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ABSTRACT

This PhD thesis deals with the sub-cycle nature of ultrafast phe-
nomena that occur in strong-field light—matter interactions. As
it is of interest to control these phenomena, we must understand
them in order to manipulate them. The tools at our disposal are
intense laser pulses of short duration, and the systems we study
are atoms. A host of exotic phenomena may occur in strong-field
light—matter interaction, such as high-order harmonic generation
and above-threshold ionization. These processes exhibit aspects of
both quantum mechanics and classical mechanics, in a fascinating
blend.

An important part of the work described in this thesis con-
cerns the quantum paths of the electrons involved in these pro-
cesses. The link between their journey and the time at which their
journey begins is examined in a variety of ways. One property
that quantum mechanical particles do not share with their classi-
cal counterparts is that the former may take a multitude of paths to
reach their final destination. Furthermore, these paths may inter-
fere such that the probability of detecting the particle is enhanced,
suppressed, or sometimes even completely cancelled out.






POPULARVETENSKAPLIG SAMMANFATTNING

ENNA AVHANDLING behandlar olika sitt att forstd och kontrollera ultra-
snabba fenomen. Med detta menas processer som dger rum under loppet
av en cykel av synligt ljus (ungefir en femzosekund, en miljondels miljard-
dels sekund), eller under innu kortare tidsintervall; detta ir tidsskalor som

vida understiger var vardagliga fattningsformaga. En elektron bunden till en
atomkirna r6r sig med en hastighet som 4r nagra hundradelar av ljusets, vilket
innebir en omloppsbana med en periodtid som mits i aztosekunder — en attose-
kund ir en miljarddels miljarddels sekund. Likasa sker processer som excitation
och jonisation pa dessa tidsskalor, vilka ar alltfor korta for konventionell eleke-
ronik att folja. Istillet anvinder man sig av en stroboskopisk teknik, dar en ult-
rakort ljuspuls anvinds pa samma sitt som en fotografisk blixt for att »frysa«
forloppet.

I avhandlingen studeras dels den process som ligger till grund for de ult-
rakorta ljuspulserna, si kallad hdg dvertonsgenerering, som i sig ar ett ypperligt
exempel pé en ultrasnabb process och dels anvindningen av dessa ultrakorta
ljuspulser for att pa djupet tringa in i den fysikaliska teori som beskriver mikro-
kosmos, kvantmekaniken.

Hog 6vertonsgenerering sker nir ljuset fran en stark laser fokuseras i till ex-
empel en gas som joniseras. Den fria elektronen blir accelererad av ljuset och
kan, om den stoter pa den jon den limnade, aterinfingas och utstrila hogener-
getiskt ljus i form av korta ljuspulser. Nir det drivande laserljuset 4r sa starkt som
kravs for att hog 6vertonsgenerering skall vara méjlig, ror man sig samtidigt i det
gransland som existerar mellan den mer exotiska fysik som kvantmekaniken ut-
gor och den klassiska fysiken som vi kinner den fran Newtons och Maxwells
teorier. Till vilken grad later sig den stundom absurda virld som mikrokosmos
utgor forstas utifrin den intuition vi har fran var vardag? Detta har varit ett av
mélen med min avhandling.

Jag har ocksa undersoke ett annat perspektiv; de fall dir mikrokosmos avvi-
ker som mest fran var vardag. Speciellt har studerats det faktum att en mikro-
skopisk partikel inte tar ez utan flera vigar for att na sict mal. Med sa kallade in-
terferometriska tekniker, som grundar sig pd den mikroskopiska materiens vag-
natur, ir det majligt att mita den »hastighet « med vilken partikeln ror siglings
de olika vagarna. Detta experiment har flera beréringspunkter med Youngs be-
rémda dubbelspalt, dir ljuset bryts i tva smala springor for att sedan interferera
och 6msom forstirkas omsom slickas ut pa andra sidan.
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En bild som kan hjilpa forstielsen for partiklarnas mojlighet att ga flera
vigar samtidigt star att finna i musiken; det ljud som nir dhoraren utgors i ett
givet ogonblick inte av endast en frekvens. I polyfonisk musik sammanvivs flera
parallella stimmor till en vilklingande harmoni. Detta dr ndrmast att likna vid
flera partiklar som gér olika vigar och skiljer sig inte frin var intuitiva forstaelse.
Diremot avger varje enskilt instrument sjalvt en mingd frekvenser samtidigt;
dessa kallas 6vertoner och deras beskaffenhet avgor instrumentets unika klang-
firg. P4 liknande sitt som vrt kinsliga 6ra med latthet kan skilja olika instru-
ment it, kan de kinsliga métningar avhandlingen baseras pa, avgora karaktiren
hos de olika vigar partiklarna tagit genom att studera deras »klangfirg«.

I avhandlingsarbetet har experiment utférts for att mita ovan nimnda fe-
nomen med en precision som overstiger vad som annars ir Vanligt inom forsk-
ningsfiltet. Dock har tonvikten varit att med de teoretiska verktyg som finns till
hands forsoka forstd och forklara observationerna. Mycket av mitt arbete har
skett med hjilp av superdatorer, eftersom berikningarna kan vara vildigt kri-
vande. For att superdatorernas kraft skall komma till nytta, ar det viktigt att be-
rikningskoderna ir effektiva och jag har lagt mycket tid pa att lyckas med detta.
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THESIS






INTRODUCTION

Nibil tam absurde dici potest, guod non
dicatur ab aliquo philosophorum
There is nothing so absurd that it has not been

said by some philosopher.

Marcus Tullius Cicero, 106—43 BC

HE BOOK you are holding in your hand, is my PhD thesis, an opus written
to summarize the studies I have carried out during the past five years to reach
enlightenment in the field of atomic physics. Enlightenment is still some way
off, but I have learnt a thing or two that I would like to share with you.

Atomic physics is the area of physics that deals with atoms, once thought
to be the smallest building blocks of matter. The word atom is derived from the
Greek word étopog (dtomos), which means indivisible. The idea that all matter
was composed of an entity that could not be divided was proposed by the Greek
philosopher Democritos (Anudxpirog, c. 460—c. 370 BC). Today, we know that
atoms are, in fact, divisible. This does not mean that Democritos was wrong,
but rather that the physicists and chemists of the nineteenth century applied
the label to the wrong entity.

Atoms are, however, still very small — beyond what we can observe with our
human senses. Since the advent of atomic physics, light has been used as to
investigate atoms; first as a means of identification, through spectra that pro-
vide information allowing us to discern one atomic species from another, but
recently also — and this is the topic of this thesis — as a means of influencing
the atom. Light can interact with atoms in many ways, for instance, by exciting
and ionizing them. The energies required for this range from 1 ¢V to 100 ¢V,

which correspond to near-infrared light andlextreme ultravioler (xuv)|light. In

the present work, highly energetic light has been generated through a process
called high-order harmonic generation. This process is capable of generating
light with energies up to a few keV.

An intriguing aspect of the microcosmos is the wave nature of matter and
its ability to reside in more than one state at a time. As a consequence of this, a
particle can follow more than one path to its final destination. This is a recur-
ring theme in my thesis; the identification and study of the pathways of rapidly
moving electrons. In the same way that light enables us to study microscopic
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CHAPTER 1. INTRODUCTION

matter, ultrashort pulses of light enable us to study ultrafast phenomena, such
as ionization and quantum path interference.

Physics, being part of the positivistic system of science, requires continu-
ous interplay between experimental study and theoretical interpretation to ad-
vance. A quantity may be measured in an experiment with arbitrary precision,
but without a theoretical understanding of the underlying phenomena, one can-
not claim to have gained any knowledge. One branch of theoretical physics that
bridges the gap of experimental and theoretical physics, is numerical physics,
wherein one can perform ‘numerical experiments, turning on and off different
aspects of the problem under consideration. This is an excellent way of disen-
tangling those aspects that are relevant from those that only play a minor réle.

Outside the realm of the natural sciences, my greatest pleasures lie in lin-
guistics, history, music, and photography, and since I have always felt that ev-
erything we do should be permeated by les beaux-arts, I have often said, half-
jokingly, half-seriously, that the main objective of science is to produce beauti-
ful pictures. I hope that I have in some measure contributed to this endeavour.

1.1 OUTLINE

This thesis is arranged in the following way. In §2} the theoretical framework
and tools used in the thesis are described, while describes strong-field light—
matter interaction and the phenomena that occur under these circumstances.
§ describe microscopic aspects of high-order harmonic generation, i.e. the
role of the single atom in the process; the former chapter treats interference
between the quantum paths in high-order harmonic generation, while the latter
chapter discusses the effects of elliptical polarization of the driving field on the
process. Macroscopic effects, i.e. the collective response of a multitude of atoms,
are the subject of 6] Finally, §7]posits a new exciting way of studying similarities
and differences between the wave nature of matter and light.

Some technical details are presented in the appendices. This means that
this thesis can be read in two ways. The main text can be read foregoing the ap-
pendices altogether to obtain a brief overview of sub-cycle strong-field physics,
while a more complete understanding of the field will be achieved by referring
to the appendices as and when indicated in the main text. The work itself is, of
course, embodied in the papers, which are to be found last in this thesis.



1.2. NOTES

1.2 NOTES

The atomic unit system of Hartree (1928) is used, unless otherwise stated. In
this system, a number of important quantities, including the electron mass 7,
the elementary charge ¢, Planck’s reduced constant 4, and Coulomb’s constant
1 /4, are all set to unity, such that, e.g. the Schrédinger equation

2
ihﬂy = (—;’—VZ + V) b4
ot

2m,

instead reads

2

i3 ¥Y=1- v +V Y,
ot 2

which simplifies the notation considerably, and makes the physics more visible.

In atomic units, the relation between the strength of an electric field and its
intensity is simply I = €. [See appendixlg for a list of derived units, and their

values in|Sys#éme international dunités (s1))]

The primary polarization axis is usually taken to be e,, and e, as the sec-
ondary axis, which means that the propagation axis is e,. This is still a right-
handed coordinate system, since zxy is a cyclic permutation of xyz; the latter
being the conventional order in electrodynamics. The reason for this differ-
ence in conventions is that linear polarization in the dipole approximation is
described by one component of the dipole operator, where the z component is
the one usually expressed using only one spherical harmonic, Y} (3, ¢).

5






A BRIEF INTRODUCTION TO QUANTUM DYNAMICS

Physicists use the wave theory on
Mondays, Wednesdays and Fridays
and the particle theory on Tuesdays,
Thursdays and Saturdays

William Henry Bragg, 1862—-1942

HE THEORETICAL language of attosecond science is that of time-depen-
dent quantum mechanics, or quantum dynamics. The origin of quantum me-
chanics lies in the study of atomic spectra, a fervent activity in the late 19th
century. Among the pioneers, the foremost was, without doubt, the spectro-

scopist Johannes ‘Janne” Rydberg, in Lund. He is the discoverer of the famous
Rydberg formula for the energy spectrum of hydrogen and alkali atoms:

w__’ _ 1
Ky (g (el ) (2.1)
or equivalently,
1 X 1 1
— =RZ - s .
)'vac (nl + [1)2 (nZ + (:2)2 (Z Z)

where 4, is the wavelength of the emitted/absorbed radiation in vacuum, R =
10973 731.568 508(65) m™ " is the Rydberg constant, Z the nuclear charge, 7,
and 7, represent the different energy levels of the atom, and ¢; and ¢, their re-
spective quantum defects. The nucleus is assumed to be of infinite mass.

This model was purely empirical, i.e. it was based on measurements, and
the first steps to explaining the cause of this behaviour were taken by Bohr
(r913alblc). The Bohr model showed quantitative agreement with the line
spectrum of hydrogen, but beyond this simple atom, it was difficult to rec-
oncile the model to the experiments. It was not until Schrédinger (1926)

formulated his famous|time-dependent Schridinger equation (TDSE),

.0 3 .
i ¥(r;¢) = H Y(;2), (2.3)

which laid the foundation of wave mechanics, later to be known as quantum
mechanics, that it could be said there was an understanding of the physics be-
hind atomic spectra. In this equation, ¥ is known as the wavefunction, which

2
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describes the sZate of the physical system under consideration, and A is the
Hamiltonian of the system, describing the particles and forces involved. The
Hamiltonian is, in general, both space- and time-dependent. For a hydrogen
atom in free space, the Hamiltonian can be written
H-Ts+v=-Y_1 (2.4)
2 r
where T = -V? /2 is the operator of kinetic energy, and ‘U = —% is the oper-
ator of potential energy, due to the atomic nucleus. For multi-electron atomic
systems, the Hamiltonian not only includes the attraction of every electron to-
wards the nucleus of charge Z, but also the mutual repulsion between all the

N 1
Hy=) |[-=-2|+> —. (2:5)
P 2 7; 7 Ty

If the Hamiltonian can be separated into an atomic part and an interaction

electrons:

part, due to external forces, this is usually written
H = Hy(r) + Hy(r;2); (2.6)

and the spatial argument is often suppressed.

2.1 SPECTRA

By making the ansatz that the solution of (2.3)) can be written as a standing wave
(this is possible if the Hamiltonian is purely space-dependent, for instance in

the case H = H,y),

¥ (r;¢) = exp(—iE,2)8,(r), (2.7)
reduces to the|time-independent Schrodinger equation (SE)}
H¢,(x) = E,8,(x). (2.8)

This is an eigenvalue type equation, the exact solution of which is only possible
for hydrogen-like systems. However, being an eigenvalue problem means it be-
longs to a larger class of problems, namely those of linear algebra and functional
$paces, developed by Hilbert, Neumann, and Nordheim (1928). As is common
in linear algebra, the notion of bases plays an important role. Although the o7e-
electron solutions of are incorrect solutions for multi-electron atoms, they
constitute a complete set, over which any wavefunction may be expanded:

D = chgén, (2.9)



2.1. SPECTRA

where ¢, are known as expansion coefficients (function arguments omitted for
brevity). There are many ways of calculating these expansion coeflicients, but
the simplest one is perturbation theory, where the deviation of from the
one-electron problem (typically Coulombic repulsion between two electrons)
is allowed to perturb the one-electron solutions, giving rise to a shift in the en-
ergies [see e.g. Landau and Lifshitz (1977)), §38 for an overview].

2.1.1 The multi-configurational Hartree—Fock method

An exact, but purely numerical, method of solving for a Hamiltonian
of the form (2.s)) was pioneered by Hartree (1928)), and improved upon by
Fock (1930)), yielding the |[Hartree—Fock (HF)|method. This was subsequently
developed by Hartree’s PhD student, Froese Fischer (1970), into the
lconfigurational Hartree—Fock (MCHF) method, which is a systematic way of

including the interaction between the electrons in an atomic system. Given a
reference configuration, the full wavefunction is expanded over all permissible
correlation configurations (i.c. those of the same symmetry); the zeroth-order
approximation being the reference configuration itself. The expansion coefhi-
cients are found by iterative minimization and the state space is gradually ex-
panded by adding more and more configurations to the calculation, until the
desired quantities (usually the transition energy between two physical states
of interest) have converged. For example, the 1s* 'S, ground state of helium

p
d*),

(2.10)

where ¥ denotes the sought physical state, and @ denotes the weighted contri-

might be expanded as
¥(1s*) =~ 0.99596347 @(1s*) + 0.06233620 @(2p*)
0.00168155 @(1s2s) — 0.00350562 @(2p3p)
— 0.00008620 ®(1s3s) — 0.00739892 @(3s*)
~ 0.06197355 ©(2s®) + 0.01040140 @(3p*
( (

)
+ 0.00238955 ®@(2s3s) — 0.01210078 @(3d*)

bution of a particular configuration to the state.

This method is implemented in the non-relativistic limit in the ATSP2K
package (Froese Fischer, Brage, and Jonsson 1997; Froese Fischer et al. |2007)).
A relativistic implementation, GRASP2K, also exists Oénsson etal.l2007,/2013)).

2.1.2 The close-coupling approximation

The MCHF method works very well when dealing with bound sZates that have
a finite extent, however, with increasing principle quantum number 7, the ex-

9
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tents of hydrogenic wavefunctions grow rapidly ((r) ~ #*a,/Z). The ATSP2K
package is well-suited for 7 < 15. Furthermore, for an N + 1-body system, the
Hilbert space has the dimensionality C**3, which means thatan N + 1-body
wavefunction including continuum orbitals (as is necessary for treating ioniza-
tion) is unthinkable. If we restrict ourselves to the case of single ionization, the

\close-coupling approximation (Cc )|offers a means of expanding the wavefunction

(N +1),E.]) = AX: PN @ ki) + ) (N + 1:E]),  (211)
; j

where the first sum antisymmetrically couples V-body wavefunctions (called
‘targets’ in CC theory) to one electron of momentum £ to form an NV + 1 system.
The second sum includes IV + 1-body ‘perturbers’ that account for the correla-
tion due to the bound states of the V + 1 system. (For a thorough review, see
Bartschat|1996)

The computational package used in the present work, which implements
the cc approximation, is called BSR (Zatsarinny 2006) and is used in conjunc-
tion with ATSP2K (Zatsarinny and Froese Fischer 2009)) to provide the basis
functions and dipole matrix elements for the calculations described in

2.1.3 The single-altive-electron approximation

Most of the calculations presented in this thesis have been performed in the
single-active-electron approximation (SAE)| reducing the problem to essentially
that of hydrogen. Deviations therefrom are treated using pseudo-potentials (Ku-

lander and Rescigno|1991} Stevens et al.|1992)), which are effective, short-range
potentials that capture the interaction of the valence electron with the core elec-
trons, to some extent. These are numeric potentials that depend on both ra-
dius and orbital quantum number ¢ and their short-rangedness ensures that
they identically vanish after a certain radius, after which only the long-range
Coulombic —1/7 potential remains. Since they do not allow any rearrangement
of the core electrons, they can only provide a good spectrum for the valence elec-
tron, due to screening effects, but they cannot account for any multi-electron
effects. However, in strong-field physics, the SAE approximation is usually avery
good one, at least in the case of single ionization below the saturation inten-
sity of the gas (Krause, Schafer, and Kulander|1992} Sanpera et al. 1995). For
higher intensities, non-sequential double ionization may occur, for which sAE
is no longer valid (Feist et al. 2008; Manschwetus et al. 2016)).
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FIGURE 2.1: Potentials used for helium (red), neon (grey), and argon (black). The heavy lines
show the pseudo-potential, V,(r), plus the centrifugal potential, —1/» + £(£ +
1)/(2#%), both of which depend on 7 and the orbital quantum number £. The light
dashed line is the hydrogenic long-range Coulomb potential plus the centrifugal
potential, which corresponds to the force on the electron at long distances. For
¢ > d, the pseudo-potentials do not deviate appreciably from the hydrogenic case,
and the potential is dominated by the centrifugal barrier. The fact that the s electron
cannot penetrate the core in the case of neon and argon (due to the repulsive po-
tential in the s channel), is an embodiment of the Pauli principle; the {2,3}s shell
is already occupied in the ground state configuration of neon/argon.

2.2 THEORY OF TIME-DEPENDENT QUANTUM MECHANICS

As stated above, any wavefunction may be expressed as a linear combination of
basis functions. These need not be eigenfunctions of a specific operator, in fact
they do not even need to be classical functions. We shall express this by con-
sidering a general basis set, spanned by the abstract vectors of a Hilbert space.
The notation introduced by Dirac (1939), is commonly used in quantum me-
chanics. A vector is then written as | ), and its conjugate transpose as (4|. Any
vector in this Hilbert space may then be written as

¥) =360, (2.12)

n

Inserting this into (2.3)), gives

%Zw)m —HY 6 (0)]n). (2.13)

II

* Formally its
dual vector.
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* This is not
strictly necessary,
but simplifies the

discussion here.
There are cases
where
non-orthogonal
bases are useful.
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Assuming orthogonality between the vectors, that is, (m|n) = 0

project (2.13)) onto one of the basis vectors:

e WE Can

236, (k) = (lH Y, (1)) (c14)

= i20,(0) = 3, (e) (m|E |n). (2.15)

ar”
n
By introducing the coefficient vector ¢ = [¢; ¢, ... ¢,], We can rewrite
as )
= ia—c(t) = Hc(z), (2.16)
t

where the Hamiltonian matrix has the elements H,,, = (m|H |»). The formal
solution is given by

() = Texp [—i /_; d/H(/)} <(0), (2.17)

where the time dependence of the Hamiltonian is written out explicitly. The
time ordering operator T must be included since, in general, the Hamiltonian
does not commute with itself at different times: [ (¢), H (¢')]_ # 0. This
means that the infinitesimal sum the integral sign represents is not commutative
either, but must be evaluated starting at the earliest time.

Time-dependent perturbation theory can be derived by expanding

in a Dyson series.

2.2.1 CMagnus propagators

Another approach is to use a propagator which is an operator that given a state
at a certain time, propagates it to any other time. It is written

C<tn+l> = ﬂ<tn+1’tn)c(tn>' (2'18)
Magnus (195 4) suggested that this propagator could be approximated by

U(t,,,.t,) ~ exp(Q”), (2.19)

n n

where " is a matrix that can theoretically be chosen such that the approxima-
tion is, in fact, exact:

[
Q" = —i/ 1ch‘/H(t/). (2.20)
t

n
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A common choice is the so-called midpoint rule, which is numerically correct
to O(z*), where the time step 7 = £, — 7,

Q" ~ —irH (tn + %) = —irH,. (2.21)

A higher-order method using a two-stage Gaussian quadrature is [Blanes et al.
2009} (254)]

Q" = _%T(Hl +H,) - %Tz [Hy Hy)_ (2:22)

where the Hamiltonian is evaluated at the quadrature nodes:

ILI]- = H(ZJI + Cj-T), Cl)z

-

* (2.23)

%

This method is temporally accurate to O(z*), but entails computing the expo-
nential of a commutator, the cost of which can be substantial. A better, com-
mutator-free, scheme for operators of the form

At)=B+f(¢)C (2.24)

is given by Alvermann, Fehske, and Littlewood (2012):

U(t,41:1,) = explr(B+ f1CO)] explry (B + £, O)] explry (B + £,O)]. (2.25)

The temporal accuracy of this method is also O(7*), and the fact that three expo-
nentials have to be computed for each time step, is mitigated by the possibility of
using much larger time steps while maintaining the same accuracy. However,
according to the Nyquist—Shannon sampling theorem (Nyquist|1928; Shan-
non|1949)), it is still necessary to sample the time-dependent dipole moment at
a sufficient number of time points for the calculation of dipole spectra. It can
then be more advantageous in terms of execution time to choose a lower-order
method for which the computational effort is lower. One possibility that has
not yet been investigated is to calculate the time-dependent dipole moment for
a sparse set of time points, using the higher-order method and then #p-
sample the signal before performing the Fourier transform to retrieve the dipole
spectrum.

After finding an approximation for £2”, the next step is to approximate the
matrix exponential in (2.19)). The appropriate method of doing this is highly
dependent on the matrix structure of 2”, which in turn depends on the choice
of basis,

n). In this work, a number of methods have been used.

13
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e Operator splitting [also known as Szrang $plitting; Strang (1968) and

Marchuk (1968))]. If the matrix has the form C = A + B [as is the case
in (2.6))], the exponential can be approximated by

exp(C) = exp(B/2) exp(A) exp(B/2) + O(|A, B*). (2.26)
The symmetric placement of the exponentials is important to preserve

unitarity.
Rational Padé (1892) approximants:

I
exp(A) = - + O(A%), (2.27)
2

also known as the Crank—Nicolson scheme. In the field of ordinary dif-
ferential equations, this corresponds to the trapezoidal rule. A rational
polynomial of a matrix is to be understood as a two-stage method. To
compute the action of the exponential of a matrix A on a vector x, one
first multiplies the vector by the numerator:

£=P+§%. (2.28)

The second step is to solve the system

[1—§}y=£, (2.29)

thus
exp(A)x ~y. (2.30)

If the matrix A is tridiagonal, which is the case for three-point discretiza-
tion of the kinetic operator, there are efficient methods for solving
using LU factorization.

Krylov methods (Krylov 19315 Saad 1992} |2003)), wherein the full ma-
trix exponential is approximated by a subspace exponential; the subspace
being by power iteration. This method of exponentiating a matrix can,
in theory, be accurate to machine precision; however, if the integral in
is accurate to O(7*), the full propagator in can only be ac-
curate to the same order. Nevertheless, this method is very useful for
cases where it is not feasible to use other methods, due to the structure
and/or the size of the Hamiltonian matrix.
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2.2.2 The single-altive-electron approximation

In the SAE, the TDSE reads
i—|¥)=|-—+V(r)+ Hi(r;2)| | V). (2.31)

Due to the non-locality of the pseudo-potentials near the origin, spectral meth-
ods are not suitable for propagation. Thus, it is not possible to work in the
eigenbasis of the kinetic operator, and calculations are instead performed in the
position basis. In this basis, the kinetic operator is non-local, so a three-point
discretization obtained through a variational procedure is used, which accounts
explicitly for the Coulomb singularity at the origin [for details, see Schafer et al.
(2000)) and Schafer (2009)].

Most of the calculations in the work described in this thesis were performed
within the SAE (specifically & . The algorithm is the same as
that presented by Schafer (2009)), but it has been translated to run on afgraphic
[processing unit (GPU )| a piece of hardware that is specialized for fast linear alge-
bra. It has also been extended to the case of arbitrary polarization of the electric
field in the z—x plane, as detailed in appendix In this algorithm, Q” is approx-
imated using the midpoint rule and the exponentiation is performed by
a combination of Strang splitting (2.26]), Padé approximants (for the atomic
Hamiltonian), and rotations through a 2 x 2 method (Raedt|1987; Richardson

1991).

IS






STRONG-FIELD LIGHT-MATTER INTERACTION

TRONG FIELDS are those of strengths comparable to the binding Coulomb

field of the atomic nucleus. In hydrogen, a single proton generates an elec-

tric field of 5.142 X 10" Vm™, which corresponds to an electromagnetic

field of intensity 3.509 x 10" W cm™* (these values are the atomic units of
their respective quantities). Light fields approaching these strengths cannot be
regarded as mere perturbations to the system. In fact, they are so strong that
they can induce highly non-linear processes and even severely distort the bind-
ing potential of the atom. A quantity that is useful in characterizing these phe-
nomena is the Keldysh (1965)) parameter:

w ZIP
z (3.1)

where w is the angular frequency of the electromagnetic field, /, the ionization

Q'

4

potential of the atom that is being irradiated, and € the electromagnetic field
strength. The Keldysh parameter delineates two regimes (see figure[s.1)):

y < 1 the tunnelling regime, where the binding potential is so distorted that it
forms a barrier through which the electron may tunnel, and the angular
frequency is sufliciently low that the electron has time to do so, and

y > 1 the multi-photon regime, where cither the field is too weak to distort
the potential appreciably, or the angular frequency is too high for any
quasi-stationary barrier to form [this picture is not complete, see Topcu
and Robicheaux (2012)]. In this later case, stacking of photons to reach
above the ionization potential provides a more adequate picture.

