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Populær sammenfatning på dansk

Et af de mest interessante spørgsmål en fysiker kan forsøge at svare på er hvad består tingene
af?. Et hus kan skilles ad i mursten, og murstenen kan også skilles ad i sine bestanddele.
Sådan kan man fortsætte indtil man bare har atomer tilbage. Atomerne kan skilles ad i
elektroner og en atomkerne der består af neutroner og protoner. Elektronen er, så vidt vi
ved, fundamental, og kan ikke skilles ad. Neutroner og protoner består af kvarker, holdt
sammen af den stærke kernekraft, der overføres ved at gluoner sendes mellem kvarkerne.
Den stærke kernekraft er både meget stærk og meget speciel. Hvis man havde en snor så
stærk som den stærke kernekraft, den kunne holde en elefant oppe uden at knække. Den
er speciel fordi kvarker og gluoner ikke opfører sig som andre partikler vi kender. Man kan
for eksempel ikke fjerne en kvark eller en gluon fra protonen og inspicere den alene. Hiver
man hårdt nok i protonen for at skille den ad, vil den skilles ad i flere protoner, og ikke flere
kvarker. Her er billedet med elefanten i snoren godt som forklaring. Hvis vores elefant var
for tung, og snoren knækkede, ville vi heller ikke stå med to snor-ender i hånden – vi ville
slet og ret stå med to (mindre) snore.

Der findes en teori der beskriver den stærke kernekraft. Den hedder kvantekromodynamik,
og med den i hånden kan man regne på hvad der sker når man støder atomkerner sammen
med hastigheder tæt på lysets. Dette gør man blandt andet ved det store eksperiment LHC
ved CERN i Frankrig og Schweiz, hvor både de mindste atomkerner stødes sammen –
det er brintkerner, der bare består af en enkelt proton – såvel som bly, der består af 208
protoner og neutroner. Vi mener i dag at vide, at kvantekromodynamik er den korrekte
teori for den stærke kernekraft. Vores metoder til at regne på teorien er udviklet gennem
sidste halvdel af det 20. århundrede, men er stadig ikke så gode som vi kunne ønske os. Vi
kan regne på teorien i flere forskellige tilnærmelser. Nogle tilnærmelser er effektive når man
skal regne ud hvad protoner eller neutroners masse er, andre er effektive når man skal regne
ud hvor sandsynligt det er at få en higgspartikel fra et sammenstød ved en bestemt energi.
I denne afhandling anvendes og udvikles der tilnærmelser der er effektive til at beskrive
sammenstød mellem protoner der involverer mange kvarker og gluoner. En ”beskrivelse”
af sammenstødet betyder i denne sammenhæng at kunne regne ud hvilke partikler man
efterfølgende kan se hvor i detektoren.

I denne afhandling benyttes især tilnærmelser baseret på den snor-analogi for protoner, der
blev introduceret i eksemplet med elefanten. Det viser sig at man opnår en god beskrivelse af
sammenstød med få kvarker og gluoner ved at regne på dem som om en snor forbinder alle
kvarkerne og gluonerne i sammenstødet. I sammenstød med mange kvarker og gluoner vil
snorene blive ”filtret sammen” og danne tykke reb. Det viser sig at have store konsekvenser
for hvilke partikler man ser i detektoren. I sammenstød hvor der dannes tykke reb, får man
for eksempel væsentligt flere partikler med kvarker af typen strange i sig.

Modellerne er ikke nogle man kan regne særligt langt på med papir og blyant. Efter mod-



ellerne er skrevet ned, er de implementeret i computerprogrammer der så bruges til at
simulere sammenstød. Programmerne anvendt og udviklet i denne afhandling er udviklet i
Lund og hedder DIPSY, ARIADNE, PYTHIA8 og FritiofP8. Programmerne finder anvendelse
for fysikere verden over, der ønsker præcis viden om partikelsammenstød.
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Introduction

One of the most interesting and fundamental questions of physics, is also one that is very
easy to ask: what are things made of? It is seemingly easy to answer. Any macroscopic object
can be taken apart into its constituents, and they can be examined individually. It turns out
that every time we go down another level in size, we encounter a new type of substructure,
and physics on a more fundamental level. It is crucial for our understanding of the world
that we can always explain the physics of larger structures in terms of the physics of smaller
structures – at least in principle. The smallest structures we can see with the naked eye,
are some molecular structures, such as DNA or polymers. Other, less complex, molecules
may measure down to about 1 Å (10−10 m), and can only be seen through a microscope.
Molecules consists of atoms. In school they are taught as ”The Elements”, but even though
they are very small, they are not elemental. We can sensibly ask and answer the question
what are the elements made of? The modern starting point to the answer to this question, was
provided by Rutherford in the beginning of the twentieth century, with the discovery that
atoms have very small nucleus. We are now well beyond what can be seen with microscopes,
and must rely on other types of experiments. We know today that even this nucleus has a
substructure. It consists of protons and neutrons, which can, for example, be kicked out of
the nucleus in radioactive processes, and examined individually.

At the scale of protons and neutrons, measuring about 1 fm (10−15 m) across, the preceding
logic comes to a screeching halt. The question what is a proton made of? is not so easily
answered. The easiest answer is that a proton consists of quarks and gluons. One could say
that the quarks making up the proton are of the types u and d, which are the lightest of the
six quark types. That would be a true statement. But it is not true in the sense we normally
think about building blocks. You can cut a cell out of a piece of human skin, and put it in a
petri dish. It may be very hard to do, and require a very skillful scientist, but in principle it



is possible. After the removal, the piece of skin will now lack the cells that are sitting in the
petri dish. One cannot do the same thing with protons and its constituent quarks! It is not
possible to remove a quark from a proton and have the quark sitting in one place, and the
proton without the quark in another. Not because scientists are not skillful enough, but
because the laws of nature forbid us to do so. This is known as the principle of confinement,
saying that quarks cannot appear alone, but must be confined inside a hadron, which is the
umbrella term for protons, neutrons and all other bound states of quarks and gluons.

A good analogy to a hadron is a piece of rubber band or string. In this analogy the quarks
are the ends of the string¹, and the gluons are responsible for the force with which the string
pulls back, when we try to pull its ends apart. How much force a given type of string can
pull back with, is known as the string tension. The hadronic string is not just any old piece
of string. It can carry a staggering 15 tonnes before it breaks, so the force mediated by the
gluons is very strong. It is in fact so strong, that it is known as the strong nuclear force. The
question of removing a quark from a hadron is now equivalent to the question of removing
a string end from the string, and that does not make sense. If you pull hard enough that
the string breaks, you will not sit with a free string end, you will rather sit with two pieces
of string, equivalent to two hadrons.

Analogies like this are often used in physics. In spite of its simplicity, the string analogy
is very useful when one wants to describe real physics – in fact much of this thesis is built
upon this very analogy. But like analogies often do, also this analogy breaks down. It turns
out that quarks and gluons can be freed from hadrons, and interact with e.g. quarks from
another hadron, if only the collision energy is large enough, or similarly the length scales
are small enough. This principle is known as asymptotic freedom. This does not mean that
the quarks and gluons will remain free, they will only be free as long as the high energy
interaction takes place. When the energy decreases again, all quarks and gluons must again
be bound together.

1 The Quark Gluon Plasma

Knowing now that quarks and gluons will behave like free particles when the energy is large
enough, let us imagine that we take a bunch of protons and put them under very stressful
conditions. We enclose them in a sealed chamber and start to increase the temperature of
the chamber. This could be achieved in two ways. Either by heating the system with an
external source, say a Bunsen burner, or by decreasing the size of the chamber with the
protons still in there. At some point the temperature – and thus the energy density – of

¹A proton consists of three quarks, not two. But we can imagine a piece of string with three ends if we
wish, think about a hadron consisting of a quark and an anti-quark, or simply make believe that a proton only
consists of 2 quarks, without invalidating the analogy.
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the chamber will be so high, that the quarks and gluons will behave as free particles inside.
At this point we keep the temperature constant and wait until equilibrium is established.
This means that the temperature is the same everywhere in the chamber. What do we now
expect about the behavior of the contents of the chamber?

Some calculations in the theory of the strong force indicates that if the contents of the
chamber is hot and compressed enough, the free quarks and gluons will behave like an
almost perfect fluid, named the Quark Gluon Plasma (QGP). We would like to confirm
that the box actually contains such a plasma, and not just the protons we had to begin
with, but this is a hard task. We cannot just open the chamber. If we did, we would no
longer have a hot, compressed state, and the quarks and gluons would form hadrons and
escape our investigation. We sometimes say that the hadrons freeze out, or that the material
inside the chamber hadronizes. We must think of some measurement to carry out on the
resulting hadrons, which will reveal if a QGP was formed inside the box. Two ideas, which
are followed in this thesis, are:

1. Since the temperature of the plasma is high, the production rate of hadrons requir-
ing more relatively energy will be higher than normally. This includes hadrons con-
taining a heavier type of quark, the so–called s-quark. If we measure the produced
hadrons, after the chamber is opened, we should find an abundance of hadrons with
s-quarks inside them, as compared to a chamber where no QGP is formed.

2. If the chamber contains a QGP, we know that contents of one end of the cham-
ber should be affected by a disturbance in the other end of the chamber, since the
contents would behave like a liquid. If, on the other hand, no QGP is formed, the
disturbance would be localized. When we then open the chamber, we can measure
whether the whole content is affected by small disturbances by measuring how the
emerging hadrons are distributed.

Unfortunately it turns out that we cannot just put protons in a chamber and heat them up
to obtain a QGP. The temperature required is simply way too large – more than 1012 K!
For comparison, the core temperature of the Sun is colder by a factor of a million. The only
point in time where we imagine the temperature was so large, was fractions of a second after
the Big Bang. If we could find another way of obtaining the QGP, we would therefore get
a source to obtain fundamental knowledge about the conditions of the very early Universe,
which is believed to have been dominated by QGP. Instead of heating protons up in a
chamber, we instead create ”small bangs” in the laboratory, by colliding nuclei with each
other, near the speed of light. It is imagined that the very hot and dense state created in
such collisions, will be a QGP. The laboratory needed for such collisions is huge. Acceler-
ators several kilometers in length are necessary to accelerate the beams of heavy nuclei, and
detectors weighing several thousand tonnes are used to measure the results.
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The abundance of hadrons with s-quarks was first observed at the Center for European
Nuclear Research, CERN. In results [1] from collisions of sulfur, recorded with the NA35
experiment, a rise, with respect to proton–proton collisions where no rise was expected,
of a factor 2 were shown. The measured hadrons are the so-called K0

s , consisting of s -
and d-quarks, and Λ or Λ̄ which contains a u-, d- and an s-quark or their anti-particles
respectively.

Measurements of disturbances were carried out around the same time. Such measurements
are a bit more tricky to understand, as one must define both a disturbance and a way to
measure them. What one often does, is to define the disturbance as the anisotropy in the
initial stage of the collision. This anisotropy is due to the fact that the particles are not
collided head on, but with varying degrees of overlap. If the QGP assumption is right, one
should be able to measure varying degrees of anisotropy in the final state of the collision as
well. In the final state we only have access to the momentum space anisotropy, quantified
by so-called ”flow” coefficients, so this is what is measured. Measurements of collisions
of gold nuclei carried out at the Relativistic Heavy Ion Collider (RHIC) [2] by the STAR
collaboration, showing large elliptic flow, are among the most important results pointing
in the direction of the QGP.

Even though we have observed results which can be explained by the formation of a QGP,
we cannot manifestly conclude that a QGP was in fact formed. To do so, we must also
exclude the possibility that such results could be obtained without formation of a QGP,
simply by the introduction of subtle, but normal, effects which are present in all types
of collisions, but only visible when the colliding systems becomes of a certain size and
temperature. This can seem a silly task. One can use the data mentioned above to either
confirm or falsify a given model, but it seldomly works the other way around – one cannot
disprove that introduction of new effects could lead to a given explanation. We therefore
take on the opposite task: To actually construct the necessary corrections to existing models,
which will explain QGP effects. If the measured effects can be explained by the corrections,
one would need a strong argument to postulate a QGP. If the measured effects on the other
hand cannot be explained by the corrections, the QGP postulate will gain additional weight.

If we are to take seriously an analogy where two quarks are connected by a string-like object,
we need to also consider whether or not two quark pairs can interact through interaction of
the strings. It turns out that the two QGP effects mentioned above can be at least qualita-
tively understood in terms of string interactions. To understand how, we need a somewhat
deeper understanding of the strings. They are to be understood not as literal strings, but
as fields confined to a cylindrical volume, measuring roughly 1 fm across, connecting the
quarks. When these cylindrical tubes overlaps with each other, the overlap region will have
different properties than individual, solitary strings. This will give rise to effects similar to
the QGP effects.
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The primary contribution of this thesis is the development of these corrections, and their
implementation into a Monte Carlo event generator, which allows for direct comparison
to data.

2 Monte Carlo event generators

Comparison to data is very important for development of physical theories. It is quite pos-
sible to build theories of physics which can be celebrated for their theoretical beauty, but
if they cannot describe the real world around us, their utility as a theory of physics is lim-
ited. Since the 1980’ies, Monte Carlo event generators have gained enormous popularity in
the particle physics community. The idea behind such generators is to generate computer
simulated individual collisions (called ”events”), which resemble the physics of the mea-
surement as closely as possible. The sub-atomic world is governed by quantum mechanics,
which is a probabilistic theory, meaning that one can only calculate the probability of a cer-
tain outcome. The event generator is therefore also probabilistic, hence the name ”Monte
Carlo”.

The output from event generators has the large advantage that it can be processed in the
same way as the measured data. This process is illustrated in the flowchart in figure 1.1.
To the left we start, on one hand, with nature as it can be measured, and on the other
hand our idealised ideas about the world – physics theory. Nature is probed by collider
experiments such as those at the Large Hadron Collider (LHC), a large accelerator complex
in France and Switzerland, and the physics theory is used as input for the Monte Carlo
event generators. The event generator output is often called a ”particle level” prediction.
This means that the simulation provides results in terms of particles and their momenta. If
we imagine a perfect detector, a thought-experiment detector, which has no restrictions in
terms of measurement precision or coverage, that would provide a result similar to the one
provided by the generator. The real–world experiment can not provide that type of result,
as it is limited by constraints of the real world. A particle can escape detection, equipment
for tracking or calorimetry is not infinitely fine grained, but limited by technology and
so on. Before a physical result at particle level can be delivered, the responses from all
the equipment need to be analysed and corrected to particle level. This is indicated in
the box where the two paths meet. This is a highly non-trivial procedure, which involves
both subjecting the Monte Carlo particle level result to simulations of detector geometry,
thus correcting the Monte Carlo to detector level, but also the reverse process of detector
unfolding where detector effects are removed from data, leaving only particle level results.

The unfolded data are to a large degree fed back into the Monte Carlo generators, in order
to ”tune” models – that is, determining model parameters. This is often necessary in order
to understand also the parts of the collision one is not interested in for a particular analysis,

5



Physics theory Event Generator

Nature Collider experiment

Experimental analysis
Detector simulation etc.

Physics analysis

Particle level analysis

Feedback of result

Unfolded data

Figure 1.1: Flowchart sketch of the work flow of a high energy physics analysis involving both experimental data and comparison
to theory.

i.e. the analysis’ background. Once this iteration is done, the physics analysis is ready, which
hopefully provides a new result about the world of fundamental particles. This result is then
fed back into the underlying physics theory. This could for example be as a measurement
of the t-quark mass, or the Higgs boson mass, which can put further constraints on models
for new physics. In the case of the physics models developed in this thesis, future results
and development will hopefully help understanding the nature of the strong force in a more
quantitative way.

The Monte Carlo event generator thus serves a double purpose. On one hand it is a the-
oretical tool, which can be used to explore an abstract physics model, and see what its
consequences are. On the other hand it is a very practical tool used in experiments as a part
of simulating how the response from a certain signal looks in the detector.

3 Foundations and phenomenology

Before going into the very detailed models making up modern Monte Carlo event gen-
erators, it is useful to take a step back. We have outlined the phenomenon of the strong
force and its physical theory ”Quantum Chromodynamics” (QCD). Some of the underly-
ing concepts of QCD, such as asymptotic freedom, were already mentioned in the intro-
duction, as well as the string analogy which tries to provide a physical description – or a
phenomenology – of confined quarks and gluons. The problem is that although there is
little doubt that QCD is in fact the correct theory for strong dynamics, the theory is not
fully understood. A place where the theory is quite well understood, is in the so-called
perturbative approximation. In perturbation theory one writes out results in a series ex-
pansion in a sufficiently small parameter, and therefore only needs to calculate the first (or
the few first) terms of the expansion. The usual choice of expansion parameter is the strong
coupling αs (one can think about it as the QCD analogue to the electron charge squared in
electromagnetism), which depends strongly on the energy scale one is probing at. At high
energies – producing e.g. Higgs bosons or Z0-bosons, this is a good approximation. At low
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energies the approximation breaks down, and one has to rely on phenomenological models
such as the string model.

One cannot derive the phenomenological models directly from first principles, and often
they are built from principles predating QCD. We will therefore begin by introducing some
parts of the pre-QCD theory which provides inspiration for the models developed in the
papers making up the bulk of this thesis.

3.1 Quark model phenomenology

Throughout the 1950’ies -and 60’ies, improvements in the design and implementation of
particle accelerators and detectors, led to experiments with collision energies on the order
of several hundreds of MeV. This is enough to produce many of the particles we today
classify together as ”hadrons”. At that time the existence of a large number of ”fundamental
particles” was puzzling, and physicists sought to construct models which could reduce this
vast amount of observations into fewer fundamental degrees of freedom. This was achieved
by the theoretical physicists Murray Gell-Mann and Yuval Ne’eman in 1961, and extended
by Gell-Mann and George Zweig in what is now known as ”The Eightfold Way”, ”Flavour
SU(3)” or simply ”The Quark Model”.

In the quark model, hadrons are built up by the three building blocks already mentioned
in the introduction – the quarks named u (up), d (down) and s (strange)². The quarks are
fermions, having spin- 1

2 , and electric charge 2
3 , −1

3 and −1
3 respectively, all in fractions of

the fundamental charge e. Remarkably, this simple picture allows for a full phenomenology
of hadron species.

Besides categorizing the hadrons, the quark model itself does not do much. We are in-
terested in learning the properties of hadron–hadron scattering, and for that we require a
theory where scattering amplitudes, and thus cross sections, can be calculated.

3.2 S-matrix theory

Consider now the 2 → n scattering of such hadrons. We use the S-matrix approach,
following the presentation in ref. [3]. This approach examines the analytic properties of the
S-matrix, rather than calculate matrix elements using quantum field theory. The S-matrix
is a scattering matrix, defined such that the probability for taking an initial state |i⟩ to a final

²There exist three more quark flavours, the c (charm), b (bottom/beauty) and t (top/truth). These are all
heavy compared to the three light quarks considered here, and their production in soft processes are thus heavily
suppressed.
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state ⟨f | is:
Pfi = |⟨f |S|i⟩|2 = ⟨i|S†|f ⟩⟨f |S|i⟩. (1.1)

Summing over all possible final states yields:

1 =
∑

f

|⟨f |S|i⟩|2 =
∑

f

⟨i|S†|f ⟩⟨f |S|i⟩ = ⟨i|SS†|i⟩ = ⟨i|i⟩, (1.2)

for any |i⟩. Thus S†S = 1. Similarly SS† = 1, and S is therefore a unitary matrix. The
unitarity of the S-matrix connects the elastic amplitude and the total cross section in the
optical theorem. We begin with defining the transition matrix (T) through its relation to
the S-matrix

S = 1 − i(2π)4δ4(pf − pi)T. (1.3)

The introduction of T signifies a distinction between an interaction (the unit operator) and
the actual scattering process. Rewriting equation (1.2) in terms of the T matrix for any
orthonormal states ⟨j| and |i⟩ gives:

1 = ⟨j|SS†|i⟩ =
∑

f

⟨j|S|f ⟩⟨f |S†|i⟩. (1.4)

Inserting equation (1.3) and writing out just the matrix element for elastic scattering (j = i)
we get:

2ℑ (⟨i|T|i⟩) =
∑

f

(2π)4δ4(pf − pi)|⟨f |T|i⟩|2. (1.5)

We can rewrite eq. (1.5) as the optical theorem, since the right hand side is the total cross sec-
tion modulo a kinematic factor, and the left hand side is the forward scattering (i.e. elastic)
amplitude. In the large-s limit³ the result reads:

ℑ(Ael) = 2sσtot. (1.7)

Up until this point we have worked in momentum space where the S-matrix is characterized
by the Mandelstam variables. This thesis deals largely with the effects of multiple scatter-
ings. Multiple scatterings corresponds to convolution in momentum space, but simplifies
to multiplication in impact parameter space. Thus we will move to impact parameter space,
making the amplitudes dependent on the impact parameter b (impact parameter is really
a two-component vector, b⃗. But since we work with the simplification that all targets and
projectiles are symmetric, we can remove the angular part, and write only the magnitude).

³The usual Mandelstam variables for the process a + b → c + d are:

s = (pa + pb)
2 = (pc + pd)

2,t = (pa − pc)
2 = (pb − pd)

2,u = (pa − pd)
2 = (pb − pc)

2. (1.6)

8



At high energies the real part of the elastic amplitude becomes small enough that we will
approximate it by zero. Assuming further that no diffractive excitation takes place, we write
the absorption probability as Pabs(b) =

∑
j |Aj(b)|2, where the sum runs over all inelastic

(meaning absorptive in the absence of diffraction) channels. The elastic amplitude is then
given by:

Ael(b) = i
(

1 −
√

1 − Pabs(b)
)
. (1.8)

Analogously to the T matrix, we now define the real amplitude (or profile function) T(b)
as well as S(b) analogously to the S-matrix:

T(b) ≡ −iAel(b) = 1 − S(b), (1.9)

and for the remainder of this thesis T and S denotes these quantities (and not their mo-
mentum space counterparts), unless otherwise stated.

The fact that situations with multiple scatterings are easily dealt with in impact parameter
space, is best illustrated with an example (with inspiration from ref. [4]). Consider the
situation sketched in figure 1.2. We have here a projectile (p) scattering off three constituents
each with profile function f1, f2 and f3 respectively⁴. In the eikonal approximation the total
probability for absorption at fixed b becomes:

Pabs =
dσabs

d2b
= f1 + f2 + f3 − double counting. (1.10)

The double counting terms are terms we need to insert in order to avoid counting the
same probability twice, when hitting e.g. both target 1 and target 2. When those terms are
subtracted we need however to add the term for hitting all three. The full probability then
becomes:

Pabs = f1 + f2 + f3 − f1f2 − f2f3 − f1f3 + f1f2f3 = 1 − (1 − f1)(1 − f2)(1 − f3). (1.11)

If each fi is small, this exponentiates and thus:

Pabs ≈ 1 −Πi exp(fi) = 1 − exp

(∑
i

fi

)
= 1 − exp(−2F), (1.12)

where F is introduced as a shorthand notation in the last equality. The above argument
easily extends to an arbitrary amount of particles.

⁴Due to the optical theorem we can treat scattering amplitudes as probabilities, provided that the real part
is approximately zero.
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Figure 1.2: Scattering of a projectile (p) on a three-constituent target (f1, f2, f3). This situation is conveniently described in impact
parameter space.

3.3 Cross sections

We have now separated the cross section into two parts – the elastic and the inelastic. From
equations (1.8), (1.9) and (1.12) we can write T(b) = 1 − exp(−F(b)) and:

dσel

d2b
= T2 and

dσtot

d2b
= 2T. (1.13)

The total inelastic or absorptive cross section is then simply:

dσabs

d2b
=

dσtot

d2b
− dσel

d2b
= T(2 − T). (1.14)

Thus, if we can calculate the individual fi, we can go on to calculate T and cross sections.
Bare in mind that the above argument concerning multiple interactions holds true both
for multiple partonic interactions in, say, a proton–proton collision, or multiple nucleus
collisions in, say, a proton–lead collision. The fi will of course be different in the two cases,
as the fundamental degrees of freedom in the two calculations (partons vs. nucleons) are
quite different.

Let us limit ourselves to proton–proton collisions. Here we want to further identify diffrac-
tive and non-diffractive contributions. According to the quantum mechanical Good–
Walker formalism (see box 1 for details), diffraction can be included by taking into account
fluctuations in projectile and target. To recover the cross sections from equation (1.13), one
must average over the fluctuations, and thus:

dσtot

d2b
= 2 ⟨T⟩t,p ,

dσel

d2b
= ⟨T⟩2

t,p , (1.15)

where subscripts t and p indicate an average over target and projectile respectively.
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Figure 1.3: Illustration of projectile fluctuation which, in the Good-Walker formalism, leads to diffraction. See box 1 for further
explanation.

Box 1: The Good–Walker formalism

In the Good–Walker formalism [5],
diffraction is associated to fluc-
tuations. Consider the situation
sketched in figure 1.3. Here a pro-
jectile comes in from the left, to
scatter on the target on the right.
We denote its diffractive eigenstate
Φk with corresponding eigenvalues
(i.e. elastic scattering amplitudes)
Tk. Its mass eigenstates Ψi will
then be a linear combination of the
diffractive eigenstates:

Ψi =
∑

k

cikΦk, (1.16)

where the mass eigenstate of the
incoming projectile is labelled Ψ1.
We can write the transition ampli-
tude to go from the incoming state

to the i’th mass eigenstate as:

⟨Ψi|T |Ψ1⟩ =
∑

k

cikTkc1k.

(1.17)
The elastic cross section – where the
incoming state is also the outgoing
state – is then:

dσel

d2b
= ⟨Ψ1|T |Ψ1⟩2 = ⟨T ⟩2 .

(1.18)
The total diffractive contribution is:∑

i

⟨Ψ1|T|Ψi⟩ ⟨Ψi|T|Ψ1⟩ =
⟨
T2⟩ ,

(1.19)
and the diffractive excitation is then
the total diffractive minus the elas-
tic:

dσdiff,p

d2b
=
⟨
T2 ⟩− ⟨T ⟩2 . (1.20)

The single diffractive cross sections involves averaging over only one side at a time (c.f. equa-
tion 1.20 in box 1):

dσSD,(p|t)

d2b
=
⟨
⟨T ⟩2

(t|p)

⟩
(p|t)

− ⟨T ⟩2
p,t . (1.21)

The double diffractive cross section is then obtained by subtracting both contributions
from single diffractive excitation from the total diffractive cross section. Since the elastic
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contribution is already subtracted, this needs to be added again, in order to avoid double
subtraction:

dσDD

d2b
=
⟨
T2 ⟩

p,t −
⟨
⟨T ⟩2

t

⟩
p
−
⟨
⟨T ⟩2

p

⟩
t
+ ⟨T ⟩2

p,t (1.22)

In section 5.2 we will introduce a QCD based model (the DIPSY model) for calculating fi,
and thus T(b), which is obviously necessary to calculate cross sections. But here we will
instead take an aside to the pre-QCD theory by Tulio Regge. Besides being a theory for
calculating cross sections, this also inspired the string model for mesons, which will play a
large role in the thesis.

3.4 Regge theory

We now go back to the momentum space picture, and look at the amplitude of 2 → n
processes, exemplified by the pp̄ total cross section. We know the result from experiments,
in figure 1.4 the total cross section as function of

√
s is shown. We will now argue that

exchanges of mesons in the t-channel are particularly important, inspired by the discussion
in ref. [3]. Consider the processes pp̄ → Σ̄+Σ− and pp̄ → Σ̄−Σ+. Though the processes
are seemingly similar, we know that the cross sections are not, as σ(pp̄ → Σ̄−Σ+) ≫
σ(pp̄ → Σ̄+Σ−). We know [6], however, that the quantum numbers charge (q) and
isospin (I3) are different among the final state particles. For a t-channel meson exchange to
be allowed for the process σ(pp̄ → Σ̄+Σ−), the exchanged particle should have I3 = 3

2 and
q = 2. No such meson exists. However, for the process σ(pp̄ → Σ̄−Σ+), the exchanged
meson in the t-channel should have I3 = 1

2 or 3
2 and no charge. Such mesons do exist, and

the fact that the mesonic t-channel is open for this process, explains why the cross section is
much larger. The exchange of resonances in the t-channel is thus argued to be an important
contribution to the cross section at high energies.

We therefore wish to examine the t-channel exchange a bit further. From quantum me-
chanics we know that a scattering amplitude can be expanded in partial waves:

A(k, cos(θ)) =
∞∑
l=0

(2l + 1)al(k)Pl(cos(θ)), (1.23)

where Pl are the Legendre polynomials of first kind, order l. The partial wave amplitudes are
denoted al and θ is the scattering angle. For 2 → 2 processes and equal masses, cos(θ) =
1 + 2s

t−4m2 and:

A(s, t) =
∞∑
l=0

(2l + 1)al(t)Pl(1 +
2s

t − 4m2 ). (1.24)
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Figure 1.4: The total pp̄ cross section as function of center–of–mass energy. Reproduced with permission from ref. [3].

When s becomes large, Pl ≈ sl, which obviously makes the series diverge. We shall not
unfold the full analytical apparatus here, but rather exemplify based on ref. [3], where also
the full derivation can be found.

Consider the exchange of just a single resonance of a given spin l0 in the large-s limit.
Equation (1.24) then reduces to A(s, t) ∝ sl0 . Using the optical theorem in the large-s limit
(equation (1.7), remembering that the real part of the amplitude is≈ 0), we get σtot ∝ sl0−1.
Having an integer value of l0 does not correspond well to the picture observed in figure 1.4,
and we must imagine that several particles are exchanged, and we must consider them
all at once. The formalism for doing this, is called Regge theory. It involves making an
analytical continuation of al to the complex l-plane. Equation (1.24) becomes an integral
in the complex l-plane, with poles traced out by Regge trajectories:

l = α(t). (1.25)

We can readily associate such poles with particles. Values of t for which l corresponds to an
integer is then the squared mass of a resonance with that spin. One then finds the following
asymptotic s-dependence of the amplitude:

A(s, t) → β(t)sα(t) as s → ∞. (1.26)

3.5 String picture of mesons

Plotting meson spins against their squared mass, reveals a very simple form of the Regge
trajectories (equation 1.25). In figure 1.5, an example of such a trajectory is shown. It is seen
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that they are (almost) linear in t:

α(t) = α(0) + α
′
t. (1.27)

We can now ask ourselves what kind of internal meson dynamics could give such simple
trajectories. In other words: What is the nature of the potential binding the two quarks
together? We consider the ”leading” trajectory, which is the one that maximises l at given t.
Let the two quarks be connected by a force field with the property that the potential rises
linearly with the distance between the quarks, like a classical string. We physically think
of this string as a narrow flux tube, which carries all the energy, and thus neglect the quark
masses. Since we want to maximize l, we let the flux tube rotate around its center. As the
quarks are massless, the ends move with the speed of light. If the string length is called r,
and the string tension in rest is κ, then:

√
t =

∫ r/2

−r/2
dx

κ√
1 − v2

⊥

=
rκ
2

∫ 1

−1

dy√
1 − y2

=
πrκ
2
, (1.28)

with v⊥(x) = 2x/r being the transverse velocity. Similarly the angular momentum is:

l =
∫ r/2

−r/2
dx

κv⊥x√
1 − v2

⊥

=
r2πκ

8
. (1.29)

This model fulfills that:
l
t
=

1
2πκ

= α
′
= const. (1.30)

and given the value of α′ extracted from fits to the experimentally obtained trajectories, we
get a string tension κ ≈ 0.180 GeV2 = 0.91 GeV/fm.

3.6 The Pomeron

We can now insert equation (1.26) with a trajectory as given by equation (1.27) into the
optical theorem. Since we are considering only the elastic amplitude (t = 0), the total
cross section is only dependent on the intercept α(0) and not the slope:

σtot ∝ sα(0)−1. (1.31)

From figure 1.5, α(0) ≈ 0.5. This corresponds to exchange of the mesons shown in the
figure. As the energy rises, it becomes necessary to exchange a family of particles with
α(0) > 1, if the cross section should rise as data shows. In a theorem known as the
Pomeranchuk theorem it is stated that a process with non-vanishing cross section as s increases
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Figure 1.5: Regge trajectories, particle spins plotted against their squared masses. Reproduced with permission from ref. [3].

must be dominated by exchange of vacuum quantum numbers. Such an exchange is called
a Pomeron, and the trajectory in question is called the Pomeron trajectory.

The pp̄ cross-section in figure 1.4 can thus be described by a two-term parametrization,
where both terms are proportional to sα(0)−1. One for low energies with an intercept
similar to the one in figure 1.5, and one for higher energies with the Pomeron intercept. A
good fit was found by Donnachie and Landshoff [7]:

σ
pp̄
tot = (21.7s0.08 + 98.4s−0.45)mb. (1.32)

Similarly for pp collisions:

σ
pp
tot = (21.7s0.08 + 56.1s−0.45)mb. (1.33)

4 Electron–positron collisions

We have now reviewed a lot of basic principles and ideas which will be useful for a modern
description of high energy proton collisions, based on QCD. We can now go on to explain
the more concrete building blocks of a modern Monte Carlo event generator. We start with
the simplest possible system, namely an e+e− annihilation. We will focus on a hadronic
final state arising from the production of a qq̄ pair and it properties, using a parton cas-
cade and hadronization. When we later move on to proton–proton collisions, parts of the
calculation are already fixed from e+e−, and one can concentrate on complications arising
from having a QCD initial state.
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Figure 1.6: Relevant diagrams for the dipole parton shower. To the left the dipole along with some notation, to the right, the
two relevant diagrams.

4.1 Dipole radiation in the final state

We will here deal with the gluon radiation from a qq̄ pair coming from an off-shell photon
or Z0. This is the basis of a dipole parton shower such as ARIADNE [8], used in this thesis.
We consider the Z/γ∗ → qq̄g amplitude, as a correction to the Z/γ∗ → qq̄ amplitude,
which we denote as Mqq̄. The ”dipole” in a dipole parton shower denotes such colour
dipoles as formed by a colourless qq̄ pair. In figure 1.6 the two relevant diagrams are shown.
The idea behind the dipole parton shower (or cascade) is to calculate the gluon emission
probability from a dipole, once and for all. When a gluon has been emitted, we say that the
dipole has been split up into two new dipoles, which in turn can emit individually, using
the same emission probability as the first, initial dipole.

The squared matrix element, averaged over spins, polarizations and colours is:

∣∣Mqq̄g
∣∣2 =

∣∣Mqq̄
∣∣2 CFgs

2⃗p1 · p⃗2

(⃗p1 · k⃗)(⃗p2 · k⃗)
, (1.34)

where p⃗1, p⃗2 and k⃗ are the momenta of the quark, anti quark and gluon respectively. The
spectrum is then:

ω
dN

dωd2k⊥
=
αsCF

2π2
p⃗1 · p⃗2

(⃗p1 · k⃗)(⃗p2 · k⃗)
, (1.35)

The last term can be rewritten in terms of the angles between the quarks θqq̄ and between
the gluon and the (anti)-quark θqg (θq̄g), such that:

dN ∝
1 − cos(θqq̄)

(1 − cos(θqg))(1 − cos(θq̄g))
. (1.36)
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This result can be rewritten as the sum of two terms W(q|q̄) =
1

cos(θ(q|̄q))
, minus a slightly

more complicated mixed term we call 2R. We can split it up:

dN ∝
(
(Wq − R) + (Wq̄ − R)

)
= Xq + Xq̄. (1.37)

We interpret Xq as radiation from the quark and Xq̄ as radiation from the anti-quark. Inte-
grating over azimuthal angle gives:∫ 2π

0

dϕ
2π

Xq =
1

1 − cos(θqg)
Θ(θqq̄ − θq), (1.38)

and similar for Xq̄; Θ is the step-function. This means that radiation is forbidden out-
side the cone initially defined by the qq̄ dipole, but inside the cone the two quarks emit
independently – a result known as angular ordering.

To make a heuristic interpretation of this result in transverse space, we interpret the trans-
verse size of the emitted gluon as: λ⊥ ≈ 1

k⊥
= 1

ωθ . The formation time is τ ≈ ω
k2
⊥

, so the

transverse size of the dipole while the gluon is being formed is r⊥ ≈ θqq̄τ =
θq̄q
ωθ . We see

now that emissions in the forbidden region (outside the cone) would correspond to emis-
sions of gluons larger than its mother dipole (λ⊥ > r⊥), and our interpretation is that the
dipole is simply too small to be resolved by such gluons. The production of such gluons
is thus suppressed. For λ⊥ < r⊥ we have independent emissions from the two quarks.
The emission of more gluons becomes more complicated, as the number of diagrams grows
exponentially in the number of gluons. Instead we can iterate the above procedure, as the
result factorizes when the emissions are strongly ordered [9]. Going to the Nc = ∞ limit⁵,
the emission of the first gluon splits the dipole into two new ones, which can in turn emit
more gluons and thus continue the process.

Ordered emissions

When doing multiple emissions, we order the emissions such that emissions of higher k⊥
are realized first. This is conveniently achieved by introducing a Sudakov form factor (see
box 2), describing the no-emission probability from a starting scale down to the current
emission scale. Once we have emitted down to a scale ≈ ΛQCD, we can no longer rely
on the perturbative expressions going into the parton shower. Furthermore we need to
transform the fundamental degrees of freedom from quarks and gluons to hadrons. The
inherently non-perturbative framework for this, will be described next.

⁵Nc denotes the number of colours in QCD. This, as well as many other calculations simplify in this
approximation.
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Box 2: The Sudakov form factor

For the purpose of Monte Carlo
event generation, the ”Sudakov
form factor” provides a very use-
ful calculational tool (see e.g. [10]).
Consider (in somewhat generalized
terms) the case of the dipole shower.
We have an emission probability

dσ
dp2

⊥dy , and we wish to generate a
number of emissions, each with a
fixed value of p⊥. We could in
principle just throw random num-
bers and accept or reject them using
the cross section, but that would be
highly inefficient. Consider instead
the integral of the emission proba-
bility over all allowed values of y at
one fixed value of p⊥:

I(p2
⊥) =

∫ ymax(p2
⊥)

ymin(p2
⊥)

dy′
dσ

dp2
⊥dy′

.

