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ABBREVIATIONS

XML - Extensible Markup Language

DDA - Data-dependent Acquisition

SRM - Selected Reaction Monitoring

DIA - Data-Independent Acquisition

numlLin - Numpress Linear Prediction

numSlof - Numpress Short Logged

numPic - Numpress Positive Integer Count

numSafe - Numpress Linear Prediction Transformation (lossless)
numAll - combination of numLin and numSlof compression
mz5zlib - mz5 with zlib compression

SSD - Solid-State Drive

MGF - Mascot Generic Format



SUMMARY

The open XML format mzML, used for representation of mass spectrometry (MS) data, is
pivotal for the development of platform-independent MS analysis software. Although
conversion from vendor formats to mzML must take place on a platform on which the
vendor libraries are available (i.e. Windows), once mzML files have been generated, they
can be used on any platform. However, the mzML format has turned out to be less
efficient than vendor formats. In many cases, the naive mzML representation is 4-fold or
even up to 18-fold larger compared to the original vendor file. In disk I/O limited setups, a
larger data file also leads to longer processing times, which is a problem given the data
production rates of modern mass spectrometers. In an attempt to reduce this problem, we
here present a family of numerical compression algorithms called MS-Numpress, intended
for efficient compression of MS data. To facilitate ease of adoption, the algorithms target
the binary data in the mzML standard, and support in main proteomics tools is already
available. Using a test set of 10 representative MS data files we demonstrate typical file
size decreases of 90% when combined with traditional compression, as well as read time
decreases of up to 50%. It is envisaged that these improvements will be beneficial for data

handling within the MS community.



INTRODUCTION

Open XML formats for representation of MS data have been developed by the proteomics
community to facilitate exchange and vendor neutral analysis of mass spectrometry data. Initially
two formats, mzXML (1) and mzData (http://psidev.info/), existed in parallel, until these formats
were merged into the single standard format mzML (2). The mzML format has been adopted widely
by the proteomics community and is supported by many data processing tools. However, although
successfully used in many pipelines, the mzML format has not reached its full usage potential, mainly
due to large file sizes in comparison to the raw vendor formats. The file size problem has become
more marked with the introduction of recent high-resolution high-frequency mass spectrometers. As
an example, a raw data file from a data-independent acquisition experiment using an AB SCIEX
TripleTOF resulted in a vendor format data file of 2.5 GB. Conversion of this file to standard mzML
resulted in a 46.7 GB file, with a conversion time of about 12 min on a desktop computer (later called
high-end I, Fig. 1A) dedicated to the conversion process. If the file is compressed using gzip to lower
the storage footprint, the size drops to 21.6 GB, but the conversion now takes 2 hours instead. This
(extreme) example pinpoints the need for increased efficiency in the standardized representation of

MS data.

Across the community, there is little previous work done on compression of MS data. In two
technical papers (3, 4), Miguel et. al. describe lossless and near-lossless compression methods for
QTOF data, achieving compression factors above 10. No measurements are provided on the
compression time however, and the algorithms are benchmarked on a very small set of data files.
Blanckenburg et. al. describe a lossy compression technique for Fourier transform ion cyclotron
resonance data (5), where known non-metabolite data points are discarded. Outside the MS
community, potential benefits could come from recent work in the numerical computation field (6,
7), were many data types are similar to MS data in terms of precision and smoothness. Nevertheless,
perhaps the most relevant recent advance is the emergence of the mz5 format (8), which yields

performance increases via a binary representation and optimized libraries, as well as some regular



data compression. While this format, based on the open HDF5 standard (The HDF Group, Champaign,
IL), is an efficient representation of mzML files, it suffers from the fact that the files are not readable
without native libraries or specialized software, which, to some extent, has hampered its uptake.
Also, while mz5 can be “lossless”, default compression implies removal of zero intensity scans, which
means the original data cannot be reconstructed, and some algorithms require zero intensity scans

for correct functioning.

The standard XML representation used in mzML can be easily viewed as text on any operating
system, and it is relatively easy to write a parser in any programming language. We thus sought to
overcome the mzML efficiency shortcomings by introducing better compression of the binary data
found in mzML files while still leaving the metadata in XML format, and propose such an extension to
the format here. Furthermore, we envisage that decompression of this binary data should be easy to
incorporate into software tools via permissively licensed stand-alone source code files for C++ and
Java, which do not require any external dependencies. We here also exemplify the facility of usage by

implementing support in several popular tools for proteomics data analysis.