3.1 HIGH-ORDER HARMONIC GENERATION

The process that enables and epitomizes attosecond science is that o

\barmonic generation (HHG)} discovered in the late 1980s by McPherson et al.

(1987) and Ferray et al. (1988). By irradiating a gas with an intense laser, high-
energy emission containing many multiples of the laser frequency was observed.
Subjectinga dielectric medium to intense radiation will induce polarization

of the form:
P = Zzw)gq (3.2)
q

17
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y>1

FIGURE 3.1: Illustration of the Keldysh parameter. Left: tunnel ionization, where the binding
potential forms a barrier that is short enough for the electron to tunnel through it.
Right: multi-photon ionization, where the electron jumps’ up above the ionization
threshold by absorbing the energy of multiple photons.

Since the electric field is dependent on time, the polarization will also vary with
time and, according to Maxwell’s equations of electrodynamics, a charge under-
going acceleration radiates. The dielectric medium will thus radiate with fre-
quency components gw, ¢ € N, where w is the frequency of the electric field,
often called the fundamental frequency. The dielectric constants ;((q) depend on
the material and usually vanish with increasing g. In the photon picture, this
process corresponds to the absorption of ¢4 photons in succession followed by
emission of one photon of energy gw. The probability of doing this is approxi-
mately p?, where p is the probability of absorbing one photon. The harmonics
generated in this fashion are called perturbative harmonics, since they can also be
derived from perturbation theory. HHG is a radically different process. Firstly,
the harmonic yield does not decrease exponentially with increasing order, at
least for a large range of harmonic orders. Secondly, the electric field driving
the HHG is so strong it cannot be considered a perturbation; instead it distorts
the atomic potential to such a degree that tunnel ionization of the valence elec-
tron is possible. When an electron wave packet has been liberated this way, it
will be accelerated in the electric field, and a small part of it may be driven back
to the parent ion, where it recombines, or rather, interferes with the part of the
wavefunction that was left behind. This interference generates a rapidly oscil-

lating dipole, which is the source of the observed |high-order harmonic (HH)|ra-

diation.

Since the external field is very strong, the wave packet moves according to
the Ehrenfest (1927)) theorem , which states that the trajectory of the position
expectation value coincides with that of a classical particle. Because of this, it
is common to describe HHG in a semi-classical model called the simple man’s
maodel or the three-step model (Schafer et al.|1993; Corkum|1993)). This model
describes the process in three separate steps: (i) the electron is ionized by the
strong external field; (ii) it is then accelerated by the field and moves along its
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FIGURE 3.2: Three-step model of HHG. (i) The external field £(#) distorts the potential such
that a barrier is formed, through which the electron can tunnel. (ii) The electron
is subsequently accelerated in the external field. (iii) If the electron returns, it may
recombine and give rise to emission of a photon.

classical trajectory in the combined field of the atom and the laser; and (iii) if
the trajectory leads back to the parent ion, the electron may recombine leading
to the emission of radiation with an energy Wy +I,, (see figure . This is rem-
iniscent of what was stated at the end of the previous paragraph. It is by virtue
of the Ehrenfest theorem that our understanding from classical mechanics can
be applied to the process of HHG, allowing the otherwise complicated wave mo-
tion to be divided into ‘steps. An alternate viewpoint was provided by Feynman
(1965) in the path integral formulation of quantum mechanics, in which the
electron takes all paths imaginable; the classical trajectory being the most likely.

Assuming that the ionic potential can be neglected after ionization, we can
exactly solve the classical equations of motion of an electron in an electromag-
netic field

€(r) = 3{€ exp(iwr)}. (3.3)

For a detailed derivation, see appendix here we quote the main result. The
position of an electron appearing in the field at time #; is given at all times by

r(t) = 5+ (1 =1;)p; + %3 (p{exp(ior) = [1 +iw(z = 7;)] exp(ior,) }), (3.4)

where p is the polarization vector.
Assuming p; = 0, we can express the instantaneous kinetic energy as

Wi(tt,) =

£ = 2, (R {plespion) - explior) D2, (s)

19
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where we have introduced the ponderomotive energy,

IO
UP @

(3.6)

Recombination occurs at a time #,, defined by

r(2,) =0, £, >¢. (3.7)

This is a transcendental equation, which is not analytically solvable; however, a
multitude of solutions exist and can be found numerically. Furthermore, of all
pairs of (;, 2,), with the same final kinetic energy W, (z,, ;), there are two pairs
with an excursion time 7 = #, — #; < T, e.g. the electron returns within one
oscillation of the fundamental field after ionization. The trajectory with the
shorter excursion time (7 S 0.657") is termed the shors trajectory, while the
other trajectory is termed the long trajectory.

3.1.1 [inear HHG

Assuming linear polarization, £(z) || e, the motion is restricted to one di-
mension. Furthermore, it is usually assumed that the electron after ionization
appears ‘close’ to the nucleus, with no initial velocity. Figure shows charac-
teristic trajectories for a range of different ionization times, z,.

As seen in ﬁgure the process described by the three-step model is re-
peated twice per cycle of the fundamental field, with alternating direction of
ejection. This means that high-order harmonic radiation is emitted twice per
cycle. A multi-cycle driving field will result in a train of XUV pulses. In the
frequency domain this corresponds to only odd-order harmonics of the funda-
mental field (Alon, Averbukh, and Moiseyev|1998). From a physical point of
view, this corresponds to the fact that in an isotropic medium, such as a noble
gas, the even-order components of must necessarily vanish, due to the in-
version symmetry of the medium; upon inversion of the coordinates r — —r,
we have € - —€and P — —P. Comparing with (3.2)), this is only pos-
sible if ;((‘1) = 0, V29 € Z. The emission of even-order harmonics is possi-
ble by breaking the symmetry of the process, either by using a non-symmetric
medium (Franken et al.|1961; Ben-Tal, Moiseyev, and Beswick 19935 Kreibich
etal.2001)) or a non-symmetric driving field (Perry and Crane|1993} Eichmann
etal.|1995; Kim et al.|2005).
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FIGURE 3.3: Characteristic classical trajectories of an electron driven by an oscillatory field. The
colour scale corresponds to different ionization times #,. Those trajectories that do
not return to the parent ion are dimmed; they are important in above-threshold
ionization. The driving field is shown in red, for reference.

3.1.2 Strong-field approximation

The most commonly used approximation in the description of HHG from gases

is the \#rong-field approximation (s¥a); (Lewenstein et al. , which is, in

essence, a quantum mechanical analogue of the three-step model. In its original
formulation, it imposes a set of fairly strong approximations.

(1) Ofall the bound states of the atom, only the ground state |0) contributes.

(2) The probability of remaining in the ground state is essentially unity.

(3) The free electrons propagate in the external field only, i.e. they are not
influenced by the ionic potential.

The derivation can be found in appendix|p] The time-dependent dipole is
approximated as

oo 3/2
W) =i | dr(——=) d[py(t7) = A()] exp[=iS,(1,7)]
/0 <£ +ir/ 2> Step (iil) Step (ii)
xE(t—1) - dlpy(t,7) — A(t — 7)] +cc.

Step (i)

(3.8)
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The three-step model is very apparent in ; attime ¢ —7, the electron appears
in the continuum with a momentum p,(#,7) — A (£ —7) [step (i); figure[3.2]).
The acceleration in the external field [step (ii)] is contained in the propagator
exp[—iS (2, 7)], where S (#, 7) is a stationary trajectory of the guasi-classical ac-
tion S. Finally, at time 7, the electron recombines [step (iii)] from a momentum
state py(£,7) — A (¢). The stationary momentum p,(#, 7) is that which leads
to a stationary trajectory on which an electron ionized at time # — 7 returns
to the parent ion at time £. The pre-factor [r(¢ + ir/2)1]>/? accounts for the
quantum diffusion of the free electron during propagation.

From , it is obvious that different harmonics will have different phases,
given by the quasi-classical action:
/ v - AP

Z,

S(p.t,.4) = dr 7+1p ; (3.9)

which depends on both which harmonic we are considering [the
is linked to the momentum p], and which trajectory that generated

the emission. Different trajectories of the same final momentum are linked to
different pairs of ionization and recombination times, #,, #,. The fields they ex-
perience are thus different and thus also their accumulated phases. If we can
tune the driving field, we can impart different phases on the different trajecto-
ries leading to the same harmonic order, as will be considered in the chapter on
quantum path interference.

3.1.3 Semi-classical trajectories in HHG

Figure[3.4|shows the semi-classical trajectories of electrons ionized in the time
window [7/4, T'/2]. The least energetic short trajectory is that ionized the last
and returning first: (¢,,¢,) = (7/2, T /2), thusit hasavanishingexcursion time
and excursion length. Conversely, the least energetic long trajectory is ionized
first and returning last: (#,,¢,) = (7'/4,57T /4), which gives an excursion time
of one laser cycle, and an excursion length of around one nanometre for optical
wavelengths and moderate field strengths. Lastly, the most energetic trajectories
of both classes of trajectories coincide, with an excursion time of about 0.657

and an excursion length of approximately half that of the longest trajectory.

3.2 ABOVE-THRESHOLD IONIZATION

Itis apparent from figure[3.3]that many trajectories that do not return to the par-
ention (dimmed colours). Instead, they lead to photoelectron emission at ener-
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FIGURE 3.4: Classical picture of HHG. The upper panel shows the return kinetic energy as a

function of ionization time #, (black), return time #, (red), and excursion time 7 =
t, — t; (grey), found by solving subject to r(z,) = 0. Also plotted, as a dashed
line, is an approximation from the SFA, calculated by integrating the quasi-classical
action along the stationary trajectories in the field £(¢) = €, cos(wz). The
middle panel shows the trajectories generated in the time window [7'/4, T'/2). The
thickness of the lines indicates the return energy, and the most energetic trajectory is
shown in red. The maximum excursion is ~ 2€,, /w* which, for optical wavelengths
and a driving intensity of 10"* W c¢m™, is of the order of a nanometre. The lower

panel shows the fundamental driving field, for reference.
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FIGURE 3.5: ATI spectrum from argon subjected to /=1 x 10"* W em™ of =800 nm, as cal-
culated by the TDSE. The classical cut-offs, 2U, for direct electrons and 10U, for
indirect electrons, are indicated by the vertical red lines.

gies high above the threshold, so-calledlzbove-treshold ionization (AT1); (Agos-
tini et al.{1979)). The maximal energy observed can be found by maximizing the
second term of (3.s)). The first term, 2U, cos(wt), corresponds to the energy

given by the time-varying driving field, but when the electron leaves the inter-

action region, this term no longer contributes, and we are left with the kinetic
energy imparted to the electron at the time of ionization, #;. The maximum en-
ergy in direct ionization is thus 2U,,, assuming spatial homogeneity of the driv-
ing field.

The trajectories that do lead back to the parent ion may, as dicussed above,
recombine and generate HH emission. They may also scatter off the nucleus and
emerge with a higher kinetic energy, in a kind of slingshot effect. The maximum
attainable energy for this indirect ionization, ~ 10U, occurs in elastic back-
scattering (Paulus, Becker, and Walther|1995).

As in HHG, the repetition of the process every half cycle leads to a train
of photoelectrons being emitted, which is represented in the energy domain as
photoelectron peaks. However, every other half cycle, the electrons are ejected
in opposite directions, which means the electrons emitted during two subse-
quent half cycles are distinguishable, even if they have the same final energy.
This explains the existence of even orders in ATT as opposed to the case of HHG.
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FIGURE 3.6: ATI time—energy link; as a function of time, the final kinetic energy of the directly
ionized electrons is shown in black, i.e. (3.5). The red curve shows the maximal
energy attainable by indirectly ionized electrons ionized at that time.

Figure shows a theoretical ATI spectrum where these features can be ob-
served.

Due to the classical nature of the trajectories, it is also possible to establish
an ionization time—final energy link (ibid.); for the directly ionized electrons,
this link is simply (3.s)). There is a similar link for the indirectly ionized elec-
trons, albeit not analytical, which can be found by maximizing the energy of
the scattered electrons for each possible ionization time. This is shown in fig-
urc It should be noted that for indirect electrons, a// energies below this
maximum energy can result from ionization at time ;. Thus, only the maxi-
mum energy observed is an indication of the time of ionization, especially for
E = 10U, which classically has only one associated time of ionization (as seen
from figure .

The existence of this ‘time—energy link’ makes it possible to enhance or sup-
press selected parts of the photoelectron spectrum by increasing or reducing the
ionization rate at the corresponding ionization time (this is the subject of

discussed in below).

3.2.1 Angularly resolved spectra

One important difference between HHG and ATI is that in the former case the
emission is in the direction of propagation of the fundamental driving field,
whereas in the latter case, the emission is confined to the polarization plane.
The spectrum shown in ﬁgure is the total cross-section obtained by angu-
larly integrating over all channels. It is possible to obtain more information by
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FIGURE 3.7: Angular distribution of photoelectrons from argon. The left panel shows the full
distribution, the small panels on the right show the first few 8 channels, the first
being the isotropic component proportional to the total cross-section. For pro-
cesses of definite parity (such as one-photon ionization), only the even 8 channels
are populated.

retaining the angularly resolved spectra and decomposing them in a series of
Legendre polynomials in cos(9):

2(8] )P, [cos(9)], (3.10)

where 8, are the expansion coefficients. The photoelectron spectrum of fig-
ure[3.s|has the angular distribution presented in figure[3.7} Experimentally, the
angularly resolved spectra are obtained usingvelocity map imaging spectroscopy)|

(Eppink and Parker|1997), yieldinga 2D map that is a projection of the

3D continuum wavefunction onto a plane. In contrast to ﬁgure the radial

coordinate of the VMI spectra is proportional to the electron momentum rather
than its kinetic energy. In the case of cylindrical symmetry, i.e. linear polariza-
tion of the fundamental driving field, the full 30 momentum distribution can
be reconstructed usingan inverse Abel transform (Dasch Vrakking.

The decomposition is amenable to integration over a hemisphere
such as the forward’ or ‘backward’ direction, due to the orthogonality of the
Legendre polynomials on the unit circle. We can therefore define the energy-
resolved asymmetry thus:

(3.11)
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where <, > denote integration over the forward and backward directions, re-
spectively. This quantity is useful in the analysis of the time—energy link.

3.3 TIME—ENERGY LINK IN STRONG-FIELD DYNAMICS

The strong-field process described in the previous sections can be influenced by
utilizing the time—energy link; the probability of tunnel ionization at time # is
strongly dependent on the instantaneous field strength (Landau and Lifshitz
1977; see appendix for an overview). One way of modulating the instanta-

neous field strength for short pulses is to vary the|carrier—envelope phase (CEP)|

which breaks the time symmetry with respect to the centre of the pulse. For
long pulses, the symmetry can be broken by adding a field of commensurate
frequency to the fundamental driving field. By varying the relative phase of the
two fields, control similar to that possible with the CEP for short pulses can be
achieved. In the specific case of the addition of the second harmonic to the
fundamental field, it is possible to generate a train which, in the spectral do-
main, contains both odd- and even-order harmonics. The admixture is decided
by the relative strengths and phases of the two constituent fields (Mauritsson et
al.|2006,2009). It is therefore of importance to be able to measure and control
the relative phase, a technique for which is presented below. A more detailed
account is given in

3.3.1 (arrier—envelope effelts in HHG

For short driving pulses, the CEP has a dramatic effect on the electron trajecto-
ries in HHG (see figure|3.8)), since its variation breaks the time symmetry. The
emitted XUV radiation will propagate in the same direction as the driving field.
Thus, it is not possible to spatially discriminate between radiation from elec-
trons whose excursions are in the ‘forward’ or ‘backward’ directions, as was
possible in the angularly resolved ATI measurements described above. It is,
however, possible to tune the spectrum through the time-energy link (as can
be seen in figure[3.9)), and also change the time structure of the emitted xUv
radiation. When all the trajectories are included in the calculation, interfer-
ence results, and the spectrum is complicated, making interpretation difhcult.
When only the short trajectory is included, the HHG spectrum is considerably
simplified, but some interference still occurs as the CEP is scanned. Rudawski
et al. (2015)) identified three spectral regions: a low-energy region that is not
affected by variation in the CEP, a high-energy region, where the harmonics
gradually transition from odd to even orders, and an intermediate-energy re-
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FIGURE 3.8: The effect of varying the CEP on the classical electron trajectories.

gion, with more complicated structures. The spectral profile ‘fingerprints’ the
time structures generated; the transition in the high-energy region from odd
to even harmonic orders signifies a gradual change from a phase difference of 7
between subsequent XUV pulses to a phase difference of 27; the interference in
the intermediate-energy region hints at the generation of multiple Xuv pulses.

FE describes the effects going beyond changing the CEp, which is a first-
order dispersion effect (see appendix|f]for an overview of ultra-fast optics). The
frequency components of the fundamental pulse are dispersed by gradually in-
serting a piece of glass into the beam. The higher-order dispersion effects will
lead to chirping of the fundamental pulse, thereby increasing its duration and
decreasing its peak intensity. Figure shows the experimental results as well
as a theoretical scan, calculated using the TDSE. There are obvious similarities
and differences between the experimental and the theoretical results. The most
important differences are the lack of shoulders in the theory (for absolute glass
insertions greater than half a mm), the blue shift of the harmonic orders in the
experiment for small dispersions, and the clear compression of the harmonic or-
ders in the theoretical results but not in the experimental results. The first of
these differences is can probably be explained by the structure of the pulse in
the experiment (depicted in ﬁgure, which when dispersed through glass
will exhibit pre- and post-pulses strong enough to support HHG. The blue shift
occurs when the generation medium is partly ionized, as the presence of plasma
affects the refractive index causing the driving field to be blue-shifted, leading
to blue-shifting of the harmonic orders as well. The TDSE calculation, being
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FIGURE 3.9: Theoretical CEP scan of HHG in argon (left column) and neon (right column), as
calculated using the TDSE for a pulse duration of 6.2 fs, a driving wavelength of
8sonmandanintensityof 1.9 X 10** W cm™ forargonand 3.3 X 10" Wem™ for
neon. The upper row includes all trajectories, while in the lower row, only the short
trajectory is included (the manner in which this is done will be described in detail
in . The vertical red lines approximately delineate the spectral regions identified

by Rudawski et al. . The greyscale is logarithmic.

a single-atom-type calculation, is totally devoid of such effects. The lack of a
clear compression of the harmonic orders in the experiment is more difficult to
explain, but we shall see that some things can be learnt all the same.

The qualitative similarities are convincing; most notably the fringes remi-
niscent of those in the CEP scan in ﬁgure Their slope varies over the spec-
trum and as a function of the amount of glass insertion. From the TDSE calcu-
lations, it can be seen that the fringes are horizontal, i.e. the slope changes sign,
where the harmonic orders are compressed. The same effect is observed in the
experiment, although the compressions of the harmonics themselves are not vis-
ible. The sign change was in Hv]interpreted to occur at that amount of glass in-
sertion for which the external chirp compensates the internal chirp of the HHG
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FIGURE 3.10: Dispersion scan performed by gradually inserting a BK7 glass wedge into the fun-

damental driving laser beam. The grating compressor is pre-compensated to third
order in the dispersion for BK7 glass, which means at ‘zero’ glass insertion, the fun-
damental beam is Fourier-transform limited. Upper panel: experimental results,
using the driving field depicted in figure[3.11} Lower panel: theoretical scan, as
calculated using the TDSE, for a Gaussian pulse. A large blue shift due to ioniza-
tion not present in the TDSE is visible in the experimental scan, which explains why
the harmonic orders do not line up for minimum dispersion. The Cooper
minimum at 50 €V (Worner et al. 2oog} Farrell et al.[2011)) is visible in both the

experimental and the theoretical results.
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FIGURE 3.11: Experimental pulse in the spectral domain (upper and middle panels) and in the
time domain (lower panel). The spectral distribution was retrieved using the d-
scan algorithm presented by Miranda et al. . The envelope of the driving
pulse employed in the calculations, centred at 850 nm and of 6.2 fs duration [ |fu//-]
[widlth at half maximum (FwaM)|of intensity profile] is indicated in red.

process, characterized by the dipole phase parameters (which will be discussed at
length in §4). Another notable feature is the diminished #H yield around so ¢V,
due to the (voper minimum present in the photoionization of argon.

3.3.2 CMulti-colour AT1

In the field of electronics, the frequency and phase relationship between two
signals x(#) and y(¢) can be determined by Lissajous curves, in which one
signal is plotted vs. the other. For commensurate frequencies, a closed curve is
obtained, which can be used to infer the relative frequencies, amplitudes, and
phase of the two signals.

As noted above, the ATI process can be controlled by introducing a second
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field of another colour. If we specifically choose the added colour to be the sec-
ond harmonic of the driving field, instead of (3.3, we have the following form

(assuming linear polarization):
E(r) = €,(2) + & () = Esin(wr) + 5 sin(2wt + ¢)], (3.12)

where 7 is the relative strength of the second harmonic and ¢ the relative phase.
If the relative strength is small enough (usually a few percent), it does not signif-
icantly affect the free propagation, but it does affect the ionization rate, which
is highly non-linearly dependent on the field strength (Perelomov, Popov, and
Terentev |1966, 19675 Perelomov and Popov |1967; Ammosov, Delone, and
Krainov(1986} see also appendix[g).

FIGURE 3.12: Symmetry breaking by the introduction of the second harmonic (black) of the
driving field (grey). (NB that the second harmonic amplitude has been exagger-
ated for illustration.) Depending on the relative phase of the constituent fields,
the resultant field (red) will enhance or suppress the tunnel-ionization at different
time, compared to the monochromatic case. Left: ¢ = 0, right: ¢ = /2.

The addition of the second harmonic makes the driving field asymmetric, as can
be seen in figure[3.12] By sweeping the relative phase, we can thus enhance or
suppress the ionization rate at speciﬁc times, and, as we saw above, there is a clear
link between the ionization time and the final energy. Because of the special
kind of asymmetry introduced by the second harmonic field, an energy that is
enhanced in the forward direction will be suppressed in the backward direction
(cf. figure[3.12). The energy-resolved asymmetry R(E) defined in is thus
a quantity that is directly influenced by the relative phase of the fundamental
field and its second harmonic. Since the spectrum can be measured with high
fidelity, the spectral asymmetry can be used to obtain information on the rela-

tive phase between &€, (#) and &, (2).
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FIGURE 3.13: Sterco-AT1 Lissajous-like curve. Left panel: The high-energy asymmetry [, R(E)
plotted versus the low-energy asymmetry fl R(E). Right panel: The relation be-
tween the Lissajous angle 3 and the phase ¢ between €, (¢) and &,(¢).

A very similar idea has already been implemented in a technique called
stereo-ATI (Wittmann et al. 2009)), where instead short pulses were used and the
CEP was the control parameter (as noted above, the variation of the CEP breaks
the time symmetry with respect to the pulse centre). Hi1|describes an extension
of this technique to the case of long pulses, using the ideas outlined above. In-
tegrating the energy-resolved asymmetry X(E) over a low-energy range and a
high-energy range, and plotting one versus the other, results in a Lissajous-like
curve (see figure[3.13)), which may be used to establish the phase relationship
between the low- and high-energy parts of the spectrum. The relative phase of
€,(¢z) and &, (¢) field may then be determined through the time—energy link of
the ATI process.

3.4 RESUME

In this chapter, the processes that occur in strong-field light—matter interac-
tion (e.g. HHG &9 ATI) have been introduced. The concept of electron trajec-
tories was introduced and their temporal, spectral, and spatial properties were
discussed. Specifically, the use of the time—energy link was demonstrated as a
means of establishing the relative phase of two commensurate fields, through an
extension of the stereo-ATI technique to pulses of long duration. We will return
to the electron trajectories in HHG repeatedly in the following chapters.






QUANTUM PATH INTERFERENCE

JSe vais d'abord vous
couper la téte. Ensuite,
vous connditrez la verité !

Tao-Tzeu 12 dif: 1] faut
| frouver /s voie!" Moi, je
Vst trowvée lf faut done
| gue vous & trouviex
FUSS ..

Zao-Tse says: “You need to find the path” I have
found it. You need to find it too...; Yes?..., Twill
cut off your head. Then, you will know the truth!’

Ze Lotus bleu,
Georges Remi, 1907-1983

HE OBSERVATION of interference is clear evidence of the wave nature of
the system being studied. In quantum mechanics, this manifests itself when
the system reaches its final state by following more than one path, since in
general each path is associated with its own phase accumulation. In this

was studied in the case of HHG. As noted above, two main classes of trajecto-
ries (the short and the long) are responsible for the experimentally observed HH
emission. Since the emission is proportional to the acceleration of the charge, it
follows that observed interference in the emission arises from interference be-

tween the electron paths themselves, hence the termlguantum path interference

(Qe1)

The emission from the short and the long trajectories, observed in the far

field, will interfere if it overlaps, spatially and spectrally. In the experiment de-
scribed in a grating spectrometer was used to separate the emission into
its spectral components in the horizontal direction of the detector, while diver-
gence of the emission was along the vertical direction (see ﬁgure.

Signs of interference can be already observed from this spectrum, as one or
more rings are visible around each harmonic. The rings are modulated, some-
times completely disappearing. They originate from the interference of long-
trajectory emission from different emitters and will be discussed in chapter
on macroscopic effects. What is not immediately visible in the spectrum, how-
ever, is the interference present between the short and the long trajectories. To
reveal this interference, we must study how their relative phase can be influ-
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Harmonic order, second-order diffraction
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FIGURE 4.1: Experimental HH spectrum generated from argon using a driving wavelength of
1030 nm and an intensity of about 1 X 10"* Wem™. The grating used, a Hitachi
001-0639, was optimized for the plateau harmonics, which is why the second-order
diffracted cut-off harmonics overlap with the first-order below-threshold harmon-
ics. HO11-13 €9 HO37 are only partially visible due to the spatial extents of the
micro-channel plate used.

enced; once we know how to do this, we can perform an interferometric mea-
surement.

