X-ray phase-contrast tomography with a compact laser-driven synchrotron source.

Eggl, Elena; Schleede, Simone; Bech, Martin; Achterhold, Klaus; Loewen, Roderick; Ruth, Ronald D; Pfeiffer, Franz

Published in:
Proceedings of the National Academy of Sciences

DOI:
10.1073/pnas.1500938112

2015

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
X-ray phase-contrast tomography with a compact laser-driven synchrotron source

E. Eggel†, S. Schleede†, M. Becht†, K. Achterhold†, R. Loewen†, R. Ruth‡, and F. Pfeiffer†

†Physik-Department und Institut für Medizintechnik, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany.‡Medical Radiation Physics, Lund University, 22185 Lund, Sweden.§Lyncian Technologies Inc., 370 Portage Avenue, Palo Alto, CA 94306, USA.¶SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.‖Institut für Radiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Germany

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Between X-ray tubes and large-scale synchrotron sources, a large gap in performance exists with respect to the monochromaticity and brilliance of the X-ray beam. But, due to their size and cost, large-scale synchrotron sources are not available for more routine applications in small and medium-sized academic or industrial laboratories. This gap could be closed by laser-driven Compact Synchrotron Light Sources (CLS), which employ an infrared (IR) laser cavity in combination with a small electron storage ring. Hard X-rays are produced through the process of inverse Compton scattering upon the intersection of the electron bunch with the focused laser beam. The produced X-ray beam is intrinsically monochromatic and highly collimated. This makes a CLS well suited for applications of more advanced and more challenging X-ray imaging, such as X-ray multi-modal tomography. Here, we present the first results of a successful demonstration experiment in which a monochromatic X-ray beam from a CLS was used for multimodal, i.e., phase-, dark-field, and attenuation-contrast, X-ray tomography. We show results from a fluid phantom with different liquids and a biomedical application example in form of a multimodal CT scan of a small animal (mouse, ex vivo). The results highlight particularly that quantitative multi-modal CT has become feasible with laser-driven Compact Synchrotron Light Sources and that the results outperform more conventional approaches.

X-ray imaging | tomography | phase contrast | dark-field contrast | grating interferometer | inverse Compton X-rays

Abbreviations: CLS, Compact Light Source; IR, infrared; DPC, differential phase-contrast; CT, computed tomography; ROI, region of interest; FBP, Filtered Backprojection; H&E, hematoxylin and eosin

Introduction

With the introduction of the grating interferometer [1, 2, 3], the field of X-ray phase-contrast imaging has seen great advances in the past decade. In comparison with conventional attenuation-contrast imaging, the phase-contrast modality greatly improves soft-tissue contrast, which can, for example, be used for better tumor visualization [4]. With the development of the Talbot-Lau interferometer, grating-based phase-contrast imaging has become feasible not only with synchrotron sources, but also with standard X-ray tube sources [3, 5]. On the downside, the visibility is degraded due to the broad polychromatic spectrum of the X-ray tube sources, thus compromising the image quality. Brilliant and highly monochromatic synchrotron sources yield superior results for high-resolution and high-sensitivity measurements [2, 4, 6, 7, 8, 9, 10, 11, 12, 13]. However, limited availability, high cost and small fields of view make synchrotron sources incompatible with clinical applications or pre-clinical research on e.g., small-animal disease models in close vicinity to biomedical labs with small-animal infrastructure. Offering a monochromatic beam as well as higher brilliance and coherence than X-ray tube sources, compact synchrotron sources can be classified between tube sources and synchrotron sources. These features are achieved with a compact light source (CLS), which has a size that is compatible with conventional labs, making it an interesting candidate for pre-clinical and materials science applications of phase-contrast imaging. The small footprint, combined with a far lower total investment compared to a synchrotron source, facilitates the integration and therefore allows for direct availability at existing research facilities or in industry. X-rays are generated in the process of inverse Compton scattering [14] each time an electron bunch circulating in a miniature storage ring and a laser beam stored in a high-finesse bow-tie cavity collide. The produced X-ray beam is intrinsically monochromatic and coherent and offers a field of view suitable for imaging of macroscopic samples, providing suitable conditions for grating-based X-ray imaging of biomedical or material samples. First studies employing a grating interferometer at a Compact Light Source yielded promising results for phase-contrast and dark-field projection images [15, 16, 17, 18]. Quantitative attenuation-based CT demonstrated the capability of the CLS to overcome beam hardening issues and to provide precise density values [19]. The characteristics of a compact light source would also allow for propagation-based phase-contrast imaging, and we plan to evaluate perspectives in future studies.

