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Abstract 

Many low-income consumers face a limited budget for food purchases.  The United States 

Department of Agriculture developed the Thrifty Food Plan to address this problem of 
consuming a healthy diet given a budget constraint.  This dietary optimization program uses 

common food choices to build a suitable diet.  In this paper, USDA data sets are used to test the 

feasibility of consuming a Paleolithic diet given a limited budget.  The Paleolithic diet is 

described as the diet that humans are genetically adapted to, containing only the pre-agricultural 
food groups of meat, seafood, fruits, vegetables, and nuts.  Constraints were applied to the diet 

optimization model in order to restrict grains, dairy, and certain other food categories.  

Constraints were also applied for macronutrients, micronutrients, and long-chain polyunsaturated 

fatty acids.  The results show that it is possible to consume a Paleolithic diet given the 
constraints.  However, the diet does fall short of meeting the Daily Recommended Intakes for 

certain micronutrients.  A 9.3% increase in income is needed to consume a Paleolithic diet that 

meets all Daily Recommended Intakes except for calcium.  

 

 

 
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1. Introduction 

Achieving a healthy diet on a limited budget can be a challenge.  Currently, only a small 
percentage of Americans meet dietary requirements for a number of vitamins and nutrients [1,2].  

Cost constraints have been shown to have adverse effects on food selection as well the overall 
nutritional quality of diets [3].  This negative relationship between income and diet quality 

appears in low-income consumers, who have particularly high rates of obesity, diabetes, and 
heart disease [4, 5, 6].  

To address the problem of eating healthy on a limited budget, the Center for Nutrition 

Policy and Promotion (CNNP) at the U.S. Department of Agriculture (USDA) developed the 
Thrifty Food Plan [7].  The Thrifty Food Plan (TFP) was developed to test diets for basic dietary 

standards as well as the USDA’s MyPyramid diet plan.  The goal of the TFP model is to provide 
a healthy, nutritious diet on a budget that has a minimum deviation from observed food choices. 

As recently noted, the estimated cost of a nutritious diet depends on the definition of 
“nutritious” [8].  The USDA’s MyPyramid has been criticized in the nutrition literature for 

various reasons [9, 10, 11]. Although MyPyramid was developed as a personalized diet plan, it 

recommends food groups where there may be genetic incompatibility for certain population 

groups.  For example, MyPyramid recommends dairy products and grains for all adults, yet a 
percentage of Americans are either lactose-intolerant or have celiac disease and cannot consume 
certain grains [12-14].  Though the federal dietary guidelines were updated in 2010, high levels 

of grains and dairy are still recommended [15]. 

Along these lines of diets and compatibility, there is a growing interest among scientists 

on ancestral diets to which humans were genetically adapted [16].  Humans evolved during the 

Paleolithic era between 2.6 million and 100,000 years ago , and DNA evidence shows only small 

differences between modern humans and ancient hunter-gatherers [17].  Dietary changes brought 
on by agricultural advances in the last 10,000 years are too recent by evolutionary standards, 

creating a mismatch between contemporary foods and Paleolithic genome [18].   These changes 

include reduced fiber intake, reduced micronutrients, reduced protein, higher glycemic load, and 
altered n-6/n-3 ratio [18,19]. 

Studies of existing hunter-gatherer tribes show them to be largely free of degenerative 

diseases [10].  Proponents of evolutionary health models therefore argue that the diet and 

lifestyle of ancient hunter-gatherers provides a model of disease prevention [10, 20].    Common 
counterarguments to this, such as the short lifespan of ancient man, have also been addressed 

[21]. 

The Paleolithic diet is based on the principles of evolutionary health and contains modern 
equivalents of ancient Paleolithic foods, primarily lean meat, seafood, fruits, vegetables, and nuts 

[22].  Nutrient disparities between modern American and Paleolithic diets are clearly evident 

with the Paleolithic diet having higher levels of protein and a lower contribution of calories from 
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carbohydrate and fat. The Paleolithic diet is also associated with a reduction in the n-6 to n-3 
fatty acid ratio and increased consumption of plant sterols and dietary fiber [23]. 

The Paleolithic diet contains no cereal grains or dairy products, in contrast to the 

MyPyramid plan.  Such a diet has been shown to possess a high nutrient density [22] and also a 
high satiety level [24]. 

