
LUP
Lund University Publications

Institutional Repository of Lund University

This is an author produced version of a paper
published in Seminars in Thrombosis and Hemostasis.

This paper has been peer-reviewed but does not
include the final publisher proof-corrections or journal

pagination.

Citation for the published paper:
Diana Karpman, Lisa Sartz, Sally Johnson

"Pathophysiology of typical hemolytic uremic
syndrome."

Seminars in Thrombosis and Hemostasis 2010 36, 575
- 585

http://dx.doi.org/10.1055/s-0030-1262879

Access to the published version may require journal
subscription.

Published with permission from: Georg Thieme Verlag



1 
 

Pathophysiology of typical hemolytic uremic syndrome 

Diana Karpman, MD, PhD1*, Lisa Sartz; MD1, Sally Johnson, MB ChB, PhD2 

 

1.  Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden 

2.  Department of Paediatric Nephrology, Birmingham Children’s Hospital, Steelhouse Lane, 
Birmingham, B4 6NH, UK 

 

* Corresponding author:  Professor Diana Karpman 

email: diana.karpman@med.lu.se 

  Telephone: +46-46-2220747 

  Fax: +46-46-2220748 

 

 

 

 

 



2 
 

ABSTRACT 

The typical form of hemolytic uremic syndrome (HUS) is associated with Enterohemorrhagic 

Escherichia coli (EHEC) infection. The disease process is initiated and perpetuated by 

interactions between the pathogen, its virulence factors and host cells as well as the host 

response. During EHEC-associated HUS, alterations occurring at the intestinal mucosal 

barrier and in the circulation, as well as on endothelial cells and other target-organ cells, lead 

to cell activation and/or cytotoxicity, and trigger a pro-thrombotic state. This review 

summarizes current knowledge regarding the interactions of the pathogen and its virulence 

factors with cells in the intestine, bloodstream, kidney and brain. Mechanisms of bacterial 

colonization, toxin circulation and induction of target organ damage are discussed.  
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INTRODUCTION 

Hemolytic uremic syndrome (HUS) is diagnosed when the simultaneous features of 

microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure are present. 

Whilst HUS has a number of underlying etiologies, over 90% of cases in developed countries 

follow gastrointestinal infection with Enterohemorrhagic Escherichia coli (EHEC).1 This 

review summarizes current concepts of the pathogenesis of EHEC-associated HUS, or so-

called “typical HUS”. 

 

EPIDEMIOLOGY 

The incidence of EHEC-associated HUS peaks in children under 5 years old, and rises again 

in the elderly 1. The incidence rate of EHEC-associated HUS is similar in Europe, North 

America and Australia,1,2 but 7-10 times higher in Argentina.3 EHEC colonize animals, 

primarily cattle, without causing disease.4 Transmission to humans occurs by consumption of 

contaminated meat, milk products, water, fruit and vegetables.5 Direct contact with animals 

during visits to farms is increasingly recognized as a risk factor.6 Approximately 10% of 

children exposed to EHEC infection develop diarrhea (usually bloody), and 15% of children 

with diarrhea will develop HUS. The incubation period is usually less than a week, and the 

interval between onset of diarrhea and diagnosis of HUS is approximately 6-7 days.7,8  

 

HISTOLOGY 

HUS is characterized by widespread thrombotic microangiopathy (TMA) in renal glomeruli, 

the gastrointestinal tract, brain and the pancreas.9 TMA defines a lesion of vessel wall 

thickening, usually at the arteriolar-capillary junction, with swelling or detachment of the 
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endothelial cell from the basement membrane, accumulation of amorphous material in the 

subendothelial space, intraluminal thrombosis and partial or complete obstruction of the 

vessel lumen.9 This suggests that microvascular endothelial cell injury is central to the 

pathogenesis of HUS. In addition, arteriolar thromboses are common at the hilum of 

glomeruli and are also seen proximally in interlobular arteries. In severe cases, cortical 

necrosis may be present.10 

 

EHEC VIRULENCE FACTORS 

EHEC cause a range of clinical manifestations, including diarrhea, hemorrhagic colitis and 

HUS. HUS is predominantly associated with serotype O157:H7, although other serotypes, 

including O26:H11, O103:H2, O111:NM, O121:H19, and O145:NM have been reported.5 

EHEC possess certain virulence factors that contribute to the development of HUS. These 

factors include proteins that promote intestinal colonization and toxins that disseminate within 

the host resulting in microvascular injury. 