EXPERIMENTAL PROCEDURES AND RESULTS

To efficiently compress the three main types of binary data present in mzML files: i) mass to charge
ratios, ii) ion counts and iii) retentions times, we have developed three new near-lossless
compression algorithms, while ensuring for each data type that precision losses are well below the
precision of the most advanced mass spectrometers of today. The Numpress Linear Prediction
Compression algorithm (hereafter called numlLin, relative error < 2e-9) takes advantage of the
linearly increasing values in m/z and retention time data, and is optimized for high-resolution m/z
data. lon count data does not linearly increase but requires less stored precision because of the
lower instrument precision, and Numpress Short Logged Float (numSlof, relative error < 2e-4) is

optimized for this data type. We also developed a second ion count compression (Numpress Positive



Integer Count, numPic) and a lossless transformation (Numpress Linear Prediction Transformation,
numSafe), which are not used further here, but are presented in the supplementary materials.
Although the least significant of the 16 double-precision decimals are lost in the first conversion to
the compressed format for all the algorithms, compression and decompression after this does not
incur further losses. To maximize speed, the algorithms are highly local in memory and only need a
single traversal of the data. For a complete description of the algorithms we refer to Supplemental

Methods, and to the reference implementations in Java and C++, found at https://github.com/ms-

numpress/ms-numpress under the Apache 2.0 license.

To compare MS-Numpress to current alternatives for storing mzML data, we extensively evaluated
size, write time and read time of available compression schemes on a varied set of data files using
different computers (Fig. 1). For this we constructed a test set of 10 MS data files from different
vendors, instruments, and experiment types (Fig. 1D and Suppl. Table 1). The test set files included
data-dependent acquisition (DDA), selected reaction monitoring (SRM) and data-independent
(DIA/SWATH) acquisition modes, and both simple and complex samples, giving a heterogeneous set
of distributions of MS1 and MS2 spectrum data and chromatogram binary data arrays of different
lengths (Suppl. Fig. 1). These files were converted to mzML, imzML (9) and mz5 (8), both without
compression, using zlib compression, and using gzip of the entire file. Files were also compressed in
multiple different setups using MS-Numpress compressions, resulting in a total of 18 tested
compression schemes (Fig 1C and Suppl. Table 2). To avoid clutter, minor results are left out here,
and readers interested in imzML-data or individual Numpress results are referred to the
supplementary material. The different compression schemes were compared based on file size, read
time and write time (Fig. 1B). Benchmarking was performed on four dedicated desktop computers of
varying capacity (Fig. 1A), using a custom msconvert (10) build, and timed using a script written in
Python. Write time was measured as the total time for an msconvert conversion from the vendor
raw format. Since this includes the vendor read time it gives a constant offset, but this constant is in

general small compared to the write time. For read benchmarking a custom program was made, that



reads files using the ProteoWizard (10) API. To ensure that all data is read, this program explicitly
reads all binary values in the spectra and chromatograms found in the file. Test files, results, and
program binaries are available at the Swestore repository

(http://webdav.swegrid.se/snic/bils/lu_proteomics/pub).

The use of near-lossless compression introduces the question of whether one can be sure that no
analytically relevant data is lost. We measured the relative errors for the compressed versions of all
the files in the test set (Suppl. Table 3-6), and found relative errors to be smaller than 2e-9 (0.002
ppm) for numLin compressed m/z data and smaller than 2e-4 (0.02 %) for numSlof compressed ion
counts. To validate that the small errors introduced by Numpress compression do not have adverse
effect on common proteomics analyses, we converted two Orbitrap DDA LC-MS/MS mzML files to
compressed (combination of numLin and numSlof) versions and back to uncompressed mzML again,
and compared analysis results obtained from the doubly converted files to those obtained using the
original files. MS/MS identification using Mascot after extraction of MGF (Mascot Generic Format)
peak lists yielded identical lists of identified peptides at a 1% peptide to spectrum match (PSM) false
discovery rate (FDR, Supplementary data). Extraction of features from the MS1 data using msinspect
(11) yielded the same lists of features, with differences only in the least significant decimals of some
reported m/z values and intensities (Supplementary Data). When comparing lists of integrated
precursor intensities for the peptides that were identified using MS/MS, the lists contained the same
entries with a 0.004% maximum observed relative intensity difference introduced by the double
conversion, confirming that the Numpress compression schemes could be safely used for proteomics

analyses.