Asdiscussed in there is not only a time—energy link, but also a time—
space link; hence the trajectories can be discriminated not only by their energy,
but also by their excursion from the ion. Thus, another way of studying the
paths is to separate them such that they do 7oz interfere. Both approaches are
described in the present chapter.

4.1 QUANTUM TRAJECTORIES IN HHG

The reason why the classical treatment of HHG is so successful, is that the po-
sition expectation value of the wave packet follows the classical trajectory, as
noted above. However, it is still a wave, which means it accumulates phase dur-
ing propagation. Difterent wave packets leading to the same final momentum
will thus interfere. There are two main reasons why different wave packets can
lead to the same final momentum. The first is that during one half cycle of
the fundamental driving field, multiple trajectories are spawned that have the
same final momentum upon return; the first two are, as mentioned above, the
short trajectory and the long trajectory. The second reason is that the HHG pro-
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cess repeats itself every half cycle, which means that all trajectories that are not
stationary orbits in the external field will interfere destructively (Sali¢res et al.
2001)). These stationary orbits are exactly those that are in resonance with the
harmonic orders of the fundamental driving field - the longer the driving pulse
is, the more severe the resonance criterion is. In the limit of driving pulses of
infinite duration, the harmonic emission can be written as a series of discrete

harmonics
1-(-1)7
hlw) =) ———a,3(qu), (4.1)
q€N

where 4, is the amplitude of HOg with photon energy gw; («, being the fun-
damental frequency). A few-cycle driving pulse will lead to a more continuous
spectral distribution of the harmonic emission.

One way to prove the link between the classical picture of HHG and the
quantum trajectories, is to investigate the harmonic emission as calculated with
the TDSE or the SFA from a trajectory perspective. If a single trajectory can be
isolated, no interference will occur and there will be no modulation of the har-
monic emission (this is true for the half-cycle response of a single emitter). We
start by calculating the time-dependent dipole moment, using both the TDSE
and the SFA (see ﬁgurc. In the case of the SFa, since the integral in
runs over the excursion time, we can immediately calculate the emission at the
peak intensity of the field (chosen to have a flat profile). To calculate the station-
ary behaviour of the TDSE, however, it is necessary to turn on the field slowly,
and wait a sufhiciently long time for the transient behaviour to decay. Further-
more, for reasons of numerical stability, the acceleration of the dipole moment
is calculated.’

Due to the time—energy link in HHG, the quantum orbits can be revealed
by performing a windowed Fourier transform — a Gabor (1946) transform:

(z—2)?

Gx(t,f)z/:dr exp | -T2

0 eple). ()
where ¢ is the width of the window — of the time-dependent dipole moment."
Figurcshows the quantum orbits in HHG calculated using the TDSE. In the
upper panel, all the trajectories are included and, as a consequence, clear mod-
ulation of the quantum orbits is visible. Due to the time—space link, we can in-
troduce a mask function at a suitable distance from the nucleus (see figure|4.3),
such that all trajectories with excursion lengths longer than the longest short
trajectory are absorbed [a more sophisticated method is to use a wavelet-based
approach, as is done by Strelkov et al. (2011, |2012)]. The quantum orbits will
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* This is because
computing the
expectation value
of the dipole
operator, (),
amplifies the
contributions of
large radial
distance, where
the resolution is
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another
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FIGURE 4.2: HHG calculated using the TDSE (red curves) and the sra (black curves). The up-

permost row shows the fundamental driving field of wavelength 1030 nm and in-
(= U, = 0.36au). For the TDSE cal-
culation, a pseudopotential for argon (IP= 15.7596 €V~0.5792 au, cut-off ~HO39)
was used, while for the SFA calculation, the atom was a hydrogen model with a 1s
ground state with the binding energy of argon. The middle row shows the time-
dependent dipole response; the shaded part in the left column indicates the time
window used to Fourier-transform the TDSE signal (which is also windowed) to
find the spectrum shown in the lowermost panel. This panel shows a comparison
between the HH spectra calculated using the TDSE and the sFA. The broad features
of the two models are in agreement, however details are not.

tensity of approximately 1 X 10" W cm™
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HHG quantum orbits, as calculated using the TDSE. Upper panel: all trajectories.
Middle panel: short trajectory only, calculated by spatially masking the part of the
wavefunction that extends outside a certain radius. The red curve shows the classical
orbit, for comparison. Lower panels: excursion (left) and return energy (right) as
functions of excursion time. The most energetic short trajectory makes an excursion
of ~ 1.1, /«* and has an excursion time of ~ 0.657".
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then lose all their modulation and emission will only occur within the time win-
dow of every cycle that is associated with the return times of the short trajectory.
This is not too dissimilar from the way in which the short trajectory is selected in
the experiment. There, the long trajectory can be spatially filtered out by plac-
ing a fixed aperture some distance away from the focus, thereby allowing only

the less divergent emission of the short trajectory to pass (Bellini et al. 1998)).

Harmonic order of 800 nm

9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

la(g; 1)

la(g; 1)

1[Wem™2)

FIGURE 4.4: HHG yicld as a function of intensity, as calculated using the sFA. The driving wave-
length is 800 nm and the generation medium is argon. Upper panel: all trajecto-
ries included, which leads to strong amplitude modulation in the plateau regime.
Lower panel: only the short trajectory is included, by limiting the maximum excur-
sion time to 0.657". As can be seen in the plateau regime, the trajectory selection
works well, since the modulation is suppressed. Some of the multi-trajectory char-
acter remains close to the transition point between the regimes.
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4.2 QUANTUM PATH DISTRIBUTIONS

Another way of studying the quantum trajectories in HHG is to calculate the
HH response as a function of the intensity of the fundamental field. A common
model used to describe the harmonic emission is (Varju et al.|2005b))

E(w ) = ZAq(qu,I) explia;1], (4.3)
v/

which is very similar to a Fourier series decomposition along I (see appendix[d]
for a motivation of this model). «; is a quantity conjugate to the intensity,
called the dipole phase parameter. Figure[4.4]shows the HH yield and phase cal-
culated with the sFA for a range of harmonic orders. In the upper panel, both
the short and the long trajectories are included, which leads to strong modula-
tion of the HH yield above a certain threshold intensity. In the lower panel, only
the short trajectory is included. This is accomplished by setting the upper limit
of the integral in to 0.657, which is the approximate excursion time of
the most energetic short trajectory. The modulation of the HH yield is almost
completely suppressed; what modulation remains occurs in close proximity to
the aforementioned intensity threshold. This threshold occurs at the boundary
between the cut-off regime and the plateau regime, as illustrated in figure[4.s|
In the plateau regime, which is the classically permissible regime (as discussed
in , multiple trajectories exist and can interfere. This is the case above the
cut-off intensity in the upper panel of figure[4.4] Below the cut-off intensity,
in the classically forbidden cut-off regime, the two trajectories merge into one
trajectorys; this can be seen from the upper panel of figure[4.4] where below the
cut-off intensity, the harmonic yield exhibits a smooth behaviour.

Returning to the model , it is clear that the individual trajectory contribu-
tions for one harmonic order ¢ may be disentangled by Fourier transformation
along I. Figurel4.6|shows exactly this. The Fourier transform resolves the har-
monic emission into three major contributions: the short-trajectory contribu-

* =~ 0), the long-trajectory contribution (¢* =~ 27), and the cut-off tra-

tion (2
jectory contribution (¢* =~ ). The reduced dipole parameter «* is related to

the dipole parameter through

2* = 4a’al)), (4.4)

where @ is in atomic units,  in 1 units, and I, = 3.51 X 10" Wcm™™.,

To further disentangle the trajectories of , we calculate the Gabor
transform GEq (I,2) to reveal the lquam‘um path distribution (QPD)l of
HOq. The calculated QPDs for all harmonic orders at the experimental peak
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Plateau

Harmonic order of 1030 nm

4 5
1[Wem™2) x10'

FIGURE 4.5: The classical cut-off law delineates two regions: in the upper left region, the har-
monics are in the cut-off regime, whereas the lower right region corresponds to the
plateau regime. The quantum paths generating the harmonics are very different in
these two regimes. The vertical line indicates the approximate intensity in the ex-

periments described in

intensity are shown in figure[4.7} In addition to the short and the long trajecto-
ries, multiple longer trajectories are visible. These have not yet been unambigu-
ously identified experimentally, but are known from theory (Lewenstein et al.

1999,

4.3 QUANTUM PATH INTERFEROMETRY

From (4.3)), an interferometric scheme presents itself in which the phase accu-
mulation along the different trajectories is, in general, different. Two quantum
paths to the same final state with different phase accumulation will interfere. It
can be shown (see appendix that the interference term between the long
and the short trajectory of HOq has the phase argument

(aqs - aq/)IO’ (45)

where ;) is the peak intensity of the driving pulse. Thus, by adjusting the peak
intensity, we can tune the ‘arm length’ of our interferometer. This was done to
extract ¢, — ¢, in Flgurcshows the experimental results for HO17, ac-
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FIGURE 4.6: Upper row: Intensity dependence of the HH yield (left) and the phase (right) of
HO25 of 1030 nm, calculated using the TDSE. Lower row: Identification of trajec-
tories in HHG. Fourier transformation of the upper row along the intensity axis gives
the harmonic emission expressed in the variable conjugate to intensity, the dipole
phase parameter a. In its reduced form, «* (4.4), the short trajectory corresponds
to a value of «* =~ 0, the long trajectory corresponds to * ~ 2w and they meet in
the cut-off at «™* = .

quired by taking a lineout along the central frequency of the harmonic from
a spectrum of the kind shown in figure[4.1} the QPI patterns emerged as the
peak intensity was varied. A model based on Gaussian beams (described in ap-
pendix[G.4) was fitted to the experimental results, ensuring that the amount of
fringes and their curvature were matched. This was done for HO11-37, and the
corresponding values for « - and 41 Were extracted for all harmonic orders. The

results can be seen in ﬁgure

The variation in intensity was accomplished by chirping the fundamental
pulse, which also imparts a spectral phase variation to the generated harmonics
(see appendix|G.3]). However, at the central frequency of each harmonic order,
the spectral phase variation vanishes, which is why the QP1I patterns are symmet-
ric with respect to the chirp (see ﬁgure. The spectral phase variation can

be used as the basis for a spectral model of the interference (as described in ap-
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pendix|G.3). Fitting this model to lineouts taken along the spectral dimension
at zero divergence of the experimental spectra (of which figure|4.1/is one exam-
ple), provides a separate set of values of z, ; for all harmonic orders. These values
are also shown in figurel4.9land, in general, they agree with the values extracted
using the spatial model.

4.4 RESUME

In this chapter, the trajectory nature of HHG has been thoroughly investigated,
both through theoretical reasoning and calculations and experimental measure-
ments. The wave nature of microscopic matter is made apparent through the ob-
served interference patterns, but the particle nature with its classical trajectories
is emphasized through the ability to separate the trajectories in a very classical
fashion (e.g. the mask function used to suppress the long trajectory emission)
and observation of the disappearance of the interference.
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FIGURE 4.7: Quantum path distributions in HHG, calculated using the TDSE. The short (z* =~
0) and the long (¢ = 2) trajectories are visible in the plateau regime (g < 35), be-
yond which they merge into a cut-off branch with 2* ~ . The red line is calculated
from the sFA by integrating the quasi-classical action S, along the classical tra-
jectories (3.4). Trajectories beyond the long trajectory are visible in the quantum
path distributions and agree qualitatively with the SFA approximation. These have
not yet been unambiguously identified experimentally.
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FIGURE 4.8: QPI from HO17 observed experimentally along the central frequency of the har-
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monic. For small divergences <s mrad, a clear interference pattern is visible; this is
the region where the short and long trajectories spatially overlap. Pulse durations
notated 300, fs denote 300 fs pulse duration with positive/negative chirp. Accord-
ingly, 170, fs corresponds to a Fourier-transform-limited pulse duration of 170 fs.
The greyscale is logarithmic in intensity.
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FIGURE 4.9: The squares and the stars show the values of 2* for the short (black) and long (red)

trajectories, extracted using two complementary methods (for details, see Hrv)). The
grey line is calculated from the quasi-classical action @, assuming classical return
and excursion times of the trajectories. This is the reason why the agreement is bet-
ter for the long trajectory; the long trajectory being ‘more classical’ than the short
trajectory.



ELLIPTICAL HHG

N THE MORE general case of elliptical polarization of the field driving the
HHG, the motion of the electrons is considerably more complicated than in
the linear case. Naively, one would expect that the electron would not return
at all, due to the added drift in the direction transverse to the major axis of
the polarization ellipse, i.e. the harmonic yield would be proportional to §(£),
where £ is the ellipticity of the driving field (6 = 0 = linear polarization,
¢ = +1 = circular polarization). However, as has been observed previously
by e.g. Burnett, Kan, and Corkum (1995)) and again in the yield is propor-

tional to
2

exp |-~ | > (5.1)
Zaq

where o, is a measure of the sensitivity to ellipticity for harmonic order 4. This
can be understood as follows. In the tunnel-ionization step, the electron is
not created with zero momentum, but with a normal distribution of momen-
tum centred at zero (Ivanov, Spanner, and Smirnoval2005)). This means that al-
though the electron acquires a position drift in the transverse direction, there
are some values of initial momentum that allow return (specifically those or-
thogonal to the instantaneous field vector at the moment of ionization). In
the conjugate picture, this corresponds to quantum diffusion; an initial distri-
bution of momentum leads to spreading of the wave packet after propagation,
which means that even though the wave packet is displaced such that its centre
of mass (corresponding to the position of the classical particle) is not at the ori-
gin, its probability density distribution still overlaps with the parent ion, thus

FIGURE s.1: Quantum diffusion in elliptical HHG, as seen in two conjugate pictures. As the wave
packet propagates, the uncertainty in position increases (left). This corresponds to
an uncertainty in initial transverse momentum (right).
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FIGURE s5.2: Observed threshold ellipticity as a function of harmonic order for the short (black)
and the long (red) trajectories. The circles denote the experimental results, pre-
sented in Solving the TDSE including all trajectories gives the grey squares,
which seemingly oscillates between the two trajectories as measured experimen-
tally. This could be an indication that different trajectories dominate the response
to ellipticity for different harmonics orders. Filtering out the long trajectory from
the calculations gives the black squares. These show the same general trend as the
experimental measurements, although about 20 % lower. This could be due to the
fact that the TDSE calculation only reflects the single-atom response, whereas the
experiment probes a range of intensities over the focal volume.

allowing recombination.

q
with high resolution (see ﬁgure. Additionally, through spatial separation

of the two trajectories, it was possible to measure the trajectory-resolved sen-

In g1t the sensitivity of the harmonic orders to ellipticity, o, was measured

sitivity, T wherej = 1,2 refers to the short and the long trajectories, respec-
tively. With increasing harmonic order, 7,,; would decrease, which corresponds
to higher sensitivity to ellipticity. This is intuitively correct, since increasing ¢
would lead to an increase in the excursion time in the case of the short trajec-
tory (j = 1). A longer excursion time increases the probability of the electron
drifting away from the parent ion, decreasing the harmonic yield.

What was unexpected, however, was that for the long trajectory (j = 2),
the sensitivity increased with increasing g, which is counterintuitive; increasing
g for the long trajectory corresponds to shorter excursion times and presumably

a decrease in phase accumulation. As we will see below, the reason is a combi-
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la(£)]
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FIGURE s.3: Ellipticity response of HO11, calculated using the TDSE, including all trajectories
(hence the interference). The experimental ellipticity is shown in red, for refer-
ence. Both the theoretical and the experimental results have been normalized to
the Gaussian that most closely fits the respective data.

nation of probabilities that must be considered at the sub-cycle level.

There are several reasons for the interest in elliptically driven HHG. For
example, polarization gating for the generation of isolated pulses by the con-
structive addition of two counter-rotating circularly polarized pulses (Oron et
al. 2005} Sola et al. 2006) relies on the fact that the HHG yield decreases dras-
tically with the ellipticity, to achieve a few-cycle window of HHG. However, a
more interesting use of ellipticity in HHG is its value as a probe of the limits of
the three-step model, with respect to the ionization conditions, the propagation
in the continuum, and the recombination probability. The three-step model
has been very successful in describing HHG from linearly polarized light, but its
success has also fostered a very classical way of thinking about the HHG process,
to the extent that it is difficult to go beyond it in reasoning about the physics.
Using an elliptically polarized driving field is very simple, yet it subtly alters all
the aspects of the process; sometimes not so subtly, as we will see below. Un-
derstanding elliptically driven HHG is an important step towards crossing the
mental barrier formed by the three-step model.

5.1 TDSE CALCULATIONS

The TDSE calculations shown in figure[s.2] were performed with a newly de-
veloped 3D code (described in appendix, which is an extension of the algo-
rithm described by Schafer (2009) to the case of arbitrary polarization in the
z — x plane. Calculating the time-dependent dipole moment acceleration, in
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FIGURE 5.4: Quantum orbits along z (upper row) and x (lower row) for slightly elliptical polar-
ization, £ = 0.1. The left column includes all trajectories, while the right column
shows the effect of introducing the mask function at a radius corresponding to the
maximum excursion of the short trajectory.

the same way as described in for a range of ellipticities, gives 2(qw, &) (see
figure]s.3).

Since the dependence of the trajectories on ellipticity differs, their com-
bined response is noisy. The same kind of filtering as outlined in is there-
fore performed. The interference can be suppressed (see figure[s.4) by placing
the mask function at the proper radius (see lower panels of ﬁgure, allow-
ing the short-trajectory ellipticity response to be accessed (see figure[s.s). The
bell-shaped curves are fitted with Gaussians to extract the [palfwidth at half
[aximum (HwHM)| which can be compared with the experimental data (the
black circles €5 squares in figure[s.2). One reason why the theoretical values

for the short trajectory are about 20 % lower, i.c. shows higher sensitivity to the
ellipticity, could be the filtering, which places the mask function at the max-
imum excursion of the short trajectory at /inear polarization. The maximum
excursion decreases with increasing ellipticity, which means that some long-
trajectory character is included, which can be seen in figure[s.4] It could also
be that there is a difference in the intensity used in the calculations and that
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of the experiment. It is notoriously difficult to establish the precise value of the
intensity in an experiment such as this (only estimates are possible), and the ex-
periment actually probes a range of intensities due to the spatial profile of the
fundamental driving field, while the theoretical calculations are made for only
one intensity.

Another drawback of this method is that it is difficult to assess ellipticity de-
pendence of the long trajectory. One possibility would be to calculate the full
response and subtract the short-trajectory response. However, this is problem-
atic, since although the TDSE is a linear partial differential equation, the mask-
ing of the wavefunction is not a linear operation. Another option would be to
‘repeat the experiment in the computer) by performing a far-field transform, as
described in §6.2] below, and then spatially separate the short and the long tra-
jectories. However, this would be prohibitively expensive due to the quadratic
scaling of the 3D algorithm and merely reproducing the experimental results
would not necessarily provide any added physical insight. Furthermore, this
is not always possible because at higher intensities, the short trajectory can also
have a substantial spatial divergence (Dubrouil et al. 2014). Some physical in-
sight regarding the long trajectory behaviour, however, can be obtained through
semi-classical calculations, as will be seen below.

An obvious deviation from the purely Gaussian ellipticity response of the
HHG is clearly visible in figure[s.s|for HO13 (experiment and theory) and less
so for HO11 (theory only), where a local minimum in harmonic yield occurs
at linear polarization. This has been observed previously by Burnett, Kan, and
Corkum (1995) and Weihe et al. (1995)), and explained by Ivanov, Brabec, and
Burnett (1996) as the interference of ‘two returns’ for the same trajectory. Only
the long trajectories have this possibility, since they, if they miss the parent ion
when passing r = 0, will be driven back once more by the field. The short
trajectories, however, will be driven away by the field, if they miss the parent ion
(Yost et al. 2009; Hostetter et al. 2010). As we will see in the next section, there
is another possible explanation; the harmonic yield is strongly dependent on
the tunnelling rate, which is considerably decreased for the shortest trajectories
since they are ionized at the zero-crossing of the driving field.

5.2 SEMI-CLASSICAL CALCULATIONS

We will now describe the semi-classical calculations performed to model the el-
lipticity behaviour of the HHG, specifically that of the long trajectory emission.
The long trajectories are ‘more classical’ in the sense that they experience higher
field strengths (and are thus comparatively less influenced by the ionic poten-
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FIGURE s5.5: HO11-HO17 ellipticity response calculated using the TDSE (black), together with
the experimental curves (red) for the short trajectory. The curves have been normal-
ized to their respective maximum value. The upper row shows the z component of

the time-dependent dipole acceleration, the middle row its x component, and the
lower row its magnitude.

tial) and spend more time in the classically permissible region.

As discussed in conjunction with ﬁgure the quantum diffusion of the
wave packet during propagation in the electric field enables HHG even in the el-

liptical case. In the conjugate picture, the transverse drift acquired for elliptical
polarization is compensated by an initial velocity transverse to the driving field

at the time of ionization (Méller et al.[2012)).
In the case of elliptically polarized light, transforms into

£ =B [ sin(wr) ] |

V112 ¢ cos(wt) (5:2)

where & = b/a is the ratio between the minor and the major axes of the ellipse.
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The position as a function of time can then be expressed as follows:

E i —i ) — — ¢ )
r([) _ r-+(z‘—tl-)p-+ 0 sm(a)t) sm(wtl) w(t tz) co-s(wtl) .
! A1+ &[cos(wt) — cos(wt;) + w(t — t;) sin(w?;)]

(53)
The initial conditions are thus

(s-4)

amo pm 2 [fen],

VI8 sin(wt;)

where p; is the initial momentum, taken to be transverse to the electric field at
the time of ionization, and p | its magnitude. Accordingto Delone and Krainov
(1991), the uncertainty of the initial transverse momentum is given by

w(p,) = Aexp

2021, +p7)*?
_35—01)] (5 5)

For small transverse momenta, this probability can be expanded as

(21, +p2 )% = 20213) /2 + %(zfp)l/zpi +00h), (5.6)
(2] )1/2 2
= w(p,) =Bexp [—;T)h] , (5.7)

which is the expression used by e.g. Strelkov (2006)). In our case, however, we
need the full expression (5.s)), since the initial transverse momentum required
for some of the longer trajectories can be quite large, as we will see below. An-
other important factor in HHG is the ionization rate, i.c. the probability of the
first step in the three-step model. The tunnelling rate is calculated according to
ADK theory (Ammosov, Delone, and Krainov|1986), see appendix [e|for details.
Strelkov et al. (2012)) give the following expression for the threshold ellip-

ticity:
= : (5.8)

gthreshold = —
24/ 4/2L,E(2;)

This follows the intuitive behaviour, i.c. trajectories of longer excursion time ex-
hibit higher sensitivity to ellipticity, for both the short and the long trajectories
classes.

To estimate the ellipticity dependence of the harmonic yield classically, we
proceed as follows (for all ionization times #; € [0.257',0.57]).
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FIGURE 5.6: Return time (left) and required initial transverse momenta (right) as a function of

ionization time for different ellipticities.

(1) is solved numerically for # (£ = 0,p; = 0).
(2) Forall¢ € (0,1], is solved numerically for # and p | , using the values

from the previous iteration as an initial estimate (see figure|s.6).

(3) The return energy is calculated (see ﬁgurc.

(4) The following probabilities are calculated (see figure[s.8):

(a) the ionization probability at time #, from ADK theory, given the

instantaneous field strength €(z,),

(b) the probability of having the required initial transverse momen-

tum p; according to (s.s)), and

(c) the combined probability of generating a harmonic with energy

Wi + 1, as a product of the previous steps.

(s) Finally, the probability is extracted along the iso-energetic curves of fig-
ure[s.8]to give the yield curves presented in figure[s.o} These curves are

fitted with Gaussians to obtain an estimate of the threshold ellipticity

as a function of harmonic order; this is plotted as the solid lines in fig-

ure =T}
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FIGURE 5.7: Return energy as a function of ionization time and ellipticity. This directly deter-
mines the energy of the emitted harmonics, and the contours are the iso-energetic
lines, corresponding to the harmonics between the threshold 7, and the cutoff. The
almost horizontal curve indicates how the classical cut-off moves to carlier ioniza-
tion times with increasing ellipiticity.
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FIGURE s5.8: The constituent and combined probabilities determining the HH yield, for ion-

ization times #; and ellipticities £. Left: Tunnelling rate. Middle: Probability of
having the required initial transverse momentum p, to enable the electron to re-
turn. Right: Combined probability of tunnel-ionization at time #; and having the
required initial transverse momentum p, to enable the electron to return.
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Harmonic order of 1030 nm
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FIGURE 5.9: Left: The iso-energetic contours of figure where the thickness of the line is
scaled by the combined probability in figure[s.8} The right column shows the yield
curves for different harmonic orders, i.c. the value along the iso-energetic contours
in the left column, as a function of probability, for the short trajectory (upper panel)
and the long trajectory (lower panel). All the curves are all normalized to their
maximum values. For the shortest trajectories, the probability initially increases
with ellipticity, since the field strength is very low. This bears some resemblance to

the observed ellipticity response of near-threshold harmonics, cf. ﬁgurc

Figure shows the results of the semi-classical model outlined above, to-

gether with the experimental results. Also shown is the effect of expanding
over small momenta to yield . Most notably, the short trajectory appears
to be more sensitive than the long trajectory [this is, however, not the case for
(5.8), which is also based on ] Comparing with ﬁgure it can be seen
that the initial transverse momentum required for return to the parent ion can
be quite substantial.

The reason why the short-trajectory behaviour is not captured by the semi-
classical model is mainly that the low-energetic short trajectories are the least
classical ones; they experience comparably low field strengths and spend little
time in the continuum. It can be seen in figure[s.o|that they exhibit a minimum
at linear polarization, due to the vanishing ionization probability. When in-
creasing the ellipticity, the field vector at the time of ionization is no longer iden-
tically zero for the shortest short trajectory, and the ionization rate increases.
For even larger ellipticities, this effect is countered by the decreasing probabil-
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FIGURE s.10: Comparison of the different classical models with the experimental data. The solid
lines show the classical model as described above, taking into account the ioniza-
tion rate according to ADK theory and the initial transverse momentum distribu-
tion as given by (5.5). The dashed lines show the effect of the Taylor expansion
over small momenta, (s.7). The shaded regions indicate the uncertainty of the
classical models, derived from the fit. Finally, the dotted line is by Strelkov

etal. (2012)

ity of having the initial transverse momentum required for return to the parent
ion.