(1.39)

If we now divide p2
⊥ into small in-

tervals δp2
⊥ from the maximally al-

lowed p2
⊥ down to zero, then the

probability not to have an emis-
sion between p2

⊥ and p2
⊥ − δp2

⊥ is
1 − I(p2

⊥)δp
2
⊥. For δp2

⊥ → 0,
we can now start at p⊥max, and the
no-emission probability down to a
given p2

⊥ will exponentiate:

P(p⊥max, p⊥) = (1.40)

exp

(
−
∫ p⊥max

p⊥
dp2

⊥I(p2
⊥)

)
.

The probability to actually make an
emission at this scale, will then be
given by the product of the emis-
sion probability here, times the no
emission probability from the scale
of the last emission, down to this
scale.

4.2 Hadronization

The quarks and gluons produced by the parton shower are, due to confinement, not mea-
surable by experiments. Experiments measure hadrons, and in order for the formalism to
be complete, we need a procedure to construct hadrons from the dipole chains produced
by the shower. The string picture of mesons introduced in section 3.5 provides a good start-
ing point for such a formalism which, in the end, becomes the Lund string hadronization
model. We will here present some of the main features of this model.

The yo-yo

We shall no longer work with the circular motion of a flux tube, but employ a simpler
picture known as the yo-yo [11]. We consider a single qq̄ dipole with ends moving back and
forth in 1D-space (x) and forward in time (t), under the influence of the string tension κ.
As the motion is purely one-dimensional, there is now no angular momentum. In figure 1.7
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Figure 1.7: The yo-yo in its rest system with demarcations of its characteristic times, (1) when a period starts, (2) first point of
maximal extension, (3) after half a period, the positions are back to start, while the momenta are swapped, (4) after
a full period.

we show the motion of such a yo-yo in an (x, t)-coordinate system. We start time at the
beginning of a period. Here all the energy is in the motion of the quarks, and no energy is
stored in the string:

(E, px)(q|q̄) =
1
2
(
√

s,±
√

s),Estring = 0. (1.41)

At time t =
√

s
2κ , the string is maximally extended, and all energy is stored in the string:

(E, px)(q|q̄) = (0, 0),Estring =
√

s. (1.42)

At time t =
√

s
κ the yo-yo has been through half a period. The quarks are back to their

original positions, but the momenta are swapped:

(E, px)(q|q̄) =
1
2
(
√

s,∓
√

s),Estring = 0. (1.43)

At time t =
√

s
κ , the string has been through a full period.

String breaking

We now consider the breaking of a long string into hadrons. In equation (1.42) we saw that
when the string is maximally extended, all the energy is stored in the string, i.e. as potential
energy in the field. If it is energetically favorable for a hadron to tunnel out of the field,
we would like to allow this through a string breaking. We would like each hadron to be
represented by a yo-yo mode, and describe the breaking process in space coordinates where
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Figure 1.8: Sketch of string breaking, inspired by ref. [12]. The string breaks in vertices i and j, which has lightcone coordinates
as indicated. The fraction of remaining lightcone momentum taken away by hadron production is denoted z±.

the string axis is the x-axis. The breaking itself is sketched in figure 1.8. The string breaks
in the two vertices labelled i and j, following the derivation in ref. [12]. The total energy
stored in the string is, given in lightcone coordinates⁶ of the breaking vertices:

Estring = κ2xi−xj+. (1.44)

After the two breakups, we are left with three string segments. One from the initial q̄ to the
q coming from vertex i, one from the initial q to the q̄ from vertex j, and finally a segment
from i to j, which we will consider to be the produced hadron.

We now wish to assign properties to the string breaking at the vertices. This is done in an
iterative way, such that the properties of each breaking are to be selected from a probability
density function. In the following we will discuss the properties of this function.

We write up the vertices in coordinates given by:

Γ = κ2x+x− and y =
1
2
ln

(
x+
x−

)
. (1.45)

We assume that the vertex i can be reached from the left, or j from the right, by taking
many steps, even when the energy is large. The fraction of remaining (positive or negative)
lightcone momentum taken away by the production of the hadron is denoted z±, and has
the range 0 < z± < 1 with this definition. Looking at figure 1.8, we can therefore establish
that the hadron mass is:

m2 = κ2z−xi−z+xj−, (1.46)

as also indicated on the figure.

The probability to go on the positive lightcone (from right to left in figure 1.8) and arrive at
vertex j is H(Γj)dΓjdyj, where H is an unknown probability distribution we wish to deter-
mine. Producing a hadron with a given momentum fraction, i.e. the one which takes you to

⁶The spatial lightcone coordinates are given by the transformation x± = t ± x.
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vertex i, is f(z+)dz+, where f is another unknown probability distribution. The combined
probability is the product of the two, and we can trivially write up the probability to go
from left to right instead, this time producing the hadron by going from i to j. Physically
these two probabilities must be the same, and we write:

H(Γj)dΓjdyjf(z+)dz+ = H(Γi)dΓidyif(z−)dz−. (1.47)

From figure 1.8 we can obtain relations between the variables in equation (1.47). We already
have one in equation (1.46), and we can also write directly:

Γi = κ2xi+xi− = κ2(1 − z+)xj+xi− and Γj = κ2xj+xj− = κ2xj+(1 − z−)xi−. (1.48)

Treating m2 as fixed, and dyi = dyj, there are only two independent variables left in equation
(1.47), which we take to be z±. We can thus write the equation as:

h(Γj(z±)) + g(z+) = h(Γi(z±)) + g(z−), (1.49)

where h(Γ) = ln(Γ) and g(z) = ln(zf(z)). With a bit of algebra (see ref. [12]), this can be
turned into a differential equation for h only in Γ (b is a constant, not to be confused with
impact parameter):

d
dΓ

(
Γ

dh
dΓ

)
= −b ⇒ H(Γ) = CΓa exp(−bΓ), (1.50)

where C and a are constants of integration; C normalizes the distribution. Inserting in
eq. (1.47), one obtains for f(z):

f(z) = N
(1 − z)a

z
exp

(
−bm2

z

)
, (1.51)

where N is a normalization constant and m is to be replaced with m⊥ for a particle with
transverse momentum. Before moving on to production of different hadron species, we
will discuss the result in eq. (1.51) (often referred to as the Lund symmetric fragmentation
function), and its consequences.

First and foremost, the fragmentation function decides the hardness in mainly the longi-
tudinal direction. From inspection of the distribution we directly see that large a suppress
the z → 1 region, while large b suppress the z → 0 region. The p⊥ is decided separately
(see section 4.2), but enters f(z) indirectly through m⊥.

Since eq. (1.51) determines the amount of momentum taken away by a hadron, and the
system will stop producing hadrons when it runs out of available momentum, also the
amount of hadrons produced per string (and thus largely the event multiplicity) is decided
by the parameters a and b by the relation [13]:

dN
dy

∼
√
⟨τ 2⟩κ
m

=

√
1 + a
bm2 , (1.52)

where y is rapidity and ⟨τ 2⟩ is the typical proper production time squared of a hadron.
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Transverse momentum and hadron flavours

Until now, we have only considered a one dimensional process where the produced qq̄ pair
is massless with no transverse momentum. If we allow an m⊥ > 0, we can no longer
produce the pair in a vertex, but it needs to tunnel a distance m⊥/κ away to be produced.
Using the WKB approximation to calculate the probability [14], one obtains for the quark
flavour q:

1
κ

dPq

d2p⊥
∝ exp(−πm2

⊥q/κ) = exp(−πp2
⊥/κ) exp(−πm2

q/κ). (1.53)

This factorization allows for a very convenient separation of the treatment of p⊥ generation
from flavour generation. The two are essentially only connected through the string tension
κ. Taking a closer look at the latter part, it is clear that heavier quarks will be suppressed
relative to light ones, as e.g. a strange quark will be suppressed relative to a u -or d-type by
a factor of:

ρ = exp

(
−π(m2

s − m2
u)

κ

)
. (1.54)

Since the question of which quark masses to use cannot be unambiguously answered, ρ is
essentially a free parameter, to be tuned to data from e+e− collisions, current tunes to LEP
data [15] places ρ = 0.217. Even though quark masses are not unambiguously known, one
can say directly from equation (1.54) that production of c-quarks from hadronization should
not be considered, as it is suppressed by a factor ≈ 10−4, and thus negligible compared to
perturbative production.

Box 3: Hadronization parameters

The implementation of the
hadronization model in Pythia 8
[16] contains in total about 20 tun-
able parameters, most relating to
hadron flavour. The parameters
mostly relevant to this thesis, be-
yond ρ, concern baryon produc-
tion. Similarly to strange quarks
being produced in a breakup, one
can also consider a diquark pair

being produced. The suppression
factor for diquark production is de-
noted ξ. We can have additional
suppression (or enhancement) of
diquarks containing s-quarks (pa-
rameter named x) or diquarks with
spin (parameter named y). Current
fits [15] place:

ξ = 0.081, x = 0.915, y = 0.0275.
(1.55)
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5 Proton–proton collisions

Hadronic collisions are more complicated than e+e− collisions, as we now have to worry
about a confined QCD initial state. As a first approximation, we can ask what the cross
section of a proton–proton collision is, and given that, a given partonic sub-collision. The
partonic sub-collision can then be subjected to the same final state model as for e+e−,
adding radiation in the initial state, which is now coloured. This approach will work fine
for collisions with just a single partonic sub-collision of interest (e.g.production of a Higgs
boson), which is easily separable from other partonic interactions in the same collision. If
we, however, are looking at a situation with multiple partonic interactions (MPIs) which
are not easily separable, the situation is different. Since the MPIs are not separable, they can
and will interfere with each other, giving visible effects in the final state. So besides having
corrections from a QCD initial state, the parton shower and hadronization formalisms will
also receive corrections. Since we would like the models to still provide a good description of
e+e−, the corrections should be of a nature that they vanish when taken to an environment
without MPIs.

We can give a rough sketch of the work flow going from the final state model og e+e− to
the final state model of pp as follows:

1. Take the full model from e+e− collisions.

2. Add corrections arising from protons in the initial state.

3. Add corrections arising from multi parton interactions.

4. Tune the new model(s) to proton data.

5. Go back to e+e− and retune the old model, given the new corrections – effects should
be minimal.

6. Steps 4 and 5 can be repeated until parameter values converge.

5.1 Proton structure

The most important contribution entering when going from collisions of electrons to col-
lisions of protons, is the proton structure. A new quantity enters the discussion; a parton
distribution function. For a parton of species a, it is a distribution function fa(x,Q2), giv-
ing the probability to extract this type of parton, given x and Q2, where x is the fraction of
energy taken away from the proton by the parton, and Q2 is the collision scale.
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Figure 1.9: Sketch of an exchange ladder. The straight, horizontal lines at top and bottom are the protons, the curly lines are
the radiated gluons.

The DGLAP approximation

The most common approach to such calculations, follows a picture outlined by collinear
factorization, where the cross section for a scattering sub-process a+b → n is a convolution
with parton densities [17]:

σ =
∑
a,b

∫ 1

0
dxadxb

∫
fa(xa,Q2)fb(xb,Q2)dσ̂a,b→n. (1.56)

The partonic cross section is – just as in e+e− – calculable from Feynman diagrams, and the
factorization theorem thus ensures that the physics related to the protons is absorbed into
the parton densities fa and fb. We will now look closer at the parton densities. In equation
(1.56) we essentially describe a situation where the parton densities has been measured at a
certain Q2, as a distribution in x – this can be done in DIS experiments. We would then
like to evolve fa to another virtuality. When Q2 is large and x is not too small, this amounts
to exchange of a ladder of the type sketched in figure 1.9.

The ladder sketched is essentially a Feynman diagram. Normally when one deals with
Feynman diagrams, it is enough to truncate the series at a given order in⁷ αs. In the high
energy limit of QCD one needs to take care, as each factor of αs comes with a factor of
ln(Q2). As this factor can be large, we can have the productαs ln(Q2|) ≈ 1. The expansion
inαs can therefore not be truncated after a few terms, and one needs in principle to calculate
to all orders in αs. This is, however, not possible at present day, and one needs to rely on
approximations. One popular approximation is to keep only leading logarithms. At a given
order in αs, this means keeping only the terms carrying the largest power in log(Q2). This
is called the leading logarithmic approximation (LLA).

⁷Where αs is the strong coupling, not to be confused with the Regge slope α′.
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At large Q2 and x not to small, the resulting evolution equation is called DGLAP evolution
(Dokshitzer, Gribov, Lipatov, Altarelli and Parisi [18, 19, 20]). This has the property of
being an ordered evolution. Denoting the total virtuality as p⊥+

∑
i k⊥i (see figure 1.9 for

notation), we have that p⊥ ≫ k⊥1 ≫ ... ≫ k⊥n. We can give a heuristic explanation of
what this means for the proton structure in transverse space. The distance in momentum
space between emissions is large, giving the individual emission a large range in k⊥ to
potentially occupy. It follows that the transverse size of partons must be confined to a small
r⊥.

The BFKL approximation

We now want to lower x while keeping Q2 large. We no longer have emissions strongly
ordered in k⊥, but instead in x. For the emissions we rather have p⊥ ≈ k⊥1 ≈ ... ≈ k⊥n.
This means that the emissions are now very constrained in momentum space, and in our
heuristic explanation, they are now free to occupy large r⊥, while all being roughly the same
size.

In figure 1.10, the transverse structure of the proton is drawn as a cartoon, subjected to the
two evolution schemes. At not too small x, using DGLAP, we evolve to a proton consisting
of more partons, taking up only a small fraction of transverse space. If we instead use BFKL
to evolve to smaller x, we fill up the proton with partons. At some point the partons starts
to overlap, and we enter into a region where the number of partons are not only determined
by splittings, but also recombination, i.e. a saturation region.

5.2 The DIPSY formalism

We will now describe a different, convenient formalism for small-x evolution. It is based
on a model initially developed by Mueller and coworkers [21], and later generalized to the
DIPSY model [22] and implemented in a Monte Carlo which takes a central part in this
thesis. The idea behind the model is to evolve an initial proton consisting of three valence
dipoles, to the initial state one wants to collide, on an event by event basis. The evolution
is – in contrast to the formalisms described above – done in transverse space and rapidity.
In this way one can model fluctuations in the proton transverse structure event by event.
This turns out to be particularly useful when one wants to model final state interactions.
The evolution is built on the following equation giving the probability for a dipole spanned
between two partons at transverse positions r⃗1 and r⃗2 to emit a gluon at r⃗g, thus splitting
the dipole into two new dipoles.

dPg

dY
=

ᾱ

2π
d2⃗rg

(⃗r1 − r⃗2)
2

(⃗r1 − r⃗g)2(⃗rg − r⃗2)2 , with ᾱ =
Ncαs

π
. (1.57)
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Figure 1.10: Cartoon of DGLAP evolution and BFKL/BFKL+saturation respectively.

In the large-Nc limit we can again treat further emissions as independent. The interaction
probability between two dipoles i and j, each consisting of particles labelled 1 and 2:

fij =
α2

s
4

[
ln

(
(⃗ri1 − r⃗j1)2(⃗ri2 − r⃗j2)2

(⃗ri1 − r⃗j2)2(⃗ri2 − r⃗j1)2

)]2

. (1.58)

In DIPSY we correct for finite Nc by assigning randomly each dipole one of N2
c possible

colors. In figure 1.11 the evolution from the initial three-dipole states to a state ready for
collision is shown. In section 5.3 we continue to the final state of pp collisions, but first we
take a small aside to saturation.
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Figure 1.11: A cartoon picture of the DIPSY evolution of two protons from an initial state with three dipoles, to a frame where
they are ready for collision.

Box 4: The pp cross section

In section 3.3 we discussed colli-
sions between particles with a sub-
structure in general terms. We no-
tice therefore that equation (1.58)
can be used directly in the equation
(1.12) to obtain the total and semi-
inclusive cross-sections.

With the dipole formalism one can
calculate cross sections, following
section 3.3. The dipole cascades in-
troduce fluctuations on both sides,
and it is thus possible to calculate
single -and double diffractive cross
sections from the model as well as
total and elastic cross sections.

Multiple interactions and saturation

In figure 1.11 we clearly see that the collision between two protons in the DIPSY formalism
is not limited to one dipole–dipole interaction. Should we, however, limit ourselves to
one interaction per event, we obtain the equivalent of the gluon ladder diagram giving the
BFKL equation. It can in fact be shown [4] that the DIPSY formalism reproduces LLA BFKL
if we limit ourselves to one interaction. Going beyond one interaction, we thus introduce
corrections beyond BFKL in the interaction, but not in the cascade. This introduces an
inconsistency. Consider scattering of onia⁸ in the center of mass frame as depicted in figure
1.12. The two onia are evolved to dipole chains, and each pair of dipoles can interact through
color exchange as depicted. This gives rise to the formation of dipole ”loops”. Considering
the same situation in the rest frame of one of the two onia, the situation has changed
drastically, as depicted in figure 1.13. As the onium on the right is now not evolved before
the collision, it is still just a single dipole, while the onium on the right is now evolved
further. Since interactions are modeled as dipole–dipole interactions, changing the color
flow, there is now no room for loop formation. We are thus unable to obtain the loop
configurations from figure 1.12.

⁸Onium is a particle and its anti-particle, i.e. just a single dipole or a meson.
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Figure 1.12: Cartoon of onium scattering in the center of mass frame. Multiple scatterings allows for loop configurations.

The loop configurations should be formed inside the cascade on the left. This would be a
saturation effect, which would limit the exponential growth in the number of dipoles with
rapidity, by allowing dipoles inside the cascade to interact. Following the logic from the
collision of cascades, the saturation should happen by exchange of a gluon, changing the
color flow. In DIPSY this is done through a ”dipole swing” mechanism. Two dipoles, i and
j, of the same color, within the same cascade can recouple (or ”swing”) with the probability:

pij =
(⃗ri1 − r⃗i2)2(⃗rj1 − r⃗j2)2

(⃗ri1 − r⃗j2)2(⃗rj1 − r⃗i2)2 . (1.59)

In this way, multiple interactions in one frame becomes saturation in another. In DIPSY the
swing is treated as a competing process to the emissions. At a given step a dipole can thus
either swing or emit, but not both.

We can give the swing a heuristic interpretation in terms of the proton transverse structure,
similar to the interpretations of DGLAP and BFKL in section 5.1. First of all we see that
the effect of the swing is to replace large dipoles with smaller ones. If we again see each
parton taking up r⊥ ≈ 1/k⊥ then keeping k⊥ fixed and evolving to higher energies will
meet a natural boundary when gluon occupation saturates because of mutual interactions.
At this point we have no choice but to increase k⊥, thus making the gluons smaller. This is
exactly the mechanism of the swing. When the dipole overlap is small, the probability to
swing is small, but as occupation grows, so does the probability to swing. The number of
dipoles will keep increasing, but as it grows larger, the dipoles will become smaller.
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Figure 1.13: Cartoon of onium scattering the rest frame of the right onium. No multiple scatterings can occur, and thus no loop
formations are allowed.

Box 5: The Pythia MPI model

Another model for multiple inter-
actions used for pA collisions in ref.
[23], is the Pythia MPI model [24].
In this model, multiple interactions
are generated in decreasing order of
p⊥, using a Sudakov like expression
(see box 2), with the perturbative
2 → 2 cross section. Since that
cross section diverges at low p⊥, it
is regulated using a tunable param-

eter p⊥0:

dσ2→2

dp2
⊥

∝
α2

s (p2
⊥)

p4
⊥

→
α2

s (p2
⊥ + p2

⊥,0)

(p2
⊥ + p2

⊥,0)
2 .

(1.60)
Since this model is built on parton
distribution functions (PDFs), and
not a dynamical model, the PDF of
the parton species taken out during
an MPI, is rescaled by the momen-
tum fraction.

5.3 Corrections in dense environment

The major contribution of the articles in this thesis is about corrections to the dipole parton
shower and hadronization model, presented in sections 4.1 and 4.2, arising from the fact
that we can have many strings on top of each other, when multiple partons interact in a pp
collision. In figure 1.14 a typical e+e− event is shown to the left, and a pp event with many
overlapping strings to the right. The colored tubes depicts Lund strings, the kinks on the
strings are gluons. The axes on the figures are transverse space and rapidity, and it seems
reasonable to think that:

• More than one possible configuration of strings is possible – i.e. which gluons are
connected to which by strings – and the formalism should account for this.
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Figure 1.14: Picture in impact parameter space and rapidity of a Z0/γ∗ → qgq̄ (left) and a
√

s = 7 TeV pp collision (right). The
event activity – and thus the string overlap – is much larger in the pp event.

• If strings can somehow interact, any measurable effect should be more pronounced
in the figure to the right than to the left.

• If strings can interact, the string sitting in the center of figure 1.14 (right) should
receive a larger contribution than a string sitting in the periphery.

The final state swing

The final state swing tries to address the first of the three points given above. The effect can
be considered already in e+e− → Z0/γ∗, which provides also a pedagogical introduction.

Consider the situation in figure 1.15. Here we have a Z0/γ∗ going to a qq̄ pair. The dipole
emits two gluons using the dipole shower formalism introduced in section 4.1. As seen on
the right side of the figure, two different string structures are possible, though the associa-
tion of each emitted dipole in the shower with a new link of the string, only allows for the
first one.

Using a semi-classical language, we can gain some intuition for the situation. As the partons
move farther and farther apart, confinement effects kicks in. The resulting string ends will
then assume colour charges r, g, b or conversely r̄, ḡ and b̄. The initial dipole is always in
a singlet configuration, here exemplified as bb̄. The two emitted gluons are both given a
colour and an anti-colour randomly, the probability for the two gluons to be able to form
a new colour singlet is therefore 1

N2
c −1 .

The final state swing provides a mechanism for generating both configurations, through
a correction of the shower. Upon creation, each dipole is assigned colour state randomly.
At each step in the evolution, colour compatible dipoles have the opportunity to swing,
and thus connect with each other, instead of emitting. We now introduce as a competing
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Figure 1.15: The final state swing in a situation where a Z0/γ∗ → qq̄ with two further gluon emissions. The parton shower
can only deliver the first string configuration whereas the swing can transform it into the second, where the two
gluons are in a singlet state.

process to emission, a reconnection probability between two compatible dipoles:

dPr

dln(p2
⊥)

= λ
(p⃗1 + p⃗2)

2(p⃗3 + p⃗4)
2

(p⃗1 + p⃗4)2(p⃗2 + p⃗3)2 , (1.61)

where p⃗i are the momenta of the four partons making up the dipoles, and λ is a parameter.

Enhancement of string tension

Enhancement of string tension is a way of accounting for the overlap of strings still existing
after the final state swing has reconfigured the string topology. Physically, the idea is closely
connected to the principle of superposition, well known from electrodynamics. Since the
strings are really colour field flux tubes, the field strength can change when several strings
overlap. Thinking in terms of the simple string introduced in section 3.5, it is clear that if
the field strength, and thus the energy, grows, then so must the string tension.

The reality of QCD is, however, not as simple as electrodynamics. As with the final state
swing, we must take into account the fact that there are three colour charges and three
anti-colour charges. Consider the example sketched in figure 1.16.

Here two qq̄ strings, with end colours c1, c̄1 and c2, c̄2 are sitting on top of each other,
meaning that the quarks acts together coherently. We can be in two distinct situations:

c1 = c2 Both strings in the figure are r̄r, and the endpoint charges should therefore be the
resulting r ⊕ r and r̄ ⊕ r̄ charges.

c1 ̸= c2 This case is in the figure exemplified with one string being r̄r and the other being
bb̄. The resulting string will be ḡg, a simple dipole like the two initial dipoles, but
with colour flow pointing in the opposite direction.
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Figure 1.16: The simplest example of rope formation. Two qq̄ triplet strings form a rope, as the endpoint quarks acts coherently
as one colour charge. In case (a) the endpoint colours are equal, resulting in a sextet, in case (b) they are not,
resulting in an anti-triplet.

The combined strings are called ”ropes”, and correspond to multiplets arising from com-
bining triplets with anti-triplets. In ref. [13] recursion relations for combining any number
of triplets and anti-triplets (i.e. dipoles pointing ”left” vs. dipoles pointing ”right”) are de-
rived. A multiplet is characterized by two quantum numbers {p, q}, a triplet is {1, 0} and
an anti-triplet is {0, 1}. The string tension of the rope is determined from these quantum
numbers, as the ratio of the rope’s string tension to the normal string tension is:

κ̃

κ
=

1
4
(
p2 + q2 + pq + 3(p + q)

)
. (1.62)

We now let the rope hadronize string by string. This means that a breakup takes us from
{p, q} to either {p − 1, q} or {p, q − 1}. In case (a) of figure 1.16, we are in the multiplet
{2, 0} (a sextet). The first string of the rope breaks with a tension of 3

2κ and the second
with κ.

The enhancement of string tension affects the flavour composition. Here we treat the
strangeness suppression parameter ρ from equation (1.54). For a treatment of the other
parameters, see ref. [13].

The ρ̃ parameter with some enhanced string tension κ̃ will have the same definition as the
original ρ. We get directly that:
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ρ̃ = exp

(
−π(ms − mu)

κ̃

)
= exp

(
−π(ms − mu)

κ̃κ
κ

)
= ρ

κ
κ̃ . (1.63)

As the string tension increases, so does ρ̃, which means that increased string tension should
lead to more hadrons with strange quarks being produced. Notice the limiting behaviour
of the expression: ρ̃→ 1 as κ̃→ ∞, meaning that no matter how strong a rope we get, it
will never be more likely to produce an s-quark pair than the lightest quarks.

6 Collisions of nuclei

We now take the final step, and move to collisions of nuclei. The idea is to follow the
same modus as described for proton collisions such that the same model, with the same
parameter values, can be used for everything from e+e− collisions, to collisions of protons
with lead.

6.1 Particle production and wounded nucleons

The so-called ”wounded nucleon” model describes a way of extrapolating particle produc-
tion from pp to pA collisions. The idea is built on arguments of particle formation time, the
Landau-Pomeranchuk formation time (see e.g. ref. [25]). Consider a particle produced in
a collision between a proton and a nucleus. If we look at the produced particle in a frame
where it only has transverse velocity, the Landau-Pomeranchuk formation time – which
signifies the minimal possible production time – is τ0 ≈ 1

m⊥
. A boost to the laboratory

frame is carried out by multiplying with a Lorentz factor:

τ = γτ0 =
E

m2
⊥

=
cosh(y)

m⊥
, (1.64)

where E is the energy of the particle, and y is its rapidity. The particle is moving with a
speed v, which means that it can resolve the nucleus at a length scale no smaller than:

vτ =
sinh(y)

m⊥
. (1.65)

If we look in the central rapidity bin, at not too large p⊥, this resolution scale becomes
so large that individual nucleon collisions cannot be resolved. In this region it is therefore
reasonable to suggest that the total multiplicity scales with just the number of wounded
nucleons. We denote this number Nt

w +1, the number of wounded nucleons in the target,
plus one for the projectile. The multiplicity for the pA collision divided by the multiplicity
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for a pp collision then becomes Nt
w+1
2 , since each individual wounded nucleon contributes

roughly as half a pp collision.

If p⊥ is high, the resolution scale becomes small enough that every collision is resolved.
Now we scale with the number of sub-collisions, and the multiplicity divided by the pp
multiplicity becomes just Nt

w.

6.2 Glauber models

From the above arguments, it is clearly important to calculate the number of wounded
nucleons if one wants to describe final state multiplicity. For that purpose, Glauber models
have served as a workhorse since first introduced in the 1950’ies. We can follow the logic
from section 3.2, where now the scattering matrix S(pA)(b) describes the total scattering
matrix. In impact parameter space the matrices describing the interactions with individual
nucleons will – just as in the example in section 3.2 – factorize, and we get for the profile
function:

T(pA)(b) = 1 − exp

(
−
∑

i

F (pNi)(bi)

)
, (1.66)

where the sum runs over all nucleons. F can now be understood as the probability for
the proton to interact with the individual nucleons i.e. some inclusive or semi-inclusive pp
cross section.

In figure 1.17 a collision in impact parameter space is sketched. The proton (black) hits
a number of nucleons which are then labelled as ”participating” or ”wounded” nucleons,
whereas the rest are spectators.

It is worth noting that different choices of profile functions can lead to very different be-
haviour. In figure 1.17, the choice is a simple cylindric one, and the projectile hits the
target nucleons with which it has direct geometric overlap. In ref. [23] we explored various
choices for both semi-inclusive cross sections and profile functions. If one considers projec-
tile and nucleons not as black disks which will always hit when they overlap geometrically,
but rather as semi-transparent clouds described by a distribution and an opacity, one can
easily imagine a projectile centered one place, also wounding nuclei centered in a different
geometric location. This of course has large consequences when one considers corrections
to hadronization with the rope formalism presented in section 5.3.

6.3 String shoving

We have already described in section 5.3 how rope formation can enhance the production
of hadrons with strange content. Since the overlap region is more energetic than an isolated
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Figure 1.17: Cartoon of a pPb collision, in impact parameter space, in a simple Glauber picture. The projectile is the black circle,
and all nuclei with which it overlaps, are ”wounded” or ”participating” in the collision. The rest are just spectating.

string, string segments will acquire a transverse ”push” [26], as indicated in figure 1.18.

The idea that strings may push each other in the transverse direction, is an attempt to
microscopically construct flow patterns, which are quite well reproduced by macroscopic,
thermodynamic models imposing a hydrodynamic pressure.

Consider the overlap in impact parameter space of two string segments in a small slice of
rapidity. The segments are overlapping, and will thus push each other apart. In the figure,
the strings are drawn as cylinders, but we model them with a Gaussian profile and get a
momentum push:

dp⊥ ∝ exp

(
− d2

2R2

)
, (1.67)

where d is the distance between the segment centers and R is a characteristic transverse size
of the string. The direction of the push is simply the vector between the two centers. By
construction, the push so far conserves transverse momentum.

The push is implemented as an excitation on the string, i.e. a gluon, placed on each string,
in each rapidity slice. When a gluon gets a kick in the transverse direction, we let the other
dipole recoil, to also conserve lightcone momentum.

At the time of writing, the full consequences of this shoving model is still unknown. Sim-
ilar models were suggested as early as 1988 [27], and recently a toy implementation of a
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Figure 1.18: Cartoon of five strings shoving each other in impact parameter space. At time t = t1 they overlap a lot, and as
they are shoved away from each other, they acquire p⊥. Figure reprinted from ref. [26].

similar model [28] showed promising results, event though the push implementation and
the hadronization procedure are somewhat more simple than in a full event generator.

7 Outlook

The papers of this thesis have the overarching goal of constructing a framework to efficiently
and realistically extrapolate the microscopic models used for modelling of pp and e+e−-
collision to collisions of heavy ions. This is still very much in its infancy. Thus, there are
many places where a reader of this thesis, who would like to pick up where this thesis ends,
could proceed this work.

7.1 Precise predictions of collectivity

The modelling of collectivity carried out with the ”shoving” model in ref. [26], is clearly
still only at a proof–of–concept level. Before it can be taken seriously, it must be able to
correctly reproduce flow coefficients with the same definition as experiments. Since flow
coefficients are best measured in collisions of heavy ions, this type of study is two–fold.
First of all, the DIPSY model must be validated for heavy ion final states as well. Since the
centrality measure, which is crucial for flow measurements, depends on total multiplicity,
often in the forward region, this observable needs to be under good control in heavy ion
collisions. Second, the comparison to experiments should be a proper ”apples to apples”
comparison. This means that the prediction needs to be processed through the same kind
of analysis as data. This type of analysis is fairly evolved for pp collisions, less so for heavy
ions.
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7.2 The baryon problem

The rope hadronization model developed in ref. [13] predicts correctly a rise of strange
hadrons to non-strange hadrons with multiplicity, but also a rise of baryons to mesons
as shown in ref. [29]. Since this rise of baryons to mesons is not observed in data [30],
the model should accommodate this. Other authors implementing a rope model [31], have
previously suggested a mechanism similar to the popcorn mechanism to accommodate this,
but this is a corner which needs further studies.

7.3 Heavy ions with FritiofP8

The FritiofP8 model for particle production introduced in ref. [23] is potentially a new path
for extrapolation of pp collisions to heavy ions. Until now, only a model for pA collisions
is implemented, this should be extended to full AA. If effects from rope hadronization
should be taken into account, a model for string overlaps in impact parameter space needs
to be developed, as the initial state model in FritiofP8 carries no impact parameter space
information (below nucleon level), as opposed to DIPSY. Furthermore, uncertainties from
using Pomeron PDFs in place of proper proton PDFs needs to be under better control, or
better yet, removed entirely.

7.4 Comparison to hydrodynamics

We know that a very good macroscopic description of flow phenomena can be obtained by
various hydrodynamical treatments. It would be very instructive to study whether a model
like the shoving model, produces a pressure similar to the one obtained by hydrodynamics.
In order for such a comparison to work, a translation from parton level Monte Carlo to a
continuous stress–energy tensor for hydrodynamics needs to be worked out first.

7.5 Jet quenching

Imagine that one of the multiple parton interactions in DIPSY would produce a vector boson
(Z0 or W±) in association with one or more jets. If the vector boson decays leptonically,
the leptons can travel through the colour ropes unaffected, while the jets would be affected
by rope shoving. It would be interesting to investigate whether rope shoving could give a
dynamical explanation of the nuclear modification factor in such systems, or even nuclear
modification factors in general.
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7.6 Effects in e+e−

As indicated in ref. [13], corrections to shower and hadronization have effects in e+e−. Since
these effects are quite rare, one cannot expect them to be very visible in existing LEP data.
At a possible future e+e− collider with the goal of collecting O(1012) Z0 particles, effects
will be more pronounced. This will serve as a very good laboratory to gauge these effects,
and as such, it is an obvious arena for future work.
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Abstract: In models for hadron collisions based on string hadronization, the strings are
usually treated as independent, allowing no interaction between the confined colour fields.
In studies of nucleus collisions it has been suggested that strings close in space can fuse to
form “colour ropes”. Such ropes are expected to give more strange particles and baryons,
which also has been suggested as a signal for plasma formation. Overlapping strings can also
be expected in pp collisions, where usually no phase transition is expected. In particular at
the high LHC energies the expected density of strings is quite high. To investigate possible
effects of rope formation, we present a model in which strings are allowed to combine into
higher multiplets, giving rise to increased production of baryons and strangeness, or recom-
bine into singlet structures and vanish. Also a crude model for strings recombining into
junction structures is considered, again giving rise to increased baryon production. The
models are implemented in the DIPSY MC event generator, using PYTHIA8 for hadroniza-
tion, and comparison to pp minimum bias data, reveals improvement in the description of
identified particle spectra.



1 Introduction

In most models for high energy collisions, like the popular PYTHIA [1] or HERWIG [2] mod-
els, the hadronization mechanism is described via strings or cluster chains. The strings
are often treated as independent, but in connection with nucleus collisions it was early
suggested that the many strings produced within a limited space may interact and form
”colour ropes” [3, 4]. Such ropes have subsequently been studied by many authors with
applications to high energy nucleus collisions [5, 6, 7, 8, 9, 10, 11]. The stronger field in a
rope is expected to give larger rates for strangeness and baryons. The effect on the multi-
plicity is more difficult to predict, and here the results depend on simplified assumptions,
often without a real motivation. Usually the result is either a decreased or an unmodified
particle multiplicity.

As rope formation is expected to give increased rates of strange particles and baryons, which
may mimic effects of plasma formation, it makes signals for a phase transition more difficult
to interpret. It has also been suggested that ropes may initiate the formation of a quark–
gluon plasma [12, 6, 13, 14]. At LHC energies many overlapping strings are also expected in
pp scattering, where plasma formation normally is not expected. In this paper we want to
study string interference effects in pp scattering, with the aim to get a better understanding
of the dynamics in pp collisions, and simultaneously get a tool to estimate possible rope
effects in nucleus collisions.

For a quantitative estimate of interaction between neighbouring strings, we believe it is
essential to have a description formulated in transverse coordinate space. Such a formula-
tion is also suitable for including effects of saturation for small x and high gluon densities.
Here we will use the Lund dipole cascade model implemented in the event generator DIPSY
[15, 16]. This model is based on a formulation of BFKL dynamics in transverse coordinate
space, including non-leading-log and saturation effects, and also taking fluctuations and
correlations into account.¹

The Lund string hadronization model [22, 23]², which has been particularly successful in
describing data from e+e− annihilation at LEP [26, 27], is based on the assumption that a
confined colour field between a quark and an antiquark is compressed to a linear flux tube,
similar to a vortex line in a superconductor. When the string is stretched between separated
colour charges, it can break by the production of qq̄ pairs [28, 29, 30, 31] in a process similar
to the production of e+e− pairs in a homogeneous electric field [32]. As demonstrated in
ref. [33], this can be interpreted as the effect of a quantum-mechanical tunneling process.

¹String interaction effects in pp collisions have also earlier been included in the event generator DTUJET
[17], formulated in momentum space. This was generalized to nucleus collisions, including a geometric distri-
bution of nucleons within a nucleus [18]. Rope effects are also included, together with hadron rescattering, in
the RQMD model, with applications in the SPS fixed target and RHIC energy ranges [19, 20, 21].

²For a review of the Lund hadronization model see ref. [24], or a more recent summary in ref. [25].
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In the Lund model the dynamical motion of the flux tube is approximated by an infinitely
thin massless relativistic string, and gluons are identified with transverse excitations on such
a string [23], which also has the effect that the model is infrared stable, i.e. insensitive to
soft or collinear gluons.

It was early observed that when the string hadronization model is tuned to LEP data, it
slightly underestimates the production of strange particles in hadronic collisions [34]. Sim-
ilarly in DIS, the LEP tune works well in the current fragmentation region (in the Breit
frame), while in the proton fragmentation end, one again observes an enhanced strange
quark fraction [35]. This effect is enhanced in data from LHC, where a rather dramatic
increase is observed in the fractions of strange particles and baryons, most notably that of
strange baryons [36]. These observations should not be surprising. The colour flux tubes
are expected to have a transverse width determined by the confinement scale, of ∼ 1 fm. In
pp collisions there can be several strings close to each other, and it should actually be rather
surprising that models neglecting mutual string interaction are working as well as they do.

Biro et al. noted in ref. [3], that the colour charge at the endpoint of a rope formed by
strings with random colour charges, is given by a random walk in colour space. The rope
can break up in a stepwise manner by repeated production of qq̄ pairs, as expected from a
local interaction ∝ jµAµ ∼ ψ̄γµψAµ. This process is analogous to the production of e+e−

pairs in an electric field. It was pointed out in ref. [3] that for a rope formed by random
charges, the number of pairs produced before a total breakup of the rope is in general
smaller than the number of initial strings, and also that the total time for this successive
split is approximately the same as for a single string.