We found that to achieve minimal file size, a combination of numLin for m/z or retention time data
and numSlof for ion count data (numAll), with subsequent gzipping of the entire file, was the most
optimal in terms of file size. This yielded an average file size reduction of 87% compared to standard

mzML across all 10 test set files (Fig. 2A), with 138% longer write times (Fig. 2B) but 21% shorter read



times (Fig. 2C) on average across all tested computers and files (Suppl. Table 7). This format is also
half the size of the binary mz5 with zlib compression (mz5zlib), and also smaller than all vendor
formats except for AB SCIEX’s .wiff files (Suppl. Fig. 2, Suppl. Table 7). In our read speed tests, the
text based mzML formats cannot quite compete with the binary mz5, although the difference is small
(20%) in the largest files (Fig. 2C). The effects of minimizing disk 1/O through compression are the
most visible in the largest files on the lower performance computers (Suppl. Fig. 3 and 4), where the
numAll alternatives catch up to mz5zlib. Overall, read times ranged over 3 orders of magnitude

(Suppl. Fig. 5), and write times over 4 orders of magnitude (Suppl. Fig. 6).

Two of the test computers were equipped with SSD hard drives, which are fast enough to open up
the disk 1/O bottleneck, and reveal the next bottleneck: processor speed. On these machines the
expensiveness of gzipping becomes apparent, with cost increasing with file size (Fig. 2B), and the
largest gains from the fast disk I/O are seen for the processor-light schemes mzML, mz5zIlib and
numAll (Suppl. Fig. 7 and 8). Zlib compression of individual data arrays also shows minor slow-down

of the write operation, whereas the numAll scheme does not affect write times at all (Fig. 2C).

Even though numAll decreased read times by on average 36% compared to standard mzML (Suppl.
Table 7), mz5zIlib further decreased read times by 25% (total 61% from mzML), and this might have a
number of reasons. Some hypotheses for explaining this are 1) the aggressive file caching of mz5
provides block read benefits, 2) large amount of string-string comparisons while building the mzML
object model is costly, or 3) Base64 decoding is costly. While 3) is not solvable while keeping a one-

file, text-based format, both 1) and 2) could be improved in optimized reader implementations.

As the MS-Numpress compression techniques showed high degrees of compression, which was our
primary goal, we set out to implement the technique as part of several proteomics pipelines in order
to ensure easy adoption by the proteomics community. The initial implementation in ProteoWizard

(10) enables conversion to the format from all major mass spectrometer raw data formats, and



provides read access to tools that use the ProteoWizard API for reading files, for example MyriMatch

(12) and Skyline (13).

Compression should be especially effective for workflows that use high-resolution profile data for
guantitation, because of the large data files this implies, and we therefore implemented support for
reading of mzML files with numpress compressed binaries in OpenMS (14), msinspect (11) and the
Proteios Software Environment (15, 16). The implementation in OpenMS also implies that the
complete MS-Numpress compression and decompression algorithms are directly available in the

Python scripting language due to the recent Python-wrapping of the complete OpenMS library (17).

The jmzML (18) library has also been extended with MS-Numpress read and write support for
numLin, numSlof and numPic. The jmzML library is embedded in numerous Java-based mass
spectrometry software solutions, including PRIDE Converter (19) and Proteosuite, an open source
framework for the analysis of quantitative proteomics data (http://www.proteosuite.org/). Such
solutions will now implicitly support MS-Numpress compressed data when utilising the latest jmzML

library.

Support for mzML with MS-Numpress compression was implemented in the tools of the Trans-
Proteomics Pipeline (20, 21). Reading was also implemented in the X!Tandem search engine (22).

Finally, we implemented support for MS-Numpress in the Anubis (23) tool for SRM.