Here we show the first grating-based computed tomography scans obtained with a CLS. Since tomographic imaging with a grating interferometer at a monochromatic source simultaneously yields quantitative information on linear attenuation coefficient, refractive index decrement and linear diffusion coefficient, it allows to discriminate substances that cannot be distinguished solely by their attenuation coefficient and yields increased soft-tissue contrast for biomedical samples. These performance gains are demonstrated in this study. We present a quantitative analysis of a fluid phantom and a tomography scan of a multimodal CT scan of a small animal (mouse, ex vivo).

Significance

Absorption-based X-ray tomography suffers from low contrast for soft tissue. Over the last few years, it has been shown that grating-based phase-contrast X-ray tomography can overcome this limitation. Here we present the first phase-contrast tomography acquired at a Compact Light Source, a recently developed compact synchrotron based on inverse Compton scattering.

Reserved for Publication Footnotes
Fig. 1. (a) Photograph of the fluid phantom. It consists of seven polyethylene rods containing seven different, chemically well defined fluids (see table S1). (b)-(c) Average of ten reconstructed slices of the linear attenuation coefficient \(\mu \) (b) and the refractive index decrement \(\delta \) (c). Fluids with similar attenuation coefficient show strong contrast in the phase image and vice versa. The scalebar corresponds to 3 mm. The white numbers in (c) correspond to the fluid sample number used in tables 1 and S1.

scan of a biomedical sample. Moreover, we show that image quality of the phase signal can strongly be improved by applying an iterative reconstruction algorithm that reduces stripe issues and noise.

Results

Fluid phantom. Figures 1 (b), (c) display reconstructed slices of the linear attenuation coefficient and the refractive index decrement of the fluid phantom, a photograph of which is shown in figure 1 (a). The images show an average of 10 slices for improved statistics and therefore signal-to-noise ratio. The same improvement could have been achieved by extending the exposure times. The DPC reconstruction has some streak artifacts, which are caused by strong phase shifts at plastic-air interfaces, but these could be avoided by placing the sample in a water bath during image acquisition or by using iterative reconstruction schemes [20]. The fluids cannot be distinguished from visual inspection of solely the attenuation image or the DPC image by themselves, because the gray values do not exhibit enough contrast. Fluids that show a strong contrast in the DPC image have similar gray values in the attenuation image and vice versa.

To identify the different fluids, a quantitative analysis is necessary. For this purpose, the mean value of a 10×10 pixel\(^2\) region of interest (ROI) and its respective standard deviation were calculated for each fluid sample and for each of the two imaging modalities. The results are given in table 1 and compared with values calculated using equations 1 and 2. The measured and the calculated values show very good agreement. The mismatch for the attenuation values is less than 1% and within the error margin of the measured values. For the refractive index decrement, the maximum mismatch between measured and calculated values is 5%. The higher deviation from calculated values for the refractive index decrement could be caused by the mentioned streak artifacts.

The quantitative analysis is further illustrated in the scatter plot shown in figure 2. The scatter plot displays \(\mu \) and \(\delta \) values from every pixel within the chosen ROIs. The calculated theoretical \(\mu \) and \(\delta \) values are displayed as large black triangles. It is well visible from the scatter plot that substances with overlapping attenuation values can be separated by their refractive index and vice versa. This indicates that quantitative multi-modal imaging of attenuation and phase is most helpful to distinguish materials with similar attenuation coefficient or similar refractive index decrement.

