCs. Previous work has provided evidence that 323 HIF-1α is required for HSCs quiescence and self-renewal2 as well as HIF-2α  has a role 324 in protecting HSCs from endoplasmic reticulum stress-induced apoptosis11. 325 Surprisingly, loss of HIF-1α function (and combined loss of HIF-1α and HIF-2α) seems 326 rather weak since the phenotype comes only apparent after challenging HSCs by serial 327 transplantation2, 5.  328 Additionally, it has been demonstrated that HIF might play a role in murine and human 329 leukemia. Inhibitors and shRNA against HIF-1α and HIF-2α have been used to show 330 the requirement of these two transcription factors in human AML-ICs self-renewal and 331 ability to induce AML in immune-compromised mice10, 11.  332 The concept to target HIF in AML is intriguing but whether there is a therapeutic 333 window for the treatment of leukemia by targeting HIF-1/2α without inducing major 334 hematologic toxicity has not been extensively studied. It also remains elusive whether 335 HIF can function as a therapeutic target for all genetic subtypes of AML. It has been 336 shown that some genetic alterations in AML stabilize HIF in a hypoxia-independent 337 
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manner, making these specific subtypes maybe prime targets for therapy against HIF. 338 Requirement of HIF-1α for CML-ICs self-renewal has been confirmed using retroviral 339 overexpression of BCR-ABL oncogene in BM cells from HIF-1α conditional knock-out 340 mice14. All these approaches have some technical caveats that could influence the 341 viability of LICs. First, inhibitors of HIF-1α are rather unselective making it difficult to 342 evaluate whether their effect is primarily caused by HIF-1α inhibition. Expression of 343 shRNA against HIF family members requires retroviral transduction of AML-LICs and 344 might have off-target effects even though scrambled shRNA was used as control. 345 Retroviral transduction of BM cells requires cytokine stimulation of HSPCs in vitro, 346 which can change the properties of these cells. Therefore, we have investigated the role 347 of HIF-1α in FLT-3ITD-induced MPN using just transgenic mouse models for both 348 genetic alterations.  349 The first unexpected result was a spontaneous deletion of the floxed Hif-1α gene in Flt-350 
3ITD; Mx1-Cre background. We assume that FLT-3ITD signaling triggers an interferon 351 response that leads to activation of Cre recombinase via activation of Mx1 promoter. 352 Our finding is in accordance with the published literature20, 21 in which mice with 353 either Runx1flox/flox or Npm1flox-cA/+ in combination with a Flt-3ITD and Mx1-Cre genotype 354 develop AML spontaneously.  355 In contrary to the previously described role of HIFs in LICs of AML and CML, we found 356 that HIF-1α lost exaggerates FLT-3ITD-induced MPN phenotype, as indicated by a 357 shorter survival, higher number of myeloid cells in PB, BM and spleen, leading to a 358 more severe splenomegaly. 359 It has been previously shown that Flt-3ITD knock-in mice have an expansion of the 360 myeloid progenitor compartment while the LT-HSC population was severely 361 
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decreased15, 19, 20. We observed that this effect is even more aggravated when Hif-1α is 362 deleted. Surprisingly, reduction of LT-HSCs was not associated with a dramatic loss of 363 LICs homeostasis, since the MPN could be transplanted into primary recipient animals 364 even after in vitro incubation. Interestingly, transplanted MPNs lacking HIF-1α showed 365 an even more aggressive phenotype as indicated by a shorter survival of transplanted 366 mice. Whether the reduction in LT-HSCs in the bone marrow of primary recipients and 367 the associated low contribution of Hif-1αΔ/Δ cells in the secondary recipients is due to a 368 defect in self-renewal or a displacement by progenitors and mature myeloid cells 369 needs further investigation. 370 Hypoxia-induced HIF expression has been linked to metabolic switch due to a shift 371 from oxidative phosphorylation (OXPHOS) to glycolysis, an effect that has been first 372 described by Warburg and carries his name22. Tumors that become hypoxic heavily 373 depend on this mechanism but even tumors that are not hypoxic switch to 374 energetically very inefficient glycolysis for reasons that still remain elusive. Therefore, 375 we investigated the metabolic profile (mitochondrial function and ROS levels) of FLT-376 3ITD-MPN cells lacking HIF-1α. It has been described that changes in these parameters 377 can affect self-renewal and differentiation of HSCs. For instance, when mitochondrial 378 potential is blocked, HSCs are unable to initiate differentiation23 and high levels of ROS 379 force cells to go out of quiescence24, 25. We found a correlation between cycling profile, 380 ROS levels an mitochondrial function in FLT-3ITD-MPN cells (Figure 5d), indicating a 381 more active status of Hif-1αΔ/Δ cells in spleen, the main (malignant) hematopoietic 382 organ in animals with MPN and leading to a more aggressive disease.  383 The fact that, in animals with the MPN, hematopoiesis is taking place in an 384 extramedullary niche (spleen), with very different microenvironmental properties 385 
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from the BM, including oxygen tension, lead us to postulate that these observed 386 differences are established by cell-intrinsic mechanisms that stabilize HIF-1α, 387 imprinted already in the primary niche (BM) or by originating genetic alterations of 388 the malignancy. 389 These results are in concordance with our recently findings regarding the role of HIF-390 1α in AML pathogenesis using oncogenes that either do or do not signal directly 391 towards HIF-1α. Expression of MLL-AF9 and MEIS1/HOXA9, that are supposedly 392 activating HIF-1α, and AML/ETO9a, a truncated version of the AML1/ETO fusion 393 protein with no known connection to HIF-1α, induced AML independent of HIF-1α 394 status26. HIF-1α was not needed for LIC self-renewal, but loss of HIF-1α rather lead to 395 an accelerated and more severe phenotype, similar to the observations made for the 396 FLT-3ITD -induced MPN model described in this paper.   397 Based on previous studies, it has been proposed that HIF might be used as molecular 398 therapeutic target to interfere with self-renewal of LICs.  Our data indicate that 399 targeting HIF-1α in FLT-3ITD-induced MPN rather leads to disease acceleration and a 400 more severe phenotype. Whether the inhibition of HIF in combination with 401 chemotherapy or targeted small molecules can be a useful therapeutic strategy needs 402 further investigation. 403  404 
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Figure legends 559  560 
Figure 1. Loss of HIF-1α accelerates FLT-3ITD-induced MPN phenotype. 561 