The main advantages of using the new MS-Numpress-compressed mzML format is probably seen
where small file sizes are of highest importance, for example in data sharing over the Internet.
Minimal file size is also of utmost importance in distributed or cloud computing, for example shown
by Dowsey et al. for two-dimensional gel electrophoresis alignment (24). Because of the file size
importance, simple peak lists formats are currently still used extensively for MS/MS database
searches, and the more complete file representations provided by mzML have mainly been used for
data sharing and quantitative workflows. However, with the increased number of MS/MS spectra

acquired with modern mass spectrometers it is envisaged that compressed data formats could



become more widely used also for MS/MS database searches. As an example, we downloaded a raw
data file from a single-shot LC-MS/MS analysis of a yeast lysate, performed on an Orbitrap Fusion
acquired for a recent publication from the Coon lab (25). Conversion of the file to Mascot Generic

Format (MGF, http://www.matrixscience.com) using ProteoWizard and no filtering yielded a file size

of 1508 MB (715 MB gzipped), with only the centroid MS/MS data retained. ProteoWizard
conversion of the original file using identical parameters to mzML with numAlIl compression resulted
in a 944 MB (409 MB gzipped) file, while still retaining the MS1. The file size shrinks to 821 MB (343
MB gzipped) if only the MS/MS data is retained in the mzML file. Interestingly, an MS/MS search in
X!Tandem resulted in slightly more peptide identifications at a 1% PSM FDR using the mzML file than
using the MGF with a precursor mass tolerance of 7 ppm (Supplementary Data), probably due to a
higher precision in the precursor mass in the mzML file, showing that there is no apparent drawback

in using the compressed format for MS/MS database searches.

Our results demonstrate the power of some very simple techniques to improve the mzML format
with respect to disk space and handling time. There are undoubtedly other algorithms that could
further improve on the degree of compression or handling times, but for standard formats we
believe it is crucial to provide simple and robust solutions, to minimize both the cost of
implementation in tools, and the risk of mistakes in the algorithm. We further provide implemented
support for the new algorithms in several tools, and thus give immediate access to the proteomics
community. MS-Numpress will also be evaluated through the Proteomics Standards Initiative (PSI)
process for formal inclusion in the next mzML release. We hope that this work may also stimulate
additional data compression algorithm ideas, which, in the end, will lead to an amendment to the

mzML standard to improve data handling for all mzML users.
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FIGURE LEGENDS

Figure 1: Overview of the compression scheme evaluation experiment. A) Evaluation was
performed on four desktop computers of varying capacity, the most notable parameter being the
use of solid state drive (SSD) hard drives compared to traditional mechanical hard drives. B) File
size, write time and read time were used to evaluate compression. C) Main results include two new
numerical compression methods optimized for the three different MS data types m/z, ion count and
retention time (RT), with relative errors far below instrument precision. D) File sizes of vendor and

mzML versions of the 10 used MS data files. The inset shows a magnification of the 7 smallest files.

Figure 2: File size, read and write time compared to standard mzML. A) Standard box plot of file
size relative to mzML for 7 data formats. B-C) log, write time (B) and read time (C) subtracted by
log, mzML write and read time, respectively, for the 10 test files and 7 data formats. Test files are
sorted in descending mzML size, and dots represent measurements on individual data files on one
of two SSD-hard drive equipped computers. Writing of vendor formats could not be tested with this
setup and is thus missing in B. Missing read times are due to errors in execution (mzML.gz for file 5
and mz5zIlib for file 6) as discussed in the supplementary material, where also global statistics for
all compression schemes (Suppl. Table 7) and absolute timing figures (Suppl. Figure 5 and 6) are

provided.
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Algorithm descriptions

The library provides implementations of 4 different algorithms, 1 designed to compress first order
smooth data like retention time or M/Z arrays, 1 designed to transform first order smooth data for more
efficient zlib compression, and 2 for compressing non-smooth data with lower requirements on
precision like ion count arrays.

Implementations and unit test are provided in C++ and java.

MS Numpress positive integer compression (numPic)

Intended for ion count data, this compression simply rounds values to the nearest integer, and stores

1



these integers in a truncated form which is effective for values close to zero.

MS Numpress short logged float compression (numSlof)

Also targeting ion count data, this compression takes the natural logarithm of values, multiplies by a
scaling factor and rounds to the nearest integer. For typical ion count dynamic range these values fits
into two byte integers, so only the two least significant bytes of the integer are stored.

The scaling factor can be chosen manually, but the library also contains a function for retrieving the
optimal numSlof scaling factor for a given data array. In this case optimal refers to the greatest
precision storable for this data in 2 bytes. Since the scaling factor is variable, it is stored as a regular
double precision float first in the encoding, and automatically parsed during decoding.