Recent intervention trials of a Paleolithic diet have shown impressive health effects in 
human volunteers.  In 29 patients with heart disease, a Paleolithic diet produced greater 
improvement in glucose tolerance and greater decreases in waist circumference and weight than 

the Mediterranean diet [25].  In 14 healthy volunteers, a Paleolithic diet produced statistically 
significant decreases in weight, waist circumference, and blood pressure over a three week 

period compared with subjects consuming a normal American diet [26].  In a controlled feeding 
intervention in 9 sedentary adults, consumption of a Paleolithic diet for 10 days significantly 

improved glucose tolerance, insulin sensitivity, blood pressure, LDL cholesterol, and 
triglycerides compared with consumption of the subjects’ normal diets [27].  In a randomized 

study of 13 type 2 diabetes patients, a Paleolithic diet improved markers of cardiovascular 
disease including glycated haemoglobin (HbA1c), diastolic blood pressure, and HDL-cholesterol 

compared with a standard diabetes diet [28]. 

Given this evolutionary and clinical evidence, it is of interest to compute the cost and 
affordability of a Paleolithic diet.  The USDA has developed mathematical optimization models 

that show optimal food choices given cost and nutritional constraints.  The objective of this study 
was to compute the cost of a Paleolithic diet for low-income consumers using data from the 

USDA’s Thrifty Food Plan (TFP) model.  The TFP plan contains prices typically paid by low-
income consumers as compared to general market prices, and acknowledges constraints on time 

for food preparation.  Further, it contains food choices typically made by consumers in this 

group, which are compiled into 58 food categories.  In the present study, the goal was to 

minimize deviations from observed food choices while selecting foods that constitute a 
contemporary version of a Paleolithic diet.  This was achieved by creating a linear programming 

model to predict how a representative individual would make food choices while facing a cost 

constraint as well as other food group and macronutrient restrictions. 

2. Methods 

  Linear programming (LP) has been previously used to design diets where constraints 
influence food choices [29].  The objective function contains the quantities from the food groups 

(    ), which is to be minimized while meeting a cost constraint as well as other specific 

dietary constraints.  Total deviation from the observed food quantities is to be minimized.  This 

assumes that consumers with income constraints will choose diets that are as close to population 
averages as possible.  The LP models were run using the Simplex procedure of the Premium 

Solver for Excel (Frontline System, Incline Village, NV).  






 

2.1 Optimization 

 Linear programming is a tool to find the optimal solution of an objective function subject 

to a set of equality and inequality constraints.  In order to be linear in relation to the decision 

variables, the objective function must have the following form: 

           

    

 

In the present model, the objective function was designed to minimize departure from the 
observed food choices by low-income consumers.  The objective function to be minimized is the 
sum of these differences in food intake.  The differences are calculated as the absolute value of 

the observed intake minus the optimal intake, divided by the observed intake to standardize the 

differences: 

 

   
  









 

 

where Y is the objective function,  is the observed food intake of food i, and 
 is the 

optimal food intake of food i. 

Due to the absolute value, the objective function was nonlinear.  Following the approach of 

Masset et al [30], new decision variables were created to transform this into a linear function.  
The decision variables represent the positive () and negative differences () from the observed 

food quantities: 


    

  



   


       

  



 


         

   

  


 






 

The new function containing the sum of the deviational variables was labeled Y* and was to be 
minimized: 

     




 

The various food categories were linked with cost, micronutrient, and macronutrient information.  
The model started with the observed food choices of low-income consumers.  Quantities of one 

or more food groups were changed while minimizing the deviation from the population averages.  
Cost and nutrient information were calculated at all times.    Total deviation was minimized by 
adjusting quantities across the 58 food categories.    

2.2 Introduction of Constraints 

2.2a Energy and Cost 

The energy content of the diet was fixed for a sample individual, a female age 20 to 50.  The 

USDA’s energy requirement (derived from the Institute of Medicine) was selected for a female 

in this age group with low levels of physical activity [7].  This energy constraint was fixed at 9.2 

MJ (2200 kcal).  The selection of this isoenergetic diet allowed for the analysis of different 
combinations of quantities from the 58 food categories. 

The cost constraint comes from the TFP estimate for a female age 20 to 50.  This constraint is a 

budget of $3.89 in 2001 dollars for daily spending on food made at home.  This is the equivalent 
of $4.91 in 2010 dollars.  The cost constraint requires that the plan’s total cost cannot exceed the 

cost target for the representative individual.  Costs were not updated to current dollars due to 

changes in the relative prices of fruits and vegetables over the last ten years [31].  