 562 (a) Deletion of Hif-1α was checked by PCR amplification of DNA extracted from BM 563 cells of the analyzed mice. Shown is a representative gel indicating deletion of Hif-1α in 564 non-treated Hif-1αflox/flox; Mx1-Cre; Flt-3ITD/+ mice. (b) Kaplan-Meier survival curve of 565 FLT-3ITD mice (Hif-1αΔ/Δ, n= 10; Hif-1α+/+, n= 14). Log-rank (Mantel-Cox) test was used 566 to assess statistical significance. (c, d) Blood analysis of mice at different ages, showing 567 increased WBC (c) and myeloid cells (Gr1+/Mac1+ cells) (d) in Hif-1αΔ/Δ mice (Hif-568 
1α+/+, n=23; Hif-1αΔ/Δ, n=18; wt, n=6). (e) Representative FACS plots of PB cells of 12-569 week-old mice, showing an increased myeloid population in PB of Hif-1αΔ/Δ mice. 570 Differentiated populations are stained with the following antibodies: CD3 for T cells 571 (T), B220 for B cells (B) and Gr1/Mac1 for myeloid cells (M). (f) Representative blood 572 smears of 12-week-old mice of both genotypes. Scale bar= 10μm.  573 Plots represent mean ± SEM. Unless otherwise stated, 2-tailed Student t test was used 574 to assess statistical significance. *P<0.05, **P<0.01, ***P<0.001. wt = wild type. 575  576 
Figure 2. Accumulation of Hif-1αΔ/Δ-mature myeloid cells in spleen is due to 577 
increased cycling and reduced cell death. 578 
 579 (a) Representative phenotype of bones and spleens from 20-week-old mice with the 580 indicated genotypes. (b) Increment in spleen and liver weight in Hif-1αΔ/Δ 20-week-581 old-mice as a consequence of accelerated MPN in these mice (n=12; wt, n=6). (c) 582 
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Percentage of mature myeloid cells (Gr1+/Mac1+) in BM and spleen of 20-week-old 583 mice (n=12; wt, n=6). (d) Cytospins of BM cells with different genotypes showing the 584 mature myeloid aspect of predominant cells in this compartment. Scale bar= 10μm. (e) 585 Cell-cycle analysis of myeloid cells (Gr1+/Mac1+) from 3 independent experiments (16 586 to 20-week-old mice) (n= 12; wt, n=6). (f) Apoptosis analysis of myeloid cells 587 (Gr1+/Mac1+) from 2 independent experiments (20-week-old mice) (wt, n=6; Hif-1α+/+, 588 n=7; Hif-1αΔ/Δ, n=8). Plots represent mean ± SEM. Two-tailed Student t test was used to 589 assess statistical significance. *P<0.05, **P<0.01, ***P<0.001 590  591 
Figure 3. LT-HSCs are highly reduced in BM and expanded in spleen of Hif-1αΔ/Δ 592 
mice with FLT-3ITD-induced MPN. 593 
 594 (a) Percentage of the indicated populations of undifferentiated cells from total BM or 595 spleen cells (wt, n=5; Hif-1α+/+, n=12; Hif-1αΔ/Δ, n=13). (b) Absolute number of cells 596 from the indicated population of undifferentiated cells in the BM (6 bones: 2 femurs, 2 597 tibiae and 2 hips) or spleen (wt, n=5; Hif-1α+/+, n=8; Hif-1αΔ/Δ, n=7). (c) Representative 598 FACS plots of BM samples from both genotypes showing the gating strategy used for 599 the analysis of LT-HSCs, MPPs, LSK and LK cells. First shown plots derived from a 600 previous gating of singlets, alive, lineage negative cells. (d) Cell-cycle analysis of the 601 indicated populations of undifferentiated cells from BM or spleen (20-week-old mice) 602 (n= 3; wt, n=6). Plots represent mean ± SEM. Two-tailed Student t test was used to 603 assess statistical significance. *P<0.05, **P<0.01, ***P<0.001 604 
 605 
 606 
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 607 
Figure 4. Hif-1α-deleted-FLT-3ITD MPN-initiating cells are able to engraft and 608 
recapitulate the disease in recipient mice. 609 