Although such a stepwise breakup of a rope is assumed in most studies, also an immediate
breakup by production of multi-quark–antiquark systems has been advocated by Amelin,
Braun, and Pajares [10] (also mentioned as a possibility in ref. [3]), and a breakup by the
production of gluon pairs has been studied by Gyulassy and Iwazaki [6]. It has also been
suggested that a rapid decay of the ropes into elementary partons is facilitating the forma-
tion of a quark–gluon plasma [6, 13, 14].

It was early suggested that, if the charges correspond to a specific SU(3) multiplet, the
tension (or energy density) in the rope is given by the second Casimir operator [37]. For an
isolated rope this conjecture has later been supported by lattice calculations [38]. However,
if the rope is surrounded by other strings or ropes, we expect that the transverse area, and
thus the rope tension, will be affected by the presence of the neighbouring ropes, which
exert a pressure keeping the radius small. Such a pressure might also cause a collective
expansion contributing to extra transverse momentum for the hadrons. It ought to be kept
in mind, that this feature contributes to the necessary uncertainties in estimating the effects
of rope formation.

As mentioned above we will here use the event generator DIPSY to study the effects of string
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interaction and rope formation in more detail, beyond qualitative results such as increased
strangeness and baryon production. The DIPSY model is a generalization and extension
of Mueller’s dipole model [39, 40, 41], which describes BFKL evolution in transverse co-
ordinate space. At high energies the high density of soft gluons effectively screens colour
charges, thus suppressing gluons with p⊥ below a saturation scale Qs. As in the Color Glass
Condensate formalism for nucleus collisions [42, 43], we argue that this is a motivation for
a perturbative treatment of the initial phase in terms of quarks and gluons. (This is also
assumed in other models for soft interactions, like PYTHIA and HERWIG.)

While Mueller’s model reproduces leading log BFKL evolution, the DIPSY model includes
essential non-leading corrections to BFKL, as well as saturation within the cascade evo-
lution, and confinement. It reproduces total, elastic, and diffractive cross sections in pp
collisions and DIS, and gives a good description of particle distributions in minimum-
bias final states[16]. However, as parton distributions are generated within the model, and
therefore not tuned to data, and are in addition limited to gluons, the model is naturally
less accurate than e.g. the PYTHIA and HERWIG models. Our aim has instead been focused
on understanding the dynamics of small-x evolution and saturation, including correlations
and fluctuations, e.g. in connection with multiple parton interactions [44] and diffraction
[45, 46]. The formulation in transverse coordinate space makes the DIPSY model particu-
larly suited for studies of string interference and rope formation. Although it has also been
applied to collisions with nuclei (see e.g. refs. [47, 48]), we will in this paper limit our study
to proton–proton collisions.

We will here assume that colour ropes can form by coherent interaction between a group
of strings confined within a limited transverse size. As in ref. [3] we assume random colour
charges for the individual strings, leading to a random walk in colour space. We also assume
that the rope breaks by successive production of new qq̄ pairs. The nature of the tunneling
process implies here that an “effective string tension” is determined by the reduction in
rope tension in each individual breakup. As mentioned in ref. [3], and discussed in detail
below, the result of the rope formation is then a smaller number of qq̄ pairs needed to break
the rope, but a larger effective string tension. As is generally expected, this implies larger
strangeness and baryon fractions. In addition our model also gives nontrivial effects on the
p⊥-dependence for different particle ratios, which to some extent mimic effects of transverse
flow. In this paper we present results where the model (with some approximations) is
compared to LHC pp scattering data, with encouraging qualitative agreement. In the future
we plan to also study effects of rope formation in collisions with nuclei. We begin this
article with a recapitulation of the relevant ingredients of the Lund string fragmentation in
section 2, before we describe the basic idea of the rope model in section 3. Then we describe
the proposed “final-state swing mechanism” together with the implementation of our rope
model in the interface between DIPSY and PYTHIA8 in section 4. In section 5 we present
some first results, and finally in section 6 we summarize our findings and give an outlook.
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For completeness, we end the article with a number of appendices. There we first summarize
details in the DIPSY model (appendix 1.A) that are important for our rope implementation,
and also summarize the relevant colour algebra needed (appendix 1.B). Most of this can
be found in various different references, but we think it is valuable to have the relevant
issues collected here. Furthermore, we have collected some of the more technical points in
our implementation and in the tuning procedure in appendices 1.C and 1.D respectively.
Although these are important for our results, they tend to hamper the readability of the
main text, and are therefore presented separately.

2 String fragmentation

In this section we will discuss the fragmentation of a single string. We first discuss the basic
tunneling process, then the space-time picture describing how the produced quarks and
antiquarks combine to hadrons, followed by a discussion of baryon production and spin
effects. We end by a discussion of the effects of a modified effective string tension.

2.1 Tunneling

A linear colour electric field stretched between a quark and an antiquark, moving in op-
posite directions, can break up by the production of new qq̄ pairs, in a way similar to the
production of e+e− pairs in a homogenous electric field. As discussed by Schwinger [32]
the electric field is unstable, and the decay can be interpreted as the result of the production
of new e+e− pairs with a rate per unit time and unit volume given by:

P ∝ (e E)2 exp

(
− π µ2

e E

)
. (1.1)

Here µ is the electron mass and E the electric field strength. Thus eE is the force acting on
the produced electron or positron. As pointed out in ref. [33], this result can be interpreted
as the effect of a tunneling process. Classically the electron and the positron cannot be
produced in a point, but only separated by a distance 2µ/eE , such that the reduction in
the electric field energy can be transferred into the mass of the pair. In quantum theory
the particles are produced locally by an interaction Lagrangian ∼ eψ̄(x)γµψ(x)Aµ(x), and
have to tunnel through the classically forbidden region, where the wavefunctions can be
estimated by the WKB method.

When generalizing this result to qq̄ pair production [28, 29, 30, 31] in a linear confined
colour field, the tunneling mechanism implies that eE has to be replaced by the force acting
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on a quark, i.e. by the string tension³ κ ∼ 1 GeV/fm. For the production of a pair with
opposite transverse momenta p⊥ in this process, the mass µ in eq. (1.1) will be replaced by

the transverse mass
√

µ2 + p2
⊥. This gives

dP
d2p⊥

∝ κ exp
(
− π
κ
(µ2 + p2

⊥)
)
, (1.2)

which integrated over p⊥ gives the result in eq. (1.1), with the replacement eE → κ.

The result in eq. (1.2) can be used to estimate the relative production of quarks with different
flavour, and the distribution in p⊥. As it is not possible to theoretically determine the
effective quark masses to be used in eq. (1.2), it is in practice necessary to tune the s/u ratio
to experimental data. Fits to LEP data give s/u ≈ 0.2 [26, 27], which is not inconsistent
with eq. (1.2) for reasonable quark masses. This mechanism also implies that charm and
heavier quarks cannot be produced in the soft hadronization process; they can only be
produced in an initial perturbative phase. For the transverse momenta it gives a Gaussian

p⊥-distribution with
√

⟨p2
⊥⟩ ≈ 0.25 GeV. Phenomenological fits to data will, however,

also include effects from soft gluons below a necessary p⊥ cut in the perturbative parton
shower. Tunes to data therefore give a somewhat wider distribution, with a width σp⊥ ≈
0.32 GeV.

2.2 Space-time picture and longitudinal momentum distribution

The strange quark fraction and the p⊥-distribution are governed by the tunneling mecha-
nism, but for the longitudinal momentum distribution it is essential to take into account
how the produced quarks and antiquarks can fit into a mesonic wavefunction, and combine
to form final-state hadrons. The Lund fragmentation model is here inspired by the area law
for Wilson loop integrals for a confining theory [49], in analogy with the Nambu–Goto ac-
tion for a massless relativistic string. The boost invariance of the relativistic string (and of a
linear homogenous electric field) has to result in a boost-invariant distribution of hadrons,
produced around a hyperbola in space-time.

Consider, for simplicity, a model in one space dimension with only one quark flavour and
a single mesonic state with mass m. In the Lund hadronization model the probability, P ,

³In ref. [28] eE was (for a quark with charge g/2) replaced by gE/2 = 2κ, where the string tension κ
was estimated from the energy in the colour-electric field. However, ref. [31] noted that, although the force
on the electron is given by eE in a classical (macroscopic) electric field, in case the flux corresponds to only a
single charge quantum, an extra contribution comes from the decreased field between the created quark and
antiquark, giving eE 7→ gE/4, just corresponding to the energy in the colour-electric field. In ref. [31] it
was also noted that if the flux tube is embedded in a vacuum condensate, a further contribution to the string
tension is given by the response from the condensate. In the bag model (similar to a type I superconductor)
this contribution equals the energy in the colour-electric field.
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for the production of a specific state with n mesons with momenta pi (i = 1, ..., n) is given
by the relation [22]:

P ∝

{[
n∏
1

Nd2piδ(p2
i − m2)

]
δ(2)(

∑
pi − Ptot)

}
exp(−bA). (1.3)

Here the term in curly parenthesis is a phase space factor, where the dimensionless constant
N determines the relative weight between states with different number of mesons. The term
bA in the exponent corresponds to the imaginary part of the action for the massless string,
which is responsible for the decay and finite lifetime of the string. A is a measure of the
space-time area covered by the string before the breakup, and b is a constant. Convention-
ally the area A is scaled by the square of the string tension κ:

A ≡ Aκ2, (1.4)

where A is the area in space and time. Consequently the dimension of b is (energy)−2.

The result in eq. (1.3) can be generated in a Monte Carlo simulation by producing the
mesons in an iterative way starting from one of the string ends, where each meson takes
a fraction z of the remaining energy. In each step the relevant z-value is given by the
probability distribution or splitting function:

f(z) = N
(1 − z)a

z
e−bm2/z. (1.5)

Here the constant a is related to N and b through the normalization constraint
∫

f(z) dz =
1. The production points for the pairs will be located around a hyperbola in space-time,
with a typical proper time determined by

⟨τ 2⟩ = 1 + a
bκ2 . (1.6)

This timescale is also related to the particle multiplicity via the relation

d N/d y ∼
√

⟨τ 2⟩κ/m =

√
1 + a
b m2 . (1.7)

We note that absorbing the string tension in the definition of b, via the scaling in eq. (1.4),
implies that κ does not appear explicitly in this expression for the splitting function or the
particle density.

In three dimensions the hadron mass m in eqs. (1.3), (1.5), and (1.7) has to be replaced by
the transverse mass m⊥ =

√
m2 + p2

⊥, in accordance with eq. (1.2). The parameters a and
b, determined by the hadronic phase space and (the imaginary part of ) the string action,
have been tuned to LEP data, which in our case gives a = 0.42 and b = 0.4.
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2.3 Baryon production

Besides including different quark species, the relations in eqs. (1.3) and (1.5) must also be
generalized to include baryon production and effects of spin interaction. A quark and an
antiquark can combine to a total spin 1 or 0. Fits to data favour a π : ρ ratio about 1 : 1
(rather than the 1 : 3 expected from naive spin counting), which also can be understood
as a result of normalization of the wavefunction in the tunneling process [50, 24].

A baryon–antibaryon pair can be formed if the string can break by the production of a
diquark–antidiquark pair forming an antitriplet and a triplet respectively [51]. Such a pro-
cess would be suppressed by a larger effective diquark mass. In this case the B̄B pair will
always have two quark flavours in common, in conflict with experimental data from e+e−

annihilation. A modified model with a stepwise production mechanism (called the popcorn
model) was presented in [52], and has since been incorporated in PYTHIA.⁴ In a red–antired
(r̄r) string-field a ḡg quark pair can be produced as a vacuum fluctuation (see figures 1.1a
and 1.1b). If the r and g charges form a b̄ antitriplet, a b̄b field can be formed between
the new quarks, which means that the net force on the green quark or antiquark is zero.
During this fluctuation a bb̄ pair produced in the string can split the system by an effective
diquark–anti-diquark production (see figure 1.1c). In this way one (or more) mesons can
be produced between the baryon and antibaryon.

As hadronization is a non-perturbative process, estimating all possible hadron species in an
MC implementation necessarily implies a set of additional phenomenological parameters,
which all have to be tuned to experimental data. Although PYTHIA has adopted the popcorn
model, it is reformulated in terms of diquark breakups with an additional probability for
having mesons produced in between baryon pairs as in figure 1.1d. Most important for
the result is therefore the diquark/quark ratio in the splitting process, together with the
extra suppression of strange diquarks beyond the s/u suppression. A detailed description
of the parameters involved in baryon production within the Lund model is presented in
appendix 1.C.

We here also want to point out that, besides the different parameters, it is also very impor-
tant to take into account that a produced baryon must be symmetric in flavour and spin,
in order to preserve SU(3) flavour symmetry (as is done in the PYTHIA generator).

2.4 Effects of a modified string tension

We will in this paper assume that a rope breaks up by the repeated production of qq̄ pairs,
as expected from an analogy with e+e− pair production in QED. As mentioned in the

⁴A stepwise production mechanism was suggested by Casher et al. in ref. [28].
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a

r r̄

b

r g ḡ r̄

c

r g b b̄ ḡ r̄

d

r g b b̄ b b̄ ḡ r̄

Figure 1.1: Illustration of popcorn production of a diquark pair. In frame a) no fluctuation has occurred, and a full string is
spanned between a red–antired qq̄ pair. In frame b) a green–antigreen pair has appeared on the string as a quantum
fluctuation. If the red and green quarks form an antiblue triplet, this reverses the colour flow in this part of the
string, and the net force acting on the green quark is zero. In frame c) the string breaks by the production of a bb̄
pair, resulting in two string pieces with diquark ends. In frame d) another breakup in the blue triplet field results in
an additional meson.

introduction, and discussed in detail in section 3, a rope formed by n elementary strings
with random charges, can in general be fully extinguished by a number of qq̄ pairs smaller
than or equal to n. Here n breakups will be needed in case the colour charges combine to
the highest possible multiplet. As can be understood from the tunneling mechanism, the
”effective string tension”, to be inserted in eqs. (1.1) and (1.2) for each step, is determined
by the energy released in the step. This means the reduction in rope tension when the new
qq̄ pair is produced. We will therefore treat one step in the breakup of the rope, as the
breakup of an individual string, with a modified effective string tension.

Effects on particle ratios

As discussed above, strangeness and baryon production is in the PYTHIA implementation
determined by a set of phenomenological parameters, some of which represent the relative
tunneling probabilities for different quarks and diquarks. Let the modification of the string
tension be given by a simple scaling with an enhancement factor h, such that κ 7→ κ̃ = hκ.
The result in eq. (1.1) or (1.2) then implies that the s/u ratio (called ρ), will be modified by
the scaling relation

ρ 7→ ρ̃ = ρ1/h. (1.8)

Baryon production in the popcorn model is somewhat more complicated. Here we will as-
sume that the production of the vacuum fluctuation giving the first new pair in figure 1.1b
is insensitive to the string tension⁵, while the production of the second pair shown in fig-
ure 1.1c, where the string breaks, is the result of a tunneling process. This means that we
expect the same kind of scaling as for the s/u ratio in eq. (1.8) for the parameters which
determine the extra suppression of diquarks with strange quark content relative to diquarks

⁵Also if the fluctuation probability does depend on the string tension, it turns out that this effect can be
compensated by a change in the effective coherence radius for the rope formation, described in section 4.2.
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without strange quarks, and the suppression of spin 1 diquarks relative to spin 0 diquarks.
As these parameters go together with others that are not affected by string overlapping in
defining the final diquark/quark ratio (called ξ), the resulting expression for the mapping
becomes

ξ 7→ ξ̃ = α̃β

(
ξ

αβ

)1/h

. (1.9)

The parameter α contains the parameters for all different types of diquark content, as men-
tioned above, and thus maps accordingly. The β-parameter is the popcorn fluctuation
probability which in this work is assumed to be unaffected by changes in string tension.
The complete mapping relation is derived in full in appendix 1.C.

The effect of a modified string tension on the s/u ratio and the net diquark/quark ratio is
presented in figure 1.2. The range of h chosen in figure 1.2 is much larger than the range
relevant for the pp collisions considered in this work (which generally have h < 1.5), but
is chosen to show effects for large values of h relevant for heavy ion collisions⁶.

The tunneling probability in eq. (1.2) will also give somewhat increased transverse momenta,
but as the tunneling effect is a minor contribution to the p⊥-distribution, this effect is rather
small. A detailed description of the above modifications is presented in appendix 1.C.

Effects on multiplicity

One could assume, that the factor κ2 in the production rate in eq. (1.1) should imply a
change in the b-parameter in eqs. (1.3) and (1.5), and thus significantly modify hadron
multiplicities. The quantity P in eq. (1.1) is the probability per unit volume and unit
time. In a one-dimensional string, it should be interpreted as probability per unit length
and unit time. Therefore the space-time distance between break-up points is expected to
be proportional to 1/κ. At the same time the “yo-yo” states representing mesons have
extension and oscillation times proportional to 1/κ. Thus the earlier production time is
compensated by the smaller string length needed to form a meson. This is taken into
account via the scaling factor κ2 in eq. (1.4), with the effect that b is essentially unchanged.
(For u and d quarks, with masses of the order 10 MeV, and a single string with tension
κ ≈ 0.2GeV2, the exponential factor in eq. (1.1) is very close to 1, and therefore not
significantly changed by an increased string tension.) The second free parameter in the
model (when flavours and spin are neglected) is the parameter N in eq. (1.3), which specifies
the relative weights between hadron states with different multiplicities. As the density of
hadronic states ought to be independent of the former colour configuration, we do not

⁶We note that the PYTHIA implementation currently limits all supression parameters from above at a value
of one, corresponding to the situation where the supression is gone. The parameter ξ̃ can in principle take on
larger values and will, with β = 0.25, saturate at ξ̃ = 1.75.
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Figure 1.2: Effective parameters of the string model as a function of effective string tension. The parameters ρ and ξ control the
strangeness content and baryonic content respectively, a and b are related to multiplicity. A modified string tension
has a sizeable effect on ρ and ξ in particular. The range of h shown is much larger than relevant for pp collisions,
which typically have h < 1.5. Larger values of h are, however, relevant for heavy ion collisions. The values of the
parameters for h = 1 comes from a tune to LEP data.

expect any change in the N-parameter, although we admit that such modifications cannot
be excluded when the mesons are produced in a stronger field.

Although the b-parameter would be unchanged if only light quarks were produced, it will
increase slightly due to the enhanced production probability for strange quarks and di-
quarks, given by an increased exponential factor in eq. (1.1). This gives a shift

b 7→ b̃ =
2 + ρ̃

2 + ρ
b. (1.10)

As the a-parameter is calculated from the normalization constraint for the splitting function
in eq. (1.5), it will get a correspondingly moderate modification. The effect on the parame-
ters a and b is also shown in figure 1.2, and we see that these parameters are less affected by
an increased string tension than the parameters determining strangeness and baryon ratios.
As it will be discussed in section 5.2, a typical value for the string tension enhancement
factor h at LHC is around 1.2. Changes in a and b could therefore naively account for
∼ 5 decrease in multiplicity in pp, as particle density is approximately proportional to√

(1 + a)/b (see eq. (1.7)). Since some parameters must be retuned after implementation
of the rope model, this effect will not appear in final state observables (note that the string
hadronization parameters are still tuned to LEP data, see appendix 1.D for a detailed ac-
count of the tuning procedure.) The model should, however, not be further retuned when
it is applied to nucleus collisions at LHC energies. Here h is expected to be so large, that a
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decrease of the order 15 − 20 in multiplicity, due to changes in ã and b̃, is a prediction
of the model.

3 Ropes

In this section an ideal situation is considered, where separated colour charges within a
limited area in transverse space act coherently to form a colour rope (assuming that the
total system is a colour singlet.) As mentioned in the introduction, lattice calculations
show that if the endpoint charges correspond to a specific SU(3) multiplet, the tension (or
energy density) in the rope is given by the second Casimir operator [38]. This result is
valid for an isolated rope, modifications must be expected in a situation where the rope is
surrounded by other ropes or strings. Here we discuss the formation of a rope, its tension,
and its eventual decay.

3.1 Rope formation

We study a situation, where a rope is formed by a group of ordinary triplet–antitriplet
strings, where the net colour charge is obtained from the addition of m colour triplets and
n antitriplets with random colours. As pointed out first in ref. [3], the result corresponds to
a kind of random walk in colour space. A detailed discussion of this process can be found
e.g. in ref. [53] or in appendix 1.B.1. Here we only present the main features essential for
the later discussion.

While in SU(2) a multiplet is specified by the quantum number j, or its multiplicity (2j+1),
an SU(3) multiplet can be specified by two quantum numbers p and q. A specific state then
corresponds to p coherent triplets (e.g. all red) and q coherent antitriplets (e.g. all antigreen).
In addition the triplet and the antitriplet must be in an octet state (as is the case for red–
antigreen), and not a singlet. The multiplicity, N, of the multiplet {p, q} is then given
by:

N =
1
2
(p + 1)(q + 1)(p + q + 2). (1.11)

The result of adding a set of triplets and antitriplets can be calculated in an iterative way.
Starting from a multiplet {p, q} adding one more triplet, with random colour, one obtains
the multiplets

{p + 1, q}, {p − 1, q + 1}, and {p, q − 1}, (1.12)

with weights proportional to the corresponding multiplicities given by eq. (1.11). From
symmetry, the addition of an antitriplet gives the multiplets {p, q+1}, {p+1, q−1}, and
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Figure 1.3: Relation between ⟨p+q⟩ and m+n after a random walk in p, q-space. The shaded area corresponds to the standard
deviation around the average ⟨p + q⟩.

{p − 1, q}. Multiplets with negative values for p or q are not allowed. In appendix 1.B.1
the result for adding random colour octets (corresponding to gluons) is also described.

The average walk can be easily calculated numerically, and in figure 1.3 we show ⟨p + q⟩
obtained from randomly adding triplets and antitriplets, with a fixed number, m + n, of
charges. (The individual numbers m and n are then given by a binomial distribution. The
same result was also presented in ref. [3].) The width of the distribution is indicated by the
band showing 1σ variations.

3.2 Rope tension

As mentioned in the introduction, lattice calculations show that the tension in an isolated
static rope is proportional to the quadratic Casimir operator C2 [38]. The Casimir operator
is only defined up to a normalization constant, but for our purpose we only need the value
of C2 normalized to a triplet (antitriplet) {1, 0} ({0, 1}), corresponding to the tension in
a single string. This is given by

C2({p, q})/C2({1, 0}) = 1
4
(
p2 + pq + q2 + 3p + 3q

)
, (1.13)

which thus can be regarded as the relative strength of the “rope tension”.
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It is, however, possible that the energy is increased if the transverse area is constrained by
neighbouring ropes and strings. This effect is very hard to estimate, and contributes to
the uncertainties in the predictions from string interactions. To illustrate this problem
we first look at the analogous situation in a normal superconductor. Here a longitudinal
magnetic flux is confined by currents in the surrounding condensate. In an extreme type I
superconductor the surface energy is small, and a tube with two flux quanta will have
doubled cross section and doubled energy. If, however, the flux tube would be constrained
within the same transverse area, the magnetic field energy will be multiplied by 4, but the
energy to annihilate the condensate within the tube (originally equal to the field energy)
will be unchanged. The net result is a change by a factor 2.5. In a type II superconductor
the magnetic flux and the energy density are more concentrated close to the center of a
flux tube or vortex line, and there is a repulsive (attractive) interaction between parallel
(antiparallel) vortices, with a logarithmic dependence on the separation.

The simplest model for a colour flux tube is the bag model [54, 55], which is analogous to
a type I superconductor. The tension in an unconstrained flux tube is here proportional
to

√
C2 [55], in contradiction to the lattice result. However, for a flux tube constrained to

the width of an elementary string, the energy is indeed proportional to the lattice result C2
[56].

Lattice calculations by Cardoso et al. [57] show that the energy in the longitudinal colour-
electric field is dominating over the transverse colour-magnetic field, with other compo-
nents small, and the result shows similarities with a type II superconductor. However,
recent calculations by Cea et al. [58] indicate, that the best analogy with a dual supercon-
ductor is close to the transition between type I and type II, but with the Ginzburg–Landau
parameter within the type I region.

We conclude that there are considerable uncertainties in the estimation of the tension in a
rope. Fortunately it turns out that, for the results presented here, the effects of a modified
effective rope tension can be compensated by a modified value for the effective rope width
r0. We will therefore in the following assume that the tension is proportional to the Casimir
operator of the colour multiplet, in accordance with the lattice calculations for an isolated
rope.

3.3 Fragmentation of a rope

Effective string tension and particle ratios

As in most studies of rope fragmentation, we will assume that the colour rope will break
up in a stepwise manner, by the production of quark–antiquark pairs. This is the result
for an interaction Lagrangian proportional to ψ̄γµψAµ. In the region between the newly
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produced quark and antiquark, the field corresponding to the {p, q} multiplet can be re-
duced to either a {p − 1, q} or a {p, q − 1} multiplet. In the first case the antiquark is
pulled towards the {p, q} charge (and the quark towards the {q, p} charge in the other end
of the rope), and in the second case it is pulled in the opposite direction. As discussed in
section 2.4, an essential point is that the energy released in the breakup is what enters in the
tunneling process discussed in section 2.1, and thus determines the production probabilities
in eqs. (1.1) and (1.2). This is given by the difference between the Casimir operators for the
multiplets {p, q} and {p − 1, q} or {p, q − 1} respectively. This difference thus represents
an effective string tension, or κ̃, introduced in section 2.4.

For a breakup via the transition {p, q} → {p − 1, q} we get from eq. (1.13) the effective
string tension

κ̃ =
2p + q + 2

4
κ. (1.14)

We note that for large charges p this result grows ∼ (p/2)κ, (i.e. more slowly than ∝ pκ).
As an example we have for a rope consisting of two parallel strings in a {2,0}-state the
Casimir operator C2({2, 0}) = 5/2 ×C2({1, 0}). In the first breakup the effective string
tension will then be κ̃ = (5/2−1)κ = (3/2)κ, while for the second break-up we will have
the normal tension κ̃ = κ. A more complicated example is presented in appendix 1.B.2.

We want to emphasize that this result is significantly smaller than what is assumed in most
studies of rope effects. Although the change in rope tension is used e.g. in ref. [7], it is quite
common to use Schwinger’s result in eq. (1.1), with a constant field E proportional to the
charge Q. This would correspond to a situation where the field is confined within a tube
with constant cross section A, and that the contribution from the bag pressure or confining
currents is neglected ⁷. The field energy per unit length is then given by 1

2A E2 = 1
2Q E . We

here used that the total flux, A E , is determined by the charge Q spanning the rope. When a
pair with elementary charge g/2 is produced, the field is reduced to E −ϵ, where g/2 = A ϵ
is the flux from the elementary charge g/2. (The factor 1/2 is due to the conventional
definition of g.) Neglecting the contribution to the tension from the bag pressure, and
assuming that A is not modified, we obtain the “effective string tension” from the difference
in field energy:

κ̃ =
1
2

A{E2 − (E − ϵ)2} = Aϵ(E − ϵ/2) =
1
2

g(E − ϵ/2) (1.15)

For a classical macroscopic field E , the term ϵ/2 can be neglected in the parenthesis (E −
ϵ/2), and the expression in eq. (1.15) therefore looks like eq. (1.1). A problem shows up,
however, if this formula is used to relate the effective string tension to the tension in an
elementary string. Here the term −ϵ/2 can not be neglected, and it corresponds to the
correction to the string tension due to the field produced by the new pair, as pointed out in

⁷In some cases the transverse area is taken as an undetermined parameter, e.g. in refs. [4, 7].
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ref. [31]. Taking this into account we get for an elementary string, with E = ϵ, the tension
κ = gϵ/4, and the result

κ̃ = (2p − 1)κ. (1.16)

We note that for strong ropes, i.e. large values of p, this result is a factor 4 larger than the
result in eq. (1.14). Here a factor 2 comes from the correction term in the elementary string,
and another factor 2 is due to the relatively slow increase of the rope tension in eq. (1.13)
for large p.

Particle multiplicity

For a rope stretched by (m + n) random colour charges, the rope can break up totally by
only (p + q) qq̄ pairs. The random walk in colour space here gives p + q ∼

√
m + n (see

figure 1.3), and this effect therefore contributes to a reduction in the density of produced
particles. In many references it is assumed that this is the dominant effect determining the
multiplicity. Lacking a physical picture, it is often assumed that the hadrons are produced
with the same separation in rapidity, see e.g. refs. [3, 5, 8].

Andersson and Henning [7] argue, however, that the early breakup can give a large energy
to the leading particle(s), leaving less energy to produce softer particles. Amelin et al. [10]
also argue that, as the breakups according to eq. (1.6) occur earlier for a stronger tension,
the multiplicity should be lower. The arguments in refs. [7, 10] do, however not take into
account that not only the space-time distance between breakup points becomes smaller
for a higher effective string tension; also the size of the string pieces making up a hadron
becomes smaller with the same scale factor. Therefore we argued in section 2.4 that the early
breakup only gives a minor correction to the multiplicity, owing to the increased production
of strange quarks (also admitting that unknown effects could influence the possibility for a
qq̄ pair to fit into a final state hadron in case of a stronger effective string tension). Thus in
our approach, the dominant effect on the total multiplicity is due to the random walk in
colour space discussed above.

4 Implementation of ropes in the DIPSY Generator

The rope model outlined above has been implemented in the DIPSY [15, 59, 60, 16] event
generator. DIPSY is based on Mueller’s dipole cascade model [39, 40, 41], which is a for-
mulation of leading-log BFKL evolution [61, 62] in transverse coordinate space, making it
very well suited for a study of coherence effects based on spatial overlap of strings.

The DIPSY model introduces many sub-leading effects to Mueller’s dipole model (see ap-
pendix 1.A for an introduction to the DIPSY model). Important to emphasize here is the
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Figure 1.4: Sketch of how the initial state swing could reconnect colours between two dipoles in impact parameter space.

initial state “swing”, which is a finite Nc effect. Two dipoles with the same colour form
a colour quadrupole, where the colour field is better approximated by dipoles formed by
the closest charge–anticharge pairs (c.f. figure 1.4). As smaller dipoles have smaller cross
sections, this effect contributes to the saturation at small x.

By introducing saturation in the cascade using the colour swing, saturation directly be-
comes a finite-Nc effect, as the effect obviously vanishes in the large-Nc approximation. In
section 4.1 we will argue how adding a similar reconnection effect in the final-state cascade,
is a convenient way to introduce the singlet from the 3 ⊗ 3 = 8 ⊕ 1 decomposition.

The gluons produced in the initial state in DIPSY are in the end ordered in both posi-
tive and negative light-cone momenta, and are allowed to continue radiating final-state
bremsstrahlung according to the time-like dipole radiation model in momentum space
[63, 64] implemented in the ARIADNE program[65]. Before forming the ropes, which will
be sent to PYTHIA8 [66] for hadronization as described in section 4.2, the strings may also
reconnect via a “final state swing” between dipoles with identical colours. This is intro-
duced to account for the singlet from the 3 ⊗ 3̄ = 8 ⊕ 1 decomposition of interacting
string colours, and described in more details in section 4.1.

4.1 The Final-state Swing

The swing mechanism was inspired by the colour reconnection mechanism proposed in [67]
for the time-like dipole shower in ARIADNE [65]. The need for colour reconnections in the
final state had already been noted in the context of multiple interactions [68]. Several other
investigations were performed in the eighties and nineties looking at recoupling effects both
in e+e−, DIS and hadronic collisions, see e.g. [69, 70, 71, 72].

These reconnection models were based on the principle of minimizing “effective string
lengths”. This was inspired by the string fragmentation, where the string action is given
by the area law for the Wilson loop [49]. For a simple qq̄-string, which does not break,
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Figure 1.5: Sketch of how the final state-swing could reconnect colours between two dipoles in momentum space.

the action for one period is proportional to the total invariant squared mass s. For a string
which breaks up into hadrons, the string area is instead proportional to ln(s/m2

0), where
the scale parameter m0 is a typical hadronic scale, ∼ 1 GeV. This area also determines the
average hadron multiplicity. For a more complicated string configuration it is also possible
to generalize this area to the so-called lambda-measure [73, 74]. The lambda-measure is
infrared stable, but in cases without soft or collinear gluons, it can be approximated by

λs ∝
n−1∑
i=1

ln
(pi + pi+1)

2

m2
0

. (1.17)

Hence, when looking at the re-coupling of individual dipoles in a string it seems natural to
try to minimise the sum of the logarithms of the dipole masses, or equivalently, the product
of dipole masses.

In the original implementation in ARIADNE, only reconnections which decreased the total
λs were allowed, but now we have reimplemented it in a way very similar to the swing
in DIPSY. Between every final-state dipole radiation there is a possibility to recouple two
dipoles, (12)(34) → (14)(32), if they are in the same colour state (using the same colour
indices as in DIPSY). Again we treat emission and swing as competing processes, and while
the emission of a gluon is simply given by the dipole formula

dPg

dρ
≈ dy

CFαS

2π
(1.18)

(for a qq̄− dipole. For a gluon dipole CF 7→ CA/2). Here ρ = ln(p2
⊥) is the evolution

parameter. We define the relative probability for the swing as

dPs

dρ
= λ

(p1 + p2)
2(p3 + p4)

2

(p1 + p4)
2(p3 + p2)

2 , (1.19)

with a free parameter λ governing the relative strength of the swing.

Dipoles spanning large distances in impact parameter space are heavily suppressed in DIPSY
due to the confinement effects imposed by the introduction of a small gluon mass, mg (see
appendix 1.A). Even though the final-state swing in eq. (1.19) is formulated in momentum
space and does not take into account any impact parameter dependence we still need to
preserve these confinement effects. This is done by only considering dipoles which are
closer in impact parameter space than a distance ∝ 1/mg as candidates for a swing.
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Figure 1.6: Sketch of how a antitriplet swing could reconnect colours between two dipoles by introducing two string junctions
(denoted by circles).

It is interesting to note that if we have two completely anti-parallel dipoles, the probability
of them having the same colour index is simply 1/N2

c , and if this is so, they will always
reconnect, effectively breaking the “rope”. This corresponds to the singlet term which arises
when combining the triplet and anti-triplet string, 3 ⊗ 3 = 8 ⊕ 1 (see eq. (1.25)). This
means that this effect in principle has already been taken care of before the formation of the
rope, and when we later perform the random walk in colour space for overlapping strings,
we need to constrain it to take this into account.

One could also imagine introducing another swing mechanism for the case of parallel
strings, which would then imply that two (parallel) dipoles could swing into a single string
according to the sketch in figure 1.6. This would involve the formation of two so-called
junctions where three colour lines join. Although there is a mechanism for hadronizing
junction strings in PYTHIA8, it has some technical limitations⁸. Also, the treatment of ra-
diation from junction topologies in ARIADNE requires additional work, and we will thus
defer the treatment of this new kind of swing to a future paper. Instead we will treat the
corresponding multiplet configurations in the rope model below.

4.2 Estimates of overlap region

As discussed in more detail in appendix 1.A, the DIPSY Monte Carlo describes two colliding
parton cascades, producing colour-connected partons located in transverse coordinate space
and rapidity. This is followed by final-state radiation in momentum space from ARIADNE
together with colour reconnection by the final-state swing. The location in the transverse
plane is the basis for the interaction between the strings and the formation of ropes. As de-
scribed in section 2.4, we expect that the dominant effect of rope formation is an enhanced
production of strangeness and baryons, and in this paper we concentrate on these effects.

In section 3 we discussed an ideal situation with strings or colour flux tubes, which overlap
completely in transverse space, and interfere constructively or destructively to form a co-
herent rope. A typical event, ready for hadronization, is shown in impact parameter space
and rapidity in figure 1.7. The tubes in the figure represents colour connections between
partons, and it is easy to see that real events are far from similar to the ideal situation, and

⁸While preparing this manuscript a slightly improved version of the junction fragmentation was imple-
mented in PYTHIA together with a colour reconnection mechanism producing junctions in the way depicted
in figure 1.6 [27].

67



−10
−8

−6
−4

−2
0

2
4

6
8

10

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

y
bx [fm]

by
 [f

m
]

Figure 1.7: Illustration of strings from a pp event at
√

s = 7 TeV in (⃗b⊥, Y)-space before hadronization. Notice that the string
radius is set at 0.1 fm – an order of magnitude less than in the calculation – in order to improve readability of the
figure.

we therefore need a way to estimate the amount of interaction. We naturally expect that
strings close in transverse space should interfere more strongly than strings further away,
with a typical interaction range of the order of the confinement scale. Our main assump-
tion is therefore, that the degree of coherence between the strings is determined by the
overlap between the corresponding flux tubes.

Since the DIPSY-generated events provide access to space-time information of strings, it is
natural to alter the effect depending on the amount of overlap. Space-time information
is usually not available in generators for pp collisions. It is, however, normally accesable
in Molecular Dynamics Monte Carlo generators aimed for heavy ion collisions, where a
similar approach (not including all fluctuations), has been studied in ref. [19]. We expect the
coherence range (the radius of the flux tubes) to be of the order of the confinement scale, and
put it to 1 fm. One could treat it as a completely free parameter, and tune it to data together
with other free parameters, in order to give the most accurate description of data. Since
neither the method of calculation of overlap between strings, nor the connection between
this overlap and m and n (the number of uncorrelated colour and anticolour charges in one
end of the rope) is obvious from first principles, we will present two different approaches
for calculating the overlap. The first method is very crude, and approximates all strings
as straight flux tubes (”pipes”) parallel to the rapidity axis. In this pipe-based approach, a
string will be given values for m and n that are averages over the whole string, in fact an
average over the full area in transverse space covered by the string. The string is subsequently
hadronized with a single average value for κ̃, determined from m and n by the random walk
procedure.

The second method is more detailed and takes into account more fluctuations along the
string. In this dipole-based approach, a string is viewed as a chain of dipoles, connected by
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gluons, either with quarks at the endpoints, or as closed gluonic loops. Overlaps are then
calculated and a random walk in colour space is performed for each dipole, at a specific
rapidity value, in order to change the value for κ̃ at each breakup in the hadronization.