MS Numpress linear prediction compression (numLin)

This compression uses a fixed point representation, achieved by multiplication by a scaling factor and
rounding to the nearest integer. To exploit the frequent linearity of the data, linear prediction is then
used in the following way.

The first two values are stored without compression as 4 byte integers. For each following value a
linear prediction is made from the two previous values:

Xpred = (X(n) - X(n-1)) + X(n)
Xres = Xpred - X(n+1)

The residual Xres is then stored, using the same truncated integer representation as in Numpress Pic.

The scaling factor can be chosen manually, but the library also contains a function for retrieving the
optimal numLin scaling factor for a given data array. Again, optimal here refers to the greatest
precision for the fixed point byte size. Since the scaling factor is variable, it is stored as a regular
double precision float first in the encoding, and automatically parsed during decoding.

MS Numpress safe linear prediction (numSafe)

This transformation uses the same linear prediction as numLin, but without the fixed point
representation or integer truncation. This means that no compression is achieved and the resulting
binary array will be exactly the same size as the input array. Note that even so some minimal
degradation will occur due to the double operation rounding errors, but as sequential compression and
decompression is hardly performed the transformation should still be practically lossless.

Truncated integer representation

This encoding works on a 4 byte integer, by truncating initial zeros or ones. If the initial (most
significant) half byte is 0x0 or 0xf, the number of such halfbytes starting from the most significant is
stored in a count halfbyte. This initial count is then followed by the rest of the int's halfbytes, in little-
endian order. A count halfbyte ¢ of

0<=c<=8 is interpreted as an initial ¢~ 0x0 halfbytes
9<=c<=15 is interpreted as an initial (c-8) 0xf halfbytes



Examples:

int ¢ rest

0 => 0x8

-1 => Oxf Oxf

23 => 0x6 0x7 0x1

Implementation notes

We recommend to simply embed the numpress library source files in your source when implementing
numpress support in new tools. At the point of writing, implementations so far are all open source,
which means there are many reference implementations, especially for C++. For the time being, we
also recommend numpress writer implementations to produce mzML 1.1 compliant files, meaning
amongst other things that only one compression per binary should be allowed (uncompressed, zlib,
numPic, numSlof or numLin), and the 32/64-bit tag written out even though it's unnecessary with
numpress compressions.

During this project we also implemented support for reading and writing imzML with ProteoWizard, in
an attempt to investigate eventual gains with not having to encode all data in base64 binary data. While
there is the obvious gain in file size from the reduced redundancy, we did not see any conclusive
improvements in handling speed using our implementation. Nevertheless, we are in contact with the
ProteoWizard team to eventually include this imzML-support in ProteoWizard. It should also be noted
that imzML was simply used as a means for storing binary data in an external binary file, and we have
not added any handling of imaging relevant information.

Tools and scripts used for testing

For testing we have extended ProteoWizards msconvert. Added abilities include supporting numpress
compressions, allowing both numpress and zlib compression on the same binary data array, writing and
reading imzML, as well as explicitly setting the write buffer size. At the time of writing, numpress
support and double compression is already included in the official msconvert, and inclusion of other
amendments is discussed. Access to exact binaries and scripts used for testing will be provided upon
request.

Missing values

We were unable to achieve a few measurements. Because of their proprietary nature we cannot write
custom vendor files. Reading the largest SWATH DIA file in the mzML.gz format crashed on all
computers in a failure to allocate memory, even on the 24 GB machine. Reading of the extracted
chromatograms (file 6) crashed for unknown reasons when trying to read the mz5 and mz5zlib formats.
Unpromising and likely incorrect preliminary results for the imzML-based formats stopped completion
of read and write timing for these formats.



Supplementary Table 1: MS data files

original peak

id resolution type size (MB) vendor picked instrument
1  high DDA 724 Agilent no QTOF
2 low SRM 13.8 Thermo no TSQ Vantage
3  low DDA 16.2 Thermo no LCQ
4  high SWATH DIA 430" ABI Sciex no Triple TOF
5 high SWATH DIA 2500* ABI Sciex no Triple TOF
6 high Chrom from 5 219.7 ABI Sciex no Triple TOF
7  high DDA 520.8 Thermo no Orbitrap XL
8 high MS+MS/MS 538 Waters no QTOF Ultima
9 high DDA 2023 Thermo yes Orbitrap XL

10  high DDA 577 Thermo no Orbitrap Velos

Y The large size difference comes from the very different samples, were 4) is an information sparse
dilution of stable isotope peptides in water, and 5) is a information dense yeast extract (Suppl. Fig. 1).