 

The virulence factors that promote intestinal colonization of EHEC are contained within 

horizontally acquired gene cassettes known as pathogenicity islands (PAI). One such PAI is 

the locus of enterocyte effacement (LEE),11 which allows EHEC to attach to the luminal 

surface of host enterocytes and to cause effacement of the microvilli, resulting in watery 

diarrhea through loss of absorptive surface. The LEE encodes the adhesin intimin, a type three 

secretion system (TTSS) and secreted proteins. The TTSS translocates bacterial proteins from 

EHEC directly into host enterocytes, affecting cellular structure and function.11,12  

 



5 
 

Shiga toxin 

Shiga toxin (Stx) is considered the most important factor for the virulence of EHEC. Stx 

consists of a single enzymatically active A-subunit linked to five B-subunits. EHEC may 

secrete a number of distinct Stxs (Stx1 and Stx2 and a number of subtypes). Each Stx is 

encoded by a specific bacteriophage, and EHEC strains with more than one bacteriophage can 

produce more than one toxin.13 EHEC responsible for HUS express Stx2 more often than 

Stx1.14 Bacteriophages can be induced either spontaneously,15 or by certain antibiotics, 

including quinolones,16 increasing the level of Stx production, which might be an important 

factor for the pathogenicity of EHEC. The toxin is produced by Shigella dysenteriae 1 as well 

as by EHEC. Stx produced by Shigella is almost homologous to Stx1 produced by EHEC.  

 

The glycosphingolipid receptor for Stx is globotriaosylceramide (Gb3). The distribution of 

Gb3 has been found to determine the localization of pathological lesions in HUS in humans 

and other animals (glomerular endothelium, brain, pancreas).17 Bacteremia is rarely reported 

in HUS and so it is likely that Stx is transported from the intestine to distant sites. Most 

studies of the interaction of Stx with human cells have been carried out on endothelial cells. 

After binding of Stx to Gb3 on endothelial cells, Stx is internalized by receptor-mediated 

endocytosis. Inside the host cell, the A subunit is proteolytically cleaved to an enzymatically 

active fragment, which cleaves a residue within the 60S ribosomal subunit. This inhibits 

protein synthesis, causing cell death.18 In addition to cytotoxicity, Stx may also exert 

activating effects on endothelial cells, for example stimulation of interleukin-8 (IL-8) and 

monocyte chemoattractant protein-1 production and upregulation of adhesion molecule 

expression.19 Human umbilical vein endothelial cells (HUVEC) exposed to Stx show an 

upregulation of genes encoding cytokines, cellular adhesion molecules and transcription 
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factors.20 Endothelin-1 is a potent vasoconstrictor produced by endothelial cells. Stx causes 

upregulation of endothelin-1 (ET-1) mRNA and protein levels.21 Furthermore, Stx promotes 

leukocyte dependent inflammation22 and endothelial cell activation, with a change to a more 

procoagulant endothelial cell phenotype, in addition to endothelial cell damage23 which will 

trigger platelet adhesion to the subendothelium. 