Fixed mouse. Reconstruction results for a biological sample (a fixated infant mouse, ex-vivo) are presented in figures 3 and 4. The figures display sagittal and axial views of the three imaging modalities: attenuation contrast (a), phase contrast (b and c) and dark-field contrast (d). In contrast to the phase-contrast image (b) which was reconstructed with a standard FBP algorithm, the image (c) was reconstructed with an iterative reconstruction scheme [20]. The phase-contrast image processed with a standard FBP algorithm (b) displays strong streak artifacts caused by the bones. Comparison of the two images shows that the iterative reconstruction strongly reduces stripe artifacts and noise compared to the FBP reconstruction. Moreover, artifacts stemming from structures inducing a high phase shift, such as the soft tissue - bone interface, are removed well by the iterative algorithm. The image quality benefits significantly from the use of the iterative reconstruction technique. The conventional attenuation contrast image (a) in figure 3 gives good image contrast for bone structures. However, barely any information on the internal organs located in the lower part of the mouse’s body can be drawn from this image. It is clearly visible that the phase-contrast images (b,c) pro-
vide superior soft-tissue contrast compared to the attenuation contrast image (a). Several internal organs such as the heart and the liver and structures within the organs can be recognized in the phase-contrast images, but not in the attenuation image, in the sagittal as well as in the axial images. The dark-field image (c) displays strong scattering at the bones and at air-filled organs. With the slices chosen in figure 4, we would like to point out that, with phase contrast and dark-field contrast, brown adipose tissue and white adipose tissue are visible and can be discriminated. Comparing the phase-contrast and dark-field contrast images (b-d) to histology images 4 (e) and (f) (adapted from [21] and [22], respectively), the brown and white adipose tissue in the intercapular region can clearly be identified, which is indicated with red and blue arrows, respectively. While their attenuation is to similar to allow the discrimination between brown and white adipose tissue, they have a different refractive index decrement. Scattering takes places for brown, but not for white adipose tissue.

Discussion

With multimodal tomography measurements of a fluid phantom at a laser-driven miniature synchrotron, we showed that combined analysis of both attenuation and phase provides a significant gain in information on different materials in the sample. Different fluids, which cannot be distinguished using solely the information obtained from either attenuation- or phase-contrast, can clearly be differentiated making use of the combined information.

Quantitative values of the linear attenuation coefficient and the refractive index decrement match very well with calculated theoretical values. We assume that the remaining small discrepancy from calculated values for the refractive index decrement could be further reduced using an iterative reconstruction algorithm to remove present stripe artifacts. Importantly, the measurement and calculation procedure is by far more accurate with the monochromatic beam of a CLS compared to measuring with a polychromatic X-ray tube source [23, 24, 25]. While a measurement of absorption coefficient and electron density normally requires an energy calibration using tabulated values, this step is not necessary for measurements obtained at a CLS because of the quasi-monochromatic beam, allowing a direct comparison to literature values. The quantitative analysis in a scatterplot is facilitated because attenuation-contrast and phase-contrast images recorded with a grating interferometer are intrinsically perfectly registered. Furthermore, we demonstrate the applicability of monochromatic grating-based tomography for biomedical samples. We presented the first multimodal computed tomography acquired at a CLS. For a fixated infant mouse, quantitative values for the linear attenuation coefficient, the refractive index decrement and the linear diffusion coefficient were reconstructed. Results show that especially the reconstruction of the refractive index decrement yields superior soft tissue contrast compared to the conventional attenuation image. We showed that employing an iterative reconstruction algorithm instead of FBP even improves the phase reconstruction and successfully removes stripe artifacts and noise.

The dose which was estimated to 2.14 Gy is significantly higher than the dose that is suggested for subsequent in vivo scans of mice which should be below 500 mGy [26], but below the LD_{50/30} dose of 5-9 Gy [27]. In the future, the dose could strongly be reduced, by optimizing the gratings, by reducing scan time (shorter exposure times, fewer projections), and by using a more efficient detector.

In summary, the results show that a compact synchrotron source is a very promising X-ray source that could close the gap between conventional X-ray tubes and large-scale synchrotron facilities. With a footprint suitable for normal lab sizes, it provides a level of coherence and monochromaticity otherwise only available at synchrotrons. The beam size, emerging as a cone from the small, round source, can be significantly larger in two dimensions than beams at synchrotron sources. This area beam is beneficial for biomedical imaging, as it allows to image small animals such as mice without requiring to stitch images. Besides biomedical applications such as pre-clinical research on emphysema [18] and breast cancer diagnostics [17] using the scattering signal, grating-based tomography at the CLS yielding multimodal images appears to be a valuable tool for quantitative analysis of both materials science and biomedical samples.

\[\text{Index of refraction} \delta \left(\times 10^{-1} \right) \]

\[\text{Attenuation coefficient} \mu \left(\text{cm}^{-1} \right) \]

Fig. 2. The scatter plot displays the attenuation coefficient and refractive index decrement for all pixels in the 10x10 pixel^2 ROIs in the fluid phantom reconstructions (cf. figure 1, (b) and (c)). Black triangles are the calculated values. Most substances show an overlap in either attenuation or phase signal alone, but all substances can clearly be distinguished using the combined information from both attenuation and phase. The different data clusters are labeled by numbers as used in tables 1 and S1.