%) Chromatograms were extracted using a custom extraction tool, by deconvolution using a top-hat filter
of 10 ppm total width. This means peaks within 10 ppm of a known fragment m/z, in MS2 spectra of
the swath corresponding to the known precursor m/z, were summed with weights decreasing linearly
with distance from the exact fragment mass.

3 This is in mzML format since we cannot write custom Thermo raw files.



Supplementary Figure 1: Binary data array length distributions

Distributions of binary data array lengths for the 10 MS data files used for benchmarking. Depending
on instrument speed, a varying amount of MS2 spectra can be seem in relation to the number of MS1
spectra. Also, the more complex MS1 spectra tend to give long binary data arrays compared to the
simpler MS2 spectra, especially for high-resolution and/or high sampling frequency instruments. File 4
and 5 are acquired with the same method on the same instrument, but on hundreds of synthetic peptides
in file 4, and a yeast lysate in file 5.
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Supplementary Table 2: All tested compression schemes

Table showing the tested compression schemes

binary data type

scheme m/z ion count retention time  whole file
mzML - - - -
mzML.gz - - - gzip
zlib zlib zlib zlib -
mz5 - - - -
mz5zlib zlib zlib zlib -
numaAll numLin numSlof numLin -
numAll.gz numLin numSlof numLin gzip
numAllzlib numlLin & zlib numSlof & zlib numlLin & zlib gzip
numLin numLin - numLin -
numpPic - numpPic - -
numSlof - numSlof - -
numlLinZlib numlin & zlib - - -
numSafeZlib numSafe & zlib - - -
imzML - - - -
imzMLnumAll numLin numSlof numLin -
imzMLnumAllzlib numlin & zlib numSlof & zlib numlin & zlib -
imzMLzlib zlib zlib zlib -
vendor - - - -




Supplementary Table 3: Max relative error for numSlof on 10
test set files

file negative positive

06May2010_TestSuperHirn_BSA30fmol_01.d.ms1.clean.diff -7.43E-005 7.59E-005
110620 _fract_scxB05.raw.ms1.clean.diff -0.000151466 0.000176515
110620 _fract_scxB05.raw.ms2.clean.diff -0.000127385 0.000134896

120224 _006_SW.wiff.ms1.clean.diff -6.63E-005 6.58E-005
120224 _006_SW.wiff. ms2.clean.diff -5.44E-005 5.41E-005
120302_006_SW.wiff.ms1.clean.diff -6.73E-005 6.79E-005
120302_006_SW.wiff. ms2.clean.diff -5.71E-005 5.71E-005
121213_PhosphoMRM_TiO2_discovery.RAW.ms1.clean.diff -0.000160543 0.000149204
121213_PhosphoMRM_TiO2_discovery.RAW.ms2.clean.diff -1.03E-005 1.81E-005
ADH_100126_mix.raw.ms1.clean.diff -4 45E-005 4.32E-005
Velos_120905_09.raw.ms1.clean.diff -0.000141388 9.60E-005
Velos_120905_09.raw.ms2.clean.diff -6.37E-005 5.94E-005
peakPicked.121213_PhosphoMRM_TiO2_discovery.ms1.clean.diff -9.86E-005 9.84E-005
peakPicked.121213 PhosphoMRM_TiO2_discovery.ms2.clean.diff -1.03E-005 1.81E-005