 

Other virulence factors 

Since HUS can develop after infection with EHEC strains which do not produce Stx,24 it is 

likely that even other virulence factors may play a role in the pathogenesis of HUS. Cytolethal 

distending toxin V (CDT-V), EHEC hemolysin (EHEC-hly), and subtilase cytotoxin are 

potential candidates.25 

 

Cytolethal distending toxin 

About 5% of EHEC 0157:H7 strains investigated carry a gene encoding CDT-V,26 the 

cytolethal distending toxin. CDT-V is a cyclomodulin that causes cell cycle arrest.25 CDT-V 

may contribute to endothelial injury by causing irreversible G2/M cell cycle arrest, growth 

inhibition and death of human endothelial cells.27 

 

EHEC hemolysin 

EHEC-hly is a pore-forming cytolysin encoded on a large 60 MD plasmid and released from 

EHEC strains associated with HUS. Aldick et al identified Stx gene-negative EHEC O26 

strains as the only pathogens in the stools of five patients with HUS and examined the strains 
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for potential virulence factors and interactions with microvascular endothelial cells.28 All five 

isolates possessed the gene encoding EHEC-hly and were cytotoxic to human brain 

microvascular endothelial cells. Toxicity was significantly reduced in an EHEC-hly-negative 

strain, and reproduced by introducing recombinant EHEC-hly to EHEC O26, suggesting that 

EHEC-hly may have cytotoxic properties. 

 

Subtilase cytotoxin  

In addition to Stx, a subset of EHEC strains secrete another extremely lethal cytotoxin termed 

subtilase (SubAB).29 This toxin is lethal in mice, inducing thrombosis and necrosis in multiple 

organs, thus mimicking the clinical presentation of HUS. Its mechanism of action is 

inactivation of the endoplasmic reticulum chaperone BiP (immunoglobulin heavy chain–

binding protein) by the serine protease activity of its A subunit.30 A recent study showed that 

SubAB prevents secretion of immunoglobulins from B lymphocytes.31 

 

PATHOGENESIS OF EHEC-INDUCED DISEASE 

EHEC is a non-invasive pathogen.32,33 Bacterial virulence factors gain access to the 

circulation after causing intestinal damage, and thereby reach the target organ. In the 

following section we will review the influence of the intestinal microflora and the host 

hormonal response on EHEC motility, colonization and Stx production. Intestinal 

colonization triggers a local inflammatory and innate immune response. Stx and 

lipopolysaccharide (LPS) are released into the circulation and bind to blood cells thus 

reaching the renal microcirculation. The consequences of Stx and LPS release into the 
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circulation, including their interactions with blood cells and endothelium, result in a 

prothrombotic state within the microvasculature. 

 

EHEC in the intestine  

Very few EHEC colony-forming units are capable of inducing clinical symptoms.33 The 

mechanisms by which colonization and expression of virulence factors occur in the intestine 

have been extensively studied. After ingestion, EHEC reaches the ileum and was detected in 

the ileocecal valve in one patient sample.34 EHEC is assumed to initially bind to villi of the 

terminal ileum and follicle-associated epithelium of Peyer’s patches35,36 followed by 

colonization of the colon. Cross-talk occurs between EHEC and the commensal intestinal 

microflora during colonization. EHEC also interact with the host hormonal response. This 

results in activation of virulence factors, such as those encoded in the LEE,37 responsible for 

formation of the attaching and effacing lesion enabling intimate attachment to the intestinal 

cell, the expression of flagella thereby enhancing mobility, and the induction of Stx.38,39 These 

interactions involve bacterial sensing of a molecule termed auto-inducer-3, produced by the 

intestinal microflora, as well as a response to the host stress hormones epinephrine and 

norepinephrine, involving the bacterial membrane histidine sensor kinases QseC and QseE. 

The recent description of the QseC signaling cascade38 revealed that bacteriaare responsive to 

host adrenergic signals and this phenomenon would most probably be increased during 

hemorrhagic colitis as more catecholamines are released from the bloodstream into the 

intestine.  