5.3 RESUME

The long-trajectory ellipticity response is governed by an intricate combination
of the time—energy link for the harmonic orders and the probability of tunnel
ionization at the right moment, with the appropriate initial transverse momen-
tum. It is essential that the sub-cycle dynamics are properly accounted for, to
describe the observed long trajectory behaviour.

To reconcile the experimental results with the theoretical calculations for
the short trajectory, as presented in figure[s.2] it would be useful to perform
an experiment in which the threshold ellipticity was measured for a range of
driving field intensities. It may also be useful to perform the ellipticity measure-
ments in such a way that that the intensity is maintained when the ellipticity
is increased, as a means of decoupling the ellipticity response of the HHG from
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the intensity dependence. This is an experiment that is planned for the future,
together with a deeper study of the anomalous ellipticity behaviour of the har-
monics close to threshold.

In this chapter, the extension of HHG to elliptically polarized driving fields
has been studied. The very classical understanding from linear HHG does break
down to some extent, and many quantum effects have to be taken into account
to understand what is observed.



MAcroscoric EFFECTS IN HHG

ACROSCOPIC EFFECTS are those that arise due to interference between

adjacent or subsequent emitters, and may be beneficial or detrimental in

the application of HHG. On the one hand, they can be used to select

emission from one trajectory only (as noted previously), thereby improv-
ing the spatial and spectral properties of the harmonic emission; while on other,
it may be difficult to phase match the HHG process across the entire generation
medium, leading to a decrease in overall harmonic flux, compared with the po-
tential flux from all emitters being in phase.

In this chapter, we will study two macroscopic effects; the first one is a clever
technique used to achieve angular separation of HH emission from subsequent
events, precluding the interference that normally occurs between them (as dis-
cussed in . The second effect is the intensity dependence of the dipole
phase parameters, which in werc assumed to be constant. An intensity de-
pendence of « leads to a macroscopic phase variation over the near-field focal
plane. In the far field, this manifests itself as an amplitude modulation. These
two effects are similar in the sense that they both result from wavefront modu-
lation in the focus.

6.1 NON-COLLINEAR OPTICAL GATING

A new method for generating isolated pulses is proposed in Hi} The idea is to
cross two optical pulses at an angle (see ﬁgure. At the crossing-point of the
two pulses, a wavefront will result. The wavefront rotates as the pulses prop-
agate, thereby achieving angular streaking of the HHG. The HH emission will
be mainly directed perpendicularly to this wavefront, which will in turn on the

relative phase of the two pulses (see ﬁgure.

If the two pulses are propagating at angles +y with respect to to the z axis,
they can be written

E.(t,x) = €,(2)€(r) exp(jk, - 1), (6.1)

where €, (#) is the temporal profile, £(r) the spatial profile, and the wavevector
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FIGURE 6.1: Non-collinear optical gating. Crossing two pulses, + and —, at an angle 2y leads to
the resultant HH emission having a wavevector that is a linear combination of the
wavevectors of the two pulses. The time-dependent weights of the wavevectors are
proportional to the field strengths of the two pulses at the crossing-point. By tuning
the delay between the pulses, the rate at which the emission angle is streaked during
one cycle of the fundamental field can be maximized, leading to maximal spatial
separation in the far field of the emitted xUV.

k, = +[sin(y)e, + cos(y)e,]. The total field is given by

Eut.6) = £, (1.5) + € (15) = [s -

= €,(1)€(r)[exp(jk, - 1) + Eexp(jk_ - 1)].

The normal to the resulting wavefront at the crossing-point makes an angle
{ with the z axis:

J{E,.(r
5= 2 aegl ()} = 2 arctan [;{{ e
ad

[ sin(k, 3 + &sin(k_ - r)

+&cos(k_ - 1)

(k, - z=0 6.
_ 9 \retan { sin[sin(y)x] + fsm[— sin(y )x } (63)
ox cos[sin(y)x] + £ cos[— sin(y)x]
_o t-f_ 1-¢
<= e =7ey

Assuming Gaussian temporal shape of the pulses, with duration 7 and a relative
delay of Az, ie.

(6.4)

(txAr/z)Zl

2

E.(r) = Eyexp [—2 In(2)
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FIGURE 6.2: Rotating wavefronts generated at the crossing-point of two optical pulses, for dif-
ferent relative pulse delays. The two upper rows show two pulses propagating at an
angle of +7° with respect to to the longitudinal axis, while the lower row shows the
resultant field formed by superposing the two pulses shown above it. The middle
column shows the effect of no relative pulse delay (the resulting wavefronts are per-
pendicular to the longitudinal axis), while the left and right columns show the pat-
terns resulting from a relative pulse delay of F7, where 7 is the pulse duration. Each
subsequent wavefront is rotated slightly with respect to the previous one, leading
to an angular streaking of, e.g. HH emission, if the combined field is used as driving

the field in HHG. This picture is conjugate to the picture presented in ﬁgurc
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FIGURE 6.3: Wavefront angle as a function of time. The upper panel shows two Gaussian pulses
(red and black), with a relative delay of Az = 7. The resultant field is shown in grey.
The lower panel shows the wavefront angle of the interference grating over
time, together with the linear approximation (6.s). NB that the maximum angle
can never be larger than +y.

we can find the wavefront rotation speed where it is highest, by making a Taylor
expansion around ¢ = 0:

2

1- r+b)* - r—b
95 37 £ _ | explalr +6)7 = explal l_ 2abt + O(£%)
dr o' 1+¢& expla(t + b)?] + expla(z — b)?]
~2 ln(Z);/A—zt,
T
(6.5)
wherez = —21In(2) and b = —%. This case is illustrated in ﬁgure

By choosing the appropriate conditions (relative delay of the pulses, non-

collinear angle, £9c.), it is possible to angularly separate the radiation from sub-

sequent emission events, hence the name, [pon-collinear optical gating (NoG)|

The angular separation in the near field leads to spatial separation in the far
field. With no overlap in the far field, the emission from separate events can-
not interfere and no harmonic structures appear, but rather continuous spectra,
which can support isolated pulses. This has been experimentally demonstrated
by Louisy et al. (2015)). A further extension of the technique was realized by
Hickstein et al. (2015), by circularly polarizing the driving pulses with opposite
handedness with respect to one another. In this way, they were able to generate
angularly separated circularly polarized high-order harmonics.

A very similar technique is the so-called aztosecond lighthouse presented
by Vincenti and Quéré (2012)), in which the fundamental izself is angularly
chirped, e.g. by passing the incoming light through a slightly tilted glass wedge.
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This is easier to accomplish, but suffers from the drawback that the fundamen-
tal field co-propagates with the generated xuv emission. Using the NOG tech-
nique, the generating pulses continue to propagate with angles +y after crossing,
whereas the XUV emission propagates at a very small angle to the optical axis,
which means that the driving field and the XUV pulses are automatically sep-
arated in the far field. Depending on the degree of modulation of the driving
pulses by the HHG process, they could conceivably be reused in a pump—probe
scheme.

6.2 OFF-AXIS INTERFERENCE
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FIGURE 6.4: Experimentally measured interference patterns in HHG from argon: HO27 of
1030 nm. The pattern arising from short—long trajectory interference is visible for
small divergences, $s mrad (cf. ﬁgure where the on-axis interference is clearer).
For larger divergences, an interference pattern of a different kind can be seen. The
greyscale is logarithmic.

In §4} the interference between the short and the long trajectories in HHG was
discussed. However, as noted there, this is not the only source of interference
observed. Modulation is also visible off-axis, where no short-trajectory emis-
sion exists (see ﬁgure. In it was shown that this interference could be
explained by the long-trajectory emission of adjacent atoms in the focal plane.
Since the HH emission is written in the form , and in the focal plane the
driving field will have a Gaussian spatial profile,

2
I(r) =Iy(r)exp | - |, (6.6)

27’0
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there will be a considerable wavefront modulation of the collective long-
trajectory emission.  As we saw in wavefront modulation leads to a

=
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Wavefront Far-field amplitude

FIGURE 6.5: Wavevector bunching as a result of periodic wavefront modulation. Left: A sinu-
soidally varying wavefront, with the wavevector indicated as normals to the wave-
front. Right: Far-field amplitude, with a main peak in the middle (corresponding
to on-axis propagation) and side peaks due to wavefront modulation.

FIGURE 6.6: The 2D equivalent of ﬁgure A cylindrically symmetric near-field pattern, with
radially periodic phase (left) will give rise to a ring-like pattern in the far-field am-
plitude (right; logarithmic colour scale).

change in direction of the HH emission. If the wavefronts in the near field
have a circular pattern, as will be the case when combining and ,
this will result in repeated focusing and defocusing of the light in the far field
(‘bunching’ of the wavevectors, see figures|6.5|¢5 or, equivalently, as ring-
like structures.

This argument is zecessary to explain the appearance of the rings observed in
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the far-field amplitude. However, as was shown in the argument is not suf*
ficient to explain the response of the rings with respect to intensity. We therefore
turn to a model of the harmonic emission that is more complete than (4.3).

6.2.1 Adiabatic model of HH emission
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FIGURE 6.7: Fundamental intensity as a function of pulse duration and spatial profile. The con-
tours indicate the classical cut-off intensitites for the different harmonics, i.e. out-
side each contour, the corresponding harmonic is in the cut-off regime.

We introduce an adiabatic model of the harmonic emission of order g:

) = Z a,;(I) explig,;(1)]. (6.7)

J

This model is very similar to used when studying the QP1 between the short
and the long trajectories. However, the intensity dependence of the phase is no
longer purely linear (this approximation only holds in the plateau regime). The
off-axis emission probes a larger range of intensities due to the larger excursion
of the long trajectory; increasingly so with higher harmonic order (see figure|6.7]
for an illustration of this). Therefore, is more adequate in describing the
off-axis emission. The adiabicity lies in that 2,,(I) and ¢,;(I) are taken from
the calculations described in the near-field amplitude is thus modelled as

a collection of emitters radiating the steady-state response of the HHG. Because
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of this, there are, by definition, no transients and the harmonics are essentially
‘monochromatic. The model is only valid for the central harmonic energies,
and can only be used for modelling the observed far-field spatial patterns. To
model the spectral patterns, the transient behaviour of the HHG process must
be included, i.e. for real pulses, a time-varying envelope must be used instead of

the flat profile used in

0.2.2 Far-field propagation

The manner in which the far-field amplitudes are calculated is detailed in ap-
pendix[t] and essentially amounts to calculating the Fourier transform of the
near-field complex amplitude.

10.020
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1 0.000

arg{€;(r)}
arg{gﬂ(’ )}

-20 -10 O 10 20 =S 0 5
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FIGURE 6.8: Propagation of HO27, calculated using the adiabatic model of the TDSE, to the
far field, for 7 = 170 fs (black) and 7 = 200 fs (red). The left column shows the
near-field amplitude (above) and phase (below). Although the fundamental driv-
ing field has a Gaussian spatial profile (shown for reference, in grey), the complex
amplitude of the harmonic emission is noticeably modulated, cf. ﬁgures@’
Comparing with ﬁgurc the harmonic is in the cut-off regime for |7 > 20 ym
for 7 = 170 fs, while for 7 = 200 fs, the cut-off occurs for |r| 2 10 um. This is most
visible in the near-field phase, which changes slope around the transition into the
cut-off regime. The right column shows the far-field amplitude (above) and phase
(below). Also here, strong modulation can be seen; the small side lobes of the far-
field amplitude constitute the observed rings.
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To emulate the far-field interference patterns, we proceed as follows.

(1) The spatial profile is calculated according to for each pulse duration
7 (for each chirp) of the fundamental driving field,

(2) The near-field complex amplitude is calculated using the adiabatic model
(6.7), with the intensity taken from the spatial profile calculated above,

(3) The far-field amplitude is then calculated using the far-field transform.

This is illustrated in figures|6.8|9

6.3 RESUME

In this chapter, two effects of wavefront modulation on HHG have been dis-
cussed. The first effect was induced through the crossing of two pulses at an
angle and with a delay with respect to one another. In this way, a wavefront ro-
tation was achieved such that the HH radiation emitted from subsequent events
could be angularly separated. Having no spatial overlap, the emitted pulses can-
not interfere and their continuous spectral structure is preserved, which is a re-
quirement for the generation of isolated attosecond pulses.

The second effect arose from the harmonic process itself, specifically the in-
tensity dependence of the phase of the quantum paths, which leads to wavefront
modulation over the spatial profile of the driving field. Although not an ex-
ample of QPI per se, the different emitters are phase-locked through the known
variation in spatial intensity of the fundamental. The resulting wavefront mod-
ulation in the near field leads to a far-field amplitude modulation, the precise
nature of which can only be fully understood by considering the microscopic

response beyond the simplest model, (4.3).
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FIGURE 6.9: Near- and far-field profiles for HO27, calculated using the TDSE. Similarly to fig-
ure|6.8} the left column shows the near-field amplitude (above) and phase (below)
are shown, but here as a function not only of the radial position, but also the funda-
mental pulse duration, as induced by changing the chirp. The right column shows
the far-field amplitude is shown, as calculated by propagating the adiabatic model
through a Fourier transform (above) and the experimental result (below). The time
axis is the same as in ﬁgure The theoretical results (shown on a linear greyscale)
and the experimental results (shown on a logarithmic greyscale) agree qualitatively,
with respect to the overall shape of the interference structures, although the details
are lacking in the experimental results. The theoretical results have a much higher
dynamic range than do the experimental results. Both sets of results have been sat-
urated to highlight the off-axis structures.
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— Balzamplew ! fit le Suisse, qui,
malgré [admirable colletion de jurons
que posséde la langue allemande, avait

pris Uhabitude de jurer en frangais.

Alexandre Dumas, pére, 1802—1870

UANTUM PATH interference occurs, as we have seen earlier, when the
quantum system takes more than one indistinguishable path from its
initial state to the final state. Earlier, we have studied such quantum
paths in HHG, which is driven by a strong field. The quantum paths
are then very close to classical, in that the wave packet follows the tra-

jectory of the classical electron. In this chapter, we will discuss another type of
quantum path, for which there is no classical analogue. Upon photoionization
of an atom, the final state of the system is an ion coupled to a photoelectron.
Due to spin—orbit coupling, the ground state of the ion may be split into several
substates; for the singly charged ions of the non-radioactive noble gases heavier
the helium, the spin—orbit splitting results in two substates with a separation
ranging from o.1 ¢V in neon to 1.3 ¢V in xenon (see tablc. If the atom is

TABLE 7.1: Some properties of the non-radioactive noble gases heavier than He. AE_ is the
spin—orbit splitting of the ionic ground state zp®> *P°. The uncertainty in time de-
rived from the the Heisenberg uncertainty principle is Az > (2AE, )™". A coherent
superposition of two states with an energy difference of AE_ will have a quantum
beat period of T = 2rAE L.

Element Z

n AE_, [eV] Ar[fs] T [fs]
Ne 10 2 0.09676024 3.4 42.8
Ar 18 3 0.17749368 1.9 23.3
Kr 36 4 0.665808 0.5 6.2
Xe s4 5 1.306423 0.3 3.2

photoionized with an ultrashort pulse, we have no way of discerning whether
the residual ion is left in the upper or the lower substate, due to the large band-
width of the ionizing pulse. The longer the duration of interaction, the more
spectrally narrow the pulse becomes, and at some point, the contributions of
the different ionic states become apparent in the photoelectron spectrum as
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FIGURE 7.1: Overlap between two quantum paths separated by AE. The spectral bandwidth,
0, of the ionizing pulse is inversely proportional to the duration of the pulse.

two peaks, separated by the spin—orbit splitting. When these peaks are fully
resolved, there will no longer be multiple paths to the same final energy of the
ejected photoelectron, and the paths may no longer interfere.

(vherence is a measure of the ability to produce stationary interference pat-
terns. The coberence time is the average time this interference can be observed. In
the case of quantum paths in the photoionization process discussed above, co-
herence is a measure of their indistinguishability. The Heisenberg uncertainty
principle sets alower limit on the pulse duration required for the quantum paths

to be resolved: )

Ar > .
2AE,_,

(7.1)

For the noble gases considered, Az ranges from 7 fs to o.5 fs. The period time
for light of optical wavelengths is around 1 fs, which means that for xenon, for
example, the coherence would be lost on a sub-cycle timescale. However, as can
be seen in figure[7.1} even though the peaks are resolved, they do still overlap
to some extent. This implies that some degree of indistinguishability remains,
which is measured as a partial coherence. If we assume that the ejected pho-
toelectron has a Gaussian energy distribution, due to the spectral distribution
of the ionizing pulse (see figure[7.1} cf. appendix|F|for useful relations in ultra-
fast optics), the photoelectron spectrum will have two peaks separated by the
spin—orbit splitting AE,_,. The overlap between the two peaks will then have
the amplitude

AE, 2 AE, 2
(-5 e+ =)
W(w) =exp |- 202 + exp _T R (7.2)

where ¢ is the photoelectron energy and Q the ionizing pulse bandwidth. At
the point of smallest overlap, i.e. precisely in the middle between the two pho-
toelectron peaks, the overlap amplitude is

1 AE'sz—o (AES—O
W(O) = ZCXP —Z 2_(22 = ZCXP _32—n<2)

: (7.3)



7.1. MODEL SYSTEM

TABLE 7.2: lonization channels accessible via one-photon ionization from the ground state of
any noble gas, heavier than He. The channel configurations are given in jK coupling,
also known as pair coupling, since the levels of noble gases are likely to appear in pairs.

Ne | Ionconfig Ionterm ;| ¢ K ] Configuration
1 np>  P° 3h1d 15 1 npS(ZP‘;/L)kdz[l/z]I
2 np>  *P° 3hls 32 1 npS(ZP‘;/Z)ks 23/,
3 np> PO Yo d 32 1| ap’(CPY ) )kd 2[/,
4 np> P° ol s Yoo 1| ap’(PS) ks 2/,
St a1 e kA,
6| wpS S ip|p 1| mepSCS kg 2L,
7 nsnp® S 12| p 3 1| asnp®(S,,)kp X[/,

where 7 is the intensity FWHM pulse duration of the ionizing pulse. The joint
probability in the middle between the peaks is then

(AE ,7)*

W (0)]*  exp [—ﬁ] : (7.4)

In this chapter we study the conditions under which coherence can be es-
tablished using the XUV pulses we have been studying in previous chapters. We
will begin by describing the model system for which the calculations were per-
formed. After briefly surveying the mathematical tools used for analysis of co-
herence in quantum mechanical systems, we will study neon and xenon, the two
nobles gases with the smallest and largest spin—orbit splitting of those listed in
table[7.1} respectively. Once the reason for the loss of coherence is understood,
we shall see that there is a way of circumventing this by employing a tailored
ionizing pulse, and we will find the degree of coherence that can be obtained
for a given set of pulse parameters.

7.1 MODEL SYSTEM

Figure[7.2|shows a sketch of the model system employed in the calculations. For
each harmonic, the electron will have two components in its kinetic energy dis-
tribution, corresponding the difference between the harmonic energy and the
two spin—orbit substates of the ionic ground state. If the separation between the
harmonics is the same as the spin—orbit splitting, there will be two pathways
to the same final energy of the electron, and interference may be possible. In
fact, there is more than one way to reach the continuum via one-photon ioniza-
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FIGURE 7.2: Ionization of a noble gas heavier than He. The lowest-lying ionic ground state has a
spin—orbit splitting with terms lP‘/z’,/z. The second ionic threshold, nsnpé, supports
aRydbergseries which will decay through autoionization, giving rise to Fano (1935)
1967) resonances. Below this series, the continuum is flat.

tion, as is evident from table However, only channels 3 €5 5 provide a set of
quantum numbers that are identical apart from the spin—orbit substate of the
ion. Requiring the quantum numbers to be identical is equivalent to requiring
the final states to be the same.

7.2 CALCULATIONS
7.2.1 Tools

The calculations were performed as detailed in using a combination of
a fourth-order commutator-free propagator (Alvermann, Fehske, and Little-
wood 2012) and a Krylov exponentiator (Krylov|1931; Lanczos |1950; Saad
1992}/2003)). If the nsnp6 threshold is neglected, the problem reduces to that of
a single active electron. However, the electron spin is not included in the wave-
function expansion in the SAE approximation used in this work, and therefore,
no spin—orbit splitting is present. Instead, the calculations were performed in a



7.2. CALCULATIONS

base consisting of bound states found using MCHF coupled to continuum states
in the cc approximation (§§2.1.1H2.1.2). Since we are interested in noble gases,
the /K coupling scheme (Cowan|1981) was used. The interaction is expressed in
the length gauge. Furthermore, since the photoionization is in the weak-field
regime, only one-photon transitions from the ground state are allowed (J < 1)
and mixing of singlet and triplet terms is neglected.

The coherence of a quantum system can be analysed using the density ma-

trix formalism (Landau and Lifshitz|1977, §14). The density matrix operator is
defined as

P =YY (7.5)

For a two-level system, the wavefunction can be written as a superposition
|¥') = a|1) + b|2). The density matrix then has the form

cfle -l e

where the diagonal matrix elements provide a measure of the population in each
level, and the off-diagonal matrix elements are known as the coherences.

For a more complicated system, in which there are many degrees of free-
dom, some of them might not be observed in the experiment; we may write

the state as |4; ¢), where ¢ is the unobserved quantity. To take this into account

in the calculation, a reduced density matrix is formed by taking the #race of the
density matrix over the unobserved degrees of freedom:

Pa E/dc (¢lays 1) (a2 62l6)- (7.7)

This is used here to access the coherence between the ionic substates 2P°

3/2,1/2

by tracing over the unobserved photoelectron energies and angular momenta

(for details, see ffvi).

7.2.2 Neon

Figure shows the photoionization cross-section of neon and the constituent

\dipole matrix elements (DME)|as a function of photoelectron energy, up to the

2s! 2p6 threshold (below which a Rydberg series appears). Irradiating neon with
the 15th harmonic of 800 nm ionizes the atom, but the photoelectron has an
energy below the lowest Rydberg state of the second threshold, and thus the
continuum is flat. Figure shows the real-time ionization of neon, for dif-
ferent pulse durations. As is expected, when the duration of the pulse is large,
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FIGURE 7.3: Upper panel: photoionization cross-section of neon as a function of photoelectron
energy, calculated using ATSK2K €5 BSR. The red line shows the length gauge result,
while the grey line shows the velocity gauge result. The experimental results of Sam-
son and Stolte (2002) are shown as dots for comparison. Lower panel: Ionization-
channel-resolved dipole matrix elements for channels 1-s (cf. table. The energy
axis has been logarithmically scaled to focus on the spin—orbit splitting of ~o.1 ¢V,
where only channels 1-3 contribute to the total cross-section.

the multiple paths to the same final state cease to exist and the coherence is lost.

Figure[7.s|shows the coherence of the ionic substates as a function of pulse
duration. As expected, the coherence decreases monotonically. However, it re-
mains for a substantial range of pulse durations exceeding the time uncertainty
predicted by the Heisenberg uncertainty relation (3.4 fs according to table.
In fact, as can be seen in figure[7.4] the coherence is only completely lost when
the pulse duration exceeds the quantum beat period 42.8 fs. This is in line with
the experimental results of Goulielmakis et al. (2010), who observed loss of
coherence in Kr* when the pulse duration exceeded the quantum beat period
6.2 fs. The reason for this can be understood as follows. A system in an equal
superposition of two states, will have a state evolution of the form

¥ (2))

I

%[exp(—iElt)]D + exp(—iE,2)2)]

exp(—i 7
%HU + exp(—iAEr)[2)],
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FIGURE 7.4: Real-time coherence build-up between the spin—orbit substates in singly ion-
ized neon, for three different pulse durations (intensity FwHM). Upper row:
the normalized intensity envelopes of the ionizing field, HO1s of 8oonm. I, =
1 X 10° W em™. Middle row: the population in the ionic substates, channels 3 &§
5. The difference in population between the substates is negligible. Lower row: the
coherence between the substates. Interestingly, for pulse durations longer then the
quantum beat period (=45 fs), coherence is transiently built up, but disappears

when the driving field induces dephasing.

where AE = E, — E;. This system can be regarded as a kind of ‘clock’ whose
period is exactly the quantum beat period. The interaction of this superposition
with an electric field will ‘speed up’ or ‘slow down’ the clock. If after one rev-
olution the clock has been advanced or delayed such that it has dephased, the
superposition will start to decohere. This explains why the loss of coherence is
observed after one quantum beat period.

7.2.3 Xenon

As xenon has a considerably larger spin—orbit splitting, one would expect it to
decohere much faster than neon (cf. table[7.1). When xenon is ionized the same
way as was described above for the case of neon, i.e. by a single-frequency pulse,
this is indeed the case. However, by employing an ionizing pulse consisting
of two frequencies (see figure , created, for example, by HHG, it is possi-
ble to ensure the existence of a two indistinguishable pathways to the same final
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FIGURE 7.5: The upper panel shows the coherence, p,,, between the ionic substates of neon after
the pulse has passed, as a function of pulse duration. Initially, the magnitude of the
coherence increases with increasing pulse duration, but this is due to the increase in
population possible through the longer interaction time. The middle panel shows
the degree of coherence (black), which normalizes the coherence to the population
of both states under consideration. The grey curves shows the prediction of (7.4).
The lower panel shows the spectral bandwidth (black) of the ionizing pulse as a
function of pulse duration. The grey horizontal line indicates the spin—orbit split-
ting of neon, which crosses the bandwidth curve at 3.4 fs.

photoelectron energy, provided that the harmonic separation is the same as the
spin—orbit splitting of the ionic ground state. This is the key point of Fig-
ure[7.7]shows the coherence as a function of time for two cases. The first case
is ionization using a pulse with a single frequency, as in the case of neon above.
The quantum system decoheres quite rapidly, in accordance with the discussion
above; i.e. when the quantum beat period is exceeded, the coherence has essen-
tially disappeared. The second case is that depicted in figure[7.6} for a number
of different detuning ratios, defined as
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FIGURE 7.6: Resonant ionization of a noble gas heavier than He, using two phase-locked har-
monics, leads to four pathways for the photoelectron. If the harmonic separation
equals the spin—orbit splitting of the ionic ground state, two of these pathways lead
to the same final photoelectron energy.

where Aw is the harmonic separation. If d = 1, the degree of coherence does
not depend on the duration of the ionizing pulse, and the coherence is retained
indefinitely, or rather, as long as the phase relation between the frequency com-
ponents of the ionizing pulse is remains stable. Employing the clock analogue
once more, the case 4 = 1 can be regarded as the driving pulse stimulating
the ionic substate superposition at the same ‘time’ for every revolution of the
‘clock’. We have thus found a method for efficiently creatinga superposition be-
tween the ionic substates. We can increase the population in each substate over
a long interaction time, without inducing dephasing and losing the coherence
between the substates.