Supplementary Table 4: Max relative error for numLin on 10
test set files

file negative positive

06May2010_TestSuperHirn_BSA30fmol_01.d.ms1.clean.diff -2.33E-010 2.33E-010
110620 _fract_scxB05.raw.ms1.clean.diff -2.34E-010 2.35E-010
110620 _fract_scxB05.raw.ms2.clean.diff -2.67E-010 3.14E-010
120224 _006_SW.wiff.ms1.clean.diff -2.33E-010 2.32E-010
120224 _006_SW.wiff. ms2.clean.diff -1.61E-009 1.59E-009
120302_006_SW.wiff.ms1.clean.diff -2.33E-010 2.30E-010
120302_006_SW.wiff. ms2.clean.diff -1.57E-009 1.63E-009
121213_PhosphoMRM_TiO2_discovery.RAW.ms1.clean.diff -2.33E-010 2.33E-010
121213_PhosphoMRM_TiO2_discovery.RAW.ms2.clean.diff -1.22E-010 2.79E-010
ADH_100126_mix.raw.ms1.clean.diff -2.33E-010 2.33E-010
Velos_120905_09.raw.ms1.clean.diff -2.32E-010 2.32E-010
Velos_120905_09.raw.ms2.clean.diff -2.39E-010 2.69E-010
peakPicked.121213_PhosphoMRM_TiO2_discovery.ms1.clean.diff -2.33E-010 2.31E-010
peakPicked.121213 PhosphoMRM_TiO2_discovery.ms2.clean.diff -1.22E-010 2.79E-010




Supplementary Table 5: Max relative error for numPic on 10

test set files

file negative positive

06May2010_TestSuperHirn_BSA30fmol_01.d.ms1.clean.diff 0 0
110620 _fract_scxB05.raw.ms1.clean.diff 0 0
110620 _fract_scxB05.raw.ms2.clean.diff 0 0
120224 _006_SW.wiff.ms1.clean.diff 0 0
120224 _006_SW.wiff. ms2.clean.diff 0 0
120302_006_SW.wiff.ms1.clean.diff 0 0
120302_006_SW.wiff. ms2.clean.diff 0 0
121213_PhosphoMRM_TiO2_discovery.RAW.ms1.clean.diff -0.66481 0.390022
121213_PhosphoMRM_TiO2_discovery.RAW.ms2.clean.diff -0.14251 0.0750765
ADH_100126_mix.raw.ms1.clean.diff 0 0

Velos 120905 09.raw.ms1.clean.diff
Velos 120905 09.raw.ms2.clean.diff
peakPicked.121213_PhosphoMRM_TiO2_discovery.ms1.clean.diff
peakPicked.121213 PhosphoMRM_TiO2_discovery.ms2.clean.diff

-0.52203 0.198162
-0.13293 0.114401
-0.00113 0.0011207
-0.14251 0.0750765

Supplementary Table 6: Max error for numPic on 10 test set

files
file negative positive
06May2010_TestSuperHirn_BSA30fmol_01.d.ms1.clean.diff 0 0
110620 _fract_scxB05.raw.ms1.clean.diff 0 0
110620 _fract_scxB05.raw.ms2.clean.diff 0 0
120224 _006_SW.wiff.ms1.clean.diff 0 0
120224 _006_SW.wiff. ms2.clean.diff 0 0
120302_006_SW.wiff.ms1.clean.diff 0 0
120302_006_SW.wiff. ms2.clean.diff 0 0
121213_PhosphoMRM_TiO2_discovery.RAW.ms1.clean.diff -0.499985 0.5
121213_PhosphoMRM_TiO2_discovery.RAW.ms2.clean.diff -0.42815 0.325621
ADH_100126_mix.raw.ms1.clean.diff 0 0
Velos_120905_09.raw.ms1.clean.diff -0.499939 0.5
Velos_120905_09.raw.ms2.clean.diff -0.49959 0.499481
peakPicked.121213_PhosphoMRM_TiO2_discovery.ms1.clean.diff  -0.499939 0.5

peakPicked.121213 PhosphoMRM_TiO2_discovery.ms2.clean.diff

-0.42815 0.325621




Supplementary Table 7: Size and timing statistics

color
legend: 20% 50% 100% 200% 500%

high performance computers all computers
read time write time read time write time
mean sd mean sd mean sd mean sd