 

EHEC strains that lack the LEE pathogenicity island-encoded TTSS and its effector proteins 

are also capable of colonization and induction of disease in humans.40 EHEC possess non-
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LEE proteins promoting adhesion and virulence.41-44  For example, the expression of the non-

LEE EspI/NleA effector protein by EHEC has been associated with severe disease.43  

 

Stx is causally related to severe EHEC-associated disease and the induction of HUS. In a 

primate model of Shigellosis, the toxin induced dysentery.45 Enterocytes do not express the 

Gb3 receptor to which the toxin binds but Stx1 and Stx2 were shown to bind to Gb3-

expressing intestinal Paneth cells.46 Even though intestinal epithelial cells do not express Gb3 

they may take up the toxin by actin-dependent macropinocytosis.34 Stx causes apoptosis of 

intestinal epithelial cells in vitro in human47,48 and mouse intestinal cells49 and may 

translocate across polarized intestinal epithelial cells using a transcellular route,50 an effect 

enhanced by neutrophil migration in the opposite direction.51 Recent studies have shown that 

Stx production can be induced by quorum sensing signaling39 but also suppressed by the 

normal human intestinal microflora.52 There are several variants of Stx2,25 some of which 

exhibit increased virulence to man such as Stx2c and Stx2d(activatable). The latter is 

activated by intestinal mucus and elastase, is present in EHEC strains that lack the LEE and 

has been associated with severe disease.53 It has been assumed that after damaging the 

mucosal epithelium, Stx may gain access to, and damage, the intestinal vasculature.54 

 

 
EHEC may also secrete SubAB in the intestine. SubAB recognizes a monosaccharide, 

terminating with the sialic acid N-glycolylneuraminic acid (Neu5Gc), as its receptor on 

human endothelial cells and intestinal epithelial cells.55 This glycan is not synthesized in 

humans but provided in the human diet, specifically in food which may be contaminated with 

EHEC, such as red meat and milk products,56 enabling SubAB to cause intestinal damage 

even in the absence of an inherent receptor. 
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EHEC infection induces intestinal inflammation, cell death by apoptosis and necrosis as well 

as an inflammatory response. Stx upregulates the proinflammatory cytokine IL-8, as well as 

other C-X-C chemokines in the gut.57-59 Triggering an inflammatory response in the intestine 

and systemically may upregulate the Stx receptor on endothelial cells.60 EHEC LPS may also 

play a role in inducing a mucosal immune response during the initial phase of disease61,62 

which may promote bacterial clearance. A reduced initial response was shown to increase the 

bacterial burden in mice, allowing more severe disease to proceed both locally and 

systemically, presumably due to increased secretion of Stx.62 A recent study reported that 

EHEC could suppress the intestinal epithelial cytokine response to Stx,59 an effect that could 

facilitate bacterial colonization. Host anti-microbial peptides may also be involved in the 

initial defense against intestinal infection, protecting the mucosal surface from colonization. 

This has been documented for Citrobacter rodentium,63 a pathogen causing similar attaching 

and effacing lesions in the gut, and suggested as a plausible protective mechanism in EHEC 

infection as well. 

 

EHEC virulence factors and blood cells  

Damage to the intestinal epithelium allows bacterial virulence factors to enter the circulation. 

Blood cells from patients with HUS are coated with Stx and LPS.64,65 During HUS, Stx 

circulates bound to platelets, monocytes and neutrophils as well as to platelet-monocytes and 

platelet-neutrophils in complex.64,66 Stx may bind to blood cells via the Gb3 receptor as well 

as other glycolipid receptors.67-69 LPS binds to blood cells via Toll-like receptor 4, which, on 

platelets, is in complex with CD62 (P-selectin).65  
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Stx induces cell death by blocking protein synthesis70 or by apoptosis.54 Neutrophils, 

monocytes and IgM-producing B lymphocytes exhibit resistance to Stx’s cytotoxic effect.69,71-

73 In macrophage-like THP-1 cells, both apoptotic and cell survival signaling pathways were 

activated after exposure to Stx1.74 Thus, most leukocytes encountering Stx will not undergo 

cell death, allowing the toxin to circulate bound to their cell membrane.  