7.3 RESUME

In this chapter, the coherence of ionic substates was discussed, together with
ways of influencing it by tailoring the ionizing XUV pulse. In particular, if the
XUV pulse consists of two frequencies differing by the ionic substate separation,
the coherence between the substates can be retained for times much longer than
would normally be expected from the Heisenberg uncertainty principle.
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FIGURE 7.7: Left column: Coherence (upper panel) and degree of coherence (lower panel) of
the ionic substates of xenon when ionized with a single-frequency pulse, as a func-

tion of pulse duration. For pulse durations exceeding the quantum beat period,
3.2 fs, the coherence is lost. Again, the grey line corresponds to . Right col-
umn: Coherence (upper panel) and degree of coherence (lower panel) for ioniza-

tion in the case depicted in ﬁgure for five different values of the detuning ratio
d. In the resonant case (d = 1), the degree of coherence does not depend on the

pulse duration.



CONCLUSIONS £ OUTLOOK

HE RECURRING THEME in this thesis is the quantum paths of electrons
in ultrafast processes; understanding them, measuring them, and controlling
them. Their admixture of quantum and classical character makes their study
highly interesting.

The work presented herein can undoubtedly can be improved upon. The
scheme for generating isolated attosecond pulses presented in Bi| has already
been implemented, but not that proposed in It is clear from the earlier
work on stereo-ATTI for short pulses, and the link between CEP and the relative
phase of two-colour fields, that the idea is sound. However, the experimental
challenges are still unknown. The realization of the long-pulse stereo-ATI tech-
nique is one of the reasons for the purchase of a new laser system similar to that
used in the studies described in &g These two studies could benefit
from being repeated in a systematic fashion. What is missing from the former
is mainly an intensity scan of the ellipticity response, to decouple the interde-
pendence of intensity and ellipticity in HHG; while the latter, although showing
beautiful interference patterns, lacks the statistics necessary to validate a true
metrological technique, as well as a way of linking the long trajectories interfer-
ometrically to establish their relative phase.

Personally, I am intrigued by the possibility of probing the wave nature of
matter to the extent that has been possible in the present work. The quantum
path formalism of Feynman (1965) has also come to light beautifully through
the work on QPI. Being able to match the experimental results so closely, as
shown in was most gratifying.

In the future, I would like to participate in the research on the effects of cor-
relation on the ultrafast processes, an activity that has only just begun. Correla-
tion effects have been treated for decades in the field of atomic structure. There,
the effects of the, in some sense time-dependent contributions (such as emission
and reabsorption of polarization photons, €9c.) are included in a completely
time-independent manner, since they amount to the calculation of matrix el-
ements, once. Therefore, the calculations are tractable. In quantum dynamics
however, these matrix elements have to be constantly recalculated as the basis is
ever-changing due to the interaction. Marrying these two disciplines presents
a formidable challenge, both in terms of identifying the calculations necessary,
as well as actually performing them. Nonetheless, this is the way forward, since
the effects of correlation are becoming increasingly visible in experiments.
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Atomic UNITS A

TOMIC UNITS ARE USED to simplify calculations in atomic physics via a co-
ordinate transform in which important quantities are set to unity. In the

Hartree atomic units system, the following identities hold:
me=e=h=4me =1

All other quantities are derived from these, giving the following values in s1
units for one unit in atomic units [table taken from Hifler (2009)]:

Quantity Value
Angular momentum h  1.054571726 X 10 >*]s
Mass m, 9.109383 x 10 °" kg
Charge e 1.60217653 x 10 2 C
be o h* .
Length ay = 5.291 7720859 X 10 "' m
me*
62
Velocity vg = 21876912633 X 10°ms !
4reph
Momentum mg  1.99285166 X 10 “*kgms™
. 4 —17
Time Ty = — 2.41888430X%x 10 s
U
Frequency ’Z'O_l 4.134 13738 X 10'° Hz
7%66’4 —18
Energy E, = T35 435974417 X 10 J
(4mey)?h
Electric field & = d 5.14220651 X 10" Vm™'
dmegag
. €00 42 16 -2
Intensity 75’0 3.509 445 2 X 10" Wcem
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F WE NEGLECT the potential due to the atom, we obtain a very simple set of

EQUATIONS OF MOTION IN STRONG FIELDS

equations of motion for the electron, after ionization:

i=Aq+f(0), (8.1)

1= A= [0 o] 1= e

that is, r is the position of the electron and p its momentum. €(#) is the (arbi-

with

trarily polarized) electric field. The solution of this system of equations is given

by
q(2) = q,(2) + q7(2), (B.2)

where the homogeneous solution is given by

4,(t) = exp[A(t = 1,)q; = [(1) ’ _1 ti] 9 (B.3)

The inhomogeneous solution, due to the electric field, is given by

qf()—exp[At—t /dz‘exp At = 5)] f()

ER VA R | 0 B
VA R

If we assume that the field is the imaginary part of a complex field,

E(r) = j{éo exp(iwr)}, éo =&p, pPE c?, (8.5)
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polarized in the z—x plane and propagating along y, we obtain the solution

=&y ) [ |

& [1 ¢- ti:| [[exp(iwt') —iw(t' - 1) exp(iwt/)]z_]
w2 [0 1 iw[exp(iwt) — exp(iwt,;)]

& 1 r- tl] [exp(iwt) —exp(iwt;) —iw(z — ¢;) exp(iwt)}
w2 |0 1 iw[exp(iwt) — exp(iwt;)]

1

g _exp(iwt) - [1 + ia.)(t - l‘;»)] CXP(if’-’fz‘)]
w? | iw[exp(iwt) — exp(iwt;)]

=

g(t) = [1 i tl] g+ {ﬂ {exp(iwt) ~[1+iw(e )] exP(iwt,-)}

0 1 w? iw[exp(iwt) — exp(iwt;)]

The first term represents a linear drift due to initial momentum, while the sec-
ond term shows the oscillatory behaviour of the trajectory due to the driving
field. characterizes the classical motion of an electron in a field, arbitrar-
ily polarized in the z—x plane. It can be specialized to the elliptical case, by set-
ting

_ 1 1 ( 6)
- m[i«f]’ "

where £ is the ratio between the minor and major axes of the polarization ellipse,
assumed to be aligned along z; £ = 0 corresponds to linear polarization and
¢ = +1 to right-/left-handed circular polarization.

At any time (assuming p; = 0), the kinetic energy of the electron is given

by 2 1 ) | . ,
W, = =3 (9{ {E’O[exp(lwt) - exp(lwtl-)]}) (5.)
= 20, (R {plexpliar) ~ explian 1),
where
1 P & _ 1
Upz?/Tdt e (5.8)

is the cycle-averaged wiggle energy, called the ponderomotive energy.
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N EXTENSION OF the algorithm described by Schafer (2009) to the case of
arbitrary polarization in the z—x plane is presented, for the length gauge
only, where the interaction Hamiltonian is of the form Hj(z) = €(¢) - r.
Non-linearly polarized light = m-mixing, i.c. 7 is no longer con-
served, as is the case for linear polarization. If we write the discretized wave-
function as

¥ (e) = (¥ =Y el = |/, (ca)
Im Im

where 7 is the time step index and j the radial index, the number of partial waves
is given by

tel0,L], m,e{-L.t}

= N, =2¢{+1
L

= N,=> 20+1=(L+1)
£=0

2LE2 (1)

The total memory requirements would thus be N, (L +1)? x 128 bytes. It N, =
1024, then 6 GB of working memory would theoretically allow for 393 216 par-
tial waves, which is approximately 626 full £ channels, i.e. not truncated in 7z,.
Such a number of ¢ channels is rarely needed for HHG calculations, the required
number usually being 30—40. If the polarization is close to linear along z, it may
be possible to truncate the wavefunction in 72,. As can be seen from (c.2)), the
memory requirements of the full 30 wavefunction (as well as the computational
costs) grows quadratically with maximum Z. In the case of linear polarization
and conserved 72, the growth is linear with L.
The storage layout for the wavefunction is

V), = [|S>i p); Id); - ‘L>i]T’ (c3)
with .
]

’£>z’:“¢2[>i ’¢2>i ‘¢$>i > (c.4)

i.e. each rotational symmetry has its own segment. This layout will give a logical
structure for the Hamiltonian, as we will see below.
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C.1 LENGTH GAUGE HAMILTONIAN
The Hamiltonian is decomposed into three pieces,
H(t)=Hy+ H?*(t)+ H*(2), (cs)
separating the z and x components of the interaction Hamiltonian
H(t) =€) -r=H"(t)+ H*(¢t) = €,(¢t)z + E.(¢)x. (c.6)

As shown in the solution of the TDSE involves calculating matrix elements
of the type

(m|H |n). (c.7)

Since the angular basis we have chosen in the position basis is represented by
the spherical harmonics

(rltm) = V,,(3.9), (c8)

the interaction Hamiltonian matrix elements can be expressed in terms of spher-
ical tensorial couplings, readily calculated using Wigner 3j symbols (Regge
1958; Landau and Lifshitz|1977, §106; Lindgren 1986, §2..3).

c.1.1 3j symbols

The 3/ symbols are defined as

( Ji 2 3 ) :A(j]:jz’j3)(_)jl_j2_m3\/(jl +m)! (j, —my)!

my my My

X \/(jz + ) (Jo = my) (3 + m3)! (3 — m3)!
()
7 UL+ —3 = k) (L —my = k)L (jy + my — k)
1 1

X

X T
(J3 =jo +my + k)Y (j3 —j1 —my + k)L k!
(c.9)
where
o G =) G A ) ()
A(]l’]z’h) = ; ; ; ) . (c.10)
(1 +/2 +73+ 1!
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Actually calculating is a daunting task, but Racah (1942 derived symme-
try properties that simplify the problem. For instance, the following ‘selection

rules’ hold:
I Zmi =0
. 1 ) .
ILI zj:ﬁ €z, I Zi:]l. € Z,m,; =0,Vi (1)
I Im,| < j;
WV =l <js<ith

There are also some special cases that will be useful below:

St 2 Jiti ) _ (<)t (2/1)! (27)!
my My —my =My (2j; +2j, + 1)!

\/ (27! (2!
(1 40t (= m0)t (o +m2)t (o, = m))!
(c.12)

(jl b J3 ) _ (- (1 472 =73) U =2 +73) (1 +a +73)!
(2p+1)!
p!

X , : —~ 2 =htht
(2 =j)t (p =)t (p = j3)! P
(c.13)
c.1.2 Spherical tensors and 3j symbols
From Lindgren (1986, (2.100)), we have
4m
k — k
C, = 2k+1Yq(er), (c.14)

where C ; is a spherical tensor of rank 4. Likewise, from|ibid., (2.124), we have

47'[ * /
k| p?. I\ _ L yvhkyt
<£m|Cq|€m>—“2k+l/d_Q Y, ;Y

(e ko) cten,

-m q m

(c1s)
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where the reduced matrix element is given by [Lindgren|1986, (2.127)]

<e||c’f||e'>=(—)‘~’\/(ze+1)<zef+1)(g g "0) (c.16)

We immediately see that if

m =m-—gq, (c.17)
the resultant 3; symbols in (C.15)) €9 (C.16) correspond to the special cases
& (ca3).

c.1.3 Dipole operators

We now have everything we need to calculate the angular part of the dipole
matrix elements.

Y, (3,9) = U%COSS Y (S.9) = Fy/ 8—isin96xp(ii¢) (c.18)

w= D NG = D i)y

2= cosd= \/ 43—WY01(3,¢) = Cé (c.20)
r

i) = [6m;) (c.19)

~ = (ilCy )
e (L9 (50 )
- Ccrvfeegen (g ) (G )
P — ILIL IV = Al==1
= (-t D@er2 ) ( _,ﬁ . ginli ) ( f; 0 51(1) )
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¢ 1+l since by symmetr
, since etry,
“m 0 - Yy sy Y;

( ¢ 1 £—1>:<e—1 1 z):< 1 ng)
0 m L I 1
(40 ) R

L vetam 28+ 1+ m)(E+ 1 —m)
=) (26+3)(2+2)(2¢ +1)

It is sufficient to calculate (

(c.22)
= = % =(—)’”\/(2£ +1)(2¢+3)
eotim [2(E+1+m)(E+1—m)
* ) (2¢+3)(2¢+2)(2¢+1)
-1 2+ 1)(€+1) (c.23)
N e e

| [Etm+)(E—m+1)
- (26+3)(2+1)

o;c =sindcosp = 1/2?%[}’_11(9,@) - Y] (3,9)] = %[Cﬁl -C!]  (c24)

% _%OICL - Cili
:(‘)\z/gmi \/(24.+ 1)(26 +1) ( %- é % )
[ Y (R D | IO
=%\/<ze+1><2€i2+1>(§ 0 )

0
N 4 1 ¢+1 : ¢ 1 ¢
-m -1 m+1 -m 1 m
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. ¢ 1 -1\ _ /-1 1 4
Again, bysymmetry,wehave( o 1 w1 ) = —< )

- m—1 1 -m
_ (1 U1 ¢ 1 U+1
B m 1 -m =1 )\ -m -1 W' +1 )

( ¢ 1 £+1>_(_)H+m (20)12(L = m)1 (L +2 + m)!
N (28 +3)1 (L= m)! (£ +m)'2

L trem | 2+ m) (41 +m)
=) (26+3)(2+2)(2¢+1)

(c.26)
= [i]=a 2L e e

(L+2+m)(+1+m) 26+ 1)(£+1)
“Naer3ereer )\ e+ 3)2e+ 220+ 1)

[l +m+2)(E+m+1)
N (2+3)(26+ 1)

(c27)

See ﬁgurefor a visualization of (c.23)) €9 .

0.6

‘ ‘ . ‘ ‘
0.5 f A
o4l / \

0.3

[[m

1.0

0.8 | . 1
06l —e g —o f |
0.4 | / — p g
02 f — d h |

0.0

bém

FIGURE c.1: Dipole coupling matrix elements. Upper panel: matrix elements of z, which only
couples partial waves with Amz, = 0, hence the symmetry about 72, = 0. Lower
panel: matrix elements of x, which couples partial waves with Az, = £1.
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C.1.4 Matrix

We are now ready to construct the matrix representation of the Hamiltonian in
the basis of the spherical harmonics. The radial grid point distance is defined by

'p E y]+l —_ 7-‘] (C.?.S)
and the time step by
T=liyy T (c.29)

e The atomic Hamiltonian is given by

v2
H=T+‘U=—7+V(r). (c.30)
The kinetic operator 7 is radially non-local. The potential operator ‘U
is approximated using the pseudo-potentials, described in These
consist of two parts, an angularly non-local, short-range potential, and an
angularly, local long-range potential, due to the residual Coulomb inter-
action. The action of the atomic Hamiltonian can thus be approximated

by .
. Az .
[Hy| 7)) ~ { [ﬁi] - Ve(’j)} e, (can)

which is tridiagonal in 7 and diagonal in £, 7. A? denotes a three-point
discretization of the kinetic operator, which explicitly takes into account
the boundary condition at the origin (Schafer et al. 2000):

m i m +1 m i m i—1
[Aﬂ% >i]] = [“j’% >l] - 25;’?’[ >ZJ _“j—1‘¢[ ),j } , (c32)
with
2 2 .
—-i+1/2
aJ.:,z] -1, 2@:2].2].—/_@, .
jP-1/4 jP-j+1/4
(c33)
e The action of the z component of the interaction Hamiltonian is given
(exactly) by
- mj  Amj, 4, i ~A=1mj i
[H- ‘Y)L /= ¢ ]’¢[+1>zj‘ +¢ J’%fl%]v (c.34)
where o
~tmj T ¢
¢ =€, (tl- + E) Ot (c.35)

H'? is diagonal in 7, tridiagonal in ¢, and diagonal in 7.
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e The action of the x component of the interaction Hamiltonian is given

(exactly) by

tmj 7 lmj 1 f —mj j
) =5, o] [ymos
Te-lm=1j) sp1\j _ FE-1-m=1j| i1y (c.36)
+ bi |¢€_1 >z bi | >
where o
7Emi 7\ ¢
b, = Eé’x (ti + E) b7 (c37)
H* is diagonal in 7 and tridiagonal in ¢, 7.
The Hamiltonian matrix at time #; thus has the following form:
B | %
=5 | A o U ORI
by —Po Po
i by P, P B
5] d
—P1 By
[HL = )
~z ~x d
-1 ~Po By
=% =] d
_1 P hO
Py P hy
B b
(c:38)
where
Z T\ ¢
=€t + z) ol (c39)
and )
l, ==€ (tl- + %) b (c.40)



C.2. INTEGRATION

C.2 INTEGRATION

The integration (also called zime-stepping) of the TDSE is performed using a
short-time propagator

|¥)1 = U +7.8)|¥), (c.41)

where the propagator is approximated using symmetric Strang splitting [this
makes the propagator unitary to 0(z>)]

U(t; + 7.1;) = exp (-iH7)
e (675 p (-7 ) xp it

<o (175 on (05

(c.42)

The main proportion of the computational time will be spent on , and the
rest of the time on calculating the time-dependent dipole moment, described
below. It is therefore essential that the implementation of is efficient. To
this end, the integrator was implemented on a GPU, which is highly tuned for
parallel linear algebra. The GPU is manufactured by Nvidia, and the provided
programming library provided, cuba (Nickolls et al. |2008)), contains an im-
plementation of BLAS (Lawson et al.|1979; Dongarra et al.|1988}/1990), a few
routines from LAPACK (Anderson et al.|1999)), as well as the facility for user-
defined computational kernels that operate in parallel.

c.2.1 H,

Since H,, is diagonal in ¢ and 72, we can apply its suboperators separately for
each partial wave:

exp (—iHy7) = H ® exp (—ibgr) . (c.43)

Im

We approximate the exponential using its Padé form:

1—ihg3

exp (—ihgr) ~ (c.44)

glT’
1+1170§

Since lﬂg isindependent of 72, we can apply to all partial waves of the same
symmetry in parallel. We thus treat the part of the wavefunction of symmetry ¢
asan N, x (2¢+ 1) matrix (each column corresponds to a partial wave, and each
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row to a specific radius), and apply the numerator of (C.44) as a matrix—matrix
product (where the first matrix is tridiagonal). The denominator of (C.44)) is

applied by performing a tridiagonal matrix—matrix solution, for which an opti-

mized routine based on LU factorization exists in LAPACK, ?gtsv.

C.2.2 I—[iz

Since H* is diagonal in 7 and 72, we can apply the exponential as

where

e.g. form =0,

20
b =

exp (~iH77) = [[ @ exp (~i8"7).,

bz,O

~7

g4

Po

(c.4s)

(c.47)



while for 7 = +1,

Pi)
P, dz,
dz, [
£

C.2. INTEGRATION

(c.48)

h*" is exponentiated by means of Richardson’s 2 x 2 splitting method, which

entails dividing the matrix into an even and an odd part:

Zm Z,72,& Z,mM,0 __
B = B O =

where each 2 x 2 subblock is exponentiated exactly as

exp 1 p

Tz
il
., 0
0 |7;|—:z; +
- — 2
lm| + 2,
0
0 ]ﬂ:l;
‘;ZT:IZ 0 ’
0
(c.49)
a cosa —isina
0 = . (c.50)
—isina cosa
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which is basically a rotation. A great deal of time is spent on calculating sin 2 €5
cos 4 (Richardson|1991)). We thus have the approximation

exp (—i/alz.’m§> ~ exp <—ihf’m’c§> exp (—ihf’m’og) . (c.s1)

cz3 HF

If we divide H* into two parts, one with all the plus signs, and one with all

the minus signs, we can write it as H;* = H;*" + H;*". The wavefunction
. . . + _

then breaks up into sets of invariant subspaces {W}f‘} For H;*", the first few

subspaces are:

|¢g>i |¢g>,- |¢}1>>z'
_ |¢_1>i _ |¢_1>i _ |¢O>i
= O = L i L
|¢d )i ‘Spf )i |¢f )i
) ) ) ) ) _(C.sz)
while for I—[i’”, the first few subspaces are:
|¢g>i ’¢g>i ‘¢113>z'
|¢l>i |¢1>z‘ |¢O>z‘
it = OOl = L = | (ess)
|¢d>i |¢f>i ‘Spf )i

H;*™ then also breaks up into these subspaces, and the sub-Hamiltonians there
are tridiagonal:

] "
~4; -(L+1)]
pt = —(L+ 1) —(£+2)% (c.54)

—(£+2);

and similarly for the I—[ix+ part. All these sub-Hamiltonians can then be expo-
nentiated using Richardson’s 2 x 2 method, as for I—fiz.
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C.3 TIME-DEPENDENT DIPOLE MOMENT CALCULATION

The radiated field is proportional to the acceleration of the time-dependent
dipole moment. Since the dipole operator increases linearly with the radius,
numerical errors at the outer boundary of the discretized wavefunction (where
the precision is already very low) will be amplified. This makes convergence of
the time-dependent dipole moment very difficult and the subsequent calcula-
tion of the acceleration will not be accurate. Instead we calculate the expecta-
tion value of the acceleration directly, using the identities

d .
L) = iir ..
42 (C-SS)
32\ =~ H @) [H ()] ]).
_ &
—a= -5 = {H (). [H (1).7]])
= ([H (2). [Ho, 7] 1) = (H (2) [Hor] ) = ([Hor]_H(2))  (g6)
[{[Hoyr)_ H(5)) = (EC(6) (Hoy ') = —(B (1) [Hypr] )
= 2R{(Y|H (¢) [Hor]_|¥)} = 2R{(2]1)},
where
1) = [Hyr] |YV)  2)=H()]Y). (c:57)
Since the Hamiltonian has the form
H(t)=Hy+H(t) =T +TU+E()-r, (c.s8)

we must calculate the commutator of all the constituent parts with the dipole
operator 7. We can calculate the z and the x components separately.

C.3.1 Acceleration form of the dipole

We separate the atomic Hamiltonian into a radial kinetic part, an angular ki-
netic part, and a potential part:

Hy=T,++7 (c.59)
Since

g=rY T em) (L= Lm| + ) tm) (€ + Liml (c.60)

Im

I0I
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is simplc in comparison with

= —Zb Jem) (€= 1sm = 1] = 651 [em) (€ = Lm + 1]
(c.61)
+ b [m) (L + L;m+ 1] = b |em) (£ + 1;m — 1],

we only demonstrate the derivation for the latter. We start with the angular
kinetic operator, [{,x]_:

- 2%225(“ 1)|&m) (€m] (c.62)
m

o = i S lem){(6 - 1)ebs (€~ 1im— 1] = 651 (e~ Lim +1])

Im
+(C+D)E+2)[B5 6+ m+ 1] =656+ Lsm—1]]}
(c.63)

1 _ _
Iy = y» ;‘€m>{€(€+ DB Lm =1 =650 (6= Lm+ 1
+ L0+ Lm+ 1| =06+ 1;m—1]]}
(c.64)

— L] = %Zwm{z[bf;}lw— Lm—1] =650 (0= Lm+1]]
Om

—(C+ DB+ Lm+ 1] =65, (€ + L;m—1]]}.

(c.65)
We then continue with the potential operator, [T, x| _:
V= V,(r)|m)(tm| (c.66)
m
r - -
=3 D 1)V (5 (= 1m = 1] =651 (6= Lm+ 1
m (C-67)

+ L0+ m+ 1| =0 L+ 1;m—1]]

Z\zm Vo DB~ 1sm =1 = b5L (€~ 1Lm +1]]

+ Vo (D[BL 6+ Lm+ 1| = b, (€ + 1;m — 1]]}
(c.68)
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AV, (r) = Vy(r) = Vi (r) (c.69)

=

[U,x]_ = ‘% ; |em) {AV,_ (65 (€= Lim =1 = b0 (0= Lim + 1]

— AV [+ Lim + 1] = 64, (€ + L;m — 1]]}.
(c70)
Finally, we calculate the commutator for the radial kinetic operator, [T, x]_.
Since it is neither radially nor angularly local, we adopt this compact notation:

(3,) = 87 (.2, &m). (c71)
' 1 -1 j j+1
[T, 1)1, = _ﬁ[“j—l(ém ) = £;(5,,) + 2,00 )] (c72)
(T, xy)]) =
1 _ i—1 i i+1
_@{ fnfll [“j—lrj—ld—l 1)~ ﬁj’j(é—l me1) * “/'VJ’+1<]€—1 1]
_ i-1 j i1
_bfml—l [“j—l”j—l(]zfl mi1) ~ i@jrj(]ffl mi1) + “jrj+1<]€71 1))
4 J-1 J J+1
+bm [aj—lrj—l(é’ﬂ m+1) - igjrj(é’ﬂ m+1) + %iTi+1 (€+1 m+1>]
i-1 j i+1
6%, (@171 Gt ) = 7 Gt ) + 2751 Gy )1
(c.73)
T, 1)l =
e i1 ; i1
_@ bm—ll [“jfl(]e—l me1) ~ 1@]({?—1 me1) ¥ “j(]e—l 1))
_ i-1 j i+1
_bfml—l ["‘j—l (]4’—1 mi1) ~ igj(Jl—l mi) ¥ “j<]€—1 1)) (c74)
-1 j i+1
+b£¢ [05]»_1 (]€+1 m+1) - lgj(]€+1 m+1> + aj(j€+1 m+1)]
._1 , i
_bfm [“j—l(]eﬂ m—1> - ﬂj(JZH m—1> + “j<je+1 m—l)]}
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1 e -1 j+1
_5 b, [_aj—l(fflm—l) +”‘j(z71m71)]
-1 J-1 J+1 .
50 el ) + a0 (679)
¢ J—1 Jt1
+b,, [_“j—1(€+1 m+1) + “j(€+1 m+1>]
0 J—1 J+1
_bfm [_“jfl(en m—l) + “j(e+1 m—l>]}

The final expression for [H,, x]_ becomes

= [[Ho.x]_[¥)]) = z{bfﬂ_ll ~ VJAVH) Cptmet)
J
i Lo, |0
-m—1 Vj ¢-1 (Z—l m—l)
g
¢ +1 J
= by o VJ'AVZ) (€+1 m+1>
7]
+1
+b — - GA@) ot )}
7]
1 1 j-1 j+1
5{%—1 [ “/—1<e—1 1) ;<e—1 1]
-1 J—1 J+1
-6, [_“j—l([—l mi1) F “j<£71 1))
14 J—1 J+l
+bm [_“j—1<£’+1 m+1) + aj<€+l m+l)}
i—1 i+1
4L, [_“j—1<1£+1 1) “j(]eﬂ w11}
(c.76)
Introducing the potential factor
i _C+1
7r€] = — 1AV, (c.77)
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we have
J 101 J=1 J g J+1
[(11).J, = a{bmfl [“j—1(£—1 1) F 7oy oy )2 — “j<é—1 )]
-1 j—1 J o J+l
-6, [“j%(t’—l i) F T Gy )20 — “j(z—l 1))
4 J-1 Wi J+1
+ bm [%j—l(hl m+l) % <Z+l m+1>2ﬁ o aj(hl m+l>]
¢ j=1 i J+1
-, [“j—1<¢'+1 1) =T ot )20 — “j<é+1 m)1b

(c.78)
which is what we need to calculate the x component of (C.5 ).

c.3.2 Hydrogen

In the case of hydrogen, the commutator for the acceleration form of the dipole
can be calculated analytically, since the potential operator is local everywhere:

[H,r|_=[T,r]_+0+0

— 1 2 _ 2 2 2
- E [p ,7‘]_ - E Py +Py +Pz’r]_
1 1
= ([Hu]) = (pau] ) = S(pulpwnl + 2w p.)
0
- (ip) = (-2
) 0 0
= (g pmondfogDeng )
d ) )
(V) A0 4, fn] )
= 0 since U is spherically [wip,]_=—1
symmetric (thus even) and
aa—u changes the parity of | ¥),
yielding an odd integrand.
oU dr 9’V
=5 -6 =5, 5" &
= [r =\/x2 +y? +z2J
= (2 g, = %Y g,
/32 + 92 + 22 or r or

LIN

=[v0) = 2| = (fe05) -6

r






THE STRONG-FIELD APPROXIMATION D

N THIS APPENDIX, a detailed derivation of the main result of Lewenstein

etal. (1994) is provided, together with a brief overview of the saddle-point

method which is used to make calculations within the SFA tractable. Finally,

the deviations of the SFA from reality are surveyed. An alternative derivation
using the Volkov picture can be found in (Ivanov and Smirnova 2014).