2.2b Constraint on Food Categories 

The Paleolithic diet excludes grains, dairy products, and legumes.  It also excludes all modern 
processed foods, including sugars, soft drinks, and coffees.  In this LP model, all these food 

categories are constrained to maximum of zero.  In addition, the three categories of eggs, meat 

mixtures, and low fat meat mixtures were also constrained to zero, as these mixtures may contain 

grains or other non-Paleolithic food items.  Exclusion of these categories left the model with 31 
remaining food categories representing general food choices of meat, seafood, nuts, fruits, and 

vegetables. 

2.2c Nutritional Content 

To ensure a similarity to historical Paleolithic diets, constraints were placed on the macronutrient 

content of the diet.  The latest macronutrient estimates of a Paleolithic diet [32] show protein 
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content was 25 – 29% of total calories, carbohydrate was 39 – 40% of total calories, and fat was 
30 – 39% of total calories.  These constraints were imposed as minimums and maximums for 

each macronutrient group. 

In terms of micronutrients, the Daily Recommended Intakes from the Institute of Medicine were 
used for a number of nutrients [7].  Following the approach of Wilde [8], constraints were 

implemented for calcium, fiber, folate, Vitamin A, Vitamin C, Vitamin B6, Vitamin B12, 
potassium, and iron.  A summary of all constraints are presented in Table 1. 

An important element of Paleolithic diets is the fatty acid profile.  The latest reconstruction of an 

East African Paleolithic diet shows a high intake of long-chain polyunsaturated fatty acids [32].  
Specifically, these ancient diets were high in the fatty acids eicosapentaenoic acid (EPA) and

Docosahexaenoic acid (DHA) [32].  A constraint was added to the model with a minimum level 
of 450 mg EPA+DHA.  This value was used in the most recent Paleolithic diet reconstruction, 

and is also in line with recommendations from various health organizations [32]. 

3. Data 

The data sets for this paper come from the USDA data sets for the 2006 TFP revision [7].  The 

USDA calculated average consumption from daily food intake derived from the 2001-2002 
National Health and Nutrition Examination Survey (NHANES).  Survey weights were applied to 

produce estimates of population averages.  This was done for 15 age-sex combinations and 

across 58 food groups.  The USDA selected a sample of households with income at or below 

130% of the poverty level to comprise its thrifty consumer sub-group.   

Food prices come from the USDA’s 2001-2002 Food Price Database.  The USDA attached food 

prices to the NHANES data using the ACNielsen Homescan Panel, which is a commercial 

representative survey panel.  Prices for individual foods were compiled into a quantity-weighted 
index of prices for each of the 58 food groups.  Since the consumption of specific foods can be 

different for each age-sex groups, the resulting prices for the food categories can vary across the 

different groups. 

Data for energy and micronutrients were provided by the USDA per 100 g for each food 
category.  Data for energy and micronutrient targets come from the Dietary Guidelines for 

Americans and the Institute of Medicine at the National Academies.  The recommended daily 
allowances were obtained for specific micronutrients analyzed in the model.  Data for 
macronutrient ranges come from the latest research estimates of the Paleolithic diet [32].  

Data for the EPA and DHA content of the fish food categories were not directly available from 
the USDA.  A proxy measure was developed in its place.  Previously, the USDA has listed the 

20 most commonly consumed seafood items [33].  The EPA and DHA content of these items per 
100 gram serving is listed in Table 2.  It was assumed that these seafood items were cooked in 

dry or moist heat.  There are other types of preparation available, and though this can sometimes 
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affect EPA and DHA content, the EPA and DHA content generally stays the same across 
different cooking and packaging methods [34].     

Research has shown that low-income residents consume a fairly wide variety of seafood [35].  A 

recent survey of low-income residents in Newport News, Virginia, showed that they consumed 
many of the top 20 seafood items listed by the USDA [36].  Therefore, this proxy measure of 

EPA and DHA content in the fish food categories seems to be appropriate given the data 
limitations.   

4. Results 

4.1 Characteristics of Observed Food Intake 

The observed intake from the various food categories in Table 3 shows a high consumption of 

liquid calories.  Soft drinks and coffee represent the two categories with the highest quantity of 

food intake.  All of the 58 food categories show some positive average intake.  Grains and dairy 
make a significant contribution in terms of total food intake by weight.  Grains represent 14.7% 

and dairy represents 7.9% in terms of the total in terms of food intake in weight, respectively.  

Consumption across the vegetable food categories was low, with the exception of potatoes.  In 

terms of costs, the three most costly food categories were low fat meat mixtures, regular cost 
fish, and regular cost lean fish.  These higher prices lead to relatively low consumption in these 

three food categories. 