 610 (a) BM cells from a single donor were transplanted, without previous culturing in vitro, 611 into 2-3 lethally irradiated wt mice. We show the phenotype of transplanted disease by 612 several parameters: Kaplan-Meier survival curve, WBCs and myeloid (Gr1+/Mac1+) 613 cells in PB at the indicated time points after transplantation (Hif-1α+/+, n=9; Hif-1αΔ/Δ, 614 n=7). (b) BM cells from 3 different donors of each genotype were pooled together, kept 615 in culture for 2 days and transplanted into 7 lethally irradiated wt mice. We show the 616 phenotype of transplanted disease by several parameters: Kaplan-Meier survival 617 curve, WBCs and myeloid (Gr1+/Mac1+) cells in PB at the indicated time points after 618 transplantation (n=7). Log-rank (Mantel-Cox) test was used to assess statistical 619 significance of the survival curve. Plots represent mean ± SEM. Unless otherwise 620 stated, 2-tailed Student t test was used to assess statistical significance. *P<0.05, 621 **P<0.01, ***P<0.001 622  623 
Figure 5. Malignant infiltrating cells in spleen present higher metabolic profile 624 
and oxidative stress. 625 

 626 We analyzed cellular levels of ROS (a), measured by CellROX Deep Red staining (n=16), 627 and mitochondrial levels of ROS (b) measured by MitoSOX staining (Hif-1α+/+, n=7; Hif-628 
1αΔ/Δ, n=8) in myeloid cells (Gr1+/Mac1+) of BM and spleen. Plots represent 629 normalized MFI respect to controls (mean MFI set at 100%) of each experiment (2-4 630 
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independent experiments; 20-week-old mice). (c) Mitochondrial membrane function, 631 measured by MitoTracker Deep Red staining (Hif-1α+/+, n=8; Hif-1αΔ/Δ, n=9), in 632 myeloid cells (Gr1+/Mac1+) of BM and spleen. We observed 3 different populations 633 according to MitoTracker staining that we named M1, M2 and M3 from lower to higher 634 intensity. We determined the percentage of myeloid cells in each of these populations 635 (3 independent experiments; 20-week-old mice). (d) Summary of the metabolic profile 636 of Hif-1αΔ/Δ and Hif-1α+/+ myeloid cells in the BM and spleen. Dashed lines indicate 637 statistically non significant data. Plots represent mean ± SEM. Two-tailed Student t test 638 was used to assess statistical significance. *P<0.05, **P<0.01, ***P<0.001 639  640  641 
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Velasco-Hernandez et al. Table 1. 

 

Table 1. Peripheral blood counts 

Parameter wt mice Hif-1α+/+ mice Hif-1αΔ/Δ mice P-value (+/Δ)
RBC (x1012/L) 10.04 ± 0.11 9.275 ± 0.19 7.707 ± 0.39 0.0007 *** 
HGB (g/L) 148.7 ± 1.59 142.8 ± 2.44 137.3 ± 3.68 0.2069 
HCT  0.5158 ± 0.006 0.4795 ± 0.009 0.4507 ± 0.014 0.0835 
Platelets (x109/L) 1140 ± 61.11 1093 ± 93.76 880.0 ± 127.2 0.1829  RBC: red blood cells; HGB: hemoglobin; HCT: hematocrit. Wt: n=6, Hif-1α+/+: n=13,  

Hif-1αΔ/Δ: n=9. Values represent mean ± SEM. P-values are calculated between Hif-1α+/+ and 
Hif-1αΔ/Δ groups.  
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Supplementary Figure S1. Spontaneous deletion of Hif-1α.