In both treatments the random walk is constrained to take into account that steps corre-
sponding to {1, 0} ⊗ {0, 1} 7→ {0, 0} have already been treated in the final-state swing
mechanism. Nevertheless it is clear that for m + n overlapping strings or dipoles, may
end up in multiplets {p, q}, where p < m and/or q < n. This poses a problem, since for
technical reasons, each of the n + m strings are hadronized separately, so we cannot break
them with only p + q break-ups. Since the net effect is to reduce the multiplicity by a
factor ∝ (p + q)/(m + n), we instead emulate this by simply randomly discarding strings
in the pipe-based treatment with a probability 1 − (p + q)/(m + n). In the dipole-based
treatment the approach is somewhat more sophisticated and we instead discard individual
dipoles in a procedure inspired by the suggested junction swing in figure 1.6.

The details of the implementation of the two treatments are fairly technical and a full de-
scription is therefore deferred to appendices 1.C.1 and 1.C.2.

The aim of introducing two different approaches for calculating overlap, is to demonstrate
that even the very crude pipe-based approach catches the gist of the model and improves
the description of strangeness and baryon production, as described in section 5. Since
further sophistication in the dipole-based approach can improve description of strange and
baryonic content even further, we argue that a direct mapping from overlap in tranverse
space to m and n is indeed sensible. Further sophistication of this calculation of overlap is
left for future publications.

4.3 Exclusive observables with DIPSY

The DIPSY Monte Carlo is implemented in the event generator framework called THEPEG
[75]. Also the ARIADNE program for final-state parton showers has been implemented in
this framework and there we have now added the final-state swing mechanism described in
section 4.1. In THEPEG we have also written an interface to the hadronization routines of
the PYTHIA8 event generator, and it is here we have implemented our rope hadronization
models described in the previous section. The whole code is available from the authors
upon request.⁹

The full code can generate full, exclusive final states for pp, pA and AA. The goal driving
event generators such as DIPSY is to be able to describe all collider physics with the same
models, using the same parameters. As event generators in general have a quite large num-
ber of parameters, which parameterize the uncertainties in the models implemented, these

⁹See also http://home.thep.lu.se/DIPSY for installation instructions.
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parameters need to be estimated from data in a ”tuning” process. It is important to state
that tuning does not mean fitting of individual spectra to data. It rather means that one set
of parameter values are estimated such that the same models can describe anything from
e+e− over pp to pA and AA collisions.

We have already discussed some of the parameters on the Lund string fragmentation level,
but there are many others, such as the non-perturbative cutoff in the parton cascade and
scale factors used in the running of αS (to emulate untreated higher orders). The tuning of
these parameters is quite a complicated task, and for each event generator there are typically
several different tunes available (see e.g. mcplots.cern.ch [76] for comparisons between
different tunes of different programs).

The most common strategy is to first tune parameters associated with the final-state showers
and hadronization to data from e+e− colliders. Assuming jet universality these are then
fixed when tuning further parameters related to initial-state showers and multiple parton
interactions to data from hadron colliders.

As we have tried to argue in this paper, the concept of jet universality is not quite straight-
forward, and the hadronization may very well behave differently in hadronic and e+e−

collisions. To see the effects of our new model it is therefore necessary to take some care
and make sure that the description of the flavour-dependent observables we wish to study
is not dominated by a general change of multiplicity distributions for all particles, as such
global effects would normally be removed in a tuning procedure. Therefore we have made a
careful tuning both for the cases with rope effects and without, as detailed in appendix 1.D.

Since the DIPSY event generator does not yet include a model for diffractive events, care
also must be taken to only compare to observables that are not sensitive to diffraction. For
that reason, we will primarily look at particle ratios. This point is also expanded upon in
appendix 1.D.

5 Results

In this section we will present some results from applying the introduced rope model. We
will concentrate on flavour observables in minimum bias events in hadronic collisions in
the energy range where we believe the small-x approximation in the DIPSY model is valid,√

s >∼ 100 GeV. After presenting comparisons to experimental data in section 5.1, we will
look at the model’s sensitivity to parameters and its behaviour at higher energies in sec-
tion 5.2. In section 5.3 we discuss the flow-like effects shown in the results.
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Figure 1.8: The proton to pion ratio in bins of p⊥ as measured by STAR at
√

s = 200 GeV (left) and Λ/K0
s at 7000 GeV as

measured by CMS (right). Both results are compared to DIPSY with and without rope, as well as with PYTHIA8.

5.1 Comparison to data

Results from DIPSY including the rope model in the dipole scheme (labelled ’Rope’) are here
compared to CMS data [36] at 900 and 7000 GeV as well as STAR data [77] at 200 GeV. We
also show DIPSY with no rope effects on, labelled ’DIPSY’, and finally a PYTHIA8 reference¹⁰
labelled ’Pythia’. Comparison to data for more energies, and other kinematic variables etc.
can be found on the project home page at http://home.thep.lu.se/DIPSY/. The
parameters for rope hadronization used are r0 = 1 fm, β = 0.25 and m0 = 0.135 GeV.
These choices will be further discussed in section 5.2.

In figure 1.8 (left) we see the proton/pion ratio in bins of p⊥, as measured by STAR, com-
pared to simulations. We clearly see that DIPSY with no added effects fails to describe this
ratio, in the same way as PYTHIA8 does. The proton/pion ratio is a good measure of the
relative amount of baryons with no strangeness, governed by the ξ-parameter, and we see
that DIPSY with added rope effects indeed describes data better, both in terms of relative
proton content and p⊥.

In figure 1.8 (right) the Λ/K0
s ratio at

√
s = 7 TeV is shown in bins of p⊥ as measured by

CMS. As both the meson and the baryon has strangeness, this should also be a good measure
of the influence of the ξ-parameter. We again see that including rope effects improves the
description, especially in the low-p⊥ end, where most of the multiplicity is concentrated.
The high p⊥-tail is poorly described, and we will discuss this further in section 5.3.

Figure 1.9 shows the Λ/K0
s ratio at

√
s = 900 GeV (left) and 7 TeV (right) in bins of

rapidity as measured by CMS. We see here that the relatively weak dependence on energy
is well described by the rope model, with the same values for r0, β and m0.

¹⁰Version 8.180, tune 4C.
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Figure 1.9: The Λ/K0
s ratio at 900 GeV (left) and 7000 GeV (right) as measured by CMS in bins of rapidity. The figure shows

that the rope model captures the (albeit weak) energy dependence of this ratio, while DIPSY without ropes, as well
as PYTHIA8, shows no energy dependence.

TheΞ−/Λ ratio is an observable, that is particularly sensitive to the ρ parameter. Figure 1.10
shows this ratio in bins of rapidity at 900 GeV and 7000 GeV, and we see that the rope
model also reproduces the behaviour of these data fairly well.

Although the energy dependence shown in figures 1.9 and 1.10 is fairly weak, the fact that
it is well described by the rope model is a very important point. At higher energies more
strings are confined within a small space, and with the amount of overlap as a measure
of the size of the rope effect, one could expect a larger increase with energy. To further
illustrate this point, and to serve as qualitative predictions for the integrated particle ratios,
we show in figure 1.11 the total K/π, Λ/K0

s and Ξ−/Λ ratios as a function of
√

s. We note
here that the combined effect of strangness and baryon suppression is not factorizing in
a simple way. As discussed in appendix 1.C, the effects of an increased string tension is
quite involved, especially for baryons. The fact that the relative abundances presented in
figures 1.8-1.10 are well described, also for different energies, gives us confidence that our
model has some physical relevance.

5.2 Model behaviour

The model introduces three new parameters. The string radius r0, the popcorn-parameter
β, and the parameter m0 which is specific to the dipole approach. The parameters have not
been tuned to data in the usual sense, but set to reasonable physical estimates. We believe
that the model in its current state is not mature enough to warrant a tuning, but one should
nevertheless get an intuition for the uncertainties associated with the choice of parameters.
We will here motivate our choices, and show the sensitivity of the model to changes in the
parameter values, and how the results vary with

√
s.
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Figure 1.10: The ratio Ξ−/Λ at 900 GeV (left) and 7000 GeV (right) as measured by CMS in bins of rapidity.

To gauge the sensitivity we look at two quantities: the average string tension and the num-
ber of junctions. Focusing on particle ratios, we normalize to the λ-measure, which is a
measure for the hadronic multiplicity (see eq. (1.17)). Thus we study the event averaged
string tension, defined by the relation

⟨κ̃/κ⟩ ≡
∑

i λiκ̃i/κ∑
i λi

(1.20)

(where i counts all dipoles and λi = ln(m2
i /m2

0)), and the number of junctions per unit λ,
⟨nj/

∑
i λi⟩. These quantities can act as indicators for the amount of string overlap, which

grows with increasing energy, but is also sensitive to the tunable parameters r0 and m0.

Figure 1.12 (left) shows the average string tension as functions of
√

s, for r0 = 1 fm and m0 =
0.135 GeV. The dashed lines in figure 1.12 indicate the event-by-event fluctuations, showing
one standard deviation. It is clearly visible that the enhancement effect rises logarithmically
with

√
s. This is expected, as the number of gluons in the BFKL-based DIPSY cascade has

the same energy dependence.

The average value of the string tension will thus increase with energy, and from figure 1.2
it is clear that this gives a larger amount of strange and baryonic activity as

√
s goes up, as

well as having a moderate effect on total multiplicity due to the effect on the parameters
a and b in the splitting function in eq. (1.5). However, the multiplicity in pp collisions are
heavily influenced by the parameters controlling the initial-state evolution in DIPSY, and
as described in appendix 1.D, we tune these (while keeping the hadronization parameters
tuned to LEP data fixed) to obtain the same multiplicity with and without rope effects.
In this way the only effects from our rope model are the relative amounts of baryons and
hadrons with a strange content; both are expected to increase.

The increase in the number of junctions per string length is also shown in figure 1.12 (right).

73



103 104

√
s  [GeV]

1.0

1.1

1.2

1.3

1.4

1.5

1.6

E
n
h
a
n
ce

m
e
n
t 

o
f 

p
a
rt

ic
le

 r
a
ti

o
s 

w
. 
ro

p
e
 m

o
d
e
l

p/π

K± /π±

Λ/K 0
s

Ξ− /Λ

Figure 1.11: Enhancement of particle ratios of function of
√

s. Integrated ratios of p± and K± to π±, ΛΛ̄ to K0
s and Ξ− to ΛΛ̄

with the rope model (dipole approach) applied, normalized to the same ratio with ordinary string hadronization.
All particles with p⊥ > 200 MeV are included.

The amount of baryons emerging from the produced junctions is, as explained in ap-
pendix 1.C.2, controlled by the popcorn strength parameter β (see eq. (1.33)). We note
that while increasing β results in a stronger increase of baryons produced through diquark
break-ups in the strings, it also decreases the probability that baryons are produced in junc-
tion structures, as explained in section 1.C.2. As our results thus have very little sensitivity
to variations in β, it is fixed to 0.25 throughout the article, and we do not expect large
theoretical uncertainty to be ascribed to this parameter should the model be thoroughly
tuned.

The amount of overlap in an event will also increase by increasing r0. In figure 1.13 (left)
the average enhancement is shown as a function of r0 at fixed energy

√
s = 900 GeV and

m0 = 0.135 GeV. It is interesting to note that the overlap saturates at r0 ∼ 1.5 fm, as the
size of the strings becomes larger than the proton. This behaviour is almost independent
of collision energy, as the cross section only increases logarithmically with energy, although
the value at saturation is higher for higher energies. The same type of saturation effect is
found in the number of junctions, shown in figure 1.13 (right). Throughout the article, r0
is set to 1 fm, which is taken as a typical hadronic length scale. We expect variations in the
parameter r0 to be the largest source of theoretical uncertainty should the model be tuned.
In the region around r0 ∼ 1 fm, small changes in r0 can give up to 5  change in average
effective string tension, which will of course be reflected in the results.
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Finally the parameter m0 serves as a characteristic scale for the dipoles. This has both the
effect of a cut-off in the rapidity span (gluons in a dipole at rest would otherwise give infinite
rapidity), and as a propagation time (1/m0), to let the gluons propagate a finite distance
(determined by their p⊥) before the overlap is calculated and hadronization takes place (see
appendix 1.C.2 for further explanation). The average enhancement factor and the density
of junctions as function of m0, is shown in figure 1.14.

The model is not as sensitive to m0 as to r0, and we expect that the uncertainty after a tuning,
which can be ascribed to m0, will be only on the order of a few percent. In this article we
have chosen to set the parameter m0 to the pion mass, m0 = 0.135 GeV, as no hadron
can have a larger rapidity than the pion. The pion formation time will then be defining for
the dipole propagation time. We believe that a tuning of this parameter will not give large
deviations from the pion mass, as we have also tried hadronic scale 1/r0 ≈ 0.2 GeV. This is
numerically close to the pion mass, but does not give an equally good energy dependence.

5.3 Particle ratios and flow-like effects

As seen, rope effects introduce a
√

s-dependence of flavour ratios and baryon ratios in the
fragmentation, and we note in particular that the rise at small p⊥ is well described. This
effect is often seen as an indication for the formation of a quark–gluon plasma phase, also
in pp-collisions [78, 79], as the pressure in the hot plasma would push large mass particles
to higher p⊥ (compared to low mass ones). In our rope model it is mainly the result of the
colour reconnections induced by the final state swing mechanism, which originate from
the formation of lower colour multiplets. Ortiz et al. have previously noted that the colour
reconnection model implemented in PYTHIA, gives rise to a flow-like effect in pp collisions
at LHC [80].
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Figure 1.13: Average enhancement (left) ⟨h⟩ = ⟨κ̃/κ⟩ as a function of r0 at
√

s = 900 GeV in pp collisions. The band indicates
one standard deviation. Number of junctions (right) per string length as a function of r0.

It is also seen that, although the rise at small p⊥ is well described, the experimentally ob-
served fall at higher p⊥, in e.g. Λ/K0

s shown in figure 1.8, is not reproduced by the present
implementation of rope effects. In studies of plasma effects the hadrons with larger p⊥ are
expected to originate from high-p⊥ jets fragmenting outside the plasma (see e.g. ref. [78]).
Such an effect should also be expected in the rope picture, where high-p⊥ gluons are ex-
pected to hadronize outside the region where strings interfere, illustrated in figure 1.7. This
effect is, however, not taken into account in the present implementation.

As a means to approximately account for the reduced rope effect for high-p⊥ jets, we have
studied a modified version of the “pipe” implementation described in appendix 1.C.1. Here,
in case any parton in the string, or any hadron arising from the string, obeys the criteria
|y| < 2.0 and p⊥ > 4 GeV, the string will not feel any enhancement, but be hadronized
with κ̃/κ = 1. As this happens in only a small fraction of the events, we believe that this
crude measure gives a qualitatively correct estimate of the effect.

In figure 1.15 we show the p±/π± rato at
√

s = 200 and 7000 GeV. The curve marked
’DIPSY’ shows simulation with no rope effects, but as the final state swing (labelled ’Swing’)
is added, we already see how the high-p⊥ tail of the ratio distribution (at both energies) falls
off a bit. Adding all rope effects (labelled ’Rope’), we see how the integrated ratio increases
(as shown before), but since the major effect on p⊥, in the rope model, comes from the final
state swing, the shape is not altered much. The curve labelled ’Pipe’ shows the modified
pipe-based approach to estimate the overlap, as discussed above. We see that in this version
the high-p⊥ tails are more suppressed, thus following the data better. The ’Pipe’-curves
also show that the ratios for low to intermediate p⊥ (where most of the multiplicity is) is
affected roughly as expected, even with this very simple way of counting overlap¹¹. The fact
that even a simple treatment like the pipe based one can catch the gist of the rope model,

¹¹We remind the reader that not even additional junctions are added in the ’Pipe’-approach, all is due to
changes in the ξ parameter.
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Figure 1.14: Average enhancement (left) ⟨h⟩ = ⟨κ̃/κ⟩ as a function of m0 at
√

s = 900 GeV in pp collisions. The band indicates
one standard deviation. Number of junctions (right) per string length as a function of r0.

is an encouraging indication that the interesting physics lies in the model itself, and not
in a more or less arbitrary choice of how to estimate the numbers m and n denoting the
number of interacting strings. We do, however, see that the

√
s-dependence for the pipe

based approach is not nearly as good as the dipole based one. For this reason, we believe
the dipole approach to bear more physical sense, and in sections 5.1 and 5.2, we have thus
only shown the dipole approach.

In a future work we will address the issue of the high-p⊥ tails in ratios. A more sophis-
ticated version of the cut applied to the pipe based approach must be added to ensure
that hadronization takes place with local parameters suitable for the actual location of the
process, and not just let the dipoles propagate a fixed length.

In figure 1.16 we see the K±/π± ratio in bins of p⊥ at
√

s = 200 GeV and 7000 GeV. This
ratio does not show the same type of intermediate-p⊥ ”bump” (also not present in data,
see e.g. ref. [81]), but rather a more smooth rise. The rope model (in both dipole and pipe
approaches) shows some, but not much, effect, in accordance with our expectations.

6 Conclusions and outlook

It was early observed that string hadronization models, when tuned to e+e− annihilation
data at LEP, underestimates the production of strange quarks in pp collisions. At the higher
LHC energies the experiments show significantly enhanced production of strangeness and
baryons, in particular strange baryons are strongly enhanced. In pp collisions the strings
or cluster chains are usually assumed to hadronize independently, although the density of
strings becomes quite high at LHC energies, and interaction between the strings therefore
ought to be expected. Interaction between strings have been discussed by many authors in
connection with nucleus collisions, where very high string densities are also expected. Here
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Figure 1.15: Proton (p + p̄) to pion (π+ + π−) ratio in bins of p⊥ (|y| < 2.0) at
√

s = 200 GeV (left) and 7000 GeV (right).

the formation of “ropes” are generally predicted to give higher ratios of strange particles
and baryons. Although the geometrical distribution of nucleons within a nucleus can give
a good estimate of the density of strings in nucleus collisions, for a quantitative description
of string interaction in pp collisions, a description of the parton distribution in impact
parameter space must be essential.

In this work we use the DIPSY model, which is a formulation of BFKL evolution in trans-
verse coordinate space, including NLL effects and effects of saturation and confinement,
taking also fluctuations and correlations into account. Within this model it is possible to
calculate the distribution of strings in the transverse plane, and thus estimate the amount
of interaction. For the actual hadronization process we use PYTHIA8.

Following the early work by Biro et al. [3], we assume that a set of strings within a limited
transverse size can interact coherently, forming a colour rope. If the strings are stretched
between random colour charges, the net charge at the end of a rope is obtained by a random
walk in colour space. Results from lattice calculations show that the tension in a rope is
proportional to the corresponding quadratic Casimir operator. If the rope breaks up in a
step-wise manner by the production of qq̄ pairs, then the number of such pairs needed to
break the rope, is in general smaller than the initial number of strings. More energy will,
however, be released in the production of the individual pairs, thus simulating a higher
effective string tension. An important point is here that it is the decrease in rope tension
following the qq̄ pair production, which specifies the “effective string tension”, and we note
here that this leads to a significantly smaller increase, compared to what is usually assumed.

Besides higher fractions of strange particles and baryons, a higher string tension also implies
that the string breaks earlier. Early breakups usually imply lower multiplicity, but we argue
here that for rope hadronization this effect is compensated by the fact that shorter string
pieces are needed to form a final state hadron.

Special attention is needed for handling colour singlets, which can be formed e.g. when a
triplet and an antitriplet combines as 3⊗ 3 = 8⊕ 1. We treat this by colour reconnection
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Figure 1.16: Kaon (K+ + K−) to pion (π+ + π−) ratio in bins of p⊥ at
√

s = 200 GeV (left) and 7000 GeV (right).

via a “final state swing”, described in section 4.1. This idea could potentially also be used to
reconnect parallel strings into the anti-triplet in 3⊗ 3 = 6⊕ 3 (see eq. (1.24)), as sketched
in figure 1.6. As the hadronization model in PYTHIA8 is currently being improved to better
handle complicated junction topologies, we expect to be able to implement such a sextet
swing mechanism in ARIADNE in the near future.

Naturally the range within which the strings can act coherently cannot be calculated from
basic principles. It ought to be of the hadronic scale∼1 fm, but might be treated as a tunable
parameter. Partly overlapping strings also give rise to uncertainties. We have here studied
two different schemes for estimating the effects of rope formation, which both attempt
to account for the actual overlap of strings in impact parameter space and rapidity. The
schemes differ in the level of detail considered; the “pipe-based” scheme is only looking
at the average enhancement of the tension in a string, while the “dipole-based” version
estimates the increased string tension in each individual string break-up. The dipole scheme
also introduces a simple junction model, both formation and breaking. In spite of the
differences between the schemes, the results are fairly similar. In both cases observables
sensitive to the increased relative abundance of baryons and strange hadrons are much
better described by the rope models, compared to conventional string fragmentation.

The fact that the model reproduces the increase both for several collision energies and for
several different hadron species, is a strong indication that our picture of the increased string
tension in overlapping strings, and its effect on the fragmentation process, is reasonable.
Although our model introduces a couple of new parameters, we have shown that these
mainly affects the overall strength of the effect, while the influence of the string tension on
individual hadron species is fixed by the model and by the tuning of parameters in PYTHIA8
to single-string data from e+e−-experiments. Also the energy dependence is fairly well
constrained by the comparison to data presented in this article, and our implementation in
the DIPSY generator can therefore make rather firm predictions, e.g. for relevant observables
to be measured at Run 2 of the LHC.

A particularly interesting result is that the model reproduces the increase in the ratios p/π
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and Λ/K with p⊥ in the range p⊥ < 2 GeV, in a way mimicking a hydrodynamic trans-
verse flow. This effect is frequently interpreted as caused by a transition to a quark–gluon
plasma. It was also pointed out in ref. [80] that colour reconnection, as implemented in
PYTHIA, gives rise to a flow-like effect in pp collisions. Thus the results presented in sec-
tion 5 originate partly from the increased tension in ropes with high colour multiplets, and
partly from colour reconnections in cases where strings combine to colour singlets or other
small multiplets.

Our model does, however, not reproduce the drop in the p/π ratio for p⊥ > 2 GeV. In
analyses based on flow, it is frequently assumed that high-p⊥ particles result from fragmen-
tation of jets not participating in the thermalisation, and hadronizing outside the plasma
(see e.g. ref. [78]). A similar effect should be expected in our rope model. High-p⊥ hadrons
may be predominantly formed outside the overlap regions, and therefore not feel the in-
creased tension in the rope. This effect is not included in the present implementation of
the model, giving the results presented in section 5. A crude modification of our pipe-based
scheme indicates that the effect may be qualitatively accounted for, but further studies are
needed of the formation times and the transverse propagation in space within our rope
model. In this context we also need to revisit the description of high-p⊥ gluons, which
currently are not well modelled in DIPSY.

We have in our analyses also neglected a possibly increased pressure exerted by the ropes.
In the bag model the pressure from a high colour flux tends to expand the transverse size
of a flux tube, in a way which also could contribute to flow-like effects. An estimate of this
effect also needs a better understanding of the relative time-scales for rope formation and
the hadronization process.

We conclude that several mechanisms can contribute to the flow-like behaviour in high
energy collisions: besides a phase transition to a plasma, also increased string tension in
colour ropes, colour reconnection in low colour multiplets, and transverse expansion due
to high pressure inside the ropes. To estimate the relative contributions from these sources,
it is important to study different reactions, pp, pA, and AA, and also all possible observables,
besides those discussed in this paper also e.g. angular flow, fluctuations, and correlations of
different kinds. The time-scales for the different processes is here very important. We want
to return with results of such studies in forthcoming publications.
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1.A The DIPSY model

It has since long been clear that a proper description of the multi-particle final states in
high energy hadron collisions requires some kind of multi-parton interaction model. The
most successful such model to date is the one developed by Sjöstrand and van Zijl [68], but
also other models have been proposed (see e.g. [82] and [83]).

For the purpose of our investigations, however, it is important that not only the momentum
distribution of the produced partons is described; to estimate the degree to which strings
overlap we also need to understand the impact-parameter distribution of partons. For this
reason we have used DIPSY event generator [16], which will be described briefly in this
appendix.

DIPSY is based on Mueller’s dipole cascade model [39, 40, 41], which is a formulation of
leading-log BFKL evolution [61, 62] in transverse coordinate space. This model relies on
the fact that initial-state radiation from a colour charge (quark or a gluon) in a hadron is
screened at large transverse distances by an accompanying anticharge, and that gluon emis-
sions therefore can be described in terms of colour-dipole radiation. Thus the partonic state
is described in terms of dipoles in impact-parameter space and rapidity, which is evolved in
rapidity when an emitted gluon splits a dipole into two. We here note that the suppression
of large dipoles in transverse coordinate space is equivalent to the suppression of small k⊥
in the conventional BFKL evolution in momentum space.

For a dipole with charges at the transverse points x1 and x2, the probability to emit a gluon
at xg is given by

dPg

dY
=

ᾱ

2π
d2xg

(x1 − x2)
2

(x1 − xg)2(xg − x2)2 , with ᾱ =
Ncαs

π
. (1.21)

The emission produces two new dipoles, (x1, xg) and (xg, x2), which can split independently
by further gluon emissions. Repeated emissions form a cascade, with dipoles connected in
a chain. When two cascades collide, a dipole (x1, x2) in a right-moving cascade can interact
with a left-moving dipole (x3, x4), with probability

P =
α2

s
4

[
ln

(
(x1 − x3)

2(x2 − x4)
2

(x1 − x4)2(x2 − x3)2

)]2

. (1.22)

In a series of papers [15, 59, 60, 16] a generalization of Mueller’s model, implemented in the
Monte Carlo event generator DIPSY, has been described in detail. Here we will only discuss
the main points. The basic idea behind the model is to include important non-leading
effects in the BFKL evolution, saturation effects in the evolution, and confinement.
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The full next-to-leading logarithmic corrections have been calculated and have been found
to be very large [84, 85]. A physical interpretation of these corrections has been presented
by Salam [86], and a dominant part is related to energy–momentum conservation. In the
DIPSY model this is achieved by equating the emission of a gluon at small transverse dis-
tances with high transverse momenta of the emitted and recoiling gluons. In this way the
gluons emitted in the evolution are traced in both momentum and coordinate space, allow-
ing us to generate the final-state momentum distribution of gluons. The conservation of
energy and momentum implies a dynamic cutoff for very small gluons with correspondingly
high transverse momenta. This constraint has also important computational advantages;
in the standard Mueller model the number of small gluons diverges which, although the
cross section is still finite, gives computational problems.

Other important non-leading effects are the running coupling, αs(p2
⊥), and the “energy

scale terms” (which correspond to the consistency constraint discussed by Kwiecinski et al.
[87]). The latter implies that the emissions are ordered in both the positive and negative
light-cone components [88]. Besides these perturbative corrections, confinement effects are
included via a small gluon mass, mg, and non-linear saturation effects through the so-called
swing mechanism, described in more detail below.

In a high energy collision, two hadrons are evolved from their respective rest frames to a
Lorentz frame in which they collide. In its own rest system a proton is currently modelled
by a simple triangle of gluons connected by dipoles, and the gluonic Fock state is built by
successive dipole emissions of virtual gluons. (The small-x gluons are rather insensitive to
the initial parton configuration, apart from the overall size, and valence quarks are later
introduced by hand in the final state). The two evolved systems are then made to collide,
allowing some of the dipoles in the left-moving system to interact with some in the right-
moving ones. This enables the gluons in these dipoles to come on-shell, together with
all parent dipoles, while non-interacting dipoles must be regarded as virtual and thus be
reabsorbed.

1.A.1 The initial-state Swing mechanism

The swing mechanism in DIPSY is a saturation effect within the evolution, which is con-
ceptually interesting in connection with the rope formalism in this article. Mueller’s dipole
evolution is derived in the large Nc limit, where each colour charge is uniquely connected
to an anticharge within a dipole. Saturation effects are here included as a result of multiple
dipole collisions, in the frame used for the analysis. Such multiple interactions give dipole
chains forming loops, and are related to multiple pomeron exchange. Loops formed within
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the evolution are, however, not included.¹² Besides missing parts of the saturation, this also
makes the result dependent on the frame used for the calculation. As dipole interaction in
eq. (1.22) is colour suppressed compared to the dipole splitting, loop formation is related
to the possibility that two dipoles have identical colours.

If two dipoles happen to have the same colour, we have actually a colour quadrupole, where
a colour charge is effectively screened by the nearest anticolour charge. Thus approximating
the field by a sum of two dipoles, one should preferentially combine a colour charge with a
nearby anticharge. This interference effect is taken into account in DIPSY in an approximate
way, by allowing two dipoles with the same colour to recouple forming the new dipoles, in
a way that favours small dipoles.

In the simulation this is handled by assigning all dipoles a colour index running from 1 to
N2

c , not allowing two dipoles connected to the same gluon to have the same index. A pair
of two dipoles, (x1, x2) and (x3, x4), with the same colour may be better approximated by
the combination (x1, x4) and (x3, x2), if these dipoles are smaller. In the evolution the pair
is allowed to “swing” back and forth between the two possible configurations as indicated
in figure 1.4. The swing mechanism is adjusted to give the relative probabilities

P(12)(34)

P(14)(32)
=

(x1 − x4)
2(x3 − x2)

2

(x1 − x2)2(x3 − x4)2 , (1.23)

thus favouring the configuration with smallest dipoles. (In the implementation of the
cascade evolution, the swing is competing with the gluon emission in eq. (1.21), where
a Sudakov-veto algorithm can be used to choose which of the two happens next.)

The dipole interaction in eq. (1.22) is smaller for smaller dipoles, which reproduces the
colour transparency effect. As the swing leads to smaller average dipole size, the probability
for interactions is reduced, and thus the swing represents a saturation effect within the
evolution. This reduced interaction probability is equivalent to the 2 → 1 and 2 → 0
vertices in e.g. the BK evolution equation.

1.B Colour algebra

1.B.1 Calculation of p and q

In this section the recursion relations presented in eq. (1.12) for calculating all possible {p, q}
multiplets arising from the combination of m triplets and n antitriplets will be presented
in detail.

¹²This is also the case e.g. for the non-linear BK equation [89, 90], which describes the interaction between
a relatively dilute cascade and a dense target.
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It is worth noting that the combination of any SU(3) multiplets can be carried out using
Young tableaux (just as the more familiar case of SU(2)). In the notation of this article,
an SU(3) multiplet is denoted by the quantum numbers p and q, which can be directly a
Young tableaux, as {1, 0} = and {0, 1} = , and so the number of boxes in the top
row is p + q. and the number of boxes in the bottom row is q.

Now the usual rules of manipulating Young tableaux can be used to review the simple cases
of combining a single triplet with an (anti-)triplet:

{1, 0} ⊗ {1, 0} = ⊗ = ⊕ = {2, 0} ⊕ {0, 1}, (1.24)
{1, 0} ⊗ {0, 1} = ⊗ = ⊕ I = {1, 1} ⊕ {0, 0}, (1.25)

where I = {0, 0} denotes a singlet. Note that symmetry ensures that {1, 0} ⊗ {1, 0} =
{0, 1}⊗{0, 1}. Physically eq. (1.24) corresponds to the situation where two colour strings,
with colour flow in the same direction, merge to a rope. In the case where the colour pairs
are equal, the resulting rope will be a sextet ({2, 0}), and in all other cases an antitriplet
({0, 1}). Eq. (1.25) corresponds to two strings with opposite colour flow merging. This can
either result in a gluon-like octet rope ({1.1}) or no colour flow at all, in the singlet case.

The recursion relations of eq. (1.12) can be derived using a similar procedure. Adding a
single triplet to an existing multiplet {p, q} gives eq. (1.12) directly, as:

{p, q} ⊗ {1, 0} = ...︸ ︷︷ ︸
q

...︸ ︷︷ ︸
p

⊗ = (1.26)

{p, q − 1} ⊕ {p − 1, q + 1} ⊕ {p + 1, q}.

Combining the general {p, q} multiplet with an antitriplet proves directly symmetry is
ensured as:

{p, q} ⊗ {0, 1} = ...︸ ︷︷ ︸
q

...︸ ︷︷ ︸
p

⊗ (1.27)

= {p − 1, q} ⊕ {p, q + 1} ⊕ {p + 1, q − 1}.

Using the stated recursion relations, a random walk in colour space is simulated, as in ref. [3]
by starting from a singlet I = {0, 0}. The resultant relation between ⟨p + q⟩ and m + n is
shown in figure 1.3.

In the same way the recursion relation for all multiplets arising from combining the general
{p, q} multiplet with an octet can be defined. The proof follows in a straightforward way
from the same considerations as above, and only the result is stated here:

{p, q} ⊗ {1, 1} = {p − 1, q − 1} ⊕ {p + 1, q + 1} ⊕ 2 · {p, q} ⊕ {p − 1, q + 2} (1.28)
⊕{p + 1, q − 2} ⊕ {p − 2, q + 1} ⊕ {p + 2, q − 1}.
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Figure 1.17: Illustration of the addition of triplets to an initial triplets, reads from left to right. By combining the initial 3 in the
left column with another 3, one gets either 6 or 3 and so on (see text).

1.B.2 An illustrative example

As a simple illustrative example we can look at a rope spanned between three quarks with
random colours in one end, matched by three antiquarks in the other end, illustrated in
figure 1.17. The first quark is a triplet, 3, denoted {1,0}, and depicted to the left in figure 1.17.
The addition of a second quark can give a 6 ({2,0}) or an 3 ({0,1}), as shown in the central
column of figure 1.17, with probabilities 2/3 and 1/3 respectively. Adding the third quark to
the sextet can give 10 ({3,0}) or 8 ({1,1}), while adding it to the 3 gives 8 ({1,1}) or a singlet
({0,0}), as shown in the rightmost column in figure 1.17. The result is therefore a decuplet,
two octets, and a singlet, with probabilities proportional to their respective multiplicities
(i.e. 10/27, 8/27, 8/27, and 1/27).

For the fragmentation of the rope, we find first that in the case of the singlet, there is no
colour field stretched. For the decuplet and the octets the relative rope tension is 9/2 and
9/4 respectively. The decuplet can fragment in three steps giving successively a sextet and
a triplet, before the final breakup. The relative effective string tension, κ̃/κ, in these steps
are 9/2− 5/2 = 2, 5/2− 1 = 3/2, and 1 respectively. Thus the first breakup will give the
highest effective string tension, and correspondingly higher s/u-ratio and higher p⊥. An
initial octet will similarly break in two steps via a triplet, with κ̃/κ equal to 9/4−1 = 5/4,
followed by the break of the triplet with the tension κ for a single string. If the {p, q}
multiplet is in the left end of the rope, the antiquark is pulled to the left when p is reduced,
and pulled to the right when q is reduced.

1.C Detailed description of the rope models

The models for rope formation and fragmentation presented in this paper are similar in
spirit, but as always when implementing models in a Monte Carlo code, there are a number
of choices to be made and different levels of detail that can be chosen. One of our models
is fairly crude, using the average overlap for individual strings in an event, while the other
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is very detailed in the treatment of the individual string break-ups.

In common for the two models is that, for technical reasons, the fragmentation of a rope
is done one individual string at the time, emulating the rope effects by modifying the pa-
rameters in the string fragmentation implementation of PYTHIA8, thus taking into account
the effective string tension of the rope. We have concentrated on a selection of parameters
which should be particularly sensitive to rope effects:

• ρ: the suppression of s quark production relative to u or d type production.

• ξ: the suppression of diquark production relative to quark production, meaning
(all diquarks)/(all quarks).

• x: the suppression of diquarks with strange quark content relative to diquarks with-
out strange quarks (in addition to the factor ρ for each extra s-quark).

• y: the suppression of spin 1 diquarks relative to spin 0 diquarks (not counting a factor
three due to the number of spin states of spin 1 diquarks).

• σ: the width of the transverse momentum distribution in string break-ups.

Of these we assume that ρ, x and y are directly related to mass effects in the tunneling
mechanism in eq. (1.2), such that if the modification of the string tension be given by a
simple scaling with an enhancement factor h, such that κ 7→ κ̃ = hκ, we obtain the
following rescalings:

ρ 7→ ρ̃ = ρ1/h,

x 7→ x̃ = x1/h,

y 7→ ỹ = y1/h. (1.29)

Also the scaling of σ is quite straight forward and is simply given by σ 7→ σ̃ = σ
√

h.

The treatment of the ξ parameter is somewhat more involved as it gives a global probability
of having a diquark break-up relative to a simple quark break-up, which means it cannot be
simply related to the tunneling mechanism. Looking at the relation between the individual
probabilities for different quarks and diquarks, they are determined by the relations: Ps =
ρPu, Pud1 = 3yPud0 and Pus1 = xρPud1 , etc. The total probability for diquark production
relative to quark production, can therefore be expressed in terms of the ratio Pud0/Pu.

ξ ≡
∑

qqs
Pqqs∑

q Pq
=

1 + 2xρ+ 9y + 6xρy + 3yx2ρ2

2 + ρ

Pud0

Pu
≡ α

Pud0

Pu
, (1.30)

(where we have assumed that u and d quarks are equivalent).
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However, it is not the case that Pud0/Pu is affected by the string tension in the same way
as the ρ-parameter. According to the popcorn mechanism described in section 2.3 and
figure 1.1, there is a two step procedure where first a qq̄ pair is produced as a fluctuation that
does not break the string, and then another pair is produced which actually does, allowing a
diquark–antidiquark pair to tunnel out. We will therefore assume that the ratio is composed
of two factors, one is related to the probability to have a qq̄ fluctuation in the first place,
and one related to the differences in masses. We will call these β and γ respectively, where
we assume that β is independent of the string tension, while γ transforms as ρ.

Hence we have ξ = αβγ where

α 7→ α̃ =
1 + 2x̃ρ̃+ 9ỹ + 6x̃ρ̃ỹ + 3ỹx̃2ρ̃2

2 + ρ̃
, (1.31)

and
γ 7→ γ̃ = γ1/h, (1.32)

and the total effect on ξ from a modified string tension is given by

ξ = αβγ 7→ ξ̃ = α̃β

(
ξ

αβ

)1/h

. (1.33)

As explained in section 2.4, also the parameters a and b are indirectly affected by a mod-
ified string tension. One could also expect other parameters to be affected, but the ones
presented here are the the most important ones.