D.1 PRELIMINARIES

The SAE-TDSE in the length gauge reads:

i%|Y’(x,t)> = —%v2+ V(x) - E(z) -x] |¥(x,2)), (D.1)
where the electric field is related to the magnetic vector potential as
E(t) = —%J(r). (p.2)

The sFA in its original formulation was developed for a particular set of
parameters: the ground state |0) isassumed to be spherically symmetric (asis the
case in the noble gases), it has an ionization potential I, > w,usually [, ~ 5 -
20w, where w is the frequency of the driving field. The ponderomotive potential
U, < U,

c (the saturation level of the medium), such that the ground state

probability remains approximately unity. The ground state is further assumed to
be the only contributing bound state, and the free electrons are not influenced
by the atomic potential /7 (x).

D.2 SOLVING THE EQUATIONS OF MOTION
We make the ansatz that the wavefunction can be written
¥(1)) = expliL,) [ﬂ<t>|o> ; / Bybly, t)v>,] (0.3)

where |v) constitutes an orthogonal basis, corresponding to the kinetic momen-

tum. NB aiv = 0. This basis obeys the following orthogonalities:
t

o (V¥)=8(v-v)
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o <v]x|vl> = (v|iV, ‘v/> =iV B(V—V/)

Inserting (D.3) into (D.1), and assuming a(#) ~ 1 gives:

exp(if, ) [ ~1,|0) - /d3v/b v, 1)) i/d3v/5(v/,t)]v’)] =
explifye) [~ 272 + 1) ~ £(1) ] a(f)\o> . / d3v/b(v',t)|v'>]
since aib(v t) = : b(v, t). Project from left with (v]:

= —Lb(v,2) + ib(v,2) =(v| {—%VZ +V(x) - E(2) ~x]

(£)[0) + / d3v’b(v',f)|v’>]

(v - %zo> ; /d3v’b(v,t)<v| - %2|v/>+
|7 (x)[0) + / BV by, 1) 5 (%) v )+

— €(z) - x[0)+
/d3vbvt (v| - €(¢) - x[v)

=b(v, t)? —&(z)-d(v) —i€(z) - V,b(v, 1),
where we have defined d(v) = (v|x|0).

. 2
= b(v,t) = — [i (% + Ip> +E&(2) - VV} b(v,t) +i€(z) - d(v) (D.4)
Variable change to canonical momentum; p = v+ A (t) = v=p—-A(¢):

o _ 9% 9 _ 9

v, v, p, dp,

b(p.t) = blv— A (2),1]
op ot 9

— b(p.t) = <§-vp+ a‘@) b(p.?) = [—e(f)-vp+% b(p.?)

= 3Zz(p, f)=—i (M +IP> b(p,t) +i€(r) - d[p — A (2)]

(0.4])



D.3. DIPOLE MOMENT

An inhomogeneous, linear, first-order ordinary differential equation y/ +

g(x)y = h(x) has the solution

y = 6 [ / " ()l dx] £ CeO) Glx) = / T o(x) d.

The integrating factor of (D.4]) is then

or equivalently, returning to kinetic momentum:
t
b(v,t) = i/ d'€(#) - dlv+ A(t) — A(¢)]

t . [Bsh)
con o a1

2 P

D.3 DIPOLE MOMENT

. . . . / .. . .
The interpretation of (D.s[) is very clear: at time #/, the electron is ionized into
the continuum state with momentum v, after which it propagates in the external

109
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electric field until time #. The amplitude at time # is the integral of all ionization
events from the beginning of the electric field up until 2.
We then calculate the time-dependent dipole moment:

6 = (O ()
=wam+/&ﬂ?@uxy@xMAW+/A%MRMW}
£) ~1]

/&d bp) et [ dp o gl (b0 )

This is neglected in the original article

~i /; dr / P d'p - A exploi(pr 1, )]
x €(¢') - dlp~ A ()] + ce.

(D.6)
where we have defined the quasi-classical action as

S(p.t,t') = /ltdr” {w +IP}, (p.7)

and c.c. denotes the complex conjugate. It is worth noting that the expres-
sion for the time-dependent dipole moment is a five-dimensional inte-
gral, whereas solving the original TDSE is a three-dimensional problem. This
increase in complexity is alleviated using the saddle-point method introduced
below. A further disadvantage is that integrating is quadratic in the time
variables, i.e. the chosen time window and the number of time steps per cycle.
Integrating the TDSE is purely linear in all time variables.
The stationary points of the quasi-classical action are given by

t 2 t
0=V,S(p1,t') = Vv// dr”% +1, = // dt"v =x(¢) = x(¢').
‘ ’ (0.8)
We thus find that the electrons must recombine at the same position they were
ionized from.



D.4. THE SADDLE-POINT METHOD IT1I

D.4 THE SADDLE-POINT METHOD
D.g.1 Method of Steepest descent

The saddle-point method is an extension of Laplace’s method (Laplace |1774;
Debye |1909)) for the approximation of integrals of complex-valued functions.
We can use it to approximate an integral of the type

_ / Z dx £ (x) expS(¥)), (0.9)

where we only consider those values of x where S(x) is maximized. Let these
points be {x; }. We then have

[=8" ()] (x - x,)° (D.10)

in the vicinity of x;. The integral then becomes

I~ Z[f(x,-) / deexp [S(s) = 11-5"(5)] (=]
=371/ e) + 007" expiSt / drexp [—%| -85 (e )

2n
= DepPS ()l [
Z A[=8"(x,)]
2n
~ AS(x)]y | ——————.
2 S B I
(D.11)
Similarly, in 7 dimensions, we obtain
(27)”
I = Z f CXP lS )} m, (D.I 2,)
where |-5”(x,)| now denotes the determinant of the Hessian™ of —S(x;). " Matrix

. .. . . . containingall
The intuitive argument that only x € {x;} contribute for which S(x) is possible sccond

maximized only holds for 1 € R,. For the case when il € R, e.g. purely derivativesofa

. . . . L . function of many
imaginary 1, the saddle points are rather those where § (x) is minimized, since

oscillations of high frequency will quickly average to zero.

variables.
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D.4.2 Application to HHG
Applying this method to evaluate the integral over p in (D.€]), we find
a(e) ~ i / Y / Bp d'[p — A ()] expl-iS(p,1, )]
B x E(')-d[p—A()] +cc.
- i/: dr d"[po(6,7) — A (1)) exp{=i S| po (£, ), 1,7 — 7]}

=S,.(.7)
(2r)
x E(t —7)d[py(t,7) — A(z - T)]\/_i =" (pott—7)] + c.c
[ 2
|-S" (p.t,t —7)| = _8p,-2)ij(P’ Lt—1)|, ij=x92

2 t _ /7\12
Sy RS
9p;9p; J 1= 2 P

/, s P =IpA)], + A1)
—r 9p9p; 2

{ap?;p]p - ZBZJJ =- ( / :dt”>3 .
/ \/ITT [p(t,7) — A (2)] exp[-iS (7, 7)]

xE(t—7)d[p.(t.7) —A(t—7)] + cc.

) i/ 0°° & ( - >3/2 d[py(r.7) = A (2)] exp[-iS,.(2,7)]

£+ir/2
X E(t—7)d[p,(t.7) —A(t —7)] + cc.

(D.13)
where we have defined the excursion time 7 = ¢ — ¢/, chosen the stationary

trajectories py (7, 7)

x(t)—xt—T

pu(t:7) = dt A (z (D.14)

=

and used those to evaluate the action, S, (¢, 7):

‘ _ 17\12
S, (t,7) E/ dt”w +1, (D.15)
=7
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and introduced an infinitesimal regulator ¢ (such that the integrand is defined

tie) = (= )3/2 (0:16)

£+ir/2

everywhere);

accounts for the quantum diffusion of the electron during propagation.

If we assume €(#) = € cos(#), i.e. linear polarization alonge, and w = 1
= U,=¢ % /4, the action can be calculated explicitly:

[po — WW

(t.7) dt” +1,
=
, d uf<r’>] A}
/ ds +1P

1 o[
/ dr” = [ / dt’ A (¢ } *3 dt” A*(t")
=7
t
_/ dr” [—/ d¢’ u{(t’)] A ") +1,
t—-7 TJt—

1 g / / > 1 g 4 2 4
IPT——|: - Tclt A(t )] +E/Hdt A (")

T

_€=—aa—if = A(t) = —€,sin(z)

= = /tdt/ A (') = € cos(t)

t
V4 20,0\ _
:>/dt u{(t)—ZUP[t— 5

{ 2[cos(z) — cos(z — 7)]*

T

sin(2¢) }

= (I,+ U)r - U,

+ sin(7) cos(2¢ — ’Z')}

1 + cos(2¢) 1 + cos(2z — 27)
2 2
=1+ cos(7) cos(2t — 7) — 2 cos(¢) cos(t — 7)
=1+ [1-2sin*(z/2)] cos(2¢ — 7) — cos(z) — cos(2¢ — 7)
= (Ip + UP)T - ZUP[I —cos(7)]/7 - UPC(T) cos(2t — 1), ( |
D.17

—2cos(z) cos(t —7) +

where

C(7) = sin(z) — 4sin*(7/2) /7. (D.18)
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D.§ DIPOLE MATRIX ELEMENTS

The dipole transition matrix elements are usually approximated as transitions
from a hydrogenic 1s state to a plane wave continuum:

M“ 22T (1z]100) = / dr exp(—ik - 1)z exp(~/ar)

= /dQ/drr cos $ exp[—(ik cos 3 + \/z)r]

=/dQ 3!cosd
(- )4(ikcos19+\/_)4

—6/d¢/d (cos ) ————— cos?
(ikcosd + /a)*

_ 12’71’|: 1k(— )cosd —\/a ]
—6k2(ik cos ¥ + \/z)3
o [ 3ik + v 3ik(-1) + \/Z]
k(ik + /2)?  k(-ik + /2)3
27r(3ik +v/2)(—ik + vz)? + (3ik - v/2)(ik + v/2)?

k* (k2 + )3
k
= —i32 __~25 2/4
B o (k2+oc) T e
27/2 5/4 k
kd 100 ,
= (K |100) = Yo
(D.19)
whcrcocZZIp.

The oscillator strength is a measure of the line strength of a transition and is

defined as
2m.w|Dy, |
S = —mea;L) H , (D.20)

where D, is the dipole matrix element between levels |1) and |2) and w the
energy separation.
D.6 CODE

A simple implementation of the SFA was developed as a JuLIA (Bezanson et al.
2014) package. It is freely available from hecps://github.com/jagot/SFA.jl. The code


https://github.com/jagot/SFA.jl

D.6. CODE 115§

0.05 ]

0.00 1

035 F ‘ ‘ ‘ ‘ ‘ 3
0.30
0.25
0.20
=~ 0.15
0.10
0.05

0.00

0.5 1.0 1.5 2.0 2.5

FIGURE D.1: Oscillator strengths of neon (upper panel) and argon (lower panel), experimental
darta (red lines) taken from Samson and Stolte compared with theoretical

oscillator strengths (black line) given by &9 (p.20).



116 APPENDIX D. THE STRONG-FIELD APPROXIMATION

listing below shows the routine that performs the integral over the excursion

times in (D.13).

function calc_i(i, offset, jmin, 3t, Av, Ev, Ip, d)
T = reverse(1:i+offset)* St # excursion times

nt = length(t)
At = Av[i+offset]

pr=o

dx = oim

forj = nt:-1:jmin

= (m/(re-t0 + im*(elj)-3)/2))°(3/2)  #

AP = Av[j]

EtP = Ev[j]

pt += AtP #ij{([}. - 7)

p=prde/cljl #% > Al -7~
dion = d(p - AtP) »

drec=d(p - Ar)

# using trapezoidal integration
S = trapzv(o.5(p - Avl[j:i+offset-1]).%2 + Ip, 3t)

dx += {*conj(drec)*exp(-im*S)*EtP*dion # integrand of arT;
end
-imag(dx) #x(z)
end

Using the code is very simple; this example yields the output shown in fig-
ure[D.21

using SFA

# Atom
Ip.d = hydrogen_like(15.7596/27.211)  # hydrogen-like argon

# Driving field

A =1030e-9 #m
I=1c14# W/em®

ndt = 200 # Steps per cycle
w,T,AE = field(\,I)

# Integration limits: calculate x(t) for t € [2T,5T, allowing a maximal
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# excursion time 0/ 0.65T.
tlims = (2,5,-0.65)

x,t = propagate(A,E,Ip,d,tlims,T,ndt)

t[T]
2.5 3.0 3.5 4.0 4.5 5.0

0.05

0.00

x(2) [au]

-0.05

0.0004
0.0002
0.0000
" -0.0002 +

—-0.0004

1) [au]

1075 H

()] [au]

10710 L

0 20 40 60 80 100

 [wo]

FIGURE D.2: Results obtained from the simple s¥a code: The upper panel shows x(¢) (in black)
in the time interval [277,57']. The fundamental field is shown in red, for reference.
The middle panel shows x(#) after applying a highpass filter with a cut-off frequency
of 12w, revealing the XUV bursts that occur every half cycle. The lower panel shows
the dipole spectrum obtained via a Fourier transform.






TUNNELLING [ONIZATION IN ELLIPTICAL HHG E

SHORT overview of the tunnelling theory employed in the classical model of
elliptical HHG is provided here. Static, weak-field ionization of hydrogen
can be calculated using the simple formula given by Landau and Lifshitz

(1977, §77):

vl ) = 300 (-5 ) (e.1)

Perelomov, Popov, and Terentev (1966) derived a generalization of for
alternating, low-frequency fields, and Ammosov, Delone, and Krainov (1986)
generalized the theory further to non-hydrogenic atoms and ions. ADK theory
states that tunnelling ionization by an alternating, elliptical field can be written

w(g’ g) = wstat(€>wcllipt(8’ g)’ (EZ)

where

<e>-(3gn*3)1/2 2 (L)% L Gee e
w = Lk
stat w73 27%2 2mn* z\m\(’le (- ’WID'

*
y 223 2n*~|m|-1 - _z Z3
En*3 P 3 %3 ’

n

(£.3)

and
-1/2 - 3
Welipe (€5 8) = [5(1; f)} a (13—;}1538) , (E.4)
a(x) = exp(—x)I(x) — ! , X — oo (E.s)
2mx

I)(x) is a modified Bessel function of the first kind, #* is an effective principle
quantum number and Z is the residual charge. For ionization from the ground
state of argon, we have »* = 0.93 and Z = 1 (ibid)). In the case of linear

polarization, (E.4]) reduces through (E.s)) to

Wiinear (€) = [% (”Z—*ﬂ 1/2, (£.6)

since{ - 0 = x — co. In all instances, € should be substituted by the
instantancous field strength at the time of ionization, €(z;).

119
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ADK theory is a valid approximation in our case, since we are within the
tunnelling regime (Fu, Zhao, and Zhou Zhao, Liu, and Zhou; for
apeak intensity of 1 X 10"* W/cm?, and a wavelength of 1030 nm, the Keldysh
parameter is y = [I,/2U,] 172 % 0.9. For lower intensities, one would have to

turn to PPT theory (Perelomov, Popov, and Terentev 1966, Perelomov
and Popov|1967)).

0.0

0.0 0.5 1.0 L5 2.0
t[7]

FIGURE E.1: Normalized tunnelling rate as a function of time, according to Landau and Lifshitz

(1977) (black) and Ammosov, Delone, and Krainov (for £y = pand m, =

2

0; red) for an electric field of intensity 10'* W cm ™.



F

LTRAFAST OPTICS concerns light pulses whose duration is of the order of
afew cycles of the carrier wavelength. In this regime, the relative phase of
the carrier and the envelope, the[CEP|becomes very important, since it af-
fects the temporal symmetry of the pulse. Since pulses of very short dura-

ULTRAFAST OPTICS

tion necessarily have a large bandwidth, the propagation of such pulses will also
be affected by dispersion, measured by thelgroup delay dispersion (GDD)| which

is the second derivative of the phase with respect to the angular frequency.

F.1 DISPERSION THROUGH IDEAL MEDIA

The relation between the time domain and the spectral domain for a Gaussian

\/lz_aexp (—Z—i) . (F.1)

A Gaussian pulse in frequency domain can be written

function is given by

exp(—at®) <

(@ =)

2
€(w) = N exp [——O +ip(w—w )2+j¢ ]
202 R (F.2)

= Nexp [—(‘d - w)? (ﬁ +j’7> +j¢0] s

where @ is the central frequency, Q is the standard deviation (std.dev.) of the
frequency, 7 is proportional to GDD, and ¢ is the CEP. This corresponds to a
Gaussian function with a complex variance

a= i (ﬁ +j;7>_1. (F.3)

The std.dev. is related to the intensity envelope FWwHM 7, through

N N <_i>_ex T O N S
Wore P 752 P\™222) =P\ T2z )0
(F.4)

I21
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which gives an amplitude std.dev.

chy = 0=VZa= L W2
2(a7)2 o’ 7y

In the time domain, the pulse is the given by

€(¢) = NV2aexp(jwyt + jd,) exp(—at?)
A7)
[ Peak field strength £y, 7 = 0 —

e <1>”2<1 )”2— /

20?2 2 v+
- ¥ = in)
CXP[J¢
\/ P2+ \/
= atanz
o 1 y—in
= A(y) exp(jwyt + j¢ )CXP[ 2] = { — = J
o 4(y + i) y+in g
y—in
= A(7) exp(jw?) CXP[ 7 5t }
2+ g

— Y 17
= A(7) exp(jwg? + jo) exp [—272 " ;72;2 g ,7/]

b
= A(7) exp(jwot + jdo) exp [—ﬂ(W + J%fz}

(r.8)

The additional phase ¢(7) amounts to a GDD-dependent CEP. To decouple CEP
effects from GDD effects, ¢(7) is neglected, and CEP is introduced solely through
@o- atan2( y,x) denotes the principal value of the argument of x + yj, to disam-
biguate which quadrant of the complex plane the phasor is found in.
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12

7 [£2]

0
=30 =20 -10 0 10 20 30

GpD [f52]

FIGURE F.1: FWHM as a function of GDD (red), together with the two asymptotic approxima-

tions given in (E.9).

Non-zero GDD introduces a stretching of the FwHM (depicted in ﬁgure:

8In2(y% + »*
S Ty e L
2a(y) a(7) 4

;72

QN
Il

(F.9)

2 1+—4 7o 77<T§,
1+—470z ‘ ‘ 2’Z—O
T
0 iy 7> 1.
70

The effect of introducing GDD is shown in ﬁgure
The instantaneous frequency of the field (F.8)) is given by

|

argé’(t):a)0+b(;7)t=a)0+l 7 tzw0+i, 7> 7o,

t) = -
w(?) t 292+ 92 2y

QU

(F.10)

where b(7) is the chirp parameter. This parameter can alternatively be written
as a function of the pulse duration and the Fourier-transform limited pulse du-

ration as
2
b(z’)=i4h;2 T—z—l, (F.11)
T TO

which is plotted in ﬁgure As is obvious from , the chirp parameter

is a measure of the change in the carrier frequency per unit time. There exists a
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1.0} N I

-1.0 1 b
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15 | :
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5k i
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-20 : : : : :
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FIGURE F.2: Example of the effect of introducing GDD on an ultrashort pulse with 1 = 800 nm,
and Fourier-tranform limited duration 3 fs (intensity FwHM). ¢(7) in the ampli-
tude neglected = carrier wavelength centred at # = 0.
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1.4 1
1.2 |
1.0

0.4
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0.0

7 [7]

FIGURE F.3: The chirp parameter (F.1 1)) as a function of pulse duration 7.

pulse duration for which the chirp parameter is maximized, which is reasonable,
since the bandwidth is finite; for pulses of infinite duration, the change in the
instantaneous frequency must necessarily vanish.

F.2 DISPERSION THROUGH NON-IDEAL MEDIA

In non-ideal media, the dispersion cannot be described by CEP and GDD only,
i.e. the Taylor expansion of the phase with respect to the energy has components
beyond second order. For such media, the refractive index is most practically
represented by the empirical Sellmeier equation

0) =1+ i{, (F.12)

where 2 is given in um and B;, C; are experimentally determined coefficients.
For the commonly used borosilicate crown glass (Bk7), these coeflicients are:

C; [pm?]
I | 1.03961212  6.000698 67 X 10>

2 | 0.231792344 2.001791 44 X 10
3 | 1.010469 45 1.035 606 53 X 10”

i| B

Z

A pulse passing through a medium of length 4 and a refractive index (1),
will be dispersed as

exp(—jkd), (F.13)

where

27n(d)

k= kon(2) = —

(F.14)
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It is useful to subtract the linear component of the wavevector:
k=k—w—| , (F.xs)

and substitute this for £ in (F.13), to keep the pulse centred in the frame of ref-
erence. The effect of (F.13)) using a medium described by is most readily

calculated using a numerical Fourier transform.



PHASES IN QPI G

HE MODELS used in for the spatial and spectral lineouts are derived in
this appendix, together with the reasons for their relevance. They are both

based on the same model for the microscopic response: a simple, trajectory-

resolved decomposition of the XUV electric field generated in the HHG. The
spatial model is propagated to the far field to yield the far-field spatial variation
along the central frequency of each harmonic, using Gaussian beams, which are
basic solutions to Helmholtz’ equation in the paraxial approximation. The spec-
tral model modelling the spectral variation along zero divergence, is simply the
spectral variation in the near field.

G.1 INTRODUCTION

We use the model given by Varju et al. (2005a):
E(r) =D Ay(e) expli¥ ()], (G.1)
v
where the phase is
disp.prop.
¥, (1) = gy () + @(2) + 070 (G.2)
The instantaneous frequency of harmonic order ¢ and trajectory ; is given by

0
= qu/(;) (G.3)

The phase (G.2)) depends on three contributions.

w, ()

(1) Contribution from the fundamental field:

qb(7) ,
2

qD(2) = qur + q¢o + £, (G.4)

P)
= 43, Dy(2) = qw + qb(7)t

where @, is the CEP and &(7) is the chirp rate (F.11)) of the fundamental
[z is the pulse duration — when the pulse is Fourier-limited, &(z,,) = 0].
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2) The phase @ .(#) is due to the generation process and depends on the
p o g p p
intensity (Taylor-expanded around the peak intensity, /;):

L)

Dy(t) = O41(0)] = By (1) + —=L1(2). (c.s5)

(3) We neglect (D;I;SP PP which is the phase acquired through propagation

in the medium.

The total phase is thus
qb(7)
V(1) = qot + g + > 2+ @(Ly) +ayl(1), (G.6)
where
B(Dq]-
dql- = +7. (G.7)

We identify «,; with the positive derivative, since we customarily want gwz and
2,1 (¢) to have the same sign.

G.1.1 Motivation

The motivation for the Taylor expansion in (G.s)) comes from the sFa; in (D.13),
the phase depends on the quasi-classical action (D.17)):

Se(t,7) = (I, + U,)7 = 2U,[1 = cos(7)] /7 = U,C(7) cos(2t — 7)

I+ I{e = 21— cos(®)) o - Ce) cos(ar - )} 4 D)

since U, =1 /4whenw = 1. Classically, for each harmonic and trajectory, there
exists a pair of return and excursion times, (¢, 7), such that (D.17]]) only varies
with intensity. Since for two different trajectories leading to the same harmonic

order, the pair (¢, 7) is, in general, different, the prefactor of I in (D.17[)) differs
between trajectories, see ﬁgure

G.2 GAUSSIAN INTENSITY

With a Gaussian field intensity

1(¢) = I() exp (—41“2#) — 831 _8In2i 0 ()
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FIGURE G.1: «* from the SFa, calculated by inserting the classical return and excursion times

into (D.17).

the instantaneous frequency becomes

9D, 102 20,
wy(£) = qw + qb(z)r — a—l‘” T‘; I(2) ~ qu + [qb@) - a—;”] t, (G.9)
where 8ln2
y = —Iy(7) T’; (G.10)

G.3 SPECTRAL MODEL

The spectral model is then given by
E() = Y Ay(t) expli¥ (1))
9

b(r
1 ; N i, (1) + izxqjl(t)] .

(G.11)
We do not have access to the absolute phase, so the reduced model becomes

~ Z qulg (2) exp [iqwt +igg, + 1
T

» b(r
E(t) = Z C,il2(2) exp [iqwt +il ( >t2 + iaqjl(t)] . (G.12)
9
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By Fourier transforming separately for each chirp of the fundamental
driving field, we obtain the spectral QPI patterns.