 

Leukocytosis and high IL-8 levels at HUS presentation are associated with poor outcome.75,76 

Neutrophils demonstrate prolonged survival during severe forms of HUS.77 Interestingly, Stx 

has been shown to prolong the life-span of neutrophils,71 and impair neutrophil migration in 

mice.78 E. coli O157 also secrete StcE, a protease shown to increase the neutrophil oxidative 

burst and adhesion, thus impairing neutrophil migration79 which could explain increased 

tissue destruction at sites of neutrophil influx in HUS patients.80 Neutrophil activation during 

HUS and in experimental models was recently reviewed.81  

 

The role of monocytes during HUS may be related to toxin transport64,82 although the transfer 

of Stx from monocytes to its target cells has not been conclusively documented. The toxin is, 

however, capable of stimulating the human monocytic cell line THP-1 to secrete 

cytokines.69,83 Guessous et al showed that THP-1 cells stimulated with Stx2 released the 

chemokines IL-8, macrophage-derived chemokine (MDC), and Regulated on Activation, 

Normal T-cell Expressed and Secreted (RANTES) and this effect was enhanced in the 

presence of LPS.84  The released chemokines activated platelets, indicating an interaction 

between these blood cells. Stimulation of THP-1 cells with Stx1 also led to upregulation of 

tissue factor.85 We have recently shown that monocytic microparticles bearing tissue factor 
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are released during HUS and these microparticles may contribute to the prothrombotic state64 

as described below. 

 

During HUS, platelets are deposited on injured endothelial cells. Multiple microthrombi lead 

to thrombocytopenia. Many studies have addressed the pro-thrombotic state occurring during 

EHEC infection and resulting in TMA (reviewed in86). Platelets are activated by a direct 

interaction with LPS, Stx,65,87,88 chemokines84 and by factors released from damaged 

endothelium. Coagulation factors are, however, not consumed during this process. Mice 

inoculated with E. coli O157:H7 developed thrombocytopenia.62 Likewise, mice treated with 

Stx2 and LPS developed thrombocytopenia and platelet clumping in the kidneys.89  

 

During the acute phase of HUS, patients were shown to have elevated levels of tissue factor,90 

circulating tissue factor-bearing platelet-monocyte complexes as well as tissue factor-

expressing microparticles, mainly derived from platelets, but also from monocytes.64 These 

tissue factor expressing-complexes and microparticles decreased considerably after the 

patients’ recovery. Stimulation of whole blood with Stx2 induced the formation of platelet-

monocyte complexes, and, to a lesser degree, platelet-neutrophil complexes. The effect was 

enhanced when blood cells were co-stimulated with Stx2 and LPS, and O157LPS was more 

potent than other LPS serogroups. The formation of platelet-leukocyte complexes was further 

enhanced by application of high shear stress, mimicking the capillary shear stress present in 

glomeruli.64  
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In addition to its effect on platelets and monocytes, Stx induces tissue factor expression on 

endothelial cells.91-93 Tissue factor is the receptor for coagulation factor VII, thus converting 

factor X to Xa in the extrinsic pathway. Tissue factor expression will trigger thrombin 

generation resulting in clot formation and further platelet activation. Thrombin’s role in TMA 

was implied by its increased generation in mice injected with Stx2 and LPS94 as well as by the 

inhibitory effect of lepirudin, a thrombin inhibitor, on Stx-mediated injury in the dog.95  

 

The mechanism by which hemolysis occurs during HUS has not been elucidated. Red blood 

cell fragmentation is noted and has been mimicked in animal models of EHEC infection using 

the whole bacterium61 or Stx alone.95,96 It has been assumed that fragmentation is the result of 

mechanical breakdown in occluded vessels but oxidative damage has also been proposed as a 

mechanism of hemolysis.97 Regardless of the cause, the products of hemolysis may have a 

cytotoxic effect. Bitzan et al showed that heme and Stx induced an additive cytotoxic effect 

on renal tubular epithelial cells and microvascular endothelial cells.98 

 

Renal damage in HUS  

The main target organ affected during HUS is the kidney, and in severe cases also the brain, 

as well as other organs.99 Stx, with or without LPS, has been studied as the major virulence 

factor affecting target organs. In order to exert its cytotoxic effect, the toxin binds to its 

receptor, and kidney cell vulnerability is predicted by the presence of the Gb3 receptor.23,100-