(a) Deletion of Hif-1α was checked by PCR amplification of the DNA extracted from BM cells of the 
mice used in this manuscript. All 14 additionally genotyped mice showed deletion of the HIF-1α gene, 
providing evidence that spontaneous recombination is a general phenomenon in these mice.
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Supplementary Figure S2. Gating strategy used for the identification of the different cell lineages. 

(a) For the identification of the specific lineage populations, we gated entire cells using FSC-A/SSC-A, 
singlets according to FSC-A/FSC-H, alive cells discarding the DAPI positive cells and finally a combination 
of Gr1-PE, Mac1-PE, B220-PE, B220-APC and CD3-APC. PE+ cells are myeloid cells (M) (Gr1+/Mac1+), 
PE+APC+ are B cells (B) (B220+) and APC+ are T cells (T) (CD3+).
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Supplementary Figure S3. Cell-cycle analysis of myeloid cells.

(a) Representative plots of the cell-cycle analysis of myeloid cells (Gr1+/Mac1+) located in BM and spleen 
of HIF-1αΔ/Δ and HIF-1α+/+ mice .
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Supplementary Figure S4. Percentages and total cell numbers of LSK CD48+ CD150- cells in FLT-
3ITD mice.

(a) Percentage of LSK CD48+ CD150- cells of total BM or spleen cells (wt, n=5; HIF-1α+/+, n=12; HIF-
1αΔ/Δ, n=13). (b) Absolute number of LSK CD48+ CD150- cells in BM (6 bones: 2 femurs, 2 tibiae and 
2 hips) or spleen. Plots represent mean ± SEM. Two-tailed Student t test was used to assess statistical 
significance. **P<0.01.
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Supplementary Figure S5. Cell-cycle analysis of primitive populations.

(a) Representative plots of the cell-cycle analysis of the indicated primitive populations located in BM 
and spleen of HIF-1αΔ/Δ and HIF-1α+/+ mice .
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Supplementary Figure S6. Enhanced FLT-3ITD-induced MPN phenotype in mice transplanted with 
HIF-1αΔ/Δ BM cells.

(a) Donor reconstitution of transplanted mice 47 weeks after transplantation (end point) (n=5-8). (b) 
Blood analysis of mice at the end point, showing increased WBC (n=5-8). (c) Percentage of mature 
myeloid cells (Gr1+/Mac1+) in PB, BM and spleen at the end point (n=5-8). (d) Representative phenotype 
of bones and spleens at the end point from mice with the indicated genotypes. (e) Spleen and liver 
weights in relation to body weight for the different genotypes (n=5-8). (f) Percentage of the indicated 
populations of undifferentiated cells from total BM or spleen cells (n=5-8). Plots represent mean ± SEM. 
Two-tailed Student t test was used to assess statistical significance. *P<0.05, **P<0.01, ***P<0.001
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Supplementary Figure S7. Donor contribution of FLT-3ITD cells  in secondary recipients.

(a) Experimental design of the secondary transplantation assay. Donor cells from one primary 
recipient were transplanted into 3 secondary recipients. Donor cells were harvested 47 weeks after 
transplantation (end point of the experiment). (b) Donor reconstitution of transplanted mice in PB at 
different time points after transplantation. (n=10) . (c) Donor contribution to the myeloid compartment 
in PB at different time points after transplantation (n=10). Plots represent mean ± SEM. Two-tailed 
Student t test was used to assess statistical significance. ***P<0.001.
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Supplementary Figure S8. Donor contribution of transplanted FLT-3ITD cells.

(a) Donor contribution of mice transplanted with in vitro cultured cells (see also Figure 4b) in PB at 
different time points after transplantation (n=7) and their donor reconstitution (b) in BM, PB and spleen 
at 62 weeks after transplantation (end point). Notice that at this time point, there is only one HIF-
1αΔ/Δ survivor. (c) Donor contribution to the myeloid compartment in secondary recipients (see also 
Figure 4a) at different time points after transplantation cells and (d) donor contribution to the different 
lineages in total cell numbers from the same transplantation at 20 weeks after transplantation. Plots 
represent mean ± SEM. Two-tailed Student t test, and Mann-Whitney test for (d) due to the different 
variances, were used to assess statistical significance. *P<0.05, ***P<0.001.
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