mzML 79.9% 7.3% 30.7% 31.0% 79.8% 16.6% 32.1% 31.6% 198.5% 581.1%
mzMLnumAll 34.2% 16.1% 26.3% 31.4% 106.2% 37.3% 31.0% 34.1% 288.3% 784.3%
mzMLnumAllzlib 27.1% 21.4% 27.4% 33.1% 144.6% 64.5% 29.4% 33.2% 140.6% 71.9%
mzMLzlib 49.8% 16.1% 30.5% 31.0% 237.4% 107.6% 34.2% 33.4% 257.4% 176.6%
73.3% 6.4% 23.3% 14.1% 69.7% 15.6% 28.8% 21.2% 135.6% 220.1%
27.2% 11.1% 39.4% 7.1% 101.1% 22.5% 39.3% 13.6% 118.2% 103.3%
100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0%
zML.gz 43.9% 11.7%  179.2% 53.0% 836.7% 776.5% 153.7% 56.5% | 705.3% 713.1%
zMLzlib 59.9% 14.5% 113.8% 15.0% 257.3% 111.1% 102.5% 35.1% 218.6% 110.8%
umAll 39.0% 12.1% 63.8% 11.2% 97.0% 8.5% 62.3% 22.2% 117.5% 129.3%
umaAll.gz 13.2% 5.8% 87.0% 19.8% 281.0% 129.2% 78.9% 29.1%  237.7% 125.1%
umAllzlib 29.3% 18.9% 71.2% 17.8% 136.2% 30.3% 68.6% 28.5% 121.9% 39.9%
umLin 53.8% 9.8% 70.7% 9.8% 92.7% 6.2% 65.8% 20.6% 89.7% 18.5%
umLinZlib 33.8% 21.5% 76.8% 22.4% 157.2% 54.3% 71.8% 31.2%  136.9% 58.3%
umPic 79.7% 5.8% 82.1% 14.9% 111.5% 9.7% 75.4% 24.9%  107.7% 31.0%
umSafeZlib 43.9% 18.1%  102.8% 18.5% 288.5% 137.5% 93.6% 35.1% 240.2% 128.4%
umSlof 85.2% 2.5% 92.7% 1.4% 114.2% 49.6% 85.3% 22.9% 109.7% 41.9%
endor 60.5% 110.9% 247.4% 499.6% NA NA 208.9% 414.3% NA NA




Supplementary Figure 2: Relative file size

Log; file size subtracted by log, mzML file size for all file formats and files. Files are sorted in
descending mzML-size order (same as in Fig 1c). Note that file 6 and 9 do not exists in vendor format,
since they are computer derivates on other files.

mzML mzML.gz
O-secnese °
[ ]
[ ]

2 - )

4 -
- numAll.gz numAlizlib
=S 2-
N
S
L
E
ks
(&)
S
-2 -
N o
» o . (]
[} °
= . |
o 4
g
- numSafeZlib imzML

O -

® o - e0“%e
[ ]
[ ]
_2 -
[ ]
4 -

rrrrrrrrini

rrrrrrrurirl

mzMLzlib

numLin

imzMLnumAll

rrrrrrrril

mz5

numPic

imzMLnumAlizlib

mz5zlib

numSlof

imzMLzlib

rrrrrrrurirl

10

numAll

file
numLinZlib

vendor

5: Triple TOF, DIA

4: Triple TOF, DIA

1: QTOF, DDA

7: Orbitrap XL, DDA

10: Orbitrap Velos, DDA
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6: extr. chrom. from 5

9: Orbitrap XL, peakpicked DDA
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2: TSQ Vantage, SRM



log2 read time relative standard mzML

Supplementary Figure 3: Relative read time

Log; read times subtracted by mzML log, read time for all file formats, computers and files. Files are

sorted in descending mzML-size order (same as in Fig 1c).
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log2 write time relative standard mzML

Supplementary Figure 4: Relative write time

Log, write times subtracted by mzML log, write time for all file formats, computers and files. Files are
sorted in descending mzML-size order (same as in Fig 1c). Note that for us it is not possible to write in
the vendor formats.
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Supplementary Figure 5

The read time in seconds for selected file formats and all files, spanning over 3 orders of magnitude.

Files are sorted in descending mzML-size order (same as in Fig 1c¢).
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Supplementary Figure 6

The write time in seconds for selected file formats and all files, spanning over 4 orders of magnitude.

Files are sorted in descending mzML-size order (same as in Fig 1c¢).
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descending mzML-size order (same as in Fig 1c). Read times were normalized by the median read time
mzML

Comparison of read times on different computer hardware for different file formats. Files are sorted in
for each file and format.

Supplementary Figure 7
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Supplementary Figure 8: Write time for different computers

Comparison of write times on different computer hardware for different file formats. Files are sorted in
descending mzML-size order (same as in Fig 1c). Write times were normalized by the median write
time for each file and format.
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