102 Human kidneys exhibit both glomerular and tubular damage during HUS with extensive 

apoptosis of renal cortical cells.103,104 It is, however, unclear if the initial toxin insult occurs at 

the glomerular or tubular cell level.  
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Stx exerts a cytotoxic and apoptotic effect on glomerular endothelial105,106 and epithelial 

cells.107,108 The cytotoxic effect is enhanced in the presence of TNF-α60 as well as IL-1, LPS 

and butyrate.108 Stx1 was shown to upregulate cytokine production in glomerular epithelial 

cells109 and tubular epithelial cells,110 which would in turn enhance toxicity. Furthermore, Stx 

induced expression of the chemokine fractalkine on glomerular endothelial cells promoting 

leukocyte adhesion to the endothelium,111 an effect verified in vivo in mice and suggested to 

contribute to severity of disease in humans.112  

 

Studies have demonstrated that tubular cells are affected during HUS.103 Tubular cell damage 

was indicated by an increase of neutrophil gelatinase-associated lipocalcin in patient urine.113 

The beneficial effect of intravenous volume expansion during the early stages of disease114 

could also indicate an initial reversible tubular cell injury. EHEC infection in mice and rats 

induced acute tubular injury103,115 62,116 and Stx, in particular, triggered tubular cell apoptosis 

in mice,103 affecting primarily the cortical tubular cells. Silberstein et al showed that Stx2 

could inhibit water absorption in primary human proximal tubular cells117 and others have 

shown increased urine volume in vivo in rats116,118 and mice119 attributed to collecting duct 

injury. Thus both proximal tubular as well as collecting duct cells appear to be vulnerable to 

Stx. Interestingly, human proximal tubular cells exposed to Stx1 exhibited increased tissue 

factor expression120 suggesting that these cells may trigger the coagulation system upon Stx 

stimulation. Tissue factor is expressed in glomerular capillary endothelial cells and tubular 

epithelial cells during EHEC-associated HUS (Figure 1). 
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Podocytes are highly specialized glomerular epithelial cells. Using murine podocytes Morigi 

et al showed that Stx2 increased endothelin-1 mRNA and protein expression affecting 

cytoskeleton remodeling.121 A similar affect of Stx1 and Stx2 on preproendothelin-1 

expression was previously reported in vascular endothelial cells.122 Thus, by affecting 

endothelin-1 expression, Stx will possibly modulate vascular tone and glomerular 

permeability.  

 

Mesangial expansion, necrosis and mesangiolysis have been described in renal samples 

obtained during HUS although some of the cases reported were presumably not EHEC-

associated.123 Mesangial cells also possess Gb3 receptors which are upregulated by TNF-α124 

enabling Stx to inhibit protein synthesis and exert a cytotoxic effect, after prolonged 

incubation,107,125 as well as reduce nitric oxide production.126 Stx did not, however, stimulate 

the release of cytokines or chemokines from mesangial cells.127  

 

Brain damage in HUS 

A subset of HUS patients will develop central nervous system involvement. Symptoms may 

vary from mild irritability to coma. Human brain expresses the Gb3 receptor in neurons and 

endothelium.128 In vitro experiments have shown that human brain microvascular endothelial 

cells undergo apoptosis after exposure to Stx2;129 the effect was enhanced by TNF-α which 

sensitized cells to Stx1-induced apoptosis.130 This is due to upregulation of the Gb3 

receptor.131 In the mouse Gb3 was demonstrated in CNS neurons.128 Mice injected with Stx 

develop convulsions with brain edema101 and hind-limb paralysis.128 Gb3-null mutant mice 

were protected101 indicating the importance of Gb3 expression for targeting of Stx-induced 

damage. Intracerebroventricular injection of Stx2 in rats led to neuron apoptosis and glial 
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affection with reactive astrocytes.132,133 Of note, stimulation of human brain endothelial cells 

with Stx1 and TNF-α was cytotoxic but also induced cytokine synthesis and release.134 The 

cellular signaling events that dictate if the toxin will induce a cytotoxic or stimulatory 

response are yet to be elucidated.  