1.C.1 A pipe-based treatment

In the crude, pipe-based approach, we expect all flux tubes to be directed dominantly along
the rapidity axis. For a string stretched from parton (b⃗0, y0), via the gluons (b⃗i, yi), and
ending at (b⃗k, yk), the volume of the corresponding flux tube in (transverse coord., rapidity)
space is thus given by

Vstring =

k∑
i=1

πr2
0|yi − yi−1|. (1.34)

As the string can go back and forth in rapidity, the separations in rapidity enters with its
absolute value. To estimate the amount of overlap between two strings, we must take into
account that the string tubes are not parallel to the rapidity axis, but go up and down
in transverse space. This is approximated by replacing the winding flux tube by a wider
straight pipe, with a correspondingly lower density. The pipe is parallel to the rapidity axis
and stretched between the partons with the smallest and the largest rapidity, ymin and ymax.
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Its center is taken at b⃗cent = (⃗bmin + b⃗max)/2, and its radius, rpipe, is increased to enclose
the major part of a wiggling string:

r2
pipe = r2

0 +
1
k

k∑
i=0

(⃗bi − b⃗cent)
2. (1.35)

The volume of the pipe is thus given by Vpipe = πr2
pipe(ymax − ymin). Note that since the

string can go back and forth, the ratio d = Vstring/Vpipe can be larger than one. This number
is the relative field density in the pipe, and in terms of overlap, it represents the string’s “self-
overlap”. It is, however, important to keep track of the direction of the overlap. The relative
field density in each pipe is thus assigned both an m and an n component, defined by the
sign of its projection on the rapidity axis. For each pipe i, we thus have a relative field
density with two components di,n and di,m. To estimate the total {m, n} of each string, we
must therefore sum over the two components separately, weighting with the geometrical
overlap of the pipes, such that:

m =
N∑

i=0

Cidi,m and n =
N∑

i=0

Cidi,n, (1.36)

where Ci is the geometrical overlap with pipe i, there are N pipes in an event. (Note
that the geometrical overlap of an object with itself will always be 1.) These numbers are
rounded off to integers m and n corresponding to the number of interfering colour charges
and anticharges in the rope. To find the relevant colour multiplet {p, q} for the rope, we
add m triplets and n antitriplets (parallel and anti-parallel strings) with random colours,
as described in section 3.1 and appendix 1.B.1. The n + m strings in the rope should then
fragment in a sequential way in p + q steps, with a gradually decreasing effective tension.
This is technically difficult to implement using the PYTHIA implementation of the Lund
fragmentation model. In this first study we therefore make an approximation, where we
use the average value for κ̃, given by κrope/(p + q) with κrope determined by eq. (1.13).
Thus the enhancement factor h becomes:

h =
⟨κ̃⟩
κ

=
p2 + pq + q2 + 3p + 3q

4(p + q)
. (1.37)

The averaging described here will not properly take into account the situation where two
triplets become an anti-triplet instead of a sextet. (Note that the situation where a triplet
and an antitriplet form a singlet is taken care of by the swing described in section 4.1.) To
account for this, we throw away strings in a multiplet with probability 1 − p+q

m+n . A string
that is discarded in this way, is simply not hadronized, and will not appear in the final state.
Removing strings in this way will have an effect on total multiplicity, which can largely be
tuned away, but more seriously, it will break energy–momentum conservation. We have
therefore devised a more elaborate scheme in the dipole-based treatment, which will be
presented next.
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1.C.2 A dipole-based treatment

After the final-state shower in ARIADNE, the string can be seen as a chain of dipoles con-
nected by gluons, and in the string fragmentation in PYTHIA8 the break-ups of the string
basically follow these dipoles in momentum space. The dipoles, together with their respec-
tive overlaps, are thus the basic structures considered in the more sophisticated dipole-based
treatment. We study one dipole at a time in its own rest frame, with its two partons along
the z-axis. All other dipoles in the event are boosted to the same frame before calculating
their overlap with the dipole under study, using the rapidity span and transverse distance of
each of them. As gluons are massless, the rapidity span of a dipole can in principle become
infinite, and we therefore use a small gluon mass, m0 ∝ 1/r0 ∼ 0.2 GeV, to limit the
rapidities. To allow for a finite formation time of the string pieces between the partons in a
dipole, we let the partons propagate in space a fixed time before calculating the transverse
distances.¹³ For a pair of dipoles, we can now make a linear interpolation between the
transverse positions of their respective partons, and we can thus calculate their overlap as
the region in rapidity where the two string pieces are closer than r0.

Just as in the pipe-based procedure, the colour charges in the dipoles are assumed to be
random, although they have a definite direction. We therefore calculate separately the
summed overlap of parallel and antiparallel dipoles as

mi =
∑
j+ ̸=i

δyi(j+)

Δyi
and ni =

∑
j− ̸=i

δyi(j−)

Δyi
. (1.38)

With these overlaps (rounded to integers) we now perform a random walk in colour space
to arrive at a multiplet (pi, qi) for the dipole. The random walk is, however, somewhat
restricted due to the final-state swing mechanism. If, e.g., we find that m = 0 and n = 1
and add a triplet, we only allow the step {1, 0} → {1, 1} in colour space, since the swing
is assumed to have taken care of the step {1, 0} → {0, 0} already.

If we had a proper procedure for the junction swing in figure 1.6 we could have limited the
random walk further, e.g. with m = 1 and n = 0 we would only allow {1, 0} → {2, 0}
and not {1, 0} → {0, 1}, and we would always end up in the highest possible multiplet
{m, n}. However, since the current version of PYTHIA8 only can handle a limited number
of junctions, we have to allow such steps and will end up with dipoles with pi < m or
qi < n, which then corresponds to a partial attenuation of the colour field of the dipole by
other nearby dipoles.

If we consider two completely overlapping dipoles which are in the multiplet {0, 1} this
would correspond to the right hand side of figure 1.6, where we basically only have one

¹³The propagation time should be of the order of r0, and the effect of this propagation turns out to be very
similar to simply reducing the transverse thickness of the string pieces.
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string piece to be hadronized. To avoid junctions, we therefore break one of the dipoles
by replacing the two gluons with a diquark and antidiquark. In this way we should get
approximately the right multiplicity from the string piece that is left (although its colour
flow is reversed compared to a proper junction treatment) and also get the same number
of (anti-)baryons that would otherwise have come from the junctions. However, it should
be noted that two connected junctions will not necessarily result in a baryon–anti-baryon
pair. As we have seen in section 2.4, the popcorn model for baryon production assumes
that qq̄ fluctuations that do not break the string occur fairly frequently, allowing additional
fluctuations to tunnel out as diquark–antidiquark pairs by locally reversing the colour flow.
In the case of a string piece connecting two nearby junctions, these fluctuations may actually
again turn the colour flow around, and the q̄ (q) from the fluctuation may very well travel
along the string and combine with one of the (anti-)quarks in the nearby junction. Note
that the probability for this to happen is higher than the probability for the corresponding
diquark–antidiquark breakup of a string, since it does not involve the tunneling probability
for the heavier diquarks in eq. (1.2). Thus the probability of having a fluctuation, which
prevents a baryon–antibaryon pair to result from two connected junctions, should only be
governed by the β-parameter in eq. (1.33). Therefore, we will not always break the dipole
by introducing diquarks, but with a probability β we will instead use quarks.

This procedure is generalized, so that if a given dipole has overlaps mi and ni resulting in a
multiplet (pi, qi), the dipole is broken up with a probability (1 +mi + ni − pi − qi)/(1 +
mi + ni). We note that it may happen that a dipole cannot break up, e.g. if the dipole
ends are quarks rather than gluons. In this case the probability is modified to increase
the probability for the other overlapping dipoles to break by replacing the denominator
by (1 + m′

i + n′i) where m′
i and n′i are calculated as in eq. (1.38), but only summing over

breakable dipoles.

For the dipoles that are left, we can now start the hadronization. To further increase the
amount of fluctuations included, we do not average over all breakups, but hadronize each
string piece with a local effective string tension

κ̃ = κ̃(p, q)− κ̃(p − 1, q) =
1
4
(2 + 2p + q) . (1.39)

Note that while the expression in eq. (1.13) is symmetric in p and q, eq. (1.39) is not.
Hadronizing one string at a time implies a choice of whether this string is in the p or q
direction, and here the implicit choice is taken towards the p direction. The choice is of
course still arbitrary, with no effect on the result. The strings are then send to be hadronized
one at a time by PYTHIA8, utilizing a customization described in appendix 1.C.3. This cus-
tomization enables PYTHIA8 to change hadronization parameters for each string breakup,
according to the calculated value of the effective string tension.
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1.C.3 Implementation details

The implementation of the rope production, through estimation of m and n by either an
approach based on enclosing cylinders or an approach based on dipoles, followed by a ran-
dom walk procedure is extensively described in section 4.2, and shall not be repeated. The
use of PYTHIA for hadronization, and consequently changing hadronization parameters in
a PYTHIA run, is however not part of standard usage of the program, and will be described
briefly here. The basic idea is to use PYTHIA to hadronize one string at a time, with the
ability to change hadronization parameters while the string is being hadronized, based on
the local string tension at that particular point on the string. Since PYTHIA normally sets
hadronization parameters once and for all, when the program is initialized, a feature to in-
tercept the hadronization loop was introduced. In PYTHIA such interceptions are done with
so-called UserHooks, which in turn allows for re-initialization of parameters. The DIPSY
program then delivers a single string to PYTHIA, which calls back for new hadronization
parameters every time a step is made. Owing to the interpretation of strings as dipoles con-
nected with gluons introduced in section 1.C.2, the callback needs to include information
about which dipole PYTHIA has reached, as well as the position in the dipole. This is done
by comparing the invariant mass of all hadrons made from each string end so far, to the
invariant mass of the dipoles, starting from the same string end. This relies on PYTHIA and
DIPSY having identical, fixed string ends when the hadronization procedure begins. This is
not the case for gluon loops, as PYTHIA will first cut one dipole at random, with probability
proportional to invariant mass squared. As an approximation, gluon loops are hadronized
with the average value of the string tension for the whole string. Thus, parameters need to
be set only once for gluon loops.

1.D Tuning

To ensure that the observables of main interest for rope formation, such as the rates of
baryons and strange hadrons, are not affected by global flavour independent effects on
particle spectra, we made a complete tuning of relevant parameters in DIPSY, ARIADNE and
PYTHIA8, with and without inclusion of our new rope models. For this we have used a
selection of data analyses from the Rivet program [91], and used the Professor framework
[92] for the actual tuning.

1.D.1 Tuning final-state shower and hadronization

We followed the standard procedure of first tuning the parameters in the final-state shower
(in ARIADNE) and in the hadronization (in PYTHIA8) to e+e−-observables as measured at
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Figure 1.18: Sample plots from tuning of the ARIADNE dipole shower with string fragmentation from PYTHIA8 to DELPHI data
[93], with and without final state swing. On the left is shown the distribution in thrust, and on the right the
distribution of transverse momenta out of the event plane.

LEP. It can be noted that the old Fortran version ofARIADNE has already been tuned to such
data with very good results (see e.g. ref. [93]), and since the final-state shower in ARIADNE
is basically unchanged in the new version, we obtain equally good results for the default
version. When we now add the final-state swing and rope fragmentation we do not expect
the results to change very much, as the number of dipoles produced are fairly low, and do
not allow for many reconnections. We do expect some changes in parameters, however,
since the swing tends to decrease the total string lengths and therefore also the multiplic-
ity. Indeed, we find that e.g. the tuned value for the a parameter in the fragmentation is
somewhat increased when the swing is included.

In figure 1.18 we show two distributions used in the tuning. We find that the thrust distri-
bution is equally well described with and without swing. This is expected since it should
be dominated by effects from the hardest gluon emission, and by construction there are
no effects of the swing for the first two emissions. For the transverse momentum distribu-
tion out of the event plane (defined by the thrust major and minor axes) we do, however,
find some differences. Here we should be dominated by the two hardest gluon emissions,
and there we can expect larger effects from the swing in subsequent emissions and in the
hadronization. We see that the description of data is somewhat improved, and in general
the total χ2/Ndf. is also somewhat improved when the swing is included.

Note that we do not expect any effects of the rope hadronization in e+e− →hadrons, as we
should be dominated by a single string. In high multiplicity events there could be some
internal overlaps but we found¹⁴ no change in the tuned observables when including the
ropes.

¹⁴In e+e− →hadrons we use the thrust axis rather than the beam axis to define the rapidity span of strings
for the pipe-based treatment.
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Figure 1.19: Sample plots from the tuning of DIPSY to 900 GeV pp minimum-bias data from ATLAS [94]. On the left is shown
the pseudo-rapidity distribution of charged particles with transverse momenta larger than 500 MeV in events with
at least six charged particles. On the right is given the transverse momentum distribution of charged particles for
the same events. In both plots the lines labelled Rope is DIPSY with the new (dipole-based) rope model, wile String
indicates DIPSY with the standard fragmentation. In both cases the final-state swing model is used.

1.D.2 Tuning DIPSY

We then proceed to tune the parameters of the DIPSY model to pp collisions. Here we tune
both to the total and elastic cross sections as well as to final-state observables in minimum
bias events. It should be emphasized that the DIPSY program is not yet ready for precision
description of final-state observables. Although the model has improvements beyond the
leading logarithmic BFKL accuracy, there are no proper matrix elements included for hard
scatterings and there are no quarks included in the evolution. We therefore do not expect
it to be able to give a good description of observables involving high transverse momenta,
and indeed we find that the particle rates above p⊥ ∼ 5 GeV are severely overestimated.
In addition we have found that, although the energy dependence of the total, elastic, and
diffractive cross sections are well reproduced, the energy dependence of the total multi-
plicity is a bit too flat. We therefore decided to make separate tunes for different collision
energies as well as global tunes. As it turned out that the observables in section 5, were
insensitive to whether we used separate or global tunes, we there only present results using
the latter.

In figures 1.19 and 1.20 we show examples of observables used in the tuning of 900 GeV
and 7 TeV respectively. The rapidity distribution of charged particles is well described for
both energies and both for the default fragmentation and for the rope model. While above
a couple of GeV, the transverse momentum distribution in all cases is too hard, the average
transverse momenta are well described as shown in figure 1.21. In a future publication we
intend to try to cure these deficiencies, but here we are satisfied that we obtain very similar
results with and without ropes.
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Figure 1.20: Sample plots from the tuning of DIPSY to 7 TeV pp minimum-bias data from ATLAS [94], using the same distributions
and models as in figure 1.19.

Since DIPSY in the current version does not describe diffractive final states (see [16]), it is
necessary to choose observables for comparison which are not greatly affected by the pres-
ence of diffractive events. This is important both for the tuning and for the observables
studied in section 5.1. In PYTHIA8 it is possible to turn on and off the diffractive contri-
butions, and such runs can be used to determine which observables should be used for the
present analysis. As an example we show in figure 1.22 a comparison between results from
PYTHIA8 and data from CMS for the rapidity distribution of Λ (figure 1.22 (left)) and the
ratio K0

s /Λ in figure 1.22 (right). It is clear that the inclusion of diffractive events plays a
great role when looking at raw per-event distributions. In PYTHIA8 the diffractive events
are hadronizing in the same way as the non-diffractive, and the K0

s /Λ ratio is therefore not
modified by including diffractive events. Even if this is not confirmed by experiments at
present, we note that the contribution from diffractive events is relatively small. A moder-
ate difference in particle ratios in diffractive events should therefore not change predictions
for particle ratios in a serious way, and such ratios should therefore be better observables in
comparisons between our model and data.

Looking at figure 1.22 it is also directly visible that PYTHIA8 has difficulties reproducing
these distributions, which is also the case for almost all contemporary generators (see. e.g.
mcplots.cern.ch)
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Figure 1.21: Sample plots from the tuning of DIPSY to 900 GeV (left) and 7 TeV (right) pp minimum-bias data from ATLAS [94].
Both plots show the average transverse momenta (above 2.5 GeV) as a function of the number of charged particles
per event. The models are the same as in figure 1.19.
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Figure 1.22: Pythia non-diffractive only (blue) and including diffractive (red), compared to 7000 GeV data from CMS for the Λ
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Abstract: We present a series of observables for soft inclusive physics, and utilize them for
comparison between two recently developed colour reconnection models; the new colour
reconnection model in PYTHIA and the DIPSY rope hadronization model. The observables
are ratios of identified hadron yields as a function of the final-state activity, as measured by
the charged multiplicity. Since both considered models have a nontrivial dependence on
the final-state activity, the above observables serve as excellent probes to test the effect of
these models. Both models show a clear baryon enhancement with increasing multiplicity,
while only the DIPSY rope model leads to a strangeness enhancement. Flow-like patterns,
previously found to be connected to colour reconnection models, are investigated for the
new models. Only PYTHIA shows a p⊥-dependent enhancement of the Λ/K ratio as the
final-state activity increases, with the enhancement being largest in the mid-p⊥ region.



1 Introduction

The first run of the LHC has provided a large number of measurements probing both soft
and hard QCD, and thereby a large number of tests for the Monte Carlo event generators.
Even though the overall performance of the event generators have been quite good, there
are still some phenomena that are insufficiently understood [1]. One of the more intriguing
soft QCD deviations is the observed enhancement of Λ production [2, 3]. No model has
been simultaneously able to describe the identified hadron spectra at both LEP and LHC.
This has led to the development of several phenomenological models [4, 5, 6], partly aimed
to address this problem. With the planned low pile-up runs at the beginning of the second
LHC run, it is now an ideal time to test these models further, and thereby probe the physical
origin of the Λ enhancement. In this study we consider two of the models: the new colour
reconnection (CR) model in the PYTHIA event generator [5, 7] and the colour rope model in
the DIPSY event generator [4, 8, 9]. The models have previously been compared to pp data at√

s of 200, 900 and 7000 GeV. In this paper new possible observables to test the models are
suggested, and predictions are made for collisions at

√
s = 13 TeV. The observables are not

model dependent, and can be used for constraining predictions from other models of soft
inclusive physics. Both considered colour reconnection models are built upon the Lund
model for string hadronization [10]. Nonperturbative differences can therefore be ascribed
to differences in the new phenomenological ideas.

One of the key ideas for the two models in question is jet universality. Stated in terms of the
string model, it essentially means that fragmentation of a string does not depend on how
the string is formed. Free strings at both lepton and hadron colliders should thus hadronize
in a similar fashion. Fragmentation parameters are therefore tuned in the clean e+e− →
Z → qq environment, and then directly applied to hadron colliders. Any discrepancy
has to be due to physical phenomena not active at lepton colliders. For all the models
attempting to describe the Λ enhancement, the enhancement is linked to the increased
density of quarks and gluons in the final state at hadron colliders¹. It would therefore be
of natural interest to measure the Λ enhancement as a function of this density. The quark-
gluon density is experimentally ill-defined, however, and we suggest to use the number of
charged tracks in the forward region as a measure of final-state activity. A similar idea for
using the hyperon-to-meson ratio to search for indications of a miniQGP was suggested
in ref. [11]. We suggest ratios that allows for separation of strangeness enhancement from
baryon enhancement, which both could be present in the hyperon-to-meson ratio.

Another puzzling observation is the indication of collective effects in high-multiplicity pp
collisions [12, 13], often interpreted as the presence of flow. These effects were only expected
in the dense medium of heavy ion collisions, where the pressure gradients give rise to flow
effects. A study of the models for pp collisions showed that CR generated similar effects

¹Sometimes also referred to as string density, colour density, or energy density.
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even without the introduction of a thermalized medium [14]. We therefore consider one of
the standard observables in heavy ion physics, that of identified particle ratios as a function
of p⊥, separated into bins of centrality, and compare the model predictions for pp collisions.
Since centrality is not experimentally well defined in pp collisions, the number of charged
tracks in the forward region is used as a measure of activity.

The outline of the paper is as follows. In section 2 we will briefly recap the most important
features of the two models considered. Comparison to existing e+e− data at

√
s = 91.2

GeV, and pp data at
√

s of 200 GeV and 7 TeV, is shown in section 3. The event selection
and tuning for 13 TeV is described in section 4. In section 5, the predictions at

√
s = 13

TeV, for the second run of LHC, are presented. Finally, in section 6, we summarize and
present an outlook.

2 The models

Both models for colour reconnection are built upon the Lund string model for hadroniza-
tion. In this model, outgoing partons are connected with stringlike colour fields, which
fragment into hadrons when moving apart. The model contains two main parameters rel-
evant to this study, which determine the suppression of strange quarks and of diquarks
(giving baryons) in the break ups. Assuming jet universality, these parameters are tuned to
LEP data.

Baryons can in addition be created around string junctions, which can arise as a conse-
quence of colour reconnection. Consider the simple configuration of two qq̄ dipoles in
figure 2.1, which for example could have originated from a decay of two W-bosons in a LEP
environment, as described in ref. [15]. What essentially could be described as a quadrupole
configuration is instead described as either the original (on top) or the left configuration in
figure 2.1. Without CR only the original configuration is considered. Extending this type
of colour reconnection to hadron colliders has been shown [16] to be a necessary condi-
tion to describe the rising of ⟨p⊥⟩(Nch) distributions. The QCD ε-tensor gives rise to the
rightmost configuration, containing two junction connections, depicted as empty circles.
Since such junctions constitute proto-baryons, in the same way string segments constitute
proto-mesons, they become an additional source of baryons.

2.1 Colour reconnection in PYTHIA

The new CR model in PYTHIA is situated just prior to the hadronization. It takes the
leading-colour (Nc → ∞) strings and transform them to a different colour configuration
based on three principles: firstly the SU(3) colour rules from QCD determine if two strings

107



q̄′

q

q′

q̄

✑
✑

✑
✑✰

q̄′

q

q′

q̄

◗
◗
◗
◗s

J J̄

q′

q

q̄

q̄′

Figure 2.1: Sketch of how two qq̄ dipoles (top) can be reconnected to different colour topologies (left and right). The right
connection gives rise to a double junction, which in turn will produce baryons. Notice that the placement of the
pairs differs in the junction figure.

are colour compatible (e.g.there is only a 1/9 probability that the top configuration of fig-
ure 2.1 can transform to the left configuration purely from colour considerations). Secondly
a simplistic space-time picture to check causal contact between the strings. Finally the λ
measure [17] (which is a string-length measure, λ =

∑
i log(1+m2

i /(2m2
0)) where the sum

goes over all dipoles, mi is the invariant mass of the dipole and m0 is a parameter) to decide
whether a possible reconnection is actually favoured. Since the model relies purely on the
outgoing partons, it is in principle applicable to any type of collision. So far it has only
been tested for pp [5] and ee collisions [18]. The main extension compared to the other CR
models in PYTHIA is the introduction of reconnections that form junction structures. From
a pure colour consideration the probability to form a junction topology is three times larger
than an ordinary reconnection. The junction will introduce additional strings, however,
and it is therefore often disfavoured due to a larger λ measure. Given the close connec-
tion between junctions and baryons, the new model predicts a baryon enhancement. It
was shown to be able to simultaneously describe the Λ production for both LEP and LHC
experiments, which neither of the earlier PYTHIA tunes have been able to.

The new CR model essentially contains two new parameters: a parameter that constrains
the overall strength of the CR, and a parameter that controls the baryon enhancement.
Both of these parameters were tuned to data [3, 19] from the LHC experiments at 7 TeV.

2.2 Rope hadronization in DIPSY

Rope hadronization [20] is a normer for QCD inspired models, which includes interactions
between strings. From previous attempts to include this effect in Monte Carlo generators
[21], it is well known that strange and baryonic content will rise in very dense events.

A model introducing rope hadronization was recently developed and implemented in the
event generator DIPSY [4]. Along with a final-state swing, the model introduces local cal-
culation of string density, and corrects the evolution of the final-state parton shower and
hadronization based on this local density.
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The model is based upon the idea [20] that when several parton pairs are next to each other
in geometric space, they can act together coherently to form a colour rope. Each string is
treated as a flux tube with a fixed radius, and the amount of overlap between strings, in
impact parameter space and rapidity, can be directly calculated.

If such an overlap is found to exist, it can have different effects, determined by SU(3) colour
rules. The overlapping strings can end up in a colour singlet configuration. This is handled
by a final-state ”swing”, that reconnects colour dipoles, in the final-state parton shower
as the transformation from the top to the bottom left configuration in figure 2.1. In all
other cases, the strings end up forming a ”rope”. This is hadronized with a higher effective
string tension, reflecting the fact that more energy is available for the fragmentation, in
accordance with results from lattice QCD [22]. In some cases, the strings forming the rope
end up in a junction structure. In such cases the junction pair is handled using a simple
approach, where the two junctions collapse to either two diquarks or two quarks, with a
probability controlled by a tuneable parameter. The resulting strings are then hadronized
with the appropriate effective string tension.

An increased string tension results in more strange quarks and diquarks produced in string
breakups. Since the effect increases with the density of quarks and gluons in the final state,
the expected outcome is more baryons and strangeness among the resulting hadrons. The
model includes two free parameters; the string radius and the probability for a junction to
resolve to diquarks. Both are tuned to LHC data [3] at 7 TeV.

3 Comparison to data

The models performs as intended when comparing to existing data. Ratios of baryons to
mesons are enhanced for both models, whereas ratios of particles with strange quark content
is enhanced only in the DIPSY rope model. Comparisons are done to ratios of integrated
yields of identified particles, using the analyses published through the Rivet [23] framework.
The raw results from comparing the Monte Carlo to data using Rivet, are integrated to give
figures 2.2 and 2.3, using Matplotlib [24]. Error estimates are conservative, as they assume
the error of all bins are fully correlated.

In figure 2.2, a comparison to LEP data [25, 26, 27] is seen. Two conclusions can be drawn
from this figure. First of all, these are the data the original string model is tuned to. The
fact that the Monte Carlo is so well aligned with data is thus not an indication that the
string model predicts all these ratios so well, but rather that the parameters of the model
are tuned to these data. The exception here is the Ω baryon², reflected in the Ω/Ξ ratio,

²We denote a particle and its antiparticle with just a single letter such that e.g.p means both proton and
anti-proton. Special cases are π with denotes π+π−, K which denotes K+K−K0

s K0
L and Ξ which denotes
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Figure 2.2: Comparison to e+e− at 91.2 GeV from ALEPH, SLD and PDG. Color online.

which lies below the observed value. However, the experimental statistical uncertainty is
large for this ratio.

The other conclusion, which is the most relevant for this article, is that only small effects
at LEP data is observed. The Λ/K ratio increases by about 10  for both the DIPSY rope
model and the new CR model in PYTHIA (over their respective default models), but all
models stay within the experimental uncertainty. The overall low variance is exactly what
is expected, due to the low final state activity at LEP.

In figure 2.3 comparison to STAR data [28, 29, 30] at 200 GeV indicated that the description
of the baryon to meson ratios improves with both models, while the description of the Ξ/Λ
ratio only improves with the DIPSY rope model. The change in the K±/π ratio is not visible
on this scale for this energy.

Comparison to 7 TeV data from ALICE [31, 32] and CMS [3] confirms that the description
improves, even for the Ω/Ξ ratio. The description of the p/π ratio is seen to be somewhat
worse with the new models. This could either have a mundane explanation originating
in the fact that the very low-p⊥ area of the individual distributions (which contains most
of the multiplicity) are not fully understood, or have further reaching consequences. We
point to the measurements suggested in the next section of this paper to shed light on this
issue.

Ξ+Ξ−.
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Figure 2.3: Comparison to pp data at 200 GeV from STAR (left) and at 7 TeV from ALICE and CMS (right). Color online.

4 Tuning and event selection

Before studying exclusive observables at 13 TeV, it is necessary to verify that the baselines
for the two models agree reasonable well. Normally this is achieved by tuning the models
to the available data. Data at

√
s = 13 TeV is, however, not yet published in a state where

event generators can be tuned to it, so the DIPSY model was instead tuned to the PYTHIA
predictions for dNch/dη, ⟨p⊥⟩ (Nch) and the multiplicity distribution. Both models will
eventually have to be retuned, when more data, in a suitable format for tuning, become
available. Only small effects are expected from the retuning, firstly due to fragmentation
mainly being determined from LEP data, and secondly since the already presented results
at 13 TeV show a good agreement between the Monash tune and the data [33, 34]. The full
list of all parameters changed from their default values is included in an appendix.

An event and particle selection was implemented to mimic a possible experimental setup.
Each particle is required to have p⊥ > 0.15 GeV. Two different η regions are used; a
forward region (2 < |η| < 5) to measure the activity, and a central region (|η| < 1)
to measure the identified hadron yields. The reason for the split is to avoid any potential
bias, which otherwise happens at low Nch, in particular for ratios involving both charged
and non-charged hadrons. Since DIPSY does not have a model for diffraction, only non-
diffractive events are considered for both models. To reflect this in the event selection, only
events with at least six forward charged particles are considered.

All particles with cτ > 10 mm are treated as stable. In practice this means that π±,K,Λ,Ξ
and Ω are all stable whereas ϕ (which decays strongly) is not. This introduces some double
counting in the ϕ/K-ratio, where a ϕ can potentially be counted in the numerator and its
decay products in the denominator.
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Figure 2.4: Ratios of identified hadrons as functions of Nfwd
ch at

√
s = 13 TeV. The top row shows meson ratios with the numerator

having one more strange quark than the denominator. The middle row shows baryon to meson ratios, with same
amount of strange quarks. The bottom row shows baryon ratios with the numerator having one more strange quark
than the denominator. Note that the vertical axis differs between the figures and that zero is suppressed.

5 Predictions for 13 TeV

Differences between the colour reconnection models are best determined using observables
controlled by hadronization effects. Ratios of identified particles is exactly such an observ-
able, since particle species production is determined by the quark and diquark content in
string breaks. In the first part of this section, ratios of identified particles are shown as a
function of Nch in the forward region, as a measure of event activity. Then flow-like effects
are considered, by showing (Λ/K) (p⊥) in four different bins of Nch in the forward region.
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5.1 Particle ratios

Ratios of hadrons with different strange and baryon numbers as function of event activ-
ity, measured as functions of Nfwd

ch , are shown in figure 2.4. The strangeness enhancement
in meson production is probed by the K/π and ϕ/K ratios, for which the numerator al-
ways contains one more strange quark than the denominator. As expected, only the DIPSY
rope model shows an enhancement relative to the baseline, since it contains a strangeness
enhancement. The new PYTHIA CR model lies slightly below the baseline. This can be
explained by phase-space constraints for low invariant-mass strings, which the new model
produces more of. It should be recalled that both the new as well as the old models are
capable of describing the total K0

s yield at 7 TeV. Thus, the limited effects in this ratio is
somewhat expected. The ϕ/K ratio shows more promise as a means to distinguish between
the two models, since the DIPSY model shows a larger enhancement. It is, however, more
experimentally challenging.

The baryon enhancement is tested for both hadrons containing zero or one strange quark,
p/π andΛ/K. For both ratios, and both models, clear enhancements are expected and seen.
For the Λ/K ratio both models agree quite well, which is not surprising, given that both
models are tuned to describe the inclusive Λ/K distributions at 7 TeV. A similar picture
is seen for the p/π ratio, indicating similar predictions for the baryon enhancement from
both the models.

The multistrange baryon enhancement is tested in the same way as the strange-meson en-
hancement by considering the ratios Ξ/Λ and Ω/Ξ. The large variations at low multi-
plicity for both distributions are due to statistical fluctuations. For Ξ/Λ the DIPSY rope
model shows a clear enhancement as opposed to the new PYTHIA CR model. The Λ/p
ratio is not shown, but the enhancement is similar to the enhancement of Ξ/Λ. An en-
hancement is seen for both models in the Ω/Ξ, with the enhancement factor being around
2.5 for the DIPSY rope model in the highest multiplicity bins. This is larger than any of
the other enhancements seen. The enhancement for the new PYTHIA CR model is some-
what surprising, as the increased junction production should be equal for both Ξ and Ω.
The production of Ω in the standard PYTHIA fragmentation is, however, significantly sup-
pressed, as the production of ss-diquarks is disfavoured. This suppression is not present in
the junction handling, since it takes two already formed quarks and combine into a di-
quark. The enhancement in the new PYTHIA model should therefore not be interpreted as
a ”real” strangeness enhancement, but more as an absence of suppression of ss diquarks. For
the DIPSY model the above effect is also present, but there is an additional enhancement of
strangeness and diquarks. It should be noted that the Ω baseline from LEP is not that well
constrained, due to a large experimental uncertainty, and the model predictions are below
the actual measurements. A measurement of (Ω/Ξ) (Nch) would cast light on whether an
actual activity-based enhancement takes place.
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Increased hyperon production in high activity pp events have previously been associated
with production of a miniQGP [11]. The hyperon-to-pion ratio is only indirectly shown
in figure 2.4, but the rise is similar to the one predicted by miniQGP. The new models
therefore provide an alternative explanation, if such an enhancement is observed.

5.2 Flow-like effects

The Λ/K ratio as a function of p⊥ for different Nfwd
ch ranges is shown in figure 2.5. The

two models show different behaviours for the different multiplicity ranges: the DIPSY rope
model only gives a small enhancement (∼ 10% at maximum) between the lowest and high-
est multiplicity regions. Even though the differential enhancement is generally below 10 ,
the enhancement of the ratio of integrated yields is about 20 , which is in good agreement
with figure 2.4. It should be noted that the DIPSY model is inadequate in describing the
high p⊥ tails (p⊥ >∼ 4 GeV). This was observed for 900 GeV and 7 TeV in ref. [4].

The new PYTHIA CR model shows a clear change in p⊥ with increasing multiplicity. The
enhancement is largest in the mid-p⊥ region (p⊥ ∼ 2 − 6 GeV), leading to a ”peak”
structure. This structure looks qualitatively similar to what is observed in PbPb and pPb
collisions [35, 36]. The peak also moves towards larger p⊥ with increased multiplicity, an
effect normally attributed to radial flow in heavy ion collisions [37]. That the new CR model
predicts a qualitatively similar effect in pp collisions is quite intriguing and strengthens the
hint at a potential connection between flow and CR effects already observed [14].

6 Conclusions

A series of new model-independent observables, well suited for distinguishing between
between different physical models for soft inclusive physics is suggested. The observables
are ratios of identified hadrons measured as a function of event activity, with the identified
hadrons chosen such that a distinction is made between baryon-only, strangeness-only and
baryon-and-strangeness enhancement. Measurement of these observables at present and
future energies at pp colliders is encouraged, as the can serve as constraints on any soft
physics model aiming to explain low-multiplicity and minimum bias data simultaneously.

The observables are, in this article, used to separate two new CR models. The new CR
model in PYTHIA only contains a baryon enhancement with increasing multiplicity, while
the DIPSY rope models contains both a baryon and a strangeness enhancement. The multi-
strange hyperon ratios, as well as the ϕ/K ratio, provide clear observables for distinguishing
between the two models. It should be mentioned that this is already possible to observe
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Figure 2.5: Ratio of Λ/K as a function of p⊥ in three bins of Nfwd
ch . In the right column the new colour reconnection models
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in inclusive measurements, but the separation into different multiplicity regions highlights
the enhancement.

Both new models are based on interactions between strings in the hadronization phase,
and confirmation of the common predictions made by the two models is a direct hint that
colour reconnections among strings are of physical importance. Both baseline models show
almost no dependency on multiplicity for the identified hadron yield ratios. Therefore, any
observed dependency would provide a clearer indication that the old models miss a feature,
better than an inclusive measurement alone could provide. We therefore strongly suggest
that these observables should be measured at the LHC experiments. In this paper we only
studied the effects at a center-of-mass energy of 13 TeV, but the effects should also be visible
in the already collected data at 7 TeV.

We have also shown that one of the CR models predicts effects similar to those normally
attributed to radial flow in heavy ion collisions. This is in agreement with earlier indications
that also hint at a connection between the two phenomena. It should however be recalled
that neither of the models provide a satisfactory description of the individual p⊥ spectra
for the identified hadrons. And before these are fully understood, claims of connections
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Table 2.1: Table of parameters of the string hadronization model, which differs from Monash tune [33] default values. The
changed parameters have been retuned to LEP and SLD data, cf. figure 2.2

Fragmentation parameter Pythia def. Pythia new DIPSY DIPSY rope
StringPT:sigma 0.335 0.335 0.32 0.31
StringZ:aLund 0.68 0.36 0.30 0.41
StringZ:bLund 0.98 0.56 0.36 0.37
StringFlav:probQQtoQ 0.081 0.078 0.082 0.073
StringFlav:ProbStoUD 0.217 0.22 0.22 0.21

StringFlav:probQQ1toQQ0join

0.5 0.0275 - -
0.7 0.0275 - -
0.9 0.0275 - -
1.0 0.0275 - -

.

between flow and CR may be premature.
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2.A Model parameters

A complete list of all the parameters that differ from their default values for the considered
models.
Hadronization model parameters are found in table 2.1, Pythia parameters in table 2.2 and
DIPSY parameters in tables 2.3 and 2.4.
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Table 2.2: The new Pythia CR model introduces a number of new parameters, and requires retuning of a few old ones, besides
hadronization. The details of the retuning can be found in ref. [5].

Pythia parameter Default New
MultiPartonInteractions:pT0Ref 2.28 2.15
BeamRemnants:remnantMode 0 1
BeamRemnants:saturation - 5
ColourReconnection:mode 0 1
ColourReconnection:allowDoubleJunRem on off
ColourReconnection:m0 - 0.3
ColourReconnection:allowJunctions - on
ColourReconnection:junctionCorrection - 1.2
ColourReconnection:timeDilationMode - 2
ColourReconnection:timeDilationPar - 0.18

Table 2.3: The DIPSY rope model introduces three extra parameters, which are fixed using pp data from LHC. See ref. [4] for the
meaning of the parameters.

DIPSY parameter Default Rope
FragmentationScheme default dipole
StringR0 - 0.773
Stringm0 - 0.113
BetaPopcorn - 0.2

Table 2.4: The DIPSY initial state model needs retuning at each energy to reproduce total charged multiplicity. See ref. [9] for
the meaning of the parameters.