2 The LD_{50/30} dose is defined as the dose which is lethal for 50% of the mice within 30 days.
Fig. 3. Reconstructed slices of a grating-based, multimodal CT scan of a biological sample (a formalin fixed infant mouse). Shown are sagittal (top row) and axial (bottom row) slices. The reconstruction yields quantitative values of linear attenuation coefficient μ (a), refractive index decrement δ (b, c) and linear diffusion coefficient ε (d). For the phase image (c), an iterative reconstruction scheme [20] was used instead of conventional FBP reconstruction in order to reduce stripe artifacts and noise. The scalebar corresponds to 2 mm.

Materials and Methods

Compact Light Source (CLS). A CLS is a laser-driven, compact synchrotron source. X-rays are generated through the process of inverse Compton scattering, where an X-ray photon is generated through collision of a laser photon with an electron. A CLS is composed of a miniature electron storage ring with a circumference of a few meters.
Footline Author

Footline Author
of 5 s per image. Flat field images were acquired before, after and in the middle of the tomography scan. The total acquisition time was roughly two hours. The scan was acquired with a PILATUS 100K detector (Dectris LTD, Switzerland) with a pixel size of 172 × 172 µm² resulting in a spatial resolution of 167 × 167 × 167 µm³ in the reconstruction when the detector resolution and the object magnification are taken into account. The visibility was 37%.

- Mouse scan: An infant mouse was fixed in formalin in a falcon tube. The tomography consisted of 361 projections over 180.5°. For each projection, a phase stepping scan over one grating period was recorded, with an exposure time of 8 s per image. The number of phase steps was six, however, the last image was omitted throughout processing since it was identical to the first one. Flat field images were recorded before, after and in the middle of the tomography scan, yielding a mean visibility of 42%. The total acquisition time was about eight hours. A Mar CCD detector (Rayonix, USA) with a nominal resolution of 79.59 µm was used, resulting in a spatial resolution of 77 × 77 × 77 µm³ in the reconstruction when the detector resolution and the object magnification are taken into account.

For both scans, the pixel size is large compared to the blur introduced by the source, therefore this contribution to the spatial resolution was neglected. About 30-40% of the given acquisition times can be attributed to motor movement. The achieved visibilities of 37% and 42%, respectively, are limited by the transverse coherence length, i.e. source size [29], and grating quality.

Reconstruction. Multimodal projections of the samples were calculated using standard Fourier processing [3]. The tomography reconstruction was done using Filtered Backprojection (FBP) with a Ram-Lak filter for the attenuation projections and a Hubert filter for differential phase projections. In addition, an iterative reconstruction scheme [20] was used for the phase-contrast images of the mouse, in order to reduce stripe artifacts and noise in the reconstruction.

Attenuation, differential phase and dark-field values in each pixel and the respective uncertainties are acquired from an analytical weighted least squares minimization, in accordance with the Fourier processing routine. The uncertainties are propagated from the initial Poisson counting statistics in each pixel, \(\sigma = \sqrt{\mu} \). Reconstruction was performed through the optimization of penalized weighted least squares, using 25 iterations and a Huber regularization with a weighting factor of \(\lambda = 10^{-5} \) and \(\gamma = 0.01 \) [20].

Dose estimate for mouse scan. From flat-field images taken with the PILATUS 100K detector, an average flux of \(8 \times 10^{15} \) photons/s per image has been estimated, where the efficiency of the detector as well as the attenuation of the two gratings and the surrounding air has been taken into account. The absorbed dose for the whole sample (mouse and formalin fixation) was calculated as 5.94 mGy per projection (5 phase steps with 8 seconds exposure time), assuming the average density of the sample to be water. This gives an absorbed dose of 2.14 Gy for the full tomography scan. This first PC-CT scan was not dose-optimized and the dose can be significantly decreased, for example by reducing the support thickness of the grating structures and by reducing the exposure time and number of projections.

ACKNOWLEDGMENTS. E.E., S.S., M.B., K.A., and F.P. acknowledge financial support through the DFG Cluster of Excellence Munich-Centre for Advanced Photonics and the European Research Council (FP7, Starting grant n°240142). This work was partly carried out with the support of the Karlsruhe Nano Micro Facility (KNMF, www.kit.edu/knmf), a Helmholtz Research Infrastructure at Karlsruhe Institute of Technology (KIT, www.kit.edu). The Compact Light Source experiment was supported in part by grants R44-GM704437 from NIGMS and R43-RR025730 from NCRR. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.