4.2 Impact of Constraints 

With the inclusion of all constraints, no feasible solution could be found.  It was determined that 

certain micronutrient constraints prevented the LP model from reaching a feasible solution.  The 
calcium, fiber, and iron micronutrient constraints were removed to allow the objective function 

to be minimized.  With all other constraints in place, a feasible solution was found.  Table 3 
shows the changes in quantities across the 58 food categories.   

Overall, the model produces a drastic change in food consumption patterns.  The amount of fish 

in the diet sharply increases, with low cost lean fish rising from 0.3 to 74.8 grams.  The meat 

consumption shifted to two, cheaper food categories: low cost poultry and low cost lean poultry.  

The change in low cost lean poultry consumption is quite dramatic, rising by 11,845% from 2.2 
grams to 262.8 grams.  Consumption of eggs rises by 73.7% from 26.2 grams to 45.5 grams. 

Consumption in the citrus, melon, and berries category and the other fruits category both become 
zero.   The consumption of potatoes and low cost potatoes both increase to a large degree.  

Consumption of low fat potatoes rises by 5,075%, from 15.6 grams to 807.3 grams as potatoes 
become the most important category of the diet in terms of weight.  Consumption of many other 

vegetables categories increase, notably the dark green vegetables with no fat added category and 

the other vegetables category.   
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4.3 Overall Diet Composition 

A general summary of the observed diet and the proposed diet is presented in Table 4.  In 
general, the diet shifts towards more calorie-dense whole foods, with the calories per 100 grams 

of food rising 38.3% from 93.7 to 129.6 calories per 100 g of food.  The total food weight being 
consumed falls by 27.8%, from an observed total of 2,348 grams to 1,696 grams.  The cost per 

gram increases with the shift to more expensive food, rising 35.3% from $0.17 per 100 g of food 
to $0.23 per 100 g of food.  The macronutrient constraints are met with protein, carbohydrate, 

and fat providing 25%, 39%, and 36% of the total energy intake respectively.  This reflects an 
increase in protein, a decrease in carbohydrate, and an increase in fat relative to the observed 

diet.   

4.4 Nutritional Adequacy 

Except for calcium, fiber, and iron, all other micronutrient constraints were satisfied.  Table 5 

below shows the outcomes for nine micronutrients and their recommended amounts.  

Levels for Vitamins A, C, B6, and B12 are well above the minimum amounts in the proposed 

model.  This shows a Paleolithic diet provides a high level of vitamins.  The Paleolithic diet also 

contains sufficient folate and potassium. 

Additional analysis was performed to determine how much more income would be needed to 

consume a Paleolithic diet that meets all RDAs except for calcium (see discussion below related 
to calcium).  If the cost constraint was lifted from $3.89 per day to $4.25 per day, this would 
provide enough income for a Paleolithic diet that meets all micronutrient standards except for 

calcium.  This would represent a 9.3% necessary increase in income.   

5. Discussion 

The present model shows that constraining food categories to only Paleolithic food groups is not 

cost-prohibitive for a low-income consumer.  This result shows that consumers have an 
alternative diet choice if they do not prefer to consume foods such as grains and dairy.  However, 

such a diet is a radical departure from the observed food choices of the average consumer.  

Roughly half of all the 58 food categories are eliminated under a simulated Paleolithic diet.  

Food choices end up heavily weighted into a few categories like lean poultry and potatoes. 

Behavioral research suggests that many consumers have trouble making large departures from 

their current food intake [37].   However, behavior change intervention studies have reported 
success in increasing fruit and vegetable consumption among population subgroups [38].  The 

clinical trial database may provide some insight into potential adherence to a modern Paleolithic 
diet.  In a twelve-week study comparing the Paleolithic and Mediterranean diets, 3 of the 17 

participants following the Paleolithic diet dropped out while none in the Mediterranean group did 

[25].  In a three-week test of the Paleolithic diet, one subject out of 20 was unable to fulfill the 
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diet [26].  In a three-month study of the Paleolithic diet in Type 2 diabetes patients, one subject 
out of 17 was unwilling to follow the diet [28].  Overall, these studies that it is feasible to follow 

a modern Paleolithic diet, at least in the short-term.  However, it may be difficult to translate 

these results to a population level as the interventions included only a small number of subjects.  
Therefore, longer-term studies of adherence to a Paleolithic diet may be warranted. 