Energy pp 200 GeV pp 7 TeV pp 13 TeV
DIPSY parameter Default Rope Default Rope Default Rope
LambdaQCD 0.29 0.26 0.17 0.25 0.29 0.27
RMax 2.32 3.34 3.23 2.90 1.05 3.39
PMinusOrdering 1.05 0.98 1.24 0.67 0.31 0.75
PTScale 0.70 0.92 1.60 1.65 1.28 1.35
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Abstract: We review the state-of-the-art of Glauber-inspired models or estimating the dis-
tribution of the number of participating nucleons in pA and AA collisions. We argue that
there is room for improvement in these model when it comes to the treatment of diffractive
excitation processes, and present a new simple Glauber-like model where these processes
are better taken into account. We also suggest a new way of using the number of partici-
pating, or wounded, nucleons to extrapolate event characteristics from pp collisions, and
hence get an estimate of basic hadronic final-state properties in pA collisions, which may be
used to extract possible nuclear effects. The new method is inspired by the Fritiof model,
but based on the full, semi-hard multiparton interaction model of PYTHIA8.



1 Introduction

An important topic in the studies of the strong interaction is the understanding of the fea-
tures of hot and dense nuclear matter. To correctly interpret signals for collective behaviour
in high energy nucleus–nucleus collisions, it is necessary to have a realistic extrapolation of
the dynamics in pp collisions. Here experiments on pA collisions have been regarded as
an important intermediate step. As an example refs. [1, 2] have discussed the possibility to
discriminate between the dynamics of the wounded nucleon model and that of the Color
Glass Condensate formalism in pPb collisions at the LHC.

An extrapolation of results from pp to pA and AA collisions is generally performed using
the Glauber formalism [3, 4]. This model is based on the eikonal approximation, where
the interaction is driven by absorption into inelastic channels. Elastic scattering is then the
shadow of absorption, and determined by the optical theorem. The projectile nucleon(s)
are assumed to travel along straight lines and undergo multiple sub-collisions with nucleons
in the target. The Glauber model has been commonly used in experiments at RHIC and
LHC, e.g. to estimate the number of participant nucleons, Npart, and the number of binary
nucleon–nucleon collisions, Ncoll, as a function of centrality. A basic assumption is then
that one can compare a pA or an AA collision, at a certain centrality with, e.g., Npart/2 or
Ncoll times the corresponding result in pp collisions (for which Npart = 2). A comparison
with a fit to pp collision data, folded by the distribution in Npart/2 or Ncoll, can then be
used to investigate nuclear effects on various observables.

There are several problems related to such analyses, and in this paper we will concentrate
on two of them:

• Since the actual impact parameter is not a physical observable, the experiments typi-
cally select an observable, which is expected to be strongly correlated with the impact
parameter (such as a forward energy or particle flow). This implies that the defini-
tion of centrality becomes detector dependent, which, among other problems, also
implies difficulties when comparing experimental results with each other and with
theoretical calculations.

• When the interaction is driven by absorption, shadow scattering (meaning diffrac-
tion) can contain elastic as well as single and double diffractive excitation. This is im-
portant since experiments at high energy colliders show, that diffractive excitation is
a significant fraction of the total cross section, and not limited to low masses (see e.g.
[5, 6, 7]). Thus the driving force in Glauber’s formalism should be the absorptive,
meaning the non-diffractive inelastic cross section, and not the total inelastic cross
section.

In the following we will argue that the approximations normally used in this procedure
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are much too crude, and we will present a number of suggestions for how they can be im-
proved, both in the way Npart and Ncoll are calculated and the way pp event characteristics
are extrapolated to get reference distributions. In both cases we will show that diffractive
processes play an important role.

In Glauber’s original analysis only elastic scattering was taken into account, but it was early
pointed out by Gribov [8], that diffractive excitation of the intermediate nucleons gives
a significant contribution. However, problems encountered when taking diffractive exci-
tation into account have implied, that this has frequently been neglected, also in recent
applications (see e.g. the review by Miller et al. [4]). Thus the “black disk” approxima-
tion, and other simplifying treatments, are still frequently used in analyses of experimental
results.¹

A way to include diffractive excitation in a Glauber analysis, using the Good–Walker for-
malism, was formulated by Heiselberg et al. [10]. It was further developed in several papers
(see refs. [11, 12, 13, 14] and further references in there) and is often called the “Glauber–
Gribov” (GG) model. In the Good–Walker formalism [15], diffractive excitation is de-
scribed as the result of fluctuations in the nucleon’s partonic substructure. When used in
impact parameter space, it has the advantage that saturation effects can easily be taken into
account, which makes it particularly suited for applications in collisions with nuclei.

The “Glauber–Gribov” model has been applied both to data from RHIC and in recent anal-
yses of data from the LHC, e.g. in refs. [16, 17] However, although this formalism implies
a significant improvement of the data analyses, also in this formulation the treatment of
diffractive excitation is simplified, as the full structure of single excitation of either the pro-
jectile or the target, and of double diffraction, is not taken into account. As we will show in
this paper, this simplification causes important problems, and we will here present a very
simple model which separates the fluctuations in the projectile and the target nucleons.

To guide us in our investigation of conventional Glauber models we use the DIPSY Monte
Carlo program [18, 19, 20], which is based on Mueller’s dipole approach to BFKL evolution
[21, 22], but also includes important non-leading effects, saturation and confinement. It
reproduces fairly well both total, elastic, and diffractive pp cross sections, and has also
recently been applied to pA collisions [9]. The DIPSY model gives a very detailed picture of
correlations and fluctuations in the initial state of a nucleon, and by combining it with a
simple geometrical picture of the distribution of nucleons in a nucleus in its ground state,
we can build up an equally detailed picture of the initial states in pA and AA collisions.
This allows us to gain new insights into the pros and cons of the approximations made in
conventional Glauber Models.

The DIPSY program is also able to produce fully exclusive hadronic final states in pp col-

¹The effects of the black disk approximation have also been discussed in ref. [9].
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lisions, giving a reasonable description of minimum bias data from e.g. the LHC [20]. It
could, in principle also be used to directly model final states in pA and AA, but due to some
shortcomings, we will in this paper instead only use general features of these final states to
motivate a revival of the old Fritiof model [23, 24] with great similarities with the original
”wounded nucleon” model [25]. (For a more recent update of the wounded nucleon model
see ref. [26].)

For energies up to (and including) those at fixed target experiments at CERN, the particle
density at mid-rapidity in pp collisions is almost energy independent. For higher energies
the density increases, and the p⊥ distribution gets a tail to larger values. However, for
minimum bias events with lower p⊥, the wounded nucleon model still works with the
multiplicity scaling with the number of participating (wounded) nucleons, both at RHIC
[27, 28] and LHC [29]. For higher p⊥ the distributions scale, however, better with the
number of binary NN collisions, indicating the effect of hard parton-parton sub-collisions
[17].

We will here argue that, due to the relatively flat distribution in rapidity of high-mass
diffractive processes, absorbed and diffractively excited nucleons will contribute to the pA
(and in principle also AA) final states in very similar ways, as wounded nucleons. We
will also present preliminary results where we use our modified GG model to calculate
the number distribution of wounded nucleons in pA, and from that construct hadronic
final states by stacking diffractive excitation events, on top of a primary non-diffractive
scattering, using PYTHIA8 with its semi-hard multi-parton interaction picture of hadronic
collisions.

Although this remarkably simple picture gives very promising results, we find that there
is a need for differentiating between diffractively and non-diffractively wounded nucleons.
We will here be helped by the simple model mentioned above, in which fluctuations in the
projectile and the target nucleon are treated separately. The model involves treating both
the projectile and target as semi-transparent disks, separately fluctuating between two sizes
according to a given probability. The radii, the transparency and the fluctuation probability
is then adjusted to fit the non-diffractive nucleon–nucleon cross section, as well as the
elastic, single diffractive and double diffractive cross sections. Even though this is a rather
crude model, it will allow us to investigate effects of the difference between diffractively
and non-diffractively wounded nucleons.

We will begin this article by establishing in section 2 the framework we will use to describe
high energy nucleon–nucleon scattering, with special emphasis on the Good–Walker for-
malism for diffractive excitation. In section 3 we will then use this framework to analyse
the Glauber formalism in general and define the concept of a wounded target cross section.
In section 4 we dissect the conventional Glauber models and the Glauber–Gribov model
together with the DIPSY model and present some comparisons of the resulting number dis-
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tributions of wounded nucleons in pA. In section 5 we then go on to present our proposed
model for constructing fully exclusive hadronic final states, and compare the procedure to
recent results on particle distributions in pA collisions from the LHC, before we present
conclusions and an outlook in section 6.

2 Dynamics of high energy pp scattering

2.1 Multiple sub-collisions and perturbative parton–parton interaction

As mentioned in the introduction, at energies up to those at fixed target experiments and the
ISR at CERN, the pp cross sections and particle density, dn/dy are relatively independent
of energy. For collisions with nuclei the wounded nucleon model works quite well [25],
which formed the basis for the development of the Fritiof model [23]. This model worked
very well within that energy range, but at higher energies it could not in a satisfactory way
reproduce the development of a high p⊥ tail caused by hard parton-parton interactions.
Nevertheless the wounded nucleon model works well for minimum bias events even at
LHC energies, if the rising rapidity plateau in pp collisions is taken into account, although
the production of high p⊥ particles appear to scale better with the number of NN collisions.
These features may be interpreted as signals for dominance of soft interactions, and were
the basis for the development of the Fritiof model [23]. This model worked very well within
that energy range, but at higher energies, available at p̄p colliders at CERN and Fermilab,
the effects of (multiple) hard parton–parton sub-collisions became increasingly important,
and not so easily incorporated in the Fritiof model.

Today high energy collisions (above
√

s ∼ 100 GeV) are more often described as the re-
sult of multiple partonic sub-collisions, described by perturbative QCD. This picture was
early proposed by Sjöstrand and van Zijl [30], and is implemented in the PYTHIA8 event
generator [31]. This picture has also been applied in other generators such as HERWIG [32],
SHERPA [33], DIPSY [18, 20], and others. The dominance of perturbative effects can here be
understood from the suppression of low-p⊥ partons due to saturation, as expressed e.g. in
the Color Glass Condensate formalism [34].

2.2 Saturation and the transverse coordinate space

The eikonal approximation

The large cross sections in hadronic collisions imply that unitarity constraints are impor-
tant, and the elastic amplitude has to satisfy the optical theorem, which with convenient
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normalisation reads

ImAel =
1
2

|Ael|2 +
∑

j

|Aj|2
 . (3.1)

Here the sum runs over all inelastic channels j. In high energy pp collisions the real part of
the elastic amplitude is small, which indicates that the interaction is dominated by absorp-
tion into inelastic channels, with elastic scattering formed as the diffractive shadow of this
absorption. This diffractive scattering is dominated by small p⊥, and the scattered proton
continues essentially along its initial direction.

At high energies and small transverse momenta, multiple scattering corresponds to a con-
volution in transverse momentum space, which is represented by a product in transverse
coordinate space. This implies that diffraction and rescattering is more easily described in
impact parameter space. In a situation where all inelastic channels correspond to absorp-
tion (meaning no diffractive excitation), the optical theorem in eq. (3.1) implies that the
elastic amplitude in impact parameter space is given by

Ael(b) = i
{

1 −
√

1 − Pabs(b)
}
. (3.2)

Here Pabs(b) =
∑

j |Aj(b)|2 represents the probability for absorption into inelastic chan-
nels.

If the absorption probability in the Born approximation is given by 2F(b), then unitar-
ity is restored by rescattering effects, which exponentiates in b-space and give the eikonal
approximation:

Pabs = dσabs/d2b = 1 − e−2F(b), (3.3)
To simplify the notation we introduce the nearly real amplitude T = −iAel = 1 − S. The
relation in eq. (3.2) then gives S(b) = e−F(b) and T(b) = 1 − e−F(b). The optical theorem
then gives

T = 1− S = 1 − e−F

dσel/d2b = T2 = (1 − e−F)2

dσtot/d2b = 2T = 2(1 − e−F). (3.4)

We note that the possibility of diffractive excitation is not included here. Therefore the
absorptive cross section in eq. (3.3) is the same as the inelastic cross section.

How to include diffractive excitation and its relation to fluctuations will be discussed below
in section 2.3. We then also note that diffractive excitation is very sensitive to saturation
effects, as the fluctuations go to zero when saturation drives the interaction towards the
black limit.

That rescattering exponentiates in transverse coordinate space also makes this formulation
suitable for generalisations to collisions with nuclei.
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Figure 3.1: A colour dipole cascade in transverse coordinate space. A dipole can radiate a gluon. The gluon carries away colour,
which implies that the dipole is split in two dipoles, which in the large Nc limit radiate further gluons independently.

Dipole models in transverse coordinate space

In this paper we will use our implementation of Mueller’s dipole model, called DIPSY, in
order to have a model which gives a realistic picture of correlations and fluctuations in the
colliding nucleons. In this way we can evaluate to what extent Glauber-like models are
able to take such effects into account. The DIPSY model has been described in a series of
papers [18, 19, 20] and we will here only give a very brief description. Mueller’s dipole
model [21, 22] is a formulation of LL BFKL evolution in impact parameter space. A colour
charge is always screened by an accompanying anti-charge. A charge–anti-charge pair can
emit bremsstrahlung gluons in the same way as an electric dipole, with a probability per
unit rapidity for a dipole (r0, r1) to emit a gluon in the point r2, given by (c.f. figure 3.1)

dP
dy

=
ᾱ

2π
d2r2

r2
01

r2
02 r2

12
. (3.5)

The important difference from electro-magnetism is that the emitted gluon carries away
colour, which implies that the dipole splits in two dipoles. These dipoles can then emit
further gluons in a cascade, producing a chain of dipoles as illustrated in figure 3.1.

When two such chains, accelerated in opposite directions, meet, they can interact via gluon
exchange. This implies exchange of colour, and thus a reconnection of the chains as shown
in figure 3.2.

The elastic scattering amplitude for gluon exchange is in the Born approximation given by

fij =
α2

s
2

ln2
(

r13r24

r14r23

)
. (3.6)

BFKL evolution is a stochastic process, and many sub-collisions may occur independently.
Summing over all possible pairs gives the total Born amplitude

F =
∑

ij

fij. (3.7)
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Figure 3.2: In a collision between two dipole cascades, two dipoles can interact via gluon exchange. As the exchanged gluon
carries colour, the two dipole chains become recoupled.

The unitarised amplitude then becomes

T = 1 − e−
∑

fij , (3.8)

and the cross sections are given by

dσel/d2b = T2, dσtot/d2b = 2T (3.9)

The Lund dipole model DIPSY

The DIPSY model [18, 19, 20] is a generalisation of Mueller’s cascade, which includes a set
of corrections:

• Important non-leading effects in BFKL evolution.
Most essential are those related to energy conservation and running αs.

• Saturation from Pomeron loops in the evolution.
Dipoles with identical colours form colour quadrupoles, which give Pomeron loops
in the evolution. These are not included in Mueller’s model or in the BK equation.

• Confinement via a gluon mass satisfies t-channel unitarity.

• It can be applied to collisions between electrons, protons, and nuclei.

Some results for pp total and elastic cross sections are shown in refs. [35, 36]. We note that
there is no input structure functions in the model; the gluon distributions are generated
within the model. We also note that the elastic cross section goes to zero in the dip of the
t-distribution, as the real part of the amplitude is neglected.
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2.3 Diffractive excitation and the Good–Walker formalism

In his analysis of the Glauber formalism, Gribov considered low mass excitation in the
resonance region, but experiments at high energy colliders have shown, that diffractive
excitation is not limited to low masses, and that high mass diffraction is a significant fraction
of the pp cross section also at high energies (see e.g. [5, 6, 7]). Diffractive excitation is often
described within the Mueller–Regge formalism [37], where high-mass diffraction is given
by a triple-Pomeron diagram. Saturation effects imply, however, that complicated diagrams
with Pomeron loops have to be included, which leads to complicated resummation schemes,
see e.g. refs. [38, 39, 40]. These effects make the application in Glauber calculations quite
difficult.

High mass diffraction can also be described, within the Good–Walker formalism [15], as the
result of fluctuations in the nucleon’s partonic substructure. Diffractive excitation is here
obtained when the projectile is a linear combination of states with different absorption
probabilities. This formalism was first applied to pp collisions by Miettinen and Pumplin
[41], and later within the formalism for QCD cascades by Hatta et al. [42] and by Avsar
and coworkers [43, 36]. When used in impact parameter space, this formulation has the
advantage that saturation effects can easily be taken into account, and this feature makes
it particularly suited in applications for collisions with nuclei. (For a BFKL Pomeron, the
Good–Walker and the Mueller–Regge formalisms describe the same physics, seen from
different sides [44].)

As an illustration of the Good–Walker mechanism, we can study a photon in an optically
active medium. For a photon beam passing a black absorber, the waves around the absorber
are scattered elastically, within a narrow forward cone. In the optically active medium,
right-handed and left-handed photons move with different velocities, meaning that they
propagate as particles with different mass. Study a beam of right-handed photons hitting
a polarised target, which absorbs photons polarised in the x-direction. The diffractively
scattered beam is then a mixture of right- and left-handed photons. If the right-handed
photons have lower mass, this means that the diffractive beam contains also photons excited
to a state with higher mass.

A projectile with substructure colliding with a structureless target

For a projectile with a substructure, the mass eigenstates can differ from the eigenstates of
diffraction. Call the diffractive eigenstates Φk, with elastic scattering amplitudes Tk. The
mass eigenstates Ψi are linear combinations of the states Φk:

Ψi =
∑

k

cikΦk (with Ψin = Ψ1). (3.10)
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The elastic scattering amplitude is given by

⟨Ψ1|T|Ψ1⟩ =
∑

c2
1kTk = ⟨T⟩ , (3.11)

and the elastic cross section

dσel/d2b =
(∑

c2
1kTk

)2
= ⟨T⟩2 . (3.12)

The amplitude for diffractive transition to the mass eigenstate Ψk is given by

⟨Ψi|T|Ψ1⟩ =
∑

k

cikTkc1k, (3.13)

which gives a total diffractive cross section (including elastic scattering)

dσdiff/d2b =
∑

i

⟨Ψ1|T|Ψi⟩ ⟨Ψi|T|Ψ1⟩ =
⟨
T2⟩ . (3.14)

Consequently the cross section for diffractive excitation is given by the fluctuations:

dσD/d2b = dσdiff − dσel =
⟨
T2⟩− ⟨T⟩2 . (3.15)

We note in particular that in this case the absorptive cross section equals the inelastic non-
diffractive cross section. Averaging over different eigenstates eq. (3.3) gives

dσabs/d2b =
⟨

1 − e−2F(b)
⟩
=
⟨
1 − (1 − T)2⟩ = 2 ⟨T⟩ −

⟨
T2⟩

= dσtot/d2b − dσdiff/d2b. (3.16)

A target with a substructure

If also the target has a substructure, it is possible to have either single excitation of the
projectile, of the target, or double diffractive excitation. Let Ψ(p)

k and Ψ
(t)
l be the diffrac-

tive eigenstates for the projectile and the target respectively, and Tkl the corresponding
eigenvalue. (We here make the assumption that the set of eigenstates for the projectile are
the same, for all possible target states. This assumption is also made in the DIPSY model
discussed above.) The total diffractive cross section, including elastic scattering, is then ob-
tained by taking the average of T2

kl over all possible states for the projectile and the target.
Subtracting the elastic scattering then gives the total cross section for diffractive excitation:

dσD/d2b =
⟨
T2⟩

p,t − (⟨T⟩p,t)
2. (3.17)

Here the subscripts p and t denote averages over the projectile and target respectively.
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Taking the average over target states before squaring gives the probability for an elastic
interaction for the target. Subtracting single diffraction of the projectile and the target
from the total in eq. (3.17) will finally give the double diffraction. Thus we get the following
relations:

dσtot/d2b = 2 ⟨T⟩p,t
dσel/d2b = ⟨T⟩2

p,t

dσDp/d2b =
⟨
⟨T⟩2

t

⟩
p
− ⟨T⟩2

p,t

dσDt/d2b =
⟨
⟨T⟩2

p

⟩
t
− ⟨T⟩2

p,t

dσDD/d2b =
⟨
T2⟩

p,t −
⟨
⟨T⟩2

t

⟩
p
−
⟨
⟨T⟩2

p

⟩
t
+ ⟨T⟩2

p,t , (3.18)

where σDp and σDt is single diffractive excitation of the projectile and target respectively
and σDD is double diffractive excitation. Also here the absorptive cross section, which
will be important in the following discussion of the Glauber model, corresponds to the
non-diffractive inelastic cross section:

dσabs/d2b = 2 ⟨T⟩p,t −
⟨
T2⟩

p,t . (3.19)

Diffractive eigenstates at high energies

In the early work by Miettinen and Pumplin [41], the authors suggested that the diffractive
eigenstates correspond to different geometrical configurations of the valence quarks, as a
result of their relative motion within a hadron. At higher energies the proton’s partonic
structure is dominated by gluons. The BFKL evolution is a stochastic process, and it is then
natural to interpret the perturbative parton cascades as the diffractive eigenstates (which
may also depend on the positions of the emitting valence partons). This was the assumption
in the work by Hatta et al. [42] and in the DIPSY model. Within the DIPSY model, based on
BFKL dynamics, it was possible to obtain a fair description of both the experimental cross
section [43, 36] and final state properties [45] for diffractive excitation. In the GG model
two sources to fluctuations are considered; first fluctuations in the geometric distribution
of valence quarks, and secondly fluctuations in the emitted gluon cascades, called colour
fluctuations or flickering. In ref. [13] it was concluded that the latter is expected to dominate
at high energies.

We here also note that at very high energies, when saturation drives the interaction towards
the black limit, the fluctuations go to zero. This implies that diffractive excitation is largest
in peripheral collisions, where saturation is less effective. This is true both for pp collisions
and collisions with nuclei. (Although diffractive excitation of the projectile is almost zero
in central pA collisions, this is not the case for nucleons in the target.)
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3 Glauber formalism for collisions with nuclei

3.1 General formalism

High energy nuclear collisions are usually analysed within the Glauber formalism [3] (for
a more recent overview see [4]). In this formalism, target nucleons are treated as inde-
pendent, and any interaction between them is neglected². The projectile nucleon(s) travel
along straight lines, and undergo multiple diffractive sub-collisions with small transverse
momenta. As mentioned in the introduction, multiple scattering, which in transverse mo-
mentum space corresponds to a convolution of the scattering S-matrices, corresponds to a
product in transverse coordinate space. Thus the matrices S(pNν), for the encounters of the
proton with the different nucleons in the target nucleus, factorise:

S(pA) =

A∏
ν=1

S(pNν). (3.20)

We denote the impact parameters for the projectile and for the different nucleons in the
target nucleus by b and bν respectively, and define b̃ν ≡ b − bν . Using the notation
in eq. (3.4), we then get the following elastic scattering amplitude for a proton hitting a
nucleus with A nucleons:

T(pA)(b) = 1 −
A∏

ν=1

S(pNν)(b̃ν) = 1 −
∏
ν

(
1 − T(pNν)(b̃ν)

)
= 1 − e−

∑
ν F(pNν )(b̃ν).

(3.21)
If there are no fluctuations, neither in the pp interaction nor in the distribution of nucleons
in the nucleus, a knowledge of the positions bν and the pp elastic amplitude T(pp)(b̃)
would give the total and elastic pA cross sections via the relations in eq. (3.4):

σ
(pA)
tot = 2

∫
d2b T(pA)(b) (3.22)

σ
(pA)
el =

∫
d2b

(
T(pA)(b)

)2
(3.23)

The inelastic cross section (now equal to the absorptive) would be equal to the difference
between these two, in accordance with eq. (3.3).

²In the DIPSY model gluons with the same colour can interfere, also when they come from different nucle-
ons. This so-called inter-nucleon swing mechanism was shown [9] to have noticeable effects in photon–nucleus
collisions, but in pA, especially for heavy nuclei, the effects were less that 5. We have therefore chosen to
ignore such effects in this paper, but may return to the issue in a future publication.
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Fluctuations in the pp interaction are discussed in the following subsection. Fluctuations
and correlations in the nucleon distribution within the nucleus are difficult to treat analyt-
ically, and therefore most easily studied by means of a Monte Carlo, as discussed further
in sections 3.4, 4 and 5 below. Valuable physical insight can, however, be gained in an
approximation where all correlations between target nucleons are neglected. Such an ap-
proximation, called the optical limit, is discussed in section 3.5.

3.2 Gribov corrections. Fluctuations in the pp interaction

Gribov pointed out that the original Glauber model gets significant corrections due to pos-
sible diffractive excitation. In the literature it is, however, common to take only diffractive
excitation of the projectile into account, disregarding possible excitation of the target nu-
cleons. In this section we will develop the formalism to account for excitations of nucleons
in both projectile and target. We will then see that in many cases fluctuations in the target
nucleons will average out, while in other cases they may give important effects. (Fluctua-
tions in both projectile and target will, however, be even more essential in nucleus–nucleus
collisions, which we plan to discuss in a future publication.)

Total and elastic cross sections

When the nucleons can be in different diffractive eigenstates, the amplitudes T(pNν) in
eq. (3.21) are matrices T(pNν)

k,lν , depending on the states k for the projectile and lν for the
target nucleon ν. The elastic pA amplitude,

⟨
T(pA)(b)

⟩
, can then still be calculated from

eq. (3.21), by averaging over all values for k and lν , with ν running from 1 to A. Thus

dσ(pA)
tot /d

2b = 2
⟨

T(pA)(b)
⟩
= 2

{
1 −

⟨
S(pA)(b)

⟩}
, (3.24)

dσ(pA)
el /d2b =

⟨
T(pA)(b)

⟩2
. (3.25)

When evaluating the averages in these equations, it is essential that the projectile proton
stays in the same diffractive eigenstate, Φk, throughout the whole passage through the target
nucleus, while the states, Φlν , for the nucleons in the target nucleus are uncorrelated from
each other. This implies that for a fixed projectile state k, the average of the S-matrix over
different states, lν , for the target nucleons factorise in eq. (3.20) or (3.24). Thus we have⟨

S(pA)(b)
⟩
=

⟨⟨∏
ν

⟨
S(pp,ν)k,lν (b̃ν)

⟩
lν

⟩
bν

⟩
k

. (3.26)

Here ⟨· · ·⟩k (⟨· · ·⟩lν ) denotes average over projectile (target nucleon) substructures k (lν),
while ⟨· · ·⟩bν

denotes average over the target nucleon positions bν , an as before b̃ν ≡
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b − bν . We introduce the following notation for the average of the pp amplitude over
target states:

T(pp)
k (b̃ν) ≡

⟨
T(pp)

k,l (b̃ν)
⟩

l
=
⟨
(1 − S(pp)k,l (b̃ν))

⟩
l
. (3.27)

The pA amplitude can then be written in the form

⟨
T(pA)

k (b)
⟩

k
=

⟨{
1 −

∏
ν

S(pp)k (b̃ν)

}⟩
bν ,k

=

⟨{
1 −

∏
ν

(
1 − T(pp)

k (b̃ν)
)}⟩

bν ,k

,

(3.28)
where the average is taken over the target nucleon positions bν and the projectile states,
k. The total and elastic cross sections in eqs. (3.24) and (3.25) are finally obtained from
eq. (3.4). We want here to emphasise that these expressions only contain the first moment
with respect to the fluctuations in the target states, lν , but also all higher moments of the
fluctuations in the projectile states, k.

To evaluate the b-integrated cross sections, we must know both the distribution of the
(correlated) nucleon positions, bν , and the b-dependence of the pp amplitude T(pp)

k (b).
The distribution of nucleon positions is normally handled by a Monte Carlo, as will be
discussed in section 3.4. When fluctuations and diffractive excitation was neglected in
section 3.1, the b-dependence of T(pp)(b) could be well approximated by a Gaussian dis-
tribution C exp (−b2/2B), corresponding to an exponential elastic cross section dσ/dt ∝
exp (Bt). With fluctuations it is necessary to take the unitarity constraint T ≤ 1 into ac-
count, which implies that a large cross section must be associated with a wider distribution.
One should then check that after averaging the differential elastic cross section reproduces
the observed slope.³

3.3 Interacting nucleons

Specification of ”wounded” nucleons

The notion of “wounded” nucleons was introduced by Białas, Bleszyński, and Czyż in 1976
[25], based on the idea that inelastic pA or AA collisions can be described as a sum of
independent contributions from the different participating nucleons⁴. In ref. [25] diffrac-
tive excitation was neglected, and thus “wounded nucleons” was identical to inelastically
interacting nucleons⁵.

³In ref. [12] unitarity is satisfied assuming the slope B to be proportional to the fluctuating total cross section
σtot.

⁴This idea was also the basis for the Fritiof model [23], which has been quite successful for low energies.
⁵It was also pointed out that for pA collisions the number of participant nucleons, w, and the number of

NN sub-collisions, v, are related, v = w + 1, and a relation between particle multiplicity and the number of
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Although the importance of diffractive excitation was pointed out by Gribov already in
1968 [8], it has, as far as we know, never been discussed whether or not diffractively excited
nucleons should be regarded as wounded. These nucleons contribute to the inelastic, but
not to the absorptive cross section, as defined in eq. (3.19).

Diffractive excitation is usually fitted to a distribution proportional to dM2
X/(M

2
X)

1+ϵ. A
bare triple-Pomeron diagram would give ϵ = αP(0)−1, whereαP(0) is the intercept of the
Pomeron trajectory, estimated to around 1.2 from the HERA structure functions at small
x. More complicated diagrams tend, however, to reduce ϵ. (In ref. [40] it is shown that the
largest correction is a four-Pomeron diagram, which gives a contribution with ϵ = 0.) Fits
to LHC data [6, 7] give ϵ ≈ 0.1, but with rather large uncertainties.

If ϵ is small, diffractively excited target nucleons can contribute to particle production
both in the forward and in the central region. If ϵ instead is large, diffraction would
contribute mainly close to the nucleus fragmentation region. For ϵ ≈ 0.1, the experi-
mentally favoured value, the contribution in the central region would be suppressed by a
factor exp(−0.1 · Δη) ∼ 1/2 for pPb collisions at LHC. We conclude that the defini-
tion of wounded nucleons should depend critically upon both the experimental observable
studied in a certain analyses, and upon the still uncertain MX-dependence of diffractive ex-
citation at LHC energies. (In section 5.1 we will show that a simple model, assuming similar
contributions from absorbed and diffractively excited nucleons actually quite successfully
describes the final state in pPb collisions at LHC.)

Below we present first results for the absorbed, non-diffractive, nucleons, followed by results
when diffractively excited nucleons are included.

Wounded nucleon cross sections

Absorptive cross section

We first assume that wounded nucleons correspond to nucleons absorbed via gluon ex-
change, which for large values of ϵ would be relevant for observables in the central region,
away from the nucleus fragmentation region. Due to the relation T = 1−S, the absorptive
cross section in eq. (3.19) can also be written dσabs/d2b =

⟨
1 − S2⟩. We here note that,

as the S-matrix factorises in the elastic amplitude in eqs. (3.20) and (3.24), this is also the

wounded nucleons, w, is equivalent to a relation to the number of NN sub-collisions, v = w+ 1. Only in AA
collisions is it possible to distinguish a dependence on the number of participating nucleons from a dependence
on the number of nucleon–nucleon sub-collisions.
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case for S2. This implies that (
S(pA)

k,{lν}

)2
=

A∏
ν=1

(
S(pNν)

k,lν

)2
. (3.29)

In analogy with eq. (3.27) for σtot, also here, when taking the average over the target states
lν , the factors in the product depend only on the projectile state k and the positions b̃ν .
We here introduce the notation

W(wabs)
k (b̃ν) ≡

⟨
1 −

(
S(pp)k,l (b̃ν)

)2
⟩

l
. (3.30)

This quantity represents the probability that nucleon ν is absorbed by a projectile in state k.
Averaging over all values for k and bν , it gives the total pA absorptive, meaning inelastic
non-diffractive, cross section

dσpA
abs(b)/d

2b =

⟨⟨{
1 −

∏
ν

(
1 − W(wabs)

k (b̃ν)
)}⟩

bν

⟩
k

. (3.31)

This expression equals the probability that at least one target nucleon is absorbed.

Cross section including diffractively excited target nucleons

We now discuss the situation when also diffractively excited target nucleons should be
counted as wounded. (The case with an excited projectile proton is discussed below.) The
probability for a nucleon, ν, in the nucleus to be diffractively excited is obtained from
eq. (3.18) by adding single and double diffraction:

PD,ν =

⟨(
T(pp)(b̃ν)

)2
⟩

k,lν
−

⟨(⟨
T(pp)(b̃ν)

⟩
lν

)2
⟩

k

=
⟨ ⟨

S2⟩
lν
− ⟨S⟩2

lν

⟩
k
. (3.32)

Adding the absorptive cross section in eq. (3.19) we obtain the total probability that a target
nucleon, ν, is excited or broken up by either diffraction or absorption,

Pwinc,ν = 1 −
⟨
⟨S⟩2

lν

⟩
k
, (3.33)

and we will call such nucleons inclusively wounded (winc), as opposed to absorptively wounded
(wabs).

In analogy with eq. (3.30) we define W(winc)
k by the relation

W(winc)
k (b̃ν) ≡ 1 −

⟨
S(pp)k,l (b̃ν)

⟩2

lν
= 1 −

(
1 − T(pp)

k (b̃ν)
)2
, (3.34)
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which gives the probability that the target nucleon ν is either absorbed or diffractively ex-
cited, by a projectile in state k. Thus, if these target nucleons are counted as wounded, the
cross section is also given by eq. (3.31), when W(wabs)

k is replaced by W(winc)
k . We note that

the expression for the wounded nucleon cross section resembles the total one in eqs. (3.28)
and (3.25), with T(pp)

k replaced by W(wabs)
k or W(wexc)

k . Note also that as W(winc)
k is deter-

mined via eq. (3.34), when T(pp)
k is known including its b-dependence. This is not the case

for W(wabs)
k , which contains the average over target states of the square of the amplitude

T(pp)
k,l .

Elastically scattered projectile protons

We should note that the probabilities given above include events, where the projectile is
elastically scattered, and thus not regarded as a wounded nucleon. The probability for this
to happen in an event with diffractively excited target nucleons, is given by the relation
(⟨· · · ⟩p and ⟨· · · ⟩t denote averages over projectile and target states respectively)

⟨
⟨ S ⟩2

p

⟩
t
−
(
⟨S ⟩p,t

)2
=

⟨⟨∏
ν

Sk,lν

⟩2

k

⟩
lν

−


⟨⟨ ∏

ν

Sk,lν

⟩
k

⟩
lν


2

. (3.35)

In case these events do not contribute to the observable under study, this contribution
should thus be removed. For a large target nucleus, this is generally a small contribution.

Wounded nucleon multiplicity

In the following we let Wk denote either W(winc)
k or W(wabs)

k , depending upon whether or
not diffractively excited target nucleons should be counted as wounded.

Average number of wounded nucleons

As Wk(b̃ν) denotes the probability that target nucleon ν is wounded, the average number
of wounded nucleons in the target is then (for fixed b) given by ⟨

∑
ν Wk(b̃ν)⟩k,bν , ob-

tained by summing over target nucleons ν, and averaging also over projectile states k and
all target positions bν . Averaging over impact parameters, b, is only meaningful, when
we calculate the average number of wounded target nucleons per event with at least one
wounded nucleon, which we denote ⟨Nt

w⟩. This is obtained by dividing by the probabil-
ity in eq. (3.31). Integrating over b, weighting by the same absorptive probability, and
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normalising by the total absorptive cross section (also integrated over b) we get

⟨Nt
w⟩ =

∫
d2b
∑

ν

⟨⟨
Wk(b̃ν)

⟩
k

⟩
bν∫

d2b
⟨⟨

1 −
∏

ν

(
1 − Wk(b̃ν)

)⟩
k

⟩
bν

. (3.36)

Note that the total number of wounded nucleons is given by Nw = Nt
w+1, as the projectile

proton should be added, provided the projectile proton is not elastically scattered (in which
case all wounded target nucleons have to be diffractively excited).

Multiplicity distribution for wounded nucleons

It is also possible to calculate the probability distribution in the number of wounded target
nucleons Nt

w. For fixed projectile states k and target nucleon positions b̃ν , the probability
for target nucleon ν to be wounded, or not wounded, is Wk(b̃ν) and 1 − Wk(b̃ν) respec-
tively. For fixed k the probability distribution in the number of absorbed target nucleons
is then given by

d Pk(b)

d Nt
w

=
∑
CNtw

∏
ν∈CNtw

Wk(b̃ν)
∏

µ∈CNtw

{
1 − Wk(b̃µ)

}
. (3.37)

Here the sum goes over all subsets CNt
w of t

w wounded target nucleons, and CNt
w is the set of

the remaining A−Nt
w target nucleons, which thus are not wounded. The states of the target

nucleons can be assumed to be uncorrelated, and the averages could therefore be taken
separately, as in eq. (3.30). The state k and positions bν or bµ give, however, correlations
between the different factors, and these averages must be taken after the multiplication,
which gives the result

d P(b)
d Nt

w
=

⟨⟨
∑
CNtw

∏
ν∈CNtw

Wk(b̃ν)
∏

µ∈CNtw

{
1 − Wk(b̃µ)

}
⟩

bν

⟩
k

. (3.38)

The distribution in eq. (3.38) includes the possibility for Nt
w = 0. As for the average number

of wounded nucleons above, to get the normalised multiplicity distribution for events, with
Nt

w ≥ 1, we should divide by the probability in eq. (3.31). The final distribution is then
obtained by integrating over b, with a weight given by the same absorption probability.
This gives the result

d P
d Nt

w

∣∣∣∣
ev

=

∫
d2b d P(b)/d Nt

w∫
d2b dσpA

w (b)/d2b
, (3.39)

where dP/d Nt
w(b) and dσpA

w (b)/d2b are the expressions in eqs. (3.38)) and (3.31).
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We want here to emphasise that the quantity W(wabs)
k contains the average of the square of

the amplitude T(pp), and is therefore not simply determined from the average ⟨T(pp)⟩l =
⟨1 − S(pp)⟩l, which appears in the expression for the total and elastic cross sections in
eqs. (3.28) and (3.25). This contrasts to the situation for inclusively wounded nucleons,
where W(winc)

k in eq. (3.34) actually is directly determined by ⟨T(pp)
k,l ⟩l.

3.4 Nucleus geometry and quasi-elastic scattering

In a real nucleus the nucleons are subject to forces with a hard repulsive core, and their dif-
ferent points rν are therefore not uncorrelated. In Glauber’s original papers this correlation
was neglected, and this approximation is discussed in the subsequent section.