G.4 SPATIAL MODEL

The spatial model is acquired by propagating to the far field. This is done

in the paraxial approximation, using Gaussian beams:

~

E(t,r,z) =I(2)E(t,7), (G.13)

where the near field is given by (G.11)), additionally taking the radial variation

of I(#,7) into account:

g([’ V) ~ Z qulg (l, V) Ciqwt+iq¢0+iqb(‘r)t2/2+i®qj(10)+ixqj1(t,r), (G. L 4)
i
with
4In2 >
I(t,7) = Iy(7) exp (—T—2t2> exp (—:—2> . (G.15)
0

The spatial lineouts are taken along the central frequency of each harmonic and
they are symmetric with respect to the chirp parameter. We therefore conjecture
that they only depend on the peak intensity as a function of the chirp, and not
the time structure of the driving field:

Er) = ZCIZi [10(7) exp (—é)] 2
7 0 (G.16)

2
X exp [iq% +i®,;(1y) + ieyly(7) exp (—%)] ,

o

In the parabolic approximation, a Gaussian beam can be propagated exactly
to the far field. A linearly polarized Gaussian beam has the form

Ecp(r.z) = €0ex% exp [‘ w;z@} exp {‘i [kz * kzzgzz) - Z@] * W} ’

(G.17)
where € is the peak field strength, e, the polarization direction, wj, the beam
waist (diameter), w(z) = wyy/1 +22/z5 the beam width, zj, the Rayleigh

range, k = 2m/) the wavevector, R(z) = 2(1 + z3/2”) the wavefront curva-
ture and {(z) = arctan(z/zy) the Gouy phase. 7 is an additional phase shift.



G.4. SPATIAL MODEL

Expressing one term in the sum 1) corresponding toa singlc trajectory
(,7), in the parabolic approximation, we obtain the following expression [ (g, )
indices omitted for brevity; all quantities must be evaluated at their respective

wavelength, e.g. £ = kq, &sc.

n

E,;(r) = Cy [IO<T> exp (—é)] 2 exp [idq]]o(?') (1 - 2—’5)] . (c.18)
"o "o

Comparing with (G.17]), we can express (G.18)) asa Gaussian beam with its beam
waist shiffed to —z¢

£4) = Eaa(rzy)

= EOTZ(;) exp {—W —-i {/ezf + /eWZf) - Z(zf)] + iy} ,

(G.19)
with the amplitude-related factors as

w(zf) z
80 = Cq] w, 02 \/Z

and the phase-dependent parts as

kré
41y (7)

RfER(zf) = . 7 =q¢0+ D, (10)+oc Iy(7 )+sz—Z(zf).

Solving for (2, 2/ ), we obtain the following expressions:

anz o /n ZRf ra/n*
Zp= —————— G = o (G.20)
lsz + 7, /n lzR +mrs [
Finally, the far-field amplitude can be written
€,(r,2) = I1(2)€,,(r)
w(] 7'2 . ~ 72 ~ .
=E—— -—— —i|kz +k - ,
e || e {0 o
(G.21)

withz = z + z¢. If only two trajectories (j = s,1) are involved, the far-field
intensity for one specific harmonic order ¢ can be written

‘g (r,z)‘z = ‘g'q:(r,z)|2+|gl(r,z)‘2+2|g’qs (r,z H 1 ¥ |cosb(q(r,z)],

I, x q y
G.22)

9q
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where

- - (G.23)
+ [Z(zw) _Z qu)] - [{
+ [(Dqs(IO) - (Dql(10>] + (aqs - aq/)IO(T)'

This is our interferometer. Everything except

(D (Tg) = Dy (Ip)] + (24 = 2,)1o(7)

can be deduced from experimental parameters. Fitting (G.22)) to the experimen-

tal lineouts provides access to these unknowns.



FAR-FIELD PROPAGATION H

AR FIELD PROPAGATION is used to transfer a near-field electromagnetic
wave to the far field. In the paraxial approximation of Helmholtz’ equation,
the far-field transform is proportional to the Fourier transform. For the case
of cylindrical symmetry, the calculations can be simplified.

H.1 FAR-FIELD PROPAGATION IN CARTESIAN COORDINATES

In the Fraunhofer regime the far-field amplitude is given by (Goodman|1996)

exp(jkz) explis- (7 + )]

U(x’}’> = le

//df dy exp [—J%(xf +y7)| U(€.7)
h (H.1)

€ ide from multiplicative phase factors preceding the integral,
this expression is simply the Fourier transform of the aperture distri-
bution, evalutated ar the frequencies

fx=x/d  fr=y/lz
Goodman (ibid.| p. 74) Y

ox (kz) ex [jzi(x2+ 2)]
Py };lzz 7 F{U (& 9)}(x/22,9/22)

= |#= zﬂ (1)

k . k
=~ j5— oxp(jka) exp [J—(x2 +y2)]
TZ 2z

x F{U (& ») }(kx/2mz, ky [27z),
where the Fourier transform F{U(£,7)} can be efficiently calculated via

the [fast Fourier transform (FFT); (Gauss 1866; Cooley and Tukey 1965;

Frigo |1999), which for N x N problems has a computational complexity
of O[N* log(N?)].

= Ulxy) =
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H.2 HANKEL TRANSFORM

It can be shown that in cylindrical coordinates, the Fourier transform becomes

Fle(n9)} = > (=) explikg) Hylgr(r)}, (r.3)
f=—o00

where
2T

=5 [ & ew(-t3)go(d (11.4)
0

is the angular transform (simply a Fourier transform on the interval [0, 2)) and
the radial transform is given by

Hi{ga(r)} = 2n / dr 4 (2mp)ga(r) (s15)
0

which is the definition of a Hankel transform of order k. J,, is a Bessel function
of the first kind and order 4.

The Hankel transform can be efficiently calculated via thelfzsz Hankel trans
An implementation that evaluates the transform at the roots of
the Bessel function is given by Guizar-Sicairos and Gutiérrez-Vega (2004)) and
a code can be found at hteps://github.com/jagot/Hankel.jl. The method has a com-
putational complexity of O[N}, log(N,)N?].

H.3 FAR-FIELD PROPAGATION OF CYLINDRICALLY SYMMETRIC
FUNCTIONS

For the cylindrically symmetric case [¢(7,3) = gp(r) = ¢, = 0,], the far-
field integral transforms to

j 'irz y T
U(r) = 2n il >. P i) /dﬁﬁfo (21—;0)@%@ = PCE ZA_WJ
0

jAz

ko k 2> / 4
=~j5— exp(jkz) exp (] i 2n [ dp ply ( . 2r(p)
0

ki (ks
= ~j5— exp(jkz) exp (J " ) Holgr(p)} (kr/2mz).

(H.6)
In this case, the computational complexity of the FHT reduces to O(N?),

which is considerably better than using the FFT.


https://github.com/jagot/Hankel.jl
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Abstract

We present a novel scheme for high-order harmonic generation, enabling the
production of spatially separated isolated attosecond pulses. This can be
achieved by driving the generation process with two identical, but temporally
delayed laser pulses, which are noncollinearly overlapping in the generation
medium. Our approach provides intense attosecond pulses directly separated
from the fundamental field, which is left undistorted. The method is therefore
ideally suited for pump-probe studies in the extreme ultraviolet regime and
promises new advances for intra-cavity attosecond pulse generation. We present
a theoretical description of noncollinear optical gating, with an analytical deri-
vation and simulations using the strong field approximation.

Keywords: isolated attosecond pulses, high harmonic generation, attosecond
physics, extreme nonlinear optics

1. Introduction

The generation of single attosecond pulses (SAPs) via high-order harmonic generation (HHG)
has enabled a multitude of experiments providing insight into attosecond dynamics in atoms
[1], molecules [2] and solids [3]. While the generation of trains of attosecond pulses, i.e. high-
order harmonics, does not present any technical difficulty with present ultrafast laser

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
B Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal
citation and DOI.
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technology, the generation of SAPs remains challenging, requiring carrier-envelope-phase
(CEP)-stable few-cycle driving laser pulses and/or advanced gating methods to confine the
extreme ultraviolet (XUV) emission to a single half-cycle of the driving field. Commonly-used
techniques are based on manipulating the polarization state of the driving field [4, 5], utilizing a
high laser intensity to rapidly deplete the nonlinear medium [6] or altering the shape of the
driving field via multi-color field synthesis [7]. Vincenti and co-workers recently introduced a
conceptually different technique [8], named attosecond lighthouse, utilizing spatio-temporal
couplings to angularly streak the generated attosecond pulses. The technique was
experimentally implemented both in gases [9] and using plasma mirrors [10].

Most gating techniques imply extensive manipulation of the fundamental field and require
spectral filtering of the harmonic radiation, limiting the efficiency and restricting any further use
of the laser pulse. Using the fundamental field after generation is of interest for pump-probe
experiments and essential for intra-cavity HHG [11, 12], a promising scheme that enables the
generation of attosecond pulses at unprecedented power levels and repetition rates, with
applications in ultrahigh precision frequency metrology. While the generation of high-order
harmonics inside a cavity has been experimentally demonstrated [11, 12], that of isolated
attosecond pulses remains an unsolved challenge, requiring broadband enhancement cavities
[13] and suitable gating methods [14].

Here, we introduce an efficient gating technique, noncollinear optical gating (NOG), based
on driving the HHG process in a noncollinear geometry. Noncollinear HHG has recently been
employed for several applications [18, 19], including in sifu diagnostics of the generation
process [20], and proposed as out-coupling method for intra-cavity HHG [21, 22]. Here, we
present a new implementation of noncollinear HHG, which is used to generate angularly
streaked attosecond pulse trains, thus providing an efficient gate for SAP generation. Two
identical but time-delayed, noncollinearly overlapping laser pulses form a driving field with
rotating wave fronts. Consecutive attosecond pulses are emitted in different directions, as
illustrated in figure 1. The two driving laser pulses are left unperturbed' after generation and are
spatially separated from the XUV radiation emitted at the bisector of the two driving field
propagation angles. Thus, our method opens new possibilities for attosecond pump-probe
experiments [15-17] as well as for frequency-comb spectroscopy studies in the XUV regime.

The article is organized as follows: the method is described in sections 2 and 3. Numerical
simulations are presented in section 4. In section 5, we discuss the influence of macroscopic
propagation effects. Finally, in section 6, we compare our gating scheme with the attosecond
lighthouse technique.

2. Principle of the gating method

We consider two identical laser pulses, which are overlapped in time and superimposed
noncollinearly with an angle 2y at the focus, thus forming a spatial intensity grating in the focal
plane [19]. The far-field angular distribution of the harmonics generated in such a geometry is
determined by the interference of multiple sources. In general, the harmonics are emitted in
different directions [23], and consequently the corresponding attosecond pulses are angularly
distorted. The angular emission characteristics simplify considerably at small noncollinear

! Perturbations intrinsic to the HHG process, e.g. due to plasma formation as well as possible perturbations
induced when splitting an initial laser pulse into two pulses might of course occur.
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(c) Spatial profile

__________________________________

Frequency

Figure 1. Principle of noncollinear optical gating. (a) A temporal delay between two
few-cycle pulses leads to a rapidly changing amplitude ratio between subsequent half-
cycles. (b) Overlapping these pulses noncollinearly causes a temporal rotation of the
wavefronts (the figure displays 9 (E)* of the total field E). Attosecond pulses generated
from subsequent half-cycles are therefore emitted in different directions. (c) Illustration
of the experimental scheme: two noncollinearly overlapping driving pulses generate
spatially separated isolated attosecond pulses in the angle sector between the
fundamental propagation directions. The displayed spectrogram was calculated using
a quasi-classical approach, considering a pulse duration and temporal delay of 27,
where T'is the field-cycle period. The observed continua, labelled 1-5, are characteristic
of spatially separated attosecond pulses.

angle, when the intensity grating in the generation medium becomes a single maximum with
weak satellites, as discussed in more detail below. In these conditions, the XUV emission
follows the instantaneous direction of propagation of the total driving field (the z-axis in
figure 1(c)), defined by the bisector of the two driving field propagation angles.

The wave front orientation in the focus of two noncollinearly overlapping laser fields with
field envelope &, and &,, propagating along the wavevectors k,; and k, respectively, can be
defined through the composite wavevector at the point of intersection:

Ek, + Ek
km=( 15 2 2). (1)

JEI + &)
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By taking the scalar product X - Kk, / |km[
direction (see figure 1(b), (c)) and f is the angle between k., and the z-axis, we obtain for small
y:

= — sin (), in which % is the unit vector in lateral

1-¢

1+¢&
A variation of the amplitude ratio of the laser fields, £ = &,/&,, results in a macroscopic tilt of
the wave fronts and a change in the emission direction . The introduction of a temporal delay
At between two driving laser pulses leads to an amplitude ratio that changes rapidly from one
half-cycle to the next (figure 1(a)), defining a unique orientation angle of the corresponding
wave fronts as a function of time. The consequence is an ultrafast wave front rotation (WFR) in
the focus (figure 1(b)), with attosecond pulses emitted in different directions [8]. The emission
of XUV light is thus angularly streaked, mapping time into spatial position in the far-field [9]. A
conventional imaging-XUV spectrometer displaying the spatially resolved spectral profile will
therefore provide a spectrogram of the generated attosecond pulse train, i.e. frequency versus
time, as illustrated in figure 1(c). The time-to-space mapping is defined through equation (2)
where £ varies with time depending on the envelope and separation of the driving fields.

p=r 2

Considering two Gaussian laser pulses with &, = exp [-21n(2)(r + At/2)2/12] and pulse

duration 7 (FWHM), we can deduce the emission angle as a function of time. The time-to-space
mapping is approximately linear around ¢ = 0, i.e. at the temporal center of the total driving
field, where maximum WFR speed is achieved, with

B(t)=2In (2)7% t. A3)

In the temporal wings of the pulses, the WFR speed is reduced. The direction of the time axis
itself is determined by the sign of the temporal delay, i.e. the order of the driving pulses. The
WER velocity increases linearly with Az. Choosing Af = 7 ensures that the total field intensity
does not exhibit a local minimum at ¢ = 0.

3. Angular separation of the attosecond pulses

In order to isolate attosecond pulses emitted from subsequent half-cycles, the angle difference
Ap=rp (T/2) has to be larger than the divergence angle of a SAP. We define this angle as
6, = W, (z)/z. with W (z) denoting the beam radius in the far field at a distance z from the focus
for a beam with central frequency gw. To estimate 6), we consider the intensity grating of the
fundamental field in the focal plane with a Gaussian envelope at the beam waist and radius W.

All spatial beam widths are defined at 1/¢® of the intensity profile. For small y, the intensity
distribution in the focal plane can be written as:

2
I(x,z=0) x cosz[kx sin (y)] exp (—%] 4)
0

In order to avoid interference effects due to multiple harmonic sources formed by the
interference grating in the focus, we consider a degenerated grating with only one central

maximum at x = 0 and weak satellites. Limiting the intensity of the first satellites to 1/¢* of the
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Figure 2. Intensity grating and gating condition. (a) Fundamental intensity distribution
atz=0fory = Yot together with its Gaussian approximations considering (black solid

line) and neglecting (black dashed line) the influence of the spatial envelope (gray solid
line). (b) e, for 7 = 5 (solid red line) and n = 10 (solid blue line) together with their
asymptotic approximations (dashed red and blue lines), plotted as a function of §; the
solid gray lines indicate Af for different pulse lengths, considering a central wavelength
of 800 nm. Both €, and Af are normalized to the divergence 6,. We also indicate the

minimum ¢ which allows a direct separation of fundamental and SAP (dashed vertical
line) and the maximum & (=z/2) for which the statellite peaks can be neglected and for
which gating can be achieved (solid vertical line).

central maximum implies that y must be smaller than y = 1/2W, with 4 denoting the carrier
wavelength. Using Gaussian optics, we have Wy = f1/(zW,), where f'is the focal length and W,
the beam radius before focusing. Defining 2x, as the center-to-center separation of the two
generation beams before focusing and & = x,/W,, the required intensity grating is obtained
when § < /2.

For small y, the cosine’-intensity distribution caused by the beam interference can be
approximated ~with a  Gaussian function, 7 (x,z =0) x exp (—2x° / Wf), with
WV2 = 1/[k2y2/2 +1 / WOZ], as illustrated in figure 2(a). With the scaling relation 6, o< 1/W,
this leads to an expression for the divergence angle € = €} (y) in units of €) (0):

@ 2.2
AN 5)
6,000 W, 2 W

In order to determine whether the condition for SAP emission 43 > @) is satisfied, we look

at the scaling of Af and € with increasing noncollinear angle, or equivalently beam separation
d (figure 2(b)). Ap is plotted as a function of y for three different pulse lengths while 6, is shown
for two different values of the ratio between the fundamental and the attosecond pulse
divergence n = 6, / 6, (0) While Ap increases linearly with y, 6, follows a nonlinear scaling
relation. The conditions for SAP generation improve with increasing y until 6, approaches an

asymptotic linear dependence. Figure 2(b) shows that efficient gating requires short driving
pulses and collimated harmonic beams. For # = 10 and 1 = 800 nm, gating is achieved for
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< 10fsand § > 1, while if n = 5, gating needs pulses of the order of 5 fs or less and similarly
6 > 1. The gating conditions improve until § ~ z/2, which corresponds to the maximum
allowed noncollinear angle y =y . As an example, for f=0.5m and Wy=2mm we obtain

opt”
¥ opt=0.3 mrad.

In summary, optimal conditions for SAP generation, which ensure minimized temporal
satellite pulses as well as suppression of interference effects due to multiple sources in the
focus, are obtained when the beam separation before focusing is approximately z/2 times the
1/e*-diameter of the intensity profile. This condition is valid for loose and tight focal geometries,
since the NOG scheme does not depend on focusing as long as # remains the same (see
figure 2). With decreasing focal length, W, decreases and the SAP divergence increases.
However, A increases accordingly, and identical temporal SAP characteristics are obtained.

For y ~ Yo the influence of the Gaussian envelope on the radial dimension of the

harmonic source can be neglected, and the divergence can be approximated by its asympotic
value

k Ak 2
6,~ 6,(0) WL = y= Y21

NOI NoY n
Using equation (3) this leads to a simple condition for the maximum pulse duration allowing an
angular separation of the generated attosecond pulses:

< ln(Z)M
V2 e’

¢ denoting the speed of light. If the above condition is fulfilled, the emission direction between
consecutive SAPs changes by at least the divergence angle of the same pulses. This is

(©)

)

equivalent to limiting the on-axis intensity of pre- and post pulses to 1/e* of the main pulse. For
4 = 800 nm, and # = 10, we obtain 7 < 13 fs.

The factor 1/ can also be interpreted as a lower limit for the angular divergence of the
harmonic emission at frequency nw, defined in units of the fundamental beam divergence. Thus,
equation (7) leads to an approximate limit for the low-energy cutoff £, = 7Zwn of the generated
spectral continua:

low

fw’t
_— 8
72 In(2)’ ®

the high-energy limit being determined by the fundamental intensity. Using the above

parameters and considering 7 = 5 fs at . = 800 nm and a peak intensity of 2 x 10" W cm™, we

have E,, = 5.9 eV, leading to SAPs with up to 48 eV bandwidth if Ar is used for generation.

~
low ™~

low
4. Simulations

We performed numerical calculations in order to simulate HHG in a noncollinear geometry.
The single atom response was obtained by solving the time dependent Schrodinger equation
within the strong field approximation [24], selecting the short trajectory contribution. The
harmonic dipole response was calculated numerically on a finite temporal grid for all points
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Figure 3. Simulations of noncollinear optical gating. Normalized spatio-temporal
distribution i)‘i(E)2 of the fundamental field interference pattern in the focus (first
column), far-field intensity distribution of the attosecond pulse trains (second column),
spatially-resolved spectrum (third column) and spectrum at = 0 (fourth column) for
three different cases: Ar = 0 (first row), At =2 T = 7 (second row), and At = 25T
(third row).

along a one dimensional grid in the focal plane. The far-field emission was computed using
Fraunhofer diffraction integrals. Propagation effects (see section 5) were not taken into account.
Figure 3 presents simulations of HHG in neon for two-cycle driving pulses (z =2 T),

considering 6 = n/2. The first row (a) shows the focused laser field R (E )2, the attosecond pulse

train in the far field (b), the far field spectrum (c) and a spectral line-out at § = 0 (d) when the
two pulses are superposed with no time delay at the focus. The far-field intensity distribution is
shown as a function of the propagation angle f, normalized to the divergence of the focused
fundamental laser pulses. The generated attosecond pulse train includes approximately four
pulses, which interfere in the far field, leading to a discrete HHG spectrum. The second and
third rows present the same quantities for temporally-delayed driving pulses, withAr =2 T =7
and Ar = 2.5 T respectively. The WFR ((e) and (i)) induced by the temporal separation streaks
the attosecond pulses angularly as shown in (f) and (j). With increasing temporal delay, the
discrete spectrum becomes a characteristic XUV spectrogram with discrete harmonic peaks at
low energies and spectral continua towards the high-energy cut-off. The spatially overlapping
contributions from consecutive attosecond pulses interfere, leading to a fringe pattern between
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the spectral continua. The slope of the interference fringes, which increases with energy, reflects
the harmonic dipole phase variation with driving field intensity [25].

A variation of the CEP ¢, of the driving fields moves the wavefronts in time and leads to a
spatial shift of the corresponding XUV spectrogram [9, 10], providing direct access to the CEP
of the driving laser field. For the simulations presented in figure 3, ¢).. was chosen in order to
emit a SAP at # = 0. Changing ¢, by z/2 leads to the emission of two pulses at f = +Af/2,
thus providing two synchronized but spatially separated SAPs, of interest for attosecond-pump-
attosecond-probe studies.

A variation of the relative phase between the two driving fields moves the fundamental
intensity grating across the focal plane. A zero relative phase at the point of intersection ensures
a central intensity maxima at x = 0, as shown in figure 3 (first column) while a phase shift of z
leads to two intensity maxima in the focal plane and a phase singularity at x = z = 0 [26]. In
the latter case, interference effects between the two harmonic sources in the focus lead to
angularly distorted attosecond pulses, thus preventing efficient gating.

5. Propagation effects

Propagation effects in the nonlinear medium can be described in a similar way as for a collinear
geometry. The noncollinear geometry adds a geometrical component to the total wavevector
missmatch between fundamental beam and generated XUV field with central frequency gw
[19]. In the focus, the geometrical wave vector mismatch can be taken into account by replacing
the component arising from the Gouy phase shift for one beam Ak! = —gq/z, (z, denotes the
Rayleigh length) by:

2
Ak? = Ak;/(l + 2 - ’1—”). ©)
4 8z,
The second term in equation (9) can be attributed to the noncollinear geometry considering
plane waves (equivalent to the Gouy phase shift of a Gaussian beam with an initial beam radius
of Wz /2), the last term is caused by the of off-axis components of the Gouy phase shift.
Akl is equivalent to the wave vector mismatch for a collinear geometry with tighter
focusing, which does not imply a lower conversion efficiency if the generation parameter are
selected adequately [27]. As for collinear HHG, phase matching can be achieved by minimizing
the total wave vector mismatch, i.e. adjusting gas pressure, medium length and laser intensity
[28]. Our numerical simulations confirm the robustness of the NOG scheme even for a long
medium, which is consistent with the findings presented in the supplementary information of [9]
for the case of the lighthouse technique (see section 6).

6. Comparison with the attosecond lighthouse

Finally, we compare NOG with the attosecond lighthouse technique [8]. Both methods are
based on WFR of the fundamental field, introducing an angular streaking effect. In the
lighthouse configuration, WFR is achieved by focusing an angularly chirped laser pulse while
an ultrafast amplitude modulation induces a rotating wave front in the NOG scheme. The
lighthouse can also be seen as the continuous analog of NOG. The two techniques are compared
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Figure 4. Comparison between NOG (a)—(c) and lighthouse (d)—(f). Normalized spatio-
temporal field distribution iR(E )2 of the generation field before focusing (a), (d),
focusing scheme (b), (¢) and generated XUV intensity distribution (c), (f) at a focal
length distance behind the focus. In order to achieve comparable spatio-temporal XUV
pulse characteristics we consider Az = 7 for NOG, a beam radius before focusing that is
factor of 3.7 larger for the lighthouse scheme than for NOG and laser pulses that have
the same spectral bandwidth, corresponding to z = 2 T. The dashed lines in (c), (f)
indicate the time-to-space mapping.

in figure 4 for a two-cycle fundamental pulse and maximum WFR speed for the lighthouse
scheme. Figures 4(a) and (d) show the spatio-temporal representation of the driving field
distribution before focusing, while (c) and (f) present the angularly streaked attosecond pulse
train in the far field together with the driving field after generation (in gray). Considering At = 7
for the NOG scheme, both methods lead to angularly streaked attosecond pulse trains with very
similar spatio-temporal characteristics and identical streaking efficiency at ¢ = 0. Interestingly,
the NOG scheme allows even faster WFR for At > 7 (figure 2, third row) and thus a better
spatial separation of the generated attosecond pulses while the WFR speed is limited in the
lighthouse scheme [8]. Another important difference emerges for the fundamental field
characteristics after generation. In the lighthouse scheme the fundamental field is chirped and
distributed over the angle sector in which attosecond pulses are emitted. In the NOG scheme,
two, nearly transform limited fundamental pulses (see footnote 1), leave the interaction process
after generation and isolated attosecond pulses are emitted in the angle sector between the two
driving fields.

7. Conclusion and outlook

In conclusion, we have introduced a new method for streaking attosecond pulse trains, which
gives access to multiple, perfectly synchronized SAPs. NOG constitutes the first gating scheme
that allows a direct spatial separation of fundamental driving field and generated attosecond
pulses. It is therefore ideally suited for attosecond-pump-attosecond-probe studies, which
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require high pulse energies. Finally, NOG can be applied to intracavity HHG, leading to the
generation of isolated attosecond pulses at unprecedented average power levels and MHz
repetition rates, promising advances in XUV-frequency-comb spectroscopy.

Acknowledgments

This research was supported by the Marie Curie program ATTOFEL (ITN), the European
Research Council (ALMA, PALP), the Swedish Research Council, the Swedish Foundation for
Strategic Research and the Knut and Alice Wallenberg Foundation.