The result for a lack of calcium is to be expected given the constraint on dairy consumption.  In 
previous research, it was shown that a modern Paleolithic diet would likely fall short in calcium 

[22].   However, net calcium balance in the body depends on the systematic acid-base balance 
[39].   The high level of fruits and vegetables in a Paleolithic diet is proposed to result in a 

positive calcium balance despite a lower calcium intake [22, 40].  A higher protein intake 

combined with high fruit and vegetable intake, both present in the Paleolithic diet, may also 

improve dietary calcium absorption and whole-body calcium retention [41].  Therefore, meeting 
the RDA for calcium is not a goal within a Paleolithic diet per se; the focus is on calcium 

retention given a lower dietary calcium intake.    

The lack of fiber and iron in the Paleolithic diet model would be a concern.  Whole grains are 
often a good source of fiber, yet they are excluded in this model.  Vegetables are another good 

source of fiber, and even though they are increased in the model Paleolithic diet compared to the 

observed food choices, the target for fiber was not achieved.  Iron-fortified grain products are 

excluded from the model, leaving red meat and poultry food categories as the main choices for 
high-iron foods.  Given the other constraints of the model, increasing quantities in these food 

categories prevents a feasible solution from being found. 

The shift to a modern Paleolithic diet showed a shift towards more expensive foods on a cost per 
calorie basis.  The higher protein content of the Paleolithic diet is a factor, as protein is generally 

more expensive per calorie than other macronutrients [42].  The model output shows that making 

such a shift is possible, but not without a failure to meet RDAs for calcium, fiber, and iron.  

While the target for calcium may not be as much of concern, the importance of fiber and iron in 
terms of health is clear.  High-fiber diets are associated with positive health outcomes [43].  A 

lack of dietary iron has detrimental health effects, especially in children and pregnant women 

[44, 45].   Such research should give caution to the results presented here.  Nutritional 

supplements could be used to address the lack of iron, though multivitamin supplements are 
currently only used by 26% of low-income adults [46].  

There are several limitations to this study.  First, it is unknown how well the Paleolithic diet 

would be received specifically by low-income groups.  As mentioned above, it is also unknown 
how well subjects would adhere to the Paleolithic diet over the long run.  The existing Paleolithic 

diet studies are short-term, and no long-term studies have been performed to date.  There may be 

additional social challenges in adhering to the Paleolithic diet.  Social support is one of the key 

factors in the effectiveness of any diet intervention [47].  Adhering to a diet that excludes 






common foods such as grains and dairy may require additional social support for long-run 
adherence.     

The results presented here show that a Paleolithic diet is feasible for low-income consumers 

though not without nutritional shortcomings.  If the Paleolithic diet does represent the diet that 
humans are genetically adapted to, then it is of significant public health interest as to the cost of 

such a diet.  The cost constraint of the TFP model does not allow the RDAs for fiber and iron to 
be reached within a Paleolithic diet framework.  Cost is the primary issue, as an unconstrained 

Paleolithic diet is nutritionally dense and has performed well in clinical trials.  An additional 
9.3% increase in income would be needed to achieve all micronutrient standards (except for 

calcium).  Given the potential health-promoting effects of the Paleolithic diet, these findings are 

of value given the need to improve nutrition and lower rates of chronic disease among the poor.  
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TABLE 1  Summary of Constraints 

  
   
   

   
   
   
  
   
   
   
   
   
   
  
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   
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   
   
   
   
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TABLE 2 EPA and DHA Content of 20 Most Frequently Consumed Seafood Items1 

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
1 USDA National Nutrient Database for Standard Reference. 
http://www.nal.usda.gov/fnic/foodcomp/search. Accessed May 1, 2011. 
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TABLE 3  Food Quantity in Observed Versus Model Diet 

  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  



 

  
  



 

  



 

  
  
  
  
  
  
  
  






  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




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TABLE 4  General Diet Characteristics 

Item Observed Diet Paleolithic Diet Unit 

Food Weight 2348.9 1696.5 grams(g) 

Energy 2200 2200 calories 

Calories per 100 grams 93.7 129.6 calories/100 g 

Cost 3.89 3.89 $ 

Cost per 100 grams 0.17 0.23 $/100 g 

Protein  14.2 25.0 
Percentage of energy 

intake 
Carbohydrate 53.9 39.0 
Fat 31.9 36.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
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TABLE 5  Micronutrient Outcomes 

Micronutrient Recommended amount Model Output Unit 
  Calcium 1000 462.9 mg 
  Fiber 30.8 23.1 g 
  Folate 400 400 mcg 
  Vitamin A 700 1117.3 mcg 
  Vitamin C 75 159.6 mg 
  Vitamin B6 1.3 3.9 mg 
  Vitamin B12 2.4 3.9 mcg 
  Potassium 4700 5035.6 mg 
  Iron 18 15.4 mg 

 