In addition to the suppression of nucleons at small separations, the geometrical structure
will fluctuate from event to event. These fluctuations are not only a computational problem,
but have also physical consequences. Just as fluctuations in the nucleon substructure can
induce diffractive excitation of the nucleon, fluctuations in the nucleus substructure induces
diffractive excitation of the nucleus. If the projectile is elastically scattered these events
are called quasi-elastic. The fluctuations in the target nucleon positions are also directly
reproduced by the Monte Carlo programs mentioned above, and within the Good–Walker
formalism the quasi-elastic cross section, σel∗, is given by (c.f. eq. (3.18)):

dσel∗/d2b =
⟨
⟨T⟩2

p

⟩
t
. (3.40)

The average over the target states here includes averaging over all geometric distributions of
nucleons in the nucleus, and all partonic states of these nucleons. Note that this expression
includes the elastic proton–nucleus scattering (given by ⟨T⟩2

p,t). Some results for quasi-
elastic pPb collisions are presented in ref. [46, 9].

3.5 Optical limit – uncorrelated nucleons and large nucleus approximations

Even though the averages in eqs. (3.24) and (3.31) factorise, they are still complicated by the
fact that all factors S(pNν) are different, due to the different values for the impact parame-
ters. It is interesting to study simplifying approximations, assuming uncorrelated nucleon
positions and large nuclei. This is generally called the optical limit. It was used by Glauber
in his initial study [3], and is also described in the review by Miller et al. [4], for a situation
when diffractive excitation is neglected. We here discuss the modifications necessary when
diffractive excitation is included, also separating single excitation of projectile and target,
and double diffraction.
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Uncorrelated nucleons

Neglecting the correlations between the nucleon positions in the target nucleus, the in-
dividual nucleons can be described by a smooth density A · ρ(bν) (normalised so that∫

d2b ρ(b) = 1). In this approximation all factors
⟨

S(pNν)
k,lν

⟩
t
= 1 −

⟨
T(pNν)

k,lν

⟩
t

in
eq. (3.26), which enter the total pA cross section in eq. (3.24), are uncorrelated and give the
same result, depending only on projectile state and impact parameter k and b:⟨

T(pNν)
k,lν (b− bν)

⟩
t
=

∫
d2bν ρ(bν)

⟨
T(pp)

k,l (b− bν)
⟩

l
. (3.41)

In the same way all factors Wk(b̃ν), entering the wounded nucleon cross sections in eqs. (3.30)
and (3.34), give equal contributions:⟨

W(wabs)
k (b̃ν)

⟩
bν

=

∫
d2bν ρ(bν)

(
1 −

⟨(
S(pp)k,l (b− bν)

)2
⟩

l

)
;⟨

W(winc)
k (b̃ν)

⟩
bν

=

∫
d2bν ρ(bν)

(
1 −

⟨
S(pp)k,l (b− bν)

⟩2

l

)
. (3.42)

Large nucleus

If, in addition to the approximations in eqs. (3.41) and (3.42), the width of the nucleus
(specified by ρ) is much larger than the extension of the pp interaction (specified by T(pp)),
further simplifications are possible. For the amplitude in eq. (3.41) we can integrate over
bν , and get the approximation⟨

T(pNν)
k,lν (b− bν)

⟩
t
≈ ρ(b)

∫
d2b̃

⟨
T(pp)

k,l (b̃)
⟩

l
= ρ(b)σpptot,k /2. (3.43)

We have here introduced the notation σpptot,k for the total cross section for a projectile proton
in state k, averaged over all states for a target proton.

In the same way we get⟨
Wk(b̃ν)

⟩
t
≈ ρ(b)

∫
d2b̃ Wk(b̃) = ρ(b)σppw,k, (3.44)

where Wk is either W(wabs)
k or W(winc)

k , and σppw,k is the corresponding pp cross section for
a projectile in state k.
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Total cross section

Inserting eq. (3.43) into eqs. (3.24) - (3.25) gives the total cross section for a projectile in
state k hitting a nucleus:

dσ(pA)
tot,k/d

2b = 2
⟨

T(pA)
k,l (b)

⟩
t
= 2

{
1 −

(
1 − ρ(b)σpptot,k /2

)A
}

=

= −2
A∑

N=1

(
A
N

)(
− ρ(b)σpptot,k/2

)N
. (3.45)

The total pA cross section is then finally obtained by averaging over projectile states, k, and
integrating over impact parameters, b:

σ
(pA)
tot =

∫
d2b

⟨
dσ(pA)

tot,k/d
2b
⟩

k
. (3.46)

We note here in particular, that in this approximation the b-dependence of T(pp)
k (b) is

unimportant, and the result depends only on its integral σpptot,k/2. We also note that to
calculate the elastic pA cross section ∼

∫
d2b (T(b))2, which has a steeper b-dependence,

a knowledge about this dependence is also needed.

Proton-deuteron cross section

Neglecting fluctuations, eqs. (3.45) and (3.46) would give the simpler result

σ
(pA)
tot = −2

A∑
N=1

(
A
N

)((
−σtot

2

)N
∫

d2b ρN(b)
)
. (3.47)

For the special case with a deuteron target we then get the result⁶

σpdtot = 2σpptot −
1
2

(∫
d2b ρ2(b)

)
(σpptot)

2
, (3.48)

and with the estimate
∫

d2b ρ2(b) = 1/(2π⟨b2⟩) describing the deuteron wavefunction,
we recognise Glauber’s original result.

For a non-fluctuating amplitude, the optical theorem gives a direct connection between
the total and elastic cross sections. As the integral over d2b gives the Fourier transform at
q = 0, we have

σpptot = 2
∫

d2b T(pp)
k,l (b) = 4πT̃(pp)

k,l (q = 0) =

√
16π

d
dt
σppel (t)

∣∣∣∣
t=0
. (3.49)

⁶Although the deuteron has only 2 nucleons, it is very weakly bound, and its wave function is extended
out to more than 5 fm. Therefore the large nucleus approximation is meaningful also here.
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Here T̃(q) denotes the Fourier transform of the amplitude T(b). For a Gaussian interaction
profile we get

(σ
(pp)
tot )2 ∝ σppel · B, (3.50)

where the slope B is a measure of the width of the interaction. As σel is determined by the
squared amplitude, the ratio σel/σtot will be larger for a strong interaction with a short
range, than for a weaker interaction with a wider range.

For the general case with fluctuating amplitudes, we can using the results in eq. (3.18), in
an analogous way rewrite (σ(pp)tot,k)

2 in eq. (3.45) in the following form(
σ
(pp)
tot,k

)2
= 16π2⟨⟨T̃(pp)

k,l (q = 0)⟩2
l ⟩k = 16π

d
dt

(
σppel (t) + σppDp(t)

)∣∣∣∣
t=0

. (3.51)

Here σppDp denotes the cross section for single diffractive excitation of the projectile proton
(i.e. on one side only). For a fluctuating amplitude we then get instead of eq. (3.48)

σpdtot = 2σ(pp)
tot − 8π

(∫
d2b ρ2(b)

)
d
dt

(
σppel (t) + σppDp(t)

)∣∣∣∣
t=0

. (3.52)

The negative term in eq. (3.52) represents a shadowing effect, which for a deuteron tar-
get has one contribution from the elastic proton–nucleon cross section, and another from
diffractive excitation. Note in particular, that it is only single diffraction which enters, with
an excited projectile but an elastically scattered target nucleon. (This would be particularly
important in case of a photon or a pion projectile.)

Larger target nuclei For a larger target higher moments,
⟨⟨

T(pp)
⟩n

t

⟩
p

(n = 1, 2, …, A),

of the pp amplitude, averaged over target states, are needed. These moments cannot be
determined from the total cross section and the cross section for diffractive excitation. They
can be calculated if we know the full probability distribution, dP/d

⟨
T(pp)

⟩
t, for the pp

amplitude averaged over target states, but for varying projectile states⁷. In addition also
higher moments of the nucleus density,

∫
d2b ρn(b), are needed.

We also note here that the factorisation feature in eq. (3.21) is not realised in AA collisions.
This implies that also in the optical limit, the AA-results cannot be directly expressed in
terms of the moments

⟨⟨
T(pp)

⟩n
t

⟩
p
.

Wounded nucleon cross sections

Also for cross sections corresponding to wounded (absorptively or inclusively) nucleons,
approximations analogous to eqs. (3.41) and (3.43) are possible. Integrating the expressions

⁷The average for n = 3 was estimated from diffractive proton-deuteron scattering in ref. [11].
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in eq. (3.44) over bν , and averaging also over projectile states k gives, in analogy with
eqs. (3.45) and (3.46), the following result

dσpA
w /d2b = 1 −

⟨(
1 − ρ(b)σppw,k

)A
⟩

k
. (3.53)

The average in eq. (3.53) includes averages of all possible powers
⟨
(σppw,k)

n
⟩

k
. For n = 1

this is just equal to the pp cross section σppw for (with w denoting either absorptively or
inclusively wounded), but for higher moments a knowledge of the full probability distri-
bution for σppw,k is needed, in analogy with eq. (3.46) for the total pA cross section. Note,
however, that a similar relation is not satisfied for the elastic or total inelastic cross sections,
σel and σin = σtot − σel, which as seen in eq. (3.18) contain the average over projectile
states k before squaring.

Average number of wounded nucleons

In eq. (3.53) ρ(b)σppw,k represents the probability that a specific target nucleon is wounded,
in a collision with a projectile in state k at an impact parameter b. In the optical limit this
probability is the same for all A target nucleons. Averaging over projectile states k then gives
the average number of wounded target nucleons for an encounter at this b-value. Dividing
by the probability for a “wounded” event, we get the average number of wounded target
nucleons per wounded event for this b:

⟨Nt
w(b) ⟩ =

A ρ(b)σppw

1 −
⟨(

1 − ρ(b)σppw,k

)A
⟩

k

. (3.54)

Normalising by the probability for absorption in eq. (3.53), and integrating over b with a
weight given by the same probability, then gives

⟨Nt
w ⟩ =

∫
d2b A ρ(b)σppw∫
d2b dσpA

w /d2b
, (3.55)

with dσpA
w /d2b given by eq. (3.53). As noted above, this needs knowledge of the full prob-

ability distribution for σppw,k.

Multiplicity distribution for wounded nucleons

As in section 3.3, when calculating the full distribution in Nt
w(b), it is important to take

the average over projectile states k after multiplication of the different nucleon absorption
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probabilities, which gives

dP(b)
d Nt

w
=

(
A

Nt
w

)⟨(
ρ(b)σppw,k

)Nt
w ·
(

1 − ρ(b)σppw,k

)A−Nt
w
⟩

k
. (3.56)

Similar to the general result in eq. (3.38), this expression includes the probability for zero
target participants. Normalising by the probability for absorption in eq. (3.53), and inte-
grating over b with a weight given by the same probability, gives finally

dP
d Nt

w
=

∫
d2b dP(b)/d Nt

w∫
d2b dσpA

w /d2b
. (3.57)

Here dP(b)/d Nt
w and dσpA

w /d2b are the expressions in eqs. (3.56) and (3.53).

4 Models for pp scattering used in Glauber calculations

As mentioned in section 3.4, most analyses today use a Monte Carlo simulation to generate
a realistic distribution of nucleons within the nucleus, including fluctuations which cause
quasi-elastic scattering of the nucleus [46, 9] as well as initial state anisotropies (e.g. [47]).
In contrast most Glauber Monte Carlos use a rather simple model for the pp interaction.
In this section we discuss some models which have been used in analyses of experimental
data. We will also comment on the pros and cons, when these models are applied to pA
collisions.

In the optical approximation, where the extension of the nucleus is much larger than the
range of the pp interaction, the results for pA collisions can be expressed in terms of inte-
grated pp amplitudes, without knowledge of their respective impact parameter dependence
(see eq. (3.43)). It is therefore most essential to use a model, where the integrated pp cross
sections are well reproduced. Note, however, that although the total pA cross section is
most sensitive to the integrated total pp cross section, the b-dependence is very impor-
tant for the ratio between the elastic and total cross sections (see eq. (3.50)). This feature
naturally also affects the ratio between the inelastic and the total cross sections.

As mentioned in the introduction, the problems encountered when taking fluctuations and
diffractive excitation of the nucleons properly into account in the Glauber model, have
implied that these effects are neglected or severely approximated in many applications, see
e.g. ref. [4]. However also in models which do include fluctuations, as far as we know
no published analysis uses a model which can separate single excitation of the projectile
from that of the target, and from double excitation. This is a problem as the various pA
cross sections in section 3 contain powers of pp amplitudes averaged in different ways over
projectile and target fluctuation.
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We first discuss some simple models determined by just a few parameters, and then the
more ambitious approach by Strikman and coworkers, using a continuous distribution for
the fluctuations.

4.1 Simple approximations

Non-fluctuating models

i) Black disk model

The simplest approximation is the “black disk model” with a fixed radius. Here diffractive
excitation is completely neglected, and the target in a nucleon–nucleon collision acts as a
black absorber. The projectile nucleon travels along a straight line, and interacts inelastically
if the transverse distance to a nucleon in the target is smaller than a distance R, which gives

T(pp)(b) = Θ(R − b) (3.58)

This results in the following cross sections:

σel = σin = σtot/2 = πR2, σD = 0. (3.59)

Here σD denotes the cross section for diffractive excitation. (See eq. (3.4) with F = ∞.)
This is in clear contrast to the experimental result σel ≈ σtot/4 and the total diffractive
excitation of the same order of magnitude as σel. This again illustrates how a short range
amplitude gives a large σel/σtot ratio. The radius can therefore be adjusted to reproduce
the experimental value for one of these three cross sections, at the cost of not reproducing
the other two.

As discussed in ref. [9], choosing to reproduce σpptot, the simple black-disk result for pPb
collisions agrees rather well with the DIPSY model for σpPbtot , but not so well for σpPbel or
σpPbin . Similarly adjusting R to reproduce σppin or σppabs gives results which agree with DIPSY
for the corresponding pPb cross section, but not for the other.

The black disk model is implemented in many Monte Carlos, e.g. in the PHOBOS Monte
Carlo [48, 49]. It is also used in refs. [46, 47] where the authors study fluctuations in the
distribution of nucleons within the nucleus, but do not address the fluctuations in the pp
interaction.

ii) Grey disk and Gaussian profile

Also other shapes for a non-fluctuating pp interaction have been used in the literature
[50, 24, 4]. The simplest example is a fixed semi-transparent “grey disk”, with opacity given
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by the parameter α:
T(pp)(b) = αΘ(R − b), (3.60)

which gives σel : σtot : σin = α : 2 : 2 − α.

Another example is a Gaussian profile

T(pp)(b) = α exp(−b2/2B) (3.61)

giving σel : σtot : σin = α : 4 : 4 − α.

These models contain two parameters (with α ≤ 1 to satisfy the unitarity constraint T ≤
1), and it is therefore possible to fit e.g. the total and the elastic cross sections, with the
inelastic (non-diffractive) cross section given by the difference between these two. The
lower ratio σel/σtot is a consequence of the wider interaction range. We note, however,
that even if typical events are well reproduced it is often interesting to study rare events in
the tail of a distribution. As an example the tail of the pp amplitude out to large b-values
may be important for the probability to produce rare events with many pN sub-collisions
at large impact separation. The Gaussian profile may e.g. thus give a larger tail than the
gray disk, also when they give very similar averages.

Models including fluctuations

To account for diffractive excitation, we must allow the pp amplitude to fluctuate. Models
used in the literature do, however, not separate fluctuations in the projectile and the tar-
get. From eqs. (3.28) and (3.25) we see that if the amplitude is adjusted to reproduce the
amplitude averaged over target states, ⟨T(pp)(b)⟩t, then the correct result for the pA total
cross section will be obtained. The fluctuations included in the model should then only
describe fluctuations in the projectile state, and should thus reproduce the cross section for
single excitation of the projectile. Such a model will, however, not reproduce cross sec-
tions for absorptively wounded nucleons properly, as will be discussed further below. iii)

Fluctuating grey disk

The simplest model accounting for diffractive excitation is the fluctuating “grey disk model”.
Here it is assumed that within a radius R the projectile is absorbed with probability a, with
0 < a < 1. This implies that ⟨T(b)2⟩ = ⟨T(b)⟩, and the resulting pp cross sections are
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here

σtot = 2
∫

d2b
⟨

T(pp)(b)
⟩
= 2πR2a

σel =

∫
d2b
⟨

T(pp)(b)
⟩2

= πR2a2

σD =

∫
d2b
(⟨

T(pp)(b)2
⟩
−
⟨

T(pp)(b)
⟩2
)

= πR2a(1 − a)

σabs =

∫
d2b
⟨

1 −
(

1 − T(pp)(b)
)2
⟩

= πR2a. (3.62)

The two parameters R and a can now be adjusted to reproduce e.g. the total and the elastic
pp cross sections. At LHC this would give a ≈ 1/2. The cross section for diffractive exci-
tation should here be interpreted as representing only the single excitation of the projectile,
while target excitation is part of the absorptive cross section. With a = 1/2 this is quite an
overestimate. It corresponds rather to the total diffractive excitation, which implies that the
results for σabs/σtot is close to the experimental value. The relation between the absorptive
and diffractive cross section, which together make up the inelastic cross section, is also fixed
in this model.

The agreement of the fluctuating gray disk with DIPSY results for pPb collisions are not
superior to those of the black disk model [9].

iv) Fluctuating Gaussian profile

Here the profile in eq. (3.61) gives the probability for absorption. Thus T = 1 with prob-
ability α exp(−b2/2B) while T = 0 with probability 1 − α exp(−b2/2B). As for the
fluctuating gray disk this implies that ⟨T(b)2⟩ = ⟨T(b)⟩. This does not change the total and
elastic cross sections, but it splits the inelastic one into relative fractions a non-diffractive
(absorptive) and a diffractive part, with the result σtot : σel : σD : σabs = 4 : α : 2−α : 2.
For α ≈ 1 this gives the same result as the fluctuating gray disk. (Although this implies
that the results will be very similar in the optical limit, it does not mean that the results are
identical for a more realistic nucleus. This will be particularly true for the tail at very large
numbers of wounded nucleons.)

This model is also an option in the PHENIX Monte Carlo.

v) Fluctuating black disk model

It is possible to let the radius of the black disk fluctuate. As for the two previous model, the
fact that T(b) is either 1 or 0 implies that ⟨T(b)2⟩ = ⟨T(b)⟩, which gives σabs = σtot/2.
Such a fluctuating black disk model has sometimes been used in connection with the GG
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model described in section 4.2, and will be further described below.

vi) A new simple model allowing for separate projectile and target excitations

The main reason neither of the above models are able to properly take into account the
diffractive aspects of nucleon collisions, is that the fluctuations in the cross sections are
not treated in terms of fluctuations in the projectile and target separately. Interpreting the
amplitude T as the average over target states, which as mentioned above can give a correct
total cross section, excitation of target nucleons will not be separated from the absorptive
cross section.

To redeem this we have constructed a new model, which in some sense is the minimal
possible extension needed to reproduce all relevant semi-inclusive cross sections. The basis
of the model is having fluctuating sizes of the colliding nucleons. With some probability,
c, a nucleon with radius r1, can fluctuate into a larger radius r2. This will then give us the
elastic amplitude for a projectile with radius Rp colliding with a target with radius, Rt,

T(b) = αΘ(Rp + Rt − b). (3.63)

Here α is again an opacity parameter between zero and one, which together with c, r1
and r2 gives us four parameters which can be adjusted to reproduce the relevant nucleon–
nucleon cross sections σabs, σel, σDp = σDt and σDD. Below we will refer to this model
as 2×2-disk.

4.2 The approach by Strikman and coworkers

An ambitious approach to describe fluctuations in pp scattering, for use in the Glauber
model, was presented in refs. [10, 11]. This model has been further extended in several
papers by Alvioli, Strikman and coworkers; for a general overview see ref. [12] and further
references in there. Recent studies, with applications to the LHC, discuss effects of colour
fluctuations (or flickering) [13], and evidence for x-dependent proton colour fluctuations
[14]. The model does not take into account the possibility of separate excitations of the
projectile and the target, and the fluctuations in the target are not considered. In this
section we will also discuss how the model can be modified to take the target fluctuations
into account. (Note that our amplitude T is in ref. [12] denoted Γ.)
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pp total cross section

The basic feature of the model is a description of the fluctuations in the NN total cross
section, as a smooth function, which has the form

Ptot(σ) = ρ
σ

σ + σ0
exp

{
−(σ/σ0 − 1)2

Ω2

}
, (3.64)

σtot =

∫
dσ σ Ptot(σ). (3.65)

Here σ is regarded as the total pp cross section in a single event, with the probability
distribution Ptot(σ), while the observed total cross section σtot is given by the average
in eq. (3.65). ⁸ For the functional form in eq. (3.64), the average and the width of the
distribution are related to (but not identical to) the parameters σ0 and Ω, while ρ is a
normalisation constant.

In eqs. (3.25) and (3.28) we see that the total pA cross section contains all possible moments
with respect to the fluctuations in the projectile state, but only the average (the first moment)
with respect to the fluctuations in the target state. Thus, although target fluctuations are
not considered explicitely, we conclude that if σ is interpreted as the average over target states

σ = 2
∫

d2b⟨T(pp)
k,l ⟩l, (3.66)

and only the average over projectile states is described by the distribution in eq. (3.64), then
the total pA cross sections will (in the large nucleus approximation) be determined in terms
of all possible moments ⟨σN⟩, obtained from the distribution Ptot(σ), and the average in
eq. (3.65) will correctly give the total pp cross section.

With this interpretation the width of the distribution can also be determined from eq. (3.51),
which gives the second moment

⟨σ2⟩ = 16π2⟨⟨T̃(pp)
k,l (t = 0)⟩2

l ⟩k = 16π
d
dt

(
σppel (t) + σppDp(t)

)∣∣∣∣
t=0

. (3.67)

Here the first term in the parenthesis would give ⟨σ⟩2 corresponding to Glauber’s result,
while the second, determined by single excitation of the projectile, is the result of fluctua-
tions in the projectile state.

Eq. (3.67) has been used by Blaettel et al. [11] together with eq. (3.52) to estimate the width
from shadowing in pd collisions at fixed target energies. They also estimated the width from
diffractive excitation data at the CERN p̄p collider. With data from TOTEM [51, 52, 53]

⁸Note, however, that in ref. [12] the notation is changed, such that σ → σtot and σtot → σ
(pp)
tot .
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and ALICE [54] for elastic and single diffractive cross sections and elastic forward slope,
supplemented by the assumption that the diffractive slope is approximately half the elastic
(as is the case at 560 GeV [55]), we get for 7 TeV the estimated width

√
⟨σ2⟩ − ⟨σ⟩2 ≈

0.4⟨σ⟩. As mentioned above, the amplitude for larger nuclei the amplitude in eq. (3.45)
contains also higher moments of the pp amplitude. Blaettel et al. estimated also the third
moment,

⟨
σ3⟩ from data for diffractive excitation in pd scattering, and they also studied

other analytic forms. Most recent applications use, however, the form in eq. (3.64), in
which the higher moments are fixed by a determination of the width.

Elastic cross section

We use the notation
T(pp)(b, σ) ≡

⟨
T(pp)

k,l (b)
⟩

l
(3.68)

to describe the b-dependence of the fluctuating cross section σ in eq. (3.66). This gives

σ =

∫
d2b 2 T(pp)(b, σ)

dσtot/d2b =

∫
dσ Ptot(σ) 2 T(pp)(b, σ),

dσel/d2b =

∣∣∣∣∫ dσ Ptot(σ)T(pp)(b, σ)
∣∣∣∣2 . (3.69)

As pointed out earlier, the relation between σel and σtot depends on the width of the
interaction. Thus, although the elastic and total cross sections for fixed b are given by the
same average over target fluctuations, the elastic cross section is not determined by the σ-
distribution in eq. (3.64), unless it is supplemented by a knowledge of the b-dependence
(for all values of σ).

We here note that the distribution in eq. (3.64) has a tail out to large cross sections. The
unitarity constraint T(b) < 1, or dσtot/d2b < 2, therefore implies that a large value for σ
must be associated with a wider b-distribution. The effect of different assumptions about
the b-dependence will be discussed in section 4.2.

This feature implies of course that also the inelastic cross section cannot be directly deter-
mined from eq. (3.64).

Wounded nucleon cross section

As discussed in section 3.3, the definition of a wounded nucleon may depend upon the spe-
cific observables under consideration. As pointed out earlier, in cases where the absorptive
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cross section is the most relevant, this is given by

dσabs/d2b = 2 ⟨T(b)⟩p,t − ⟨T(b)2⟩p,t, (3.70)

which cannot be determined without knowing how the separate fluctuations in the pro-
jectile and target result in single and double diffractive excitation. We see that in contrast
to the expressions entering the total and elastic cross sections in eq. (3.69), this expression
contains also the second moment with respect to the target fluctuations.

In ref. [12] Alvioli and Strikman identify the differential wounded nucleon cross section
with the total inelastic pp cross section (which includes diffractive excitation). In the hy-
pothetical situation where the target did not fluctuate, after averaging over projectile fluc-
tuations this also gives the absorptive (inelastic non-diffractive) cross section.

However, if T is identified with the amplitude averaged over target states, as in eq. (3.68)
(which gives the correct result for the total cross section), then we get instead

⟨
2T(b)− T(b)2⟩

p =
⟨

T(pp)
k,l (b)

⟩
l,k
−
⟨(⟨

T(pp)
k,l (b)

⟩
l

)2
⟩

k
= dσw/d2b. (3.71)

From eq. (3.18) we see that this corresponds exactly to the inclusively wounded nucleon
cross section dσwinc/d

2b, where σwinc now includes diffractively excited target nucleons:

σwinc = σabs + σDD + σDt = σtot − σel − σDp. (3.72)

We here note that, although dσw/d2b in eq. (3.71) contains the same average of T(pp)
k,l (b)

over target states, to integrate this expression over b we also need to know the b-dependence
of T(pp)(b, σ) for all σ. We also note that the integral

∫
d2b
∫

dσP(σ)T2(b, σ) appearing
in σw is different from

∫
d2b[

∫
dσP(σ)T(b, σ)]2 appearing in σel.

The distribution Pw(σw) is consequently not easily related to the distribution in the total
cross section Ptot(σtot). Lacking a detailed description, Strikman et al. use an approxi-
mation assuming the proportional distribution which for the absorption probability would
mean

Pabs(σ) ∝ Ptot(σ/λabs), (3.73)

whereλabs = σabs/σtot. This approximation may be less accurate, since for non-peripheral
collisions T(b) is rather close to 1, where dPabs(b)/dT(b) ≡ d(2T(b)−T(b)2)/dT(b) = 0,
while for peripheral collisions with small T we have dPabs(b)/dT(b) = 2. Also, even if
the analytic form in eq. (3.64) may give a satisfying result, there is no obvious reason why
the same value of the width parameter Ω, should be applicable as the one determined from
shadowing or diffractive excitation.

Monte Carlo implementations
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The GG model has been implemented in Monte Carlo simulations in many applications
to pA collisions, e.g. in ref. [12, 13, 14]. In experimental analyses it has been combined
with earlier Monte Carlos, where the parameters in one of the simple models described
in section 4.1 are allowed to vary according to eq. (3.64) (or using a scaled version as in
eq. (3.73), but typically using the total inelastic cross section rather than the absorptive),
in a way reproducing the total (or the inelastic) cross section respectively. The PHOBOS
Monte Carlo [48] with a black disk with a variable radius, which is also used by e.g. ATLAS
[16]. Fitting to the inelastic pp cross section here overestimates the number of absorbed
nucleons. In ref. [13] it is argued that this is a small effect, as the cross section for diffractive
excitation of the projectile proton is small in pA collisions. However, the cross section
for target nucleon excitation is not small, and although the cross section for diffractive
projectile excitations is small, it may have a significant effect on the tail of the wounded
nucleon distribution at high multiplicities. These problems will be further discussed in
section 5.

Impact-parameter profile

To investigate further, we need to make assumptions about the impact-parameter depen-
dence, T(pp)(b, σ) in eq. (3.69). Strikman et al. have suggested a Gaussian profile on the
form

T(pp)(b, σ) =
σ

4πB
exp (−b2/2B), (3.74)

where B is proportional to σ. The proportionality factor could then be fit together with the
σ0 and Ω parameters of eq. (3.64) to the total and elastic pp cross sections from eq. (3.69)
and the inclusively wounded cross section in eqs. (3.71) and (3.72):

σtot =

∫
d2b
∫

dσ Ptot(σ) 2 T(pp)(b, σ),

σel =

∫
d2b
∣∣∣∣∫ dσ Ptot(σ)T(pp)(b, σ)

∣∣∣∣2 ,
σwinc =

∫
d2b
∫

dσ Ptot(σ)
[
2 T(pp)(b, σ)− T(pp)(b, σ)2

]
. (3.75)

In this case we find that the wounded cross section distribution can indeed be written as a
simple scaling of the total, Pwinc(σ) = Ptot(σ/λwinc), however, the same would still not
be true for Pwabs

.

We also find that for the Gaussian profile, the unitarity constraint, T(pp)(b, σ) ≤ 1, gives
a hard limit on σtot − σwinc = σel + σDp < σtot/4, which is not found experimentally.
To proceed we therefore decided to choose a different form of the b distribution. What is
used by ATLAS in e.g. [16] is a black disk approximation: T(pp)(b, σ) = Θ(

√
σ/2π − b).
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We will instead use a semi-transparent disk with

T(pp)(b, σ) = T0Θ

(√
σ

2πT0
− b
)
, (3.76)

(c.f. eq. (3.61)) where the unitarity constraint gives us σel+σDp < σtot/2, which can easily
accommodate experimental data.

Conclusion on the GG formalism

We conclude that for the pA total cross sections, it is straight forward to use the GG formal-
ism by Strikman et al., interpreting σ as the total cross section averaged over target states.
The distribution Ptot(σ) then describes the fluctuations in the projectile states. The aver-
age and the variance of Ptot are given by eqs. (3.65) and (3.67). However, to get the elastic
or inclusively wounded nucleon cross section (including target excitation), we also need
to know the b-dependence of dσ(b)/d2b ≡ ⟨T(pp)(b)⟩t for all values of σ. If wounded
nucleons are interpreted as absorbed nucleons, we also need to know ⟨(T(pp)(b))2⟩t. To
estimate these quantities in a way consistent with eq. (3.18), we believe it is better to use a
formalism which include individual excitation of both projectile and target.

4.3 Consequences of fluctuating pp cross section

Adding fluctuations to the pp cross section dramatically changes the distributions of the
number of wounded nucleons. But since pp data only offers inclusive and semi-inclusive
cross sections to compare models to, one is given little guidance to why one model works
better than another. Although the DIPSY model is less than perfect in reproducing exper-
imental data, it includes those fluctuations in the nucleon wave function, which we argue
are important when considering the number of participating nucleons in pA and AA colli-
sions. Thus although it only works at high energies due to lack of quarks in the proton, the
description of high-p⊥ particles is poor, and generation of exclusive diffractive final states is
difficult, we believe these deficiencies are less important when describing the fluctuations.

Comparison with DIPSY

When comparing the GG results in eq. (3.75) with results from DIPSY, we first look at the
total cross section. As descussed above, we interpret the GG fluctuating total cross section
σ in eq. (3.75) as describing fluctuations in the projectile, averaged over target states:

σ ≡ 2
∫

d2b ⟨T(b)⟩t. (3.77)
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Table 3.1: GG parameters values obtained by fit to inclusive and semi-inclusive cross sections from DIPSY.

Ω σ0 λ

Original parametrisation . . .
Log-normal parametrisation .  .

The parameters in the GG distribution Ptot(σ) can then be tuned to reproduce the corre-
sponding distribution in DIPSY, which is obtained by generating a large ensemble of targets
for each projectile, and for each target calculate T at a large number of impact parameters.

To get the corresponding results for the elastic and the “wounded” cross sections σel =∫
d2b ⟨T(b)⟩2

t and σwinc =
∫

d2b
(

2 ⟨T⟩t − ⟨T⟩2
t

)
, we have to make an assumption about

the b-distribution of the amplitude ⟨T(b)⟩t = T(pp)(b, σ), appearing in eq. (3.75). We
here make the simple approximation in eq. (3.76), and calculate the cross section σwinc

from eq. (3.75).

Tuning the parameters in Ptot(σ) to the DIPSY results is now done fitting the cross sections
σtot, σel, and σwinc using a χ2 fit. The values obtained with DIPSY are here assigned
weights corresponding to the relative error one would expect from experiment (taken from
the analysis in ref. [56]). The result of the fit is shown in the first line of table 3.1. The
result of the fit is compared with the DIPSY results for the distributions Ptot(σ) and Pwinc(σ)
in figure 3.3. We note here that the b-dependence assumed in eq. (3.76) implies that the
distribution P(σwinc) is given by a scaled Ptot-distribution Pwinc(σ) ∝ Ptot(σ/λ), where
λ = σwinc/σtot.

It is clearly seen, that the high-σ tails of the DIPSY distributions are not reproduced by the
functional form for Ptot in eq. (3.64). Since DIPSY provides a picture of the fluctuations
built upon a full dynamical model, it is reasonable to believe that the shape of the DIPSY dis-
tributions are closer to reality than eq. (3.64). We therefore try a new parametrisation which
makes it easier to obtain a large high-σ tail, namely a log-normal distribution:

Ptot(lnσ) =
1

Ω
√

2π
exp

(
− ln2(σ/σ0)

2Ω2

)
. (3.78)

The fit to the DIPSY cross sections with the log-normal distribution is also shown in table 3.1.
The corresponding distributions are shown in figure 3.3 for two different width parameters,
labeled Ω = 0.25 and Ω = 0.33. We see that the larger value matches the DIPSY distribu-
tion perfectly, while the lower value is close to the GG curve below the maximum but has
a higher tail for larger σ.
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Figure 3.3: Fluctuations in the total (a) and inclusively wounded (b) cross section by DIPSY and the Glauber–Gribov model with
different parametrisations of the cross section fluctuations.

We note, however, that for technical reasons the diffractive cross section in DIPSY is calcu-
lated demanding a central rapidity gap, restricting the masses to M2

X ≤
√

s · (1GeV). This
implies that the fluctuations are somewhat underestimated. We therefore believe that the
functional form is quite realistic, while the width is underestimated. Results obtained when
tuning instead to the experimental cross sections are presented in the folloing subsection.

Comparison to data

We now repeat the same procedure as in the previous section, but with experimental results
for the relevant cross sections. There is no experimental access to the distributions in cross
section, but the integrated inclusive and semi-inclusive cross sections are measured, and we
here use values from ref. [56], extrapolated to √sNN = 5 TeV:

σtot = 93.2 ± 2.3 mb, σel = 23.2 ± 1.2 mb and σwinc = 63.0 ± 1.8 mb. (3.79)

Note that the diffractive cross sections here have been extrapolated into unmeasured MX
regions to the full 0 < MX <

√
S interval. As mentioned above this was not done in for

the DIPSY diffractive cross sections in section 4.3, where by construction a rapidity gap is
required at mid rapidity. Hence we expect that the fluctuations for DIPSY are underesti-
mated as compared to data. The parameter values obtained by minimising the χ2 are listed
in table 3.2. In figure 3.4 we compare the fits of the two parametrisations of Pwinc(σ) shown
above. We see that the new parametrisation provides larger fluctuations in the high-σ tail,
as expected. It should be noted that both fits reproduce the experimental cross sections
well within the experimental errors. For comparison we also show log-normal distribution
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Table 3.2: GG parameter values obtained by fit to inclusive and semi-inclusive cross-section from data.

Ω σ0 λ

Original parametrisation . . .
Log-normal parametrisation .  .

Pwinc(σ), when it’s width and mean are fitted to DIPSY by eye (denoted Ω = 0.33), which
is significantly more narrow.

We suspect that while the log-normal parametrisation probably gives a more realistic de-
scription of the high-σ fluctuations in the GG formalism, it is far from the whole story.
The GG results presented here are obtained assuming that all fluctuations are ascribed to
fluctuations in projectile size, as described in section 4.2. In DIPSY, however, the cross sec-
tion fluctuations arise from a combination of fluctuations in size and fluctuations in gluon
density. We believe that updating the profile functions from simple disks or Gaussian dis-
tributions to more realistic ones, could provide a better handle on the parametrisations of
the cross section from pp data, this will be investigated in a future publication. So far we
have described a prescription which seems to both catch the necessary physics to calculate
the inclusive wounded cross section, with all parameters being obtainable from pp data.
We will now apply this to pA collisions.

4.4 Distributions of wounded nucleons

Using the considerations about fluctuations in the wounded cross section, we will now turn
to generation of distributions of wounded nucleons. Normally, in inelastic, non-diffractive
pA collisions, the number of wounded nucleons is always one plus the number of inelastic,
non-diffractive NN interactions. In the following we will make the distinction between
diffractively and absorptively wounded nucleons. In order to avoid situations where the
projectile should sometimes be counted twice as a wounded nucleon, we will solely talk
about the number of wounded nucleons in the target, which we denote Nt

w. We note also
that since the number of sub-collisions and the number of wounded nucleons are trivially
connected, the question whether a specific observable scales better with wounded nucleons
or with NN sub-collisions, is much more relevant for nucleus–nucleus collisions.
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Figure 3.4: Fluctuations in the inclusively wounded cross section by the Glauber–Gribov model with two parametrisations of the
cross section fluctuations, fitted to data.

Inclusively wounded nucleons

We will describe the nucleus’ transverse structure using a Woods–Saxon distribution in the
GLISSANDO parameterisation [57, 58], where the density is given by:

ρ(r) =
ρ0(1 + wr2/R2)

1 + exp((r − R)/a)
, (3.80)

where R is the nuclear radius, a is “skin width”, and ρ0 is the central density. The parameter
w describes a possible non-constant density, but is zero for lead. The nucleons are gener-
ated with a hard core, which thus introduces short range correlations among the nucleons.
As shown by Rybczynski and Broniowski [59], the correct two-particle correlation can be
obtained if the nucleons are generated with a minimum distance equal to 2rcore. Using
rcore = 0.45 fm and a skin width of a = 0.459, the radius of the Lead nucleus becomes
RPb = 6.406 according to the parameterisation in [58].