 

The emerging role of complement 

Of those cases of HUS not associated with EHEC infection, inherited disorders of 

complement regulation are the most frequent underlying cause.8 In these cases of atypical 

HUS, TMA is thought to result from complement-mediated endothelial damage and platelet 

activation.135,136 Limited evidence suggests that complement activation may play a role in the 

pathogenesis of EHEC-associated HUS. Patients with EHEC-associated HUS had elevated 

levels of complement factors Bb and sC5b-9 at presentation, indicating activation of 

complement through the alternative pathway.137 Stx activates complement in human serum 

via the alternative pathway.138 In addition, Stx binds to the cell binding domains of 

complement factor H, and appears to inhibit the regulatory function of factor H on cell 

surfaces.138 Complement activation may be a secondary phenomenon, which could, 

nonetheless, exacerbate renal injury.  

 

The chain of events from EHEC ingestion to the development of HUS 

EHEC will, after ingestion, colonize the terminal ileum and follicle-associated epithelium of 

Peyer’s patches.35 In the gut the bacterial virulence and adhesion will be activated by 

interkingdom signaling,139 allowing colonization to proceed with release of virulence factors 

such as Stx and LPS. It is, as yet, unclear which host factors increase susceptibility to develop 

HUS. Bacterial virulence factors migrate across the intestinal epithelium,51 gain access to the 
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blood, circulating bound to platelets, monocytes and neutrophils as well as platelet-leukocyte 

aggregates.64 Hypothetically, larger amounts of circulating Stx and LPS could increase the 

risk to will develop HUS. In line with this assumption, and using a limited number of patient 

samples, Ståhl et al showed that during EHEC infection, only the platelets of patients who 

later developed HUS carried Stx and LPS on their surface.65 Thrombin generation and 

fibrinolysis inhibition also precede the development of HUS.140 

 

Stx exerts a stimulatory effect on cells, triggering cytokine release and/or tissue factor 

expression, as well as a cytotoxic effect inhibiting protein synthesis and inducing apoptosis. 

These effects may occur in the circulation, affecting blood cells, as well as when reaching 

Gb3-expressing target cells in the kidney, brain and other organs. In the presence of high 

shear, as in the renal glomerular microcirculation, the effects of Stx and LPS may be 

enhanced,22,64 resulting in leukocyte adhesion and the formation of microthrombi. 

 

CONCLUSION 

This review has summarized many of the known mechanisms by which EHEC colonize the 

intestine and induce disease affecting the intestine, kidney and brain, as well as other organs, 

in infected individuals. As EHEC is a non-invasive organism the bacteria triggers lesions in 

the host by the interaction of its factors with host cells, firstly at the mucosal level, followed 

by binding to blood cells and transfer to target organs. Ultimately this will lead to endothelial 

cell injury and platelet activation resulting in a prothrombotic state. Advances in 

understanding the complex events leading to EHEC-induced thrombotic microangiopathy will 

hopefully facilitate the development of specific therapeutics agents in the future. 
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Figure legend 

Figure 1: Tissue factor expression in the renal cortex of a child with E. coli O157:H7-

associated HUS 

Kidney tissue from a 14 year-old boy with E. coli O157-associated HUS (A) and from an 

adult control whose kidney was removed due to renal cancer, showing an area unaffected by 

cancer (B).141 Tissue factor was detected by immunohistochemistry using monoclonal mouse 

anti-human tissue factor antibody (0.7µg/ml, American Diagnostica Inc, Stamford, CT, USA). 

Signal was detected using an EnVision System goat-α-mouse:HRP (Dako Cytomation, 

Glostrup, Denmark) secondary antibody as described.141 Tissue factor was detected in 

glomerular capillaries (arrow) and proximal tubular cells (asterix) as well as in the Bowman´s 

capsule. Mouse IgG1 (Dako Cytomation) was used as the isotype control and did not show 

staining (not shown). The study was approved by the Ethics Committee of the Medical 

Faculty at Lund University and biopsies were taken with the informed consent of the patient 

and control.  
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