For each nucleus state we generate a random impact parameter wrt. the projectile proton
and proceed to determine which nucleons will be wounded, following the previously out-
lined models.

In figure 3.5, we show the distribution in the number of inclusively wounded nucleons
(using σppwinc

= 63.0 mb) for: a black disk model without any pp cross section fluctuations;
GG with parameters fitted to data in section 4.3; GG with Ptot(σ) given by eq. (3.78), also
fitted to data; and the new simplified model outlined in section 4.1 (here called 2×2-disk)
Fitting the latter to the cross sections in eq. (3.79) as well as to the double diffractive cross
section σDD = 3.2 mb, we obtain the parameters listed in table 3.3.
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Table 3.3: Table of parameters of the 2×2-disk model fitted to pp data.

r1 r2 α c
. fm . fm . .

Looking at the individual distributions in figure 3.5, we see that all three inclusions of ad-
ditional fluctuations in the cross section, significantly increases the tail of the distribution
compared to the black disk. The 2×2-disk model has fewer fluctuations to very large Nt

winc

numbers, and the dip in the distribution around Nt
winc

= 10, also indicates that the fluc-
tuations are too crude. The difference between GG with the original parametrisation and
the log-normal distribution is visible in the tail above Nt

winc
≈ 35, as expected. One would

therefore expect only an effect in the central events.

Distinguishing between absorptively and diffractively wounded nucleons

In our interpretation of the GG model in section 4.2, it can be used to calculate the sum of
absorptively and diffractively wounded nucleons. In the Monte Carlo one would, however,
like to have an impact parameter dependent recipe for each sub-collision to decide whether
or not a target nucleon is diffractively or absorptively wounded, when hit by a projectile in
a definite state p. This amounts to calculating the ratio of the absorptive to the inclusively
wounded cross sections for a given sub-collision, and compare it to a random number

Pwabs,p

Pwinc,p
=

2
⟨
Tp,t(b)

⟩
t −
⟨
Tp,t(b)

⟩2
t

2
⟨
Tp,t(b)

⟩
t −
⟨

T2
p,t(b)

⟩
t

. (3.81)

For the 2×2-disk model this is done easily, as the above ratio reduces to:

Pwabs,p

Pwinc,p
=

2 − α

2 − α
⟨

T2
p,t(b)

⟩
t

. (3.82)

The GG model on the other hand, implies averaging over target nucleon states, and provides
thus no distinction. Instead we follow the 2×2-disk model to calculate the the conditional
probability to be diffractively wounded, if a nucleon is already inclusively wounded in the
GG model. This is:

P(diff|winc) = Θ
(√

σGG/π − (r1 − r2)− b
) 2 − α

2 − αc
, (3.83)
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Figure 3.5: Distribution in the number of inclusively wounded nucleons, Nt
winc

, in pPb events at
√

sNN = 5 TeV, for a Glauber
black disk, the GG model with two parametrisations of Ptot(σ) and the 2×2-disk model. All models have been fitted
to reproduce relevant measured (semi-) inclusive cross sections.

where the first term is a requirement that the two nucleons are separated by an amount such
that a fluctuation in size is necessary to be wounded. In figure 3.6 we show distributions of
Nt

wabs
for the 2×2-disk model and for the corrected GG model, using both parametrisations

of P(σ).

5 Modelling final states in pA collisions

In this section we will take the knowledge about distributions of wounded nucleons and
investigate the consequences for final states in pA collisions. We will discuss a few views
on modelling particle production in such collisions, all assuming that a full final state of a
pA collision can be adequately modelled by stacking pp events on top of each other, here
modelled using PYTHIA8. Following the introduction of the models, we will compare to
data, both multiplicity as function of centrality, and inclusive p⊥ spectra. Finally we will
give an estimate of the theoretical uncertainties present at this early stage of the model.

5.1 Generating final states with PYTHIA8

The general methodology for generating final states, which will be pursued here, will have
the following ingredients:

• For each collision, a Glauber calculation is performed as outlined in section 4.4,
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black disk, the GG model with two parametrisation of P(σ), corrected using the 2×2-disk model, along with the
2×2-disk model itself. All models have been fitted to reproduce relevant measured (semi-) inclusive cross sections.

setting up the nuclear geometry.

• The total number of inclusively wounded target nucleons is calculated, as well as the
number of absorptively wounded targets, if the two differ in the considered approach.

• Sub-collisions are generated as pp collisions, according to two separate approaches,
which will be outlined in the following.

• Each sub-collision is treated separately in terms of colour reconnection and hadro-
nisation. Efforts to include cross talk between sub-collisions will be the subject of a
future publication.

Cross talk between sub-collisions is, however, included in one respect by accounting for
energy-momentum conservation in all approaches. As before, we will concentrate on pPb
collisions at √sNN = 5 TeV. The methodology is, however, not limited to this, and gener-
alisation to AA collisions will be the subject of a future publication.

5.2 Wounded nucleons and multi-parton interactions

In ref. [25] Białas et al. noticed that the central particle density in pA collisions scales
approximately with the number of ”wounded” or ”participating” nucleons, dN(pA)/dη ≈
(Nwounded/2) dN(pp)/dη. The projectile proton was here included as one of the wounded
nucleons, and the distribution in rapidity could be described if each wounded target nu-
cleon gives a contribution proportional to (η − ηt)/(ηp − ηt) where ηt,p are the rapidities
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of the target and projectile respectively. The wounded projectile proton gives a similar
contribution with p exchanged for t.

The wounded nucleon model worked well for minimum bias events and low p⊥ particles,
while high p⊥ particles scale better with the number of NN collisions, which can be under-
stood if the high-p⊥ particles originate from independent partonic subcollisions. (See e.g.
ref. [26].) A model with this feature, called G-Pythia, has been used in analyses by ALICE
[17].

These results can be given a heuristic interpretation in terms of the Landau-Pomeranchuk
formation time. The formation time for a hadron is, in a frame where pL = 0:

τ ≥ 1√
p2
⊥ + m2

. (3.84)

This implies that a produced pion will resolve the nucleus at a length scale given roughly
by 1/p⊥. For p⊥ < 1 GeV the resolution scale is larger than that of the individual nuclei,
while for p⊥ larger than ∼ 1 GeV, constituents of individual nucleons can be resolved.

Below we will compare two models, generated with the help of PYTHIA 8. The model
denoted ”Absorptive” is similar to G-Pythia. Here each NN subcollision is treated as a
pp collision⁹. The second model, explained in the next subsection, is called FritiofP8 and
is more similar to the wounded nucleon model. We note that the models should not be
compared on equal footing. From the above arguments, the ”Absorptive” model is expected
to describe the high-p⊥ part of the spectrum better, while FritiofP8, being similar to the
wounded nucleon model, is expected to describe the low-p⊥ part, and thus also the total
multiplicity, best.

Technically, the subcollisions are in both models generated with PYTHIA8. This means that
for each sub-collision, multiple partonic interactions are created in decreasing order of p⊥
with the probability:

dP
dp⊥i

=
1
σabs

dσ2→2

dp⊥i
exp

[
−
∫ p⊥i−1

p⊥i

1
σabs

dσ2→2

dp′⊥
dp′⊥

]
, (3.85)

starting from a maximum scale related to the impact parameter of the sub-collision. The
cross section is obtained by treating everything as perturbative QCD 2 → 2 scatterings,

⁹Note that the G-Pythia approach really uses a black disk Glauber calculation with σNN = σin = σabs +
σDp + σDt + σDD, and lets the collisions be a mixture of the four corresponding processes, while we we
consider only absorptive collisions, as we believe this is more in line with the original model by Glauber. There
is, however, no notable difference for observables in the near central rapidity range, taken with a minimum
bias trigger.
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but since the cross section diverges at low p⊥, it is regulated at low p⊥ using:

dσ2→2

dp2
⊥

∝
α2

s (p2
⊥)

p4
⊥

→
α2

s (p2
⊥ + p2

⊥0)

(p2
⊥ + p2

⊥0)
2 . (3.86)

Here p⊥0 is a tunable parameter.

Aside from momentum conservation, PYTHIA8 also rescales the PDF every time a quark
has been used in an MPI. When using this MPI model for generating pA collisions we
maintain momentum conservation, but do not maintain the rescaling of the PDF between
separate NN collisions.

5.3 The revived Fritiof model

A very different approach was used in the Fritiof model [23]. Where the PYTHIA8 MPI
model assumes everything can be described by perturbative scatterings, Fritiof imposed a
soft model for everything, specifically limiting it’s range of validity to low-p⊥ processes.¹⁰

In the Fritiof model it is assumed that a soft min-bias interaction causes a momentum
exchange, which in light-cone variables has the form

P(Q+,Q−) ∝
dQ+

Q+

dQ−
Q−

. (3.87)

This produces two excited states assumed to decay like strings stretching the rapidity range
between the initial beam rapidities and a point distributed evenly within the kinemati-
cally allowed region The result is approximately reproducing the original wounded nucleon
model [25], but it is in the Fritiof model also assumed that a secondary encounter with an-
other nucleon will increase the excitation, thus leading to a logarithmic scale breaking.

In ref. [60] it was suggested to extend the Fritiof model to include the possibility for a
hard scattering and associated bremsstrahlung when the energy is high enough. At LHC
collision energies, the necessity for including the possibility for at least one such interaction
is apparent.

In figure 3.7 we show a schematic picture of a projectile proton wounding a number of
nucleons. The picture is strongly oversimplified, showing only the main gluon propagators,
i.e. no initial/final-state radiation (ISR/FSR) or multi-parton interactions (MPI) in the
individual sub-collision. Nucleons ν1, . . . ν4 are wounded absorptively with ν4 being the

¹⁰A motivation for the development of the Fritiof model, was to get a realistic extrapolation from pp col-
lisions to collisions with nuclei. This could then form a background in searches for possible collective effects.
Unfortunately it worked too well (at the energies available in the eighties), basically leaving no evidence for
plasma formation.
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Figure 3.7: Cartoon in rapidity–impact-parameter space, showing the evolution of exchanged gluons between a projectile pro-
ton and a number of wounded nucleons in the target nucleus. Nucleons ν1, . . . , ν4 are wounded absorptively,
while ν5 is wounded diffractively. ν4 is considered to be the primary wounded nucleon.

hardest or ”primary” wounded nucleon, which contributes to the hadronic multiplicity the
full rapidity region. The other absorptively wounded nucleons, ν1 . . . ν3, contributes only
to the parts of the rapidity range in the nucleus direction. As indicated by the exchanged
Pomeron, IP, ν5 is only diffractively excited, and will also only contribute in the nucleus
direction.

Thinking in terms of cut Pomeron diagrams à la AGK [61] we show in figure 3.8 the sim-
ilarity between the diagram describing diffractive excitation in proton–proton scattering
and a fully absorptive proton–deuteron scattering. It is not far fetched to assume that the
triple-Pomeron vertex in both cases are distributed in approximately the same way in ra-
pidity, i.e., that the gap size in the single diffractive excitation in pp would be distributed
in the same way as the the size of the region of rapidity populated by hadrons from both
wounded nucleons in a pd collision.

As discussed in section 3.3 the distribution in diffractive masses indicates a fairly flat dis-
tribution in rapidity of the triple-Pomeron vertex as ϵ is close to zero¹¹. We will therefore
assume as a first approximation, that the secondary absorptive collisions in a pA collision
can be approximated by single diffractive collisions.

¹¹The default in PYTHIA8 is actually to have ϵ = 0 for high-mass diffraction, which corresponds to the
distribution used in Fritiof in eq. (3.87).
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(a) (b)

Figure 3.8: Pomeron diagrams with cuts indicated for (a) single diffractive excitation in proton–proton and (b) doubly absorptive
proton–deuteron scattering.

Treating secondary absorptive collisions as single diffractive excitation has an additional
added benefit. In the PYTHIA8 implementation, one can model high mass soft excitation
using a perturbative approach where the exited proton can undergo multiple partonic in-
teractions, as in eq. (3.85), and ISR is included. It is thus possible to treat absorptively
wounded nucleons differently, depending on whether the mass of the excited system is
larger or smaller than a pre-set threshold mass scale.

Finally, in figure 3.7, we also have ν5, which is an standard diffractively excited nucleon,
and will be modelled as such.

5.4 Comparison to data

We now compare the two methods for particle production, which were introduced above.
Stacking absorptive events on top of each other is labelled “Absorptive”, we use a black disk
Glauber model with σabs = 67.9 mb to calculate the number of absorptive sub-collisions
event by event. The model including both diffractive excitation and the Fritiof-inspired
absorptive sub-collisions is labelled “FritiofP8”. To calculate the amount of wounded nu-
cleons we use the modified GG model with cross section fluctuations described by the log-
normal distribution in eq. (3.78) and including the modifications introduced in section 4.2,
as well as distinguishing between absorptive and diffractive events using the 2×2-disk mod-
ification, introduced in section 4.4. All parameters are fitted to pp data.
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Figure 3.9: Distribution in
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E⊥ for a sum of full absorptive events and the new FritiofP8 model, for pPb collisions at
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sNN = 5
TeV.

Centrality estimation and multiplicity

The primary observable we wish to discuss, is the charged particle pseudo-rapidity distribu-
tion at different centralities, as measured by ATLAS [16]. When comparing Monte Carlo
predictions to data in pp, the work flow has matured greatly over the past years, with the
advent of automated frameworks for performing such tasks, such as Rivet [62]. In this
framework, equal treatment of theory and unfolded data is ensured by publishing mea-
surements along with an implementation of the analysis. This is not yet tradition in the
heavy ion community, and the data comparisons shown here, is the result of our own Rivet
implementation on the analysis, based on the paper, with data obtained from HepData
[63].

In the experimental analysis by ATLAS, event centrality is calculated by taking fractiles of
the distribution in

∑
E⊥ of charged particles in the interval¹² 3.1 < η < 4.9. For this

particular observable, unfolded data has not been published, but we will still compare the-
oretical curves for the two previously outlined particle production models. In figure 3.9 we
show the model stacking Nt

wabs
absorptive events spanning the whole rapidity region (de-

noted “Absorptive”) reaches a much higher
∑

E⊥ than the Fritiof inspired model (denoted
“FritiofP8”) With one absorptive event spanning the whole rapidity region, Nt

wabs
− 1 ab-

sorptive events modelled as diffractive excitation, and Nt
winc

−Nt
wabs

events from diffractive
excitation. We note that the “FritiofP8” results agree almost perfectly with the data from
Atlas, while the Absorptive model reaches significantly higher

∑
E⊥ values.

¹²Notice that our definition of η is opposite to the one used in ref. [16], but follows the HepMC published
data.
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Figure 3.10: Pseudo-rapidity distribution of charged particle multiplicity for centralities 60− 90% (a), 20− 30% (b), and 0− 1%
(c), compared to “Absorptive” and “FritiofP8” particle production models.

In figure 3.10 we show pseudorapidity distributions for different centralities, where we have
used the same cuts as ATLAS, but reconstructed fractiles from our own distribution. ¹³
We see that while both models describe the peripheral events reasonably well (which is
expected), the new FritiofP8 model based on diffractive excitation does a much better job
describing both average multiplicity and the forward–backward asymmetry, as expected.

¹³Further centralities are shown on http://home.thep.lu.se/DIPSY/FritiofP8, but omitted here
for brevity.
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Figure 3.11: Distribution in p⊥, centrality inclusive, for charged particles in (a) the central region, −1.0 < η < 1.0; (b) the
proton direction, 1.3 < η < 1.8; and (c) the nucleus direction −1.3 < η < 0.8.

Inclusive transverse momentum

We now compare to centrality-inclusive charged particle p⊥ spectra in different ranges of η
as measured by CMS [64]. In figure 3.11a we show the transverse momentum distribution
for −1.0 < η < 1.0. We see that the FritiofP8 model performs well at low p⊥, while
Absorptive performs well at high p⊥, as expected.

The same picture is seen when going to large negative η (figure 3.11c), but performance of the
FritiofP8 model improves slightly when going to large positive η shown in figure 3.11b for
1.3 < η < 1.8 (the proton side). The ”absorptive” model performs as before, but it is rather
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surprising that the FritiofP8 model performs poorly at high p⊥ here. One explanation
could be that the parton distribution function used for for secondary absorptive events is
a Pomeron PDF and not a proton PDF, due to the fact that secondary absorptive events
are modelled as single diffractive events. This is also a possible explanation for the poor
performance at high p⊥ in figure 3.11a and figure 3.11c.

5.5 Uncertainties

The method presented here for generating final states in pA is interesting, as it gives quali-
tatively correct description of the multiplicity in both the proton and the nucleus direction.
It is still mostly a proof-of-principle since, as we will demonstrate here, using the PYTHIA8
default settings introduces several hidden assumptions. We will discuss these assumptions
by giving a rough estimate of the uncertainty associated with each of them. That uncer-
tainty will decrease, or vanish entirely, when the assumptions are dealt with more carefully,
one by one, which will be done in one or more future publications.

PDFs and MPI activity

In the previous section we described how the secondary absorptive sub-collisions are ap-
proximated as single diffractive excitation events. The perturbative handling of single
diffractive events at high masses in PYTHIA8 relies on a factorised Pomeron approach, where
the diffractive state is modelled by a Pomeron–proton collision, including MPI, and we will
study two important uncertainties here.

• The Pomeron PDFs used in the MPI machinery are not really appropriate in our
model of the secondary absorptive sub-collisions, since it is still really the parton den-
sity in the proton which should drive the MPI. To see possible effects, we have tried
to make the Pomeron more proton-like, by modifying the PDF used in PYTHIA8 to
have much more small-x gluons¹⁴. This will increase MPI activity.

• Another way of modifying the MPI activity is to change the Pomeron–proton cross
section used in PYTHIA8. This is not a physical cross section, but rather a free param-
eter in the program which only affects MPI activity, and is adjusted to fit data. The
default value of this parameter is 10 mb. We here increase it to it’s maximal allowed
value, 40 mb, to better reflect a pp absorptive cross section.

¹⁴The default Pomeron PDF in PYTHIA8 is H1 2006 Fit B LO[65], we here use instead a simple Q2-
independent distribution on the form xf(x) ∝ xa(1 − x)b, with a = −0.5 and b = 6.0 for gluons and
a = −0.05 and b = 0.05 for quarks.
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Figure 3.12: Pseudo-rapidity distribution of charged particle multiplicity for centrality 0 − 1% compared to three different ways
of estimating the number of MPIs, giving an estimate of the method uncertainty.

In figure 3.12 we show the pseudo-rapidity distribution of charged particles for the highest
centrality bin. The two variations above are labelled “PDF” and “MPI” respectively while
FritiofP8 is the same as before.

In total, the envelope of the three lines gives what we believe to be a reasonable, albeit con-
servative, estimate of the uncertainty so far associated with the approximations regarding
the parton densities and the amount of MPIs.

GG uncertainty

In section 4.3 we described how the Glauber–Gribov cross section fluctuations could be
parameterised with a log-normal distribution. This new parameterisation was used in all
the previous data comparison plots, here we show how the traditional parameterisation
(also fitted to pp data) compared to the new one. Since distributions of wounded nucleons
for the two models differs most in the tail, we are most sensitive in central collisions, In
figure 3.13 we show the uncertainty in central particle production arising from changing the
parametrisation of cross section fluctuations. We see that the uncertainty covers data well,
but is smaller than the uncertainties in the handling of secondary absorptive events above.
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Figure 3.13: Pseudo-rapidity distribution of charged particle multiplicity for centrality 0−1% compared to two parameterisations
for the GG model.

6 Conclusions and outlook

Collisions of heavy nuclei with protons or each other, are often understood in terms of their
deviation from minimum bias pp collisions, which after many years of work on models for
multiple partonic interactions, are fairly well understood. The extrapolation from pp to
pA or AA, which is usually based on Glauber models, is therefore a crucial step toward
understanding the deviations, and thus crucial for understanding how and if a de-confined
plasma of quarks and gluons are created in heavy ion collisions, and what kind of impact it
has on final state observables. In this article we have discussed Glauber models, their exten-
sions including fluctuations and the impact these extensions on the number of wounded
nucleons, followed by a possible way of using that knowledge to generate full, exclusive
final states as a sum of pp collisions. We will conclude on these two parts separately, fol-
lowed by an outlook primarily focused on extending the model for full final states, to also
include microscopic models for collective effects.

6.1 Fluctuations in the Glauber formalism

Following Good and Walker, we have discussed diffractive excitation as a manifestation of
fluctuations in the substructure of the nucleons. As a result of this discussion we identified
the inclusively wounded cross section to be the relevant pp cross section for calculations of
the number of wounded nucleons. The wounded cross section has contributions from
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absorptive processes plus diffractively excited target nucleons, in brief form we have for the
semi-inclusive pp cross sections:

σwinc = σabs + σDD + σDt = σtot − σel − σDp. (3.88)

We have discussed the developments in calculating the number distribution of inclusively
wounded nucleons in the so-called Glauber–Gribov approach by Strikman and co-workers.
By comparing distributions of the cross section to ones calculated with the DIPSY model
and measurements, we find that the parametrisation of the cross section suggested in the
Glauber–Gribov approach does not fully include all fluctuations necessary to describe the
ones in DIPSY.

The simplest Glauber calculations using a fixed black disk, can clearly not describe any
fluctuations, and we want to emphasize that just setting σNN = σwinc in such a calculation,
is not enough if one wants to calculate the contribution from the wounded nucleons to a
centrality defining observable.

We have shown that a Glauber–Gribov calculation with a black disk fluctuating in size, can
be used to predict the distribution of inclusively wounded nucleons, if the fluctuating black
disk is attributed to fluctuations in the projectile, while averaging over fluctuations in the
target nucleon. However, if one wants to separate absorptively wounded nucleons from
diffractively wounded ones, it is necessary to also consider fluctuations in the individual
target nucleons.

We have suggested a new functional form for the fluctuations in the pp interaction, with a
higher tail to a larger cross section. Instead of the parametrization introduced by Strikman
et al., and used in several experimental analyses, we suggest a log-normal distribution, which
is believed to give a somewhat better description of the inclusive distribution, though not
necessarily a more realistic picture of the cross section fluctuations. We have also included
fluctuations in the target nucleons by introducing a crude Glauber-like model, where the
radii of the projectile and target are allowed to fluctuate independently between two values.
The model includes four parameters, and can be fitted to describe four independent semi-
inclusive pp cross sections, including the inclusive wounded one. By using this model to
include projectile fluctuations in the Glauber–Gribov approach, we separate the inclusively
wounded nucleon into absorptively and diffractively wounded ones.

The parametrisations and toy-models studied are built on the assumption that distributions
of wounded nucleons can be described solely by fluctuations in the proton size; projec-
tile size for the inclusive distributions, and target nucleon size for distinguishing between
absorptively and diffractively wounded nucleons. Thinking about the dynamics of more
involved calculations, like the DIPSY model used in this paper, it is clear that size fluctua-
tions cannot account for all the relevant physics. In the DIPSY model, fluctuations in cross
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section will also arise when e.g. a small projectile is very dense, and therefore gives rise to a
larger cross section. Similarly, a large projectile can be dilute, giving rise to a smaller cross
section. In the language of this article, such effects would need to be accounted for by a
fluctuating, b-dependent opacity, resulting in a profile function which would go beyond
the simple Gaussian, grey -or black disks, but still not be as calculationally involved as the
full, dynamical models. This will be the subject of a future publication.

6.2 Full final states

We have given a proof-of-principle for an approach to model exclusive final states in pA
collisions as a sum of several pp collisions. The approach uses PYTHIA8 to calculate the
hardest absorptive sub-collision as a normal non-diffractive pp collision, while the subse-
quent absorptive collisions are modelled as single diffractive events. This was inspired by
the old Fritiof model, which is valid at lower energies, but adds another dimension, as high-
mass single diffractive exchanges can now be treated perturbatively and allows for multiple
parton–parton scatterings.

We have shown that this approach, in a quite crude implementation, is able to give a rea-
sonable description of some recently published final-state measurements of pPb collisions
at the LHC, but the uncertainties in our approach are quite large. In future studies we will
try to eliminate these uncertainties, in the hope to get a theoretically well motivated and
more accurate description of data.

To do this it is helpful to have data published in a usable form for comparison with event
generators. The LHC pp community has come a long way in this respect by publishing
many of their results in the form of Rivet routines. In this way the measurements are pre-
sented in a clearly reproducible form, including all relevant kinematical cuts and unfolding
of detector effects but free from dependence of theoretical models. In order to allow for
the development of better event generators for heavy ion collisions, it is imperative that the
experimental heavy ion community adapts a similar way of presenting their results.

6.3 Outlook: modelling collective effects

In both the theoretical and experimental communities around heavy ion collisions, much
attention is given to observables thought to convey information about a possible plasma
state created in the collision. A direct application of the work presented in this article, is
to use the final state extrapolation as a baseline for calculations of collective effects using
microscopic, QCD based models. In the pp community, much attention have been given
to models of final state interactions including colour reconnections, rope hadronisation
and junction formation [66, 67, 68]. These models have, in pp been shown to reproduce:
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the enhancement of strange hadrons to non-strange hadrons in dense environments [69];
flow-like effects in hadron ratios as function of p⊥; and preliminary studies have shown
that interactions between strings can produce a ridge [70].

To implement such models in a framework like the one presented here, a necessary compo-
nent is a good understanding of the sub-collisions in transverse space. Such a picture is not
included in e.g. the PYTHIA8 MPI model, and must therefore be added a posteriori. Guid-
ance can then be had from the DIPSY model, which includes detailed information about
the transverse space structure, but does not produce final states describing data as well as
PYTHIA8.

Finally, the final state model introduced here should be developed further to model fully
exclusive hadronic final states also in AA collisions. Since every projectile here also becomes
a target, we suspect that the model cannot be transferred one-to-one, but that some modi-
fications may be needed. Here modelling collective effects using microscopic models is also
highly desirable.
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Abstract: An extension of the rope hadronization model, which has previously provided
good descriptions of hadrochemistry in high multiplicity pp collisions, is presented. The
extension includes a dynamically generated transverse pressure, produced by the excess en-
ergy from overlapping strings. We find that this model can qualitatively reproduce soft
features of Quark Gluon Plasma in small systems, such as higher ⟨p⊥⟩ for heavier parti-
cles and long range azimuthal correlations forming a ridge. The effects are similar to those
obtained from a hydrodynamic expansion, but without assuming a thermalized medium.



Recent precise measurements of pp and pA collisions at the LHC show flow-like effects
[1, 2, 3] similar to those found in high energy nucleus collisions. Examples are ridge like
structures, quantified in different flow coefficients, and measurements of strangeness en-
hancement with increasing event activity [4]. These are regarded as two important char-
acteristics of the soft features of the Quark Gluon Plasma, and are often described in a
hydrodynamical framework assuming thermal equilibrium.

Dynamical models based on string [5, 6] or cluster [7] hadronization models, e.g. Pythia8
[8, 9] and HERWIG7 [10], are able to describe the general soft features of pp collisions in
a very satisfactory way. The need for imposing new dynamics at a macroscopic level, only
present at soft scales, is complicated, as it breaks the principle of jet universality by introduc-
ing a scale below which new dynamics should be ”switched on”. A quite successful model
based on this principle, is the core–corona model [11], implemented in the EPOS genera-
tor [12], where events are subdivided into a ”core” and a ”corona”, based on event activity.
Recently, attempts has been made to incorporate a “thermal” exponential m⊥-spectrum
for the string break-ups in the Lund hadronization model [13] with promising results, but
it is still unclear whether such a ”microscopization” can capture the essential features of
hydrodynamics, and if so, if this picture can correctly describe both hadrochemistry and
flow.

To provide a description of the hadrochemistry in the underlying event of pp collisions,
we recently suggested a ”rope hadronization” model [14], based on work by Biro, Knoll
and Nielsen [15]. This model provides corrections to the string hadronization model, by
allowing strings overlapping in transverse space to act coherently as a ”rope”. The model
is implemented in the DIPSY event generator [16], which provides a dynamical picture of
the event structure in impact parameter space, allowing for a calculation of the colour field
strength in each small rope segment¹. This formalism also includes all fluctuations. The
colour field is characterized by two quantum numbers {p, q}, which together signifies its
SU(3) multiplet structure. Lattice calculations have shown [18], that the string tension –
energy per unit length – scales with the quadratic Casimir operator of the multiplet, such
that the ratio of the enhanced rope tension (κ̃) to the triplet string tension in vacuum (κ)
is:

κ̃

κ
=

1
4
(
p2 + q2 + pq + 3(p + q)

)
. (4.1)

The enhancement of string tension was shown [19] to greatly influence the ratio of strange
to non–strange hadrons, and to give the correct dependence on event activity as measured
by ALICE [4].

¹A Lund string is in its simplest form, a straight piece stretched between a quark and an anti-quark, or a
colour triplet and anti-triplet. As gluons are added to the string, they act as point-like ”kinks” on the string,
carrying energy and momentum [17]. We will denote all straight pieces between gluons or (anti)quarks string
segments. A q − g − q̄ string thus has two segments.
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Figure 4.1: Cartoon in impact parameter space showing strings overlapping at time t = t1, and as time progresses (t1 < t2 <
t3 < t4), they move apart, picking up p⊥ as indicated with arrows.

In this letter we show how this enhanced string tension can also be employed to generate
a flow–like effect. Since the energy density in the overlap region is higher than outside, a
pressure will be dynamically generated, pushing strings outwards. In figure 4.1 this principle
is illustrated; we sketch several overlapping strings in impact parameter space at some initial
time t1. The density is larger towards center, giving a pressure gradient. We start a spatio-
temporal evolution and let the strings pick up transverse momentum from the excess energy
in the overlap regions. As the strings move further apart, the excess energy will decrease,
and so will the transverse pressure. From time t1 to t2 the strings pick up some transverse
momentum, as indicated with arrows, and move a little bit. From t2 to t3 the strings move,
but picks up less transverse momentum, as the overlap is now smaller. From t3 to t4 the
strings only move, and picks up no transverse momentum, as there is no overlap. The strings
should of course hadronize at some point along the way, and we interrupt the evolution at
some given time, where strings are no longer allowed to pick up p⊥ or propagate.

The partonic state obtained from the DIPSY MC is formulated in rapidity (y) and transverse
coordinate space (b⊥). Colour-connected partons separated by a distance Δb⊥ are also
given opposite transverse momenta p⊥ ≈ Δb⊥/(Δb⊥)

2. The initial state is two Lorentz
contracted pancakes colliding at z = 0, and the string segments are then stretched out
mainly along the z direction. The distribution of gluons is approximately boost invariant,
and to visualize the effect of the transverse repulsion, it is most easy to study a string segment
stretched between two gluons in a system where they have rapidities ±Δy/2. The endpoints
of this string segment will then move out with longitudinal velocities vL = ± tanh(Δy/2),
and the length of the segment in coordinate space, at time t, is consequently t·tanh(Δy).
The repulsive transverse force between two strings is proportional to the length of the over-
lapping region, and is therefore proportional to f·t ·Δy, where f is the force per unit string
length.

The cartoon in figure 4.1 represents in a schematic way a ”slice” in rapidity². The result of
the repulsion will be a transverse velocity for the string, which might be represented by very

²In reality the strings are, of course, not distributed symmetrically, instead there are large fluctuations in
the transverse positions of the strings.
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many very soft gluons. The breakup of such a string state cannot be handled current imple-
mentations of string hadronization, as in e.g. Pythia8. As the DIPSY generator interfaces
to the Pythia8 hadronization implementation, this must be remedied. A transverse gluon
will give momentum to hadrons within one unit of rapidity on either side of the gluon. It
is therefore possible to simulate the effect of the continuous distribution of infinitely soft
gluons by finite gluons separated by at most one rapidity unit. In our calculations we cut
the event into many rapidity slices, and in each slice we let the strings “shove” each other
apart. The mechanism for shoving is to add a small excitation (i.e. a gluon) to each string
in each slice. In each time–step δt a string within a slice δy (and thus length δl = t δy)
will get a kick in the transverse direction δp⊥ = f t δy δt. As the mass of the string piece
is ≈ κ δl = κ t δy also is proportional to the time t, we note that the factors t drop out in
the result for the transverse velocity boost. When the strings no longer overlap, the many
small kicks are added to a set of gluons, which can be handled by Pythia8. The p⊥ of
these gluons are chosen sufficiently small, so that they have lost their energy before the
string hadronizes. This implies that their transverse momenta do not produce a jet, but
just some extra p⊥ within a rapidity range ±1 unit. The result is then not sensitive to the
exact number of gluons within such an interval, as long as their transverse p⊥ add up to
the same value.

In our current implementation, the shoving is implemented as the sum of many small
kicks between all pairs of string segments in different rapidity intervals spread out evenly
in the available phase space. This is done in several time steps, and in each such kick, the
momentum is conserved as the inserted gluons will get equal and opposite transverse kicks,
while the longitudinal recoils are absorbed by the original partons in the end of the string
segments.

If the string is similar to a flux tube in a type I superconductor, the field is approxi-
mately constant within a cylindrical tube. Such a picture was used in analytic studies by
Abramovsky and coworkers as early as 1988 [20]. At that time there was no experimen-
tal evidence for long range azimuthal correlations, but the model was recently revived in
ref. [21], and implemented as a Monte Carlo toy model. In this model the increased energy
per unit string length, δE

δl , scales with the overlap area in transverse space. This gives (in
our notation):

δE
δl

= Θ(R − d)

√(
κ+ κ̃

A(R, d⊥)
πR2

)2
− κ2, (4.2)

where R is a characteristic transverse radius of the cylinder, and A(R, d⊥) is the overlap area
between two circles of radius R, sitting at a distance d⊥ apart in the transverse plane. Due
to the repulsion, this energy is transferred to kinetic energy, giving a transverse velocity
boost to the strings.

For a type II superconductor the field strength falls off more smoothly away from a central
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core. Lattice calculations favour a QCD string with properties on the border between type
I and II [22]. In our implementation we have assumed a smooth Gaussian form, similar
to the lattice result, and furthermore added a temporal part to the evolution, as described
above:

dp⊥
dt dl

=
gκ

R
√

2π
exp

(
−

d2
⊥(t)
2R2

)
. (4.3)

Here g is a free parameter controlling the strength of the shoving, which should be of order
unity. The transverse distance between the strings has acquired explicit time dependence.
As discussed above, such a repulsion gives a transverse boost to the string segments, and thus
extra p⊥ to heavier hadrons. The ⟨p⊥⟩ dependence on the hadronic mass, is an observable
which is often connected to hydrodynamics, as a thermodynamic pressure would provide
the same physical effect.

In figure 4.2 we show the ⟨p⊥⟩ for several hadron species, divided by ⟨p⊥⟩ for pions, in pp
collisions at

√
s = 7 TeV. We show results for DIPSY without ropes, with ropes but no

shoving, and with both ropes and shoving. By choosing a ratio, rather than the raw ⟨p⊥⟩,
we minimize effects from small differences in the tuning of the three models. Even DIPSY
without ropes shows a rise. This is expected, as lighter hadrons are more likely to be decay
products – consequently with lower ⟨p⊥⟩ – than heavy particles originating directly from
the string breaking. When ropes are switched on, the ⟨p⊥⟩ rises slightly. This is an effect
of the enhanced string tension. When the string breaks, the emerging hadron obtains a p⊥
taken from a Gaussian distribution. The width of this distribution rises with the effective
string tension as [14]:

σ̃⊥ = σ⊥

√
κ̃

κ
. (4.4)

The rise in ⟨p⊥⟩ from ropes is, however, not directly mass dependant, while the expected
mass dependence in the effect from shoving is clearly seen in figure 4.2.

Di-hadron correlations, which in data show a ridge effect, are of particular interest. We
know that the DIPSY generator has problems reproducing the high-p⊥ end of charged
particle spectra; it generates too many hard partons. This introduces a potential problem for
our string shoving model, which assumes parallel strings. To study the correlation effects on
pairs of soft hadrons, we have therefore biased the generated events (pp at

√
s = 7 TeV) by

only considering strings that span a rapidity range larger than Δy = 8, and with no partons
above p⊥ = 3 GeV. Thus we get events with long strings, almost parallel in rapidity.³

To calculate the correlations, we employ an analysis similar to the one chosen by exper-
iments [1, 2], where a signal distribution S(Δϕ,Δη) is divided by a random background
distribution, B(Δϕ,Δη), constructed by combining particles from two different events in

³Note that the results on the mass dependence of ⟨p⊥⟩ are fairly insensitive to this bias, and in figure 4.2
the bias was not applied.
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Figure 4.2: Average p⊥ as a function of hadronic mass, for several species. Results are presented for DIPSY without ropes,
DIPSY with ropes and DIPSY with ropes and shoving.

the same centrality class. In figure 4.3 we show results for 2 < Δη < 4, for particles with
transverse momentum between 0.5 and 3 GeV, using the rope model in DIPSY without
(left) and with (right) shoving effects. We see the emergence of a clear ”ridge” around
Δη = 0. Although the emerging ridge is roughly of the same relative size as the one re-
cently measured by ATLAS [1] in high multiplicity pp events at

√
s = 13 TeV, we stress

that the results presented here can only be taken as a qualitative proof-of-concept, due to
the event bias we have introduced.

In this letter we have demonstrated that by introducing shoving in the rope hadroniza-
tion mechanism implemented in DIPSY, we are able to qualitatively describe collective
phenomena in pp collisions, in addition to the quantitatively correct description of hadro-
chemistry already provided by the ropes. We remark that the mechanism does not require
any medium or thermalization, but is composed solely of microscopic interactions.

To get a better quantitative description of collective phenomena, further studies are needed.
High p⊥ jets are expected to rapidly leave the dense system of strings, and more work is
needed for a realistic description of the interplay beteen the jet and the rope. Also, as it
stands, the model introduces a number of parameters, e.g., the strength of the shoving, the
number of rapidity intervals, and the number and size of the time steps. Although all of
them have physically motivated values, their influence on the results must be studied in
more detail and, in the end, they need to be tuned to data.
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Figure 4.3: Two particle correlations without (left) and with (right) shoving effects, for central and peripheral pp events at√
s = 7 TeV.

Finally we note that, if successfully tuned to pp data, the model can be directly applied to
collisions involving heavy ions in DIPSY, and in that way provide a complementary picture
to the conventional hydrodynamical description of pA and AA collisions. In addition we
plan to implement the model to our developing heavy ion event generator based on Pythia8
presented in ref. [23].
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