References

[1] Goulielmakis E et al 2010 Real-time observation of valence electron motion Nature 466 739
[2] Sansone G et al 2010 Electron localization following attosecond molecular photoionization Nature 465 763
[3] Cavalieri A et al 2007 Attosecond spectroscopy in condensed matter Nature 449 1029
[4] SolaI et al 2006 Controlling attosecond electron dynamics by phase-stabilized polarization gating Nat. Phys.
2319
[5] Sansone G et al 2006 Isolated single-cycle attosecond pulses Science 314 443
[6] Ferrari F et al 2010 High-energy isolated attosecond pulses generated by above-saturation few-cycle fields
Nat. Photonics 4 875
[7]1 Wirth A er al 2011 Synthesized light transients Science 334 195
[8] Vincenti H and Quéré F 2012 Attosecond lighthouses: how to use spatiotemporally coupled light fields to
generate isolated attosecond pulses Phys. Rev. Lett. 108
[9] Kim K et al 2013 Photonic streaking of attosecond pulse trains Nat. Photonics 7 651
[10] Wheeler J et al 2012 Attosecond lighthouses from plasma mirrors Nat. Photonics 6 829
[11] Cingbz A et al 2012 Direct frequency comb spectroscopy in the extreme ultraviolet Nature 482 68
[12] Gohle C et al 2005 A frequency comb in the extreme ultraviolet Nature 436 234
[13] Pupeza I et al 2013 Compact high-repetition-rate source of coherent 100 eV radiation Nat. Photonics 7 608
[14] Pupeza I et al 2014 Cavity-enhanced high-harmonic generation with spatially tailored driving fields Phys.
Rev. Lett. 112 103902
[15] Tzallas P et al 2011 Extreme-ultraviolet pump-probe studies of one-femtosecond-scale electron dynamics
Nat. Phys. T 781
See reviews on attosecond photonics in Nature Photonics, March 2014
Nabekawa Y et al 2009 Interferometry of attosecond pulse trains in the extreme ultraviolet wavelength region
Phys. Rev. Lett. 102 213904
[18] Daboussi S et al 2013 Double pulse quasi-collinear high harmonic generation scheme as a tool for x-ray laser
plasma gain probing Appl. Phys. B 111 7
[19] Heyl C M et al 2014 Macroscopic effects in noncollinear high-order harmonic generation Phys. Rev. Lett. 112
143902
[20] Kim K et al 2013 Manipulation of quantum paths for space-time characterization of attosecond pulses Nat.
Phys. 9 159
[21] Wu J and Zeng H 2007 Cavity-enhanced noncollinear high-harmonic generation for extreme ultraviolet
frequency combs Opt. Lett. 32 3315
[22] Ozawa A et al 2008 Non-collinear high harmonic generation: a promising outcoupling method for cavity-
assisted XUV generation Opt. Express 16 6233

[16
[17



NEW JOURNAL OF PHYSICS 16 (2014) 165

[23] Bertrand J et al 2011 Ultrahigh-orderwave mixing in noncollinear high harmonic generation Phys. Rev. Lett.
106 023001

[24] Lewenstein M et al 1994 Theory of high-harmonic generation by low-frequency laser fields Phys. Rev. A 49
2117

[25] Varji K et al 2005 Frequency chirp of harmonic and attosecond pulses J. Mod. Opt. 52 379

[26] Nye J and Berry M V 1974 Dislocations in wave trains Proc. R. Soc. London 336 165

[27] Heyl C M, Giidde J, L’Huillier A and Hofer U 2012 High-order harmonic generation with xJ laser pulses at
high repetition rates J. Phys. B: At. Mol. Opt. Phys. 45 074020

[28] Gaarde M, Tate J and Schafer K 2008 Macroscopic aspects of attosecond pulse generation J. Phys. B: At.
Mol. Opt. Phys. 41 132001



166 PAPER 1. HEYL ET AL.

New Journal of Physics

The open access journal at the forefront of physics

Deutsche Physikalische Gesellschaft @ DPG ‘ 10P Institute of Physics

Corrigendum: Noncollinear optical gating (2014 New
J. Phys. 16 052001)

C M Heyl, S N Bengtsson, S Carlstrom, J Mauritsson, C L Arnold and
A L’Huillier

Department of Physics, Lund University, P. O. Box 118, SE-22100 Lund, Sweden
E-mail: christoph.heyl@fysik.1th.se

Received 20 August 2014
Accepted for publication 20 August 2014
Published 28 October 2014

New Journal of Physics 16 (2014) 109501
doi:10.1088/1367-2630/16/10/109501

-6

(a) (b) (c)
-4
-2
PR - 0044
o a
o HHG e
% 00N e T
=
c 4 05 1 05 1
2 6 [ | (i e ]
S -6
8_4 (d) (e) (4i]
[}
% 2 ‘ v i
= X
g o » -< M
s, ' HHG “"t
4
T o -5 -0 0 5 0o -5 -0
Time (fs) Time (fs)

Figure 1. Comparison between NOG (a)—(c) and lighthouse (d)—(f). Normalized spatio-
temporal field distribution SR(E)? of the generation field before focusing (a), (d),
focusing scheme (b), (e) and generated XUV intensity distribution together with the
fundamental field (grayscale) at a focal length distance behind the focus (c), (). In order
to achieve comparable spatio-temporal XUV pulse characteristics we consider At = ¢
for NOG, a beam radius before focusing that is a factor of 3.7 larger for the lighthouse
scheme than for NOG and laser pulses that have the same spectral bandwidth,
corresponding to 7 =2 7. The dashed lines in (c), (f) indicate the time-to-space

mapping.
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The original article was published on 23 May 2014 with a production error in figure 4. One
layer of this figure was shifted (figure 4(f)) and another was missing completely (figure 4(c)),
leading to incorrect timing information between the fundamental field and the generated XUV
field. The corrected figure is shown as figure 1 in this corrigendum.
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Abstract

CrossMark

Strong-field phenomena driven by an intense infrared (IR) laser depend on during what part of
the field cycle they are initiated. By changing the sub-cycle character of the laser electric field it
is possible to control such phenomena. For long pulses, sub-cycle shaping of the field can be

done by adding a relatively weak, second harmonic of the driving field to the pulse. Through

constructive and destructive interference, the combination of strong and weak fields can be used
to change the probability of a strong-field process being initiated at any given part of the cycle.
In order to control sub-cycle phenomena with optimal accuracy, it is necessary to know the phase
difference of the strong and the weak fields precisely. If the weaker field is an even harmonic of
the driving field, electrons ionized by the field will be asymmetrically distributed between the

positive and negative directions of the combined fields. Information about the asymmetry can

yield information about the phase difference. A technique to measure asymmetry for few-cycle
pulses, called stereo-ATI (above threshold ionization), has been developed by Paulus ez al (2003
Phys. Rev. Lett. 91 253004). This paper outlines an extension of this method to measure the

phase difference between a strong IR and its second harmonic.

Keywords: attosecond physics, above-threshold ionization, phase metrology

(Some figures may appear in colour only in the online journal)

1. Introduction

Strong field processes such as high-order harmonic generation
(HHG) and above threshold ionization (ATI) depend on the
sub-cycle structure of the strong infrared (IR) field driving the
process. By tailoring the sub-cycle structure of the field, one
can control the processes. This can be done either by using
very short laser pulses [1-3] or by mixing pulses with dif-
ferent colours [4-6]. HHG with few-cycle laser pulses has
enabled the generation of isolated attosecond pulses [7] and in
this case the process is controlled by changing the so-called
carrier-envelope phase (CEP) [8-12]:

E(t) = Eof (t)sin(wt + dcpp)» (€))

where f{f) describes the envelope of the pulse with respect to
which ¢¢pp is measured.

The CEP relates the phase of the driving frequency to the
envelope of the pulse and changing it may lead to the

generation of one or two attosecond pulses if the duration is
sufficiently short [13]. The rapid change of amplitude of a
short pulse broadens the pulse frequency distribution and
breaks the symmetrical distribution of electron paths between
the positive and negative directions of the field [14, 15]. How
this depends on the CEP is illustrated in figure 1.

For two-coloured, multi-cycle fields with commensurate
frequencies, the total electric is given by

E(t) = E;sin(w) + Esin(nwt + ¢), 2)

where E,, E, are the amplitudes of the fundamental frequency
and its nth harmonic (in this letter, n = 2), respectively, and ¢
is the relative phase between the two fields. The CEP is
neglected in (2), since it has a negligible effect on the
symmetry for multi-cycle pulses. Changing the relative phase
of the two-coloured field may for instance result in one or two
pulses per cycle [16] (see figure 2). One would assume that
maximizing the asymmetry would also maximize the
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Figure 1. An illustration of the classical paths of electrons ionized by a few-cycle pulse, for six different CEPs. The green paths lead the
electrons back to the atom, opening for the possibility of rescattering, whereas the blue paths guarantee direct ionization. The CEP of the
driving field, shown in red, is changed by increments of %ﬂ' between each figure, giving phase difference of 7 between the two pictures in

each column. Note the asymmetry between the rows.
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Figure 2. A constant-amplitude field is shown together with its weaker, second harmonic for four different values of ¢. For each value of ¢
the driving field and its second harmonic are shown, in red and blue respectively, to the left, and their sum in purple to the right. To the right
an interval corresponding to that in the left figure is shown in a darker colour.

harmonic yield, since the harmonic yield scales with the field
maximum, which is maximized at biggest asymmetry—when
the maxima of the two harmonics coincide. However, strong
field approximation calculations showed [16] that there is a
phase offset between maximum asymmetry and maximum
harmonic yield. To truly understand and measure the impact
of the sub-cycle structure, and enable the comparison between
theory and experiment, the relative phase has to be measured
independently from the process being studied and it has to be
measured ‘on target’, where the harmonics are being
generated.

For few-cycle pulses the phase is measured using a
method known as stereo-ATI [17, 18]. In stereo-ATI the
direction of the ionized electrons is measured and related to
the CEP. In this letter we show that the stereo-ATI technique
can be used to measure the relative phase of a two-coloured
field with commensurate frequencies and also the relative
strength of the two fields, since varying ¢ has an impact on
the field structure very similar to that of the CEP on short
pulses [4].

1.1. Multi-cycle pulses

For multi-cycle pulses, the asymmetry due to variations in
amplitude is very small from half-cycle to half-cycle. By
approximating the amplitude as constant, the path of a
directly ionized electron, leaving the atom at time 7y, can be

seen as depending on the instant of ionization. This also
decides its final energy, which is the same as the energy of an
electron leaving the atom one half-cycle later, but in the
opposite direction so that they do not overlap. The classical
paths of electrons ionized by a strong one-coloured field are
shown in figure 3(a). In this figure, the blue lines correspond
to directly ionized electrons, which may reach a maximum
energy of 2U,, where U, is the ponderomotive energy given
by

_ 4> |EP

U, = 3)

,
4 mw?

where ¢ is the elementary charge, |E| the field amplitude, m
the electron mass and w the field frequency. The green lines,
instead, correspond to electrons that return to the ion core,
where they may rescatter. The maximum energy attainable for
the rescattered electrons is reached by elastic scattering when
the velocity is completely reversed [19]. In this way, the
electron may reach final electron energies up to 10U,.
Figure 3(b) shows the energy of directly ionized electrons
and the maximum classical energy of rescattered electrons as
a function of ionization time.

The acceleration of the free electrons is proportional to
the field strength, and when the second harmonic is much
weaker than the driving field, the electron paths through the
field are approximately the same as for the monochromatic
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Figure 3. In (a), the classical paths of electrons ionized during one cycle of a laser field, shown in red, is displayed. Analogously to figure 1,
the green paths lead back to the core, giving a possibility of rescattering, whereas the blue ensure direct ionization. In (b), the energy E of the
directly ionized electrons is shown in blue, and the maximum classical energy of the rescattered electrons is shown in green, both as a

function of the ionization time, o, over one half cycle of the field. Classically, electrons can only gain energies of 10U, if they are ionized at

time 7.

Figure 4. An illustration of how the pulses are simulated. The
trapezoidal envelopes for the high- and low-frequency pulses are
shown in dark blue and red, respectively. The relative intensity is
exaggerated for illustrative purposes. In light red, the low-frequency
pulse is shown; in light blue, the high-frequency pulse is shown as a

continuous line for ¢ = 0 and as a dashed line for ¢ = ;

case [20, 21]. The nonlinear ionization probability, however,
is significantly influenced by the second harmonic [6]. As the
electron energy depends on the ionization time, the same
principle that was used for short pulses can be utilized for the
two-colour case [5, 22]. This paper outlines a method for
measuring the phase difference between the first and second
harmonic of a multi-cycle, two-coloured field, by studying the
asymmetry of the ATI spectrum.

2. Numerical computations

The calculations were done using a newly developed version
of the code described in [23], designed to run on graphical
processing units. It solves the time-dependent Schrodinger
equation in the single active electron approximation and a
combined basis consisting of a radial grid and spherical
harmonics.

Unless otherwise stated, the pulses were modeled using
trapezoidal pulse envelopes. This is advantageous as the
asymmetry due to the frequency mixing is present during a
majority of the simulated pulse. To study the asymmetry for
different ¢, the CEP of the high-frequency wave was varied
between pulses. Due to the relatively low intensity of the
high-frequency pulse, changes to the asymmetry due to
boundary effects caused by changing CEP are relatively
small. The simulated pulse is illustrated in figure 4.

log(P)

\F

0 1 2 3 4 5 6 7 8 9 10 E[Up]

Figure 5. A simplified version of the general characteristics of an
ATI spectrum is shown in red, and a division of [0, 10U,] into ten
sections, is shown in blue.

3. Theory

3.1. Asymmetry as a basis for phase metrology

The force, F, on an electron in a two-colour laser field can for
non-relativistic velocities be approximated as

F = —gE,[sin (wt) + I sin Qut + ¢)], 4)
where E,, is the envelope of the driving field, I the relative
intensity of the second harmonic, ¢ the elementary charge, w
the driving field frequency. The carrier waves are shown for
four different values of ¢ in figure 2.

In figure 5 a schematic ATI spectrum is shown in red. In
the monochromatic case, there would be an approximate
symmetry between the directions of the field. The addition of
the second harmonic, however, breaks that symmetry.

The energy of the electrons depend on when during the
half-cycle of the field they are ionized, as shown in the right
of figure 3. This means that the energy distribution of elec-
trons in the positive direction of the field, P, (E), will be
different from that in the negative direction of the
field, P_(E).

If sin(wt) and sin 2wt + ¢) constructively interfere at
t = ' they interfere destructively atf = ¢’ + 7. This is shown
in figure 2. As a result, the parts of the sub-half cycle when
the driving field is positive, for which there is constructive
interference, are the same parts of the sub-half cycle when the
driving field is negative, for which the interference is



174 PAPER II. PETERSSON ET AL.

(a) Ay (b) An (c) An
I T )
(€] 0 Q 0
© © 0(e)
A A A
~® )
5
4 ® 3
3

Figure 6. An illustration of the Ai—A;, plane. In (a), the representation of a two-colour pulse has been given for ¢ € {0, z, 2{} In (b), an

extrapolation of the values in (a) based on symmetry can be seen. In (c), the ¢-dependent angle ¢ is shown.

destructive, and vice versa. This will in turn mean that an
overrepresentation, due to constructive interference, of elec-
trons with energy E in one direction of the field will coincide
with an underrepresentation, due to destructive interference,
in the other.

In order to gain information about ¢, the asymmetry
between P, (E) and P (E) can be studied. Analogously with
[17, 18], the asymmetry of two energy ranges, ¢ and &y, of the
ATI spectrum will be studied in this paper. The subscripts 1
and h will below be used to differentiate between the low and
the high energy range.

To provide metrics for the respective asymmetries of ¢
and g,, A] = A(g) and A, = A(s,) were used, where

[ aEwP. @ - P @)
Ae) = =

B —— 5)
[ aEtp.@®) + PE)

is the asymmetry over an energy interval ¢ of the ATI
spectrum.

For different values of ¢, a two-colour pulse can be
represented in the A-A;, plane. Figure 6(a) illustrates this for a

>33
figure 2, changing the value of ¢ by 7 completely inverts the
asymmetry coming from the second harmonic. Because of
this, figure 6(a) can be extrapolated to give the values in
figure 6(b).

Denote the angular coordinate in the Ai-Ay, plane 6. As is
shown in figure 6(c), there exists for certain A—Ay repre-
sentations a bijective mapping between ¢ and 6. By choosing
&g and g, that result in such a mapping, it is possible to gain a
measure of ¢.

It interesting to note that neither ¢ — A or ¢ — Ay, are
injective, which can easily be seen in figure 6(c). As
injectivity is a requirement for inversion, it would not be
possible to determine a non-ambiguous measure of ¢ by
observing the asymmetry of a single range of the ATI
spectrum, which justifies the previous selection of two
energy ranges.

hypothetical wave and ¢ € {O z Zl} As can be seen in

3.2. Measurement of the absolute phase difference

The second harmonic gives rise to constructive and destruc-
tive interference during predetermined parts of each cycle.
During experiments it is important to be certain of which data
point in the A-A;, plane corresponds to which ¢. However,
even if the values of 6 in the mapping

, , 2
0(¢) € {0(¢0), 9(,@0 + WW)

x 9(¢0 — (N - 1)%)}

have been ascertained for given g and e, by changing ¢ in
increments of %"‘,
of @.

One solution to this problem is found in the right-hand
side of figure 3, which shows that there is only one ionization
time per half-cycle, here called 7, for which electrons can
classically obtain energies as high as 10U,. Due to quantum
mechanical effects, it is possible for electrons with other
ionization times to obtain equally high energies, but the
probability of doing so is small for ionization times which
notably differ from 7. Because of this, the highest asymmetry
near 10U, is observed when the peak of the second harmonic
occur at 7. In other words, for some small &,
A([10U, — 6, 10U, + 6]) will be maximized when the peak
of the second harmonic in the positive field direction occurs at
7. The peak of the second harmonic occurring at 7 4 7, on
the other hand, maximizes —A([10U, — ¢, 10U, + 6]).

(6)

it can be risky to speculate on the value

3.3. Selection of ¢ and ep

Because the asymmetries of & and &, are measured to deter-
mine ¢, it is important how the ATI spectrum is divided —
the effect of the second harmonic on P.(E) and P_(E) is not
equal for all E. To make the selection of ¢ and &, [0, 10U;]
was sectioned into 10 equally spaced sections, as illustrated in
figure 5. The energy was cut at 10U}, because it is the highest
energy the electrons can classically obtain [19], as illustrated
in figure 3(b).
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Figure 7. The ATI spectra in the positive and negative directions of a
two-colour field, P, and P_, shown In blue and green respectively.
The peaks of the spectra are outlined in darker colours. The relative
intensity of the pulse used to generate the spectrum was g = 0.15
and the phase difference was ¢ = %
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Figure 8. The A|—A}, representation of a two-colour pulse is shown in
(a). In (b), the corresponding #—¢ mapping is shown. The relative
intensity was I = 0.01, and the energy ranges, ¢ = [0U},, U,] and
en = [7Up, 8U,], are shown in (c).

In the case of few-cycle pulses, directly ionized electrons
are not asymmetrically distributed [17, 24]. The reason for
this is that the asymmetry of a two-colour field can be much
larger than that of a few-cycle pulse.

For every pulse, both g and ¢, were generated from one
or multiple neighbouring sections. The sections were chosen
so that

VE € a, Ey € &, : E < Ep. (@)

A total of 495 A—A;, representations of the energy spectrum
were generated, out of which the most useful ones were
manually selected. For more information on how the energy
spectrum was divided, see [25].

4. Results

In figure 7 P, and P_ for a two-colour pulse are shown. There
is an asymmetry between the directions of the field, which can
be seen by observing the peaks of the spectra. For high
energies, P. is dominant, whereas P dominates for low
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energies. When ¢ is varied, the asymmetry of electrons with
an energy of 10U, is largest when the peak of the second
harmonic occurs slightly after 7.

Figure 8(a) shows the A-Aj representation of a two-
colour pulse. In figure 8(b), the f—¢ mapping can be seen,
where 0 is defined as in figure 6(c). For the pulse and energy
ranges selected in figure 8,

do
do

do

< 8)
beromy 4O

belsy)

giving a lower error ¢,, of ¢ for a given error ¢y in § when ¢ is
close to 0 and 7. If ¢ is close to g or 37”, another selection of
energy ranges might be preferable.

A problem which might arise due to careless selection of
the energy ranges is that 6 (¢) stops being bijective. This can
be seen in figure 9(c), where neither ¢(0) nor ¢(w) are
unique. This can always be circumvented by proper selection
of energy ranges.

As illustrated in figure 9, where I is increased expo-
nentially between figures (a)—(c), the asymmetry increases
with I.;. This is to be expected, as the addition of the second
harmonic is the cause of the asymmetry, and the radius of the
A-A;, representation can be used to give information about
the relative intensity. Note that the A-A;, representation can
change shape as the relative intensity increases. In figure 9(c),
the 0 (¢) has lost the bijectivity it had for the cases shown in
figures 9(a) and (b).

The asymmetry caused by the second harmonic in the
two-colour case can be compared to that caused by rapid
change of amplitude during few-cycle pulses—changing the
CERP affects the asymmetry of the short pulse just as changing
¢ affects the asymmetry of the two-colour field. The simila-
rities of two-colour fields to short pulses can be seen in
figure 10, where the A-A;, representation of two short pulses
is shown. The pulse shown in figure 10(a) is of half the
duration of the one in figure 10(b). It also has significantly
higher asymmetry. For short pulses the rapid amplitude
change is the cause of the asymmetry. As the amplitude
gradient is greater for short pulses, the asymmetry is as well.

5. Conclusions

By adding the second harmonic to a strong field, it is possible
to control the effects it has on matter. To control the effects to
an as accurate degree as possible, it is important to know the
phase difference, ¢, between the two harmonics with good
precision. We have shown that it is possible to measure ¢ by
using stereo-ATIL The process consists of selecting two ran-
ges of the ATI spectrum and mapping their respective
asymmetry to different relative phases. As the asymmetry is
caused by the second harmonic, it is also possible to deter-
mine the relative intensity of the pulses by measuring the
magnitude of the asymmetry.

The second harmonic of a two-colour field can be com-
pared to the rapid change of amplitude of a short pulse. In
both cases, the asymmetry of each cycle results in an
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Figure 9. The A-A;, representations of three two-colour pulses. Between each figure, L) € {0.001, 0.0125, 0.15} is increased by a factor
~12.5. In all three figures the energy ranges were & = [2U,, 3U;] and e, = [6U,, 7U,], as illustrated below figures (a)—(c).
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Figure 10. The A-A,, representations of two short, Gaussian pulses,
created by changing the CEP by increments. The pulse used to
generate (a) has a Full Width at Half Maximum (FWHM) of two
field cycles, whereas the one used to generate (b) has a FWHM of
four field cycles. The different data points displayed in figures (a)
and (b) were generated by changing the CEP incrementally. The
bottom picture shows the studied energy ranges, & = [3U,, 5U,]
and g = [6U), TU,].

asymmetrical distribution of ionized electrons. The effect is
strengthened by increasing the intensity of the second har-
monic and decreasing the pulse width respectively. The
asymmetry of the electron distribution can be used to measure
¢ and the CEP respectively.
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Sub-cycle ionization dynamics
revealed by trajectory resolved,
elliptically-driven high-order
harmonic generation

E.W. Larsen?, S. Carlstrém?, E. Lorek?, C. M. Heyl*, D. Paleéek?3, K. J. Schafer®, A. L'Huillier?,
D. Zigmantas? & J. Mauritsson®

The sub-cycle dynamics of electrons driven by strong laser fields is central to the emerging field of
attosecond science. We demonstrate how the dynamics can be probed through high-order harmonic
generation, where different trajectories leading to the same harmonic order are initiated at different
times, thereby probing different field strengths. We find large differences between the trajectories with
respect to both their sensitivity to driving field ellipticity and resonant enhancement. To accurately
describe the ellipticity dependence of the long trajectory harmonics we must include a sub-cycle
change of the initial velocity distribution of the electron and its excursion time. The resonant enhancement
is observed only for the long trajectory contribution of a particular harmonic when a window resonance in
argon, which is off-resonant in the field-free case, is shifted into resonance due to a large dynamic Stark shift.

The process of high-order harmonic generation (HHG)"? driven by a strong infrared (IR) laser field interacting
with a rapidly ionizing medium is the main light source for the field of attosecond science®-°. The HHG process
can be used to produce attosecond pulses because there is a natural, sub-cycle electron dynamics built into the
physics of HHG”®, which leads to a very broad plateau of emitted harmonics. This means that studying the HHG
process itself in detail can, in principle, provide a deeper understanding of strong field electron dynamics at
the attosecond time scale. Over the last decade experiments®'® have indeed shown that the sub-cycle dynamics
of HHG are encoded in the harmonic spectrum, though extracting them is complicated because of the highly
non-linear nature of the process.

Much of the promise in using HHG to better understand strong field physics at the sub-cycle level can be
attributed to the effectiveness of the simple, semi-classical three-step model commonly used to describe the gen-
eration process'"'2. In this model, an electron is first tunnel ionized and then accelerated by a strong laser field.
If the electron is driven back to the vicinity of the ion by the oscillating strong field, the accumulated energy may
be emitted as a photon!!~!* when the electron and ion recollide. The sequence of ionization and return times
leading to a specific harmonic frequency is loosely referred to as a trajectory because much of the physics can be
understood by considering classical electron trajectories in a strong laser field, ignoring atomic effects after the
ionization step and before the return. Depending on when during the laser cycle the ionization occurs, the elec-
tron will have different excursion and return times to the ion leading to different photon emission frequencies,
resulting in a comb of odd harmonics of the laser field if the process is repeated over many laser cycles. Even in
this simple model, however, there is not a one-to-one correspondence between the harmonic emission strengths
and specific trajectories, because there are different trajectories leading to the same final energy. Trajectories that
lead to the same photon energy interfere at the single atom level. The effect of this can either be studied!*-'¢ or
circumvented, for example, through phase matching or spatial separation in the far field of the harmonics as is
done in the present work.

1Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden. 2Department of Chemical Physics,
Lund University, P.O. Box 124, SE-22100 Lund, Sweden. *Department of Chemical Physics, Charles University in
Prague, Ke Karlovu 3, 121 16 Prague, Czech Republic. “Department of Physics and Astronomy, Louisiana State
University, Baton Rouge, Louisiana, 70803, United States of America. Correspondence and requests for materials
should be addressed to E.W.L. (email: elarsen@imperial.ac.uk) or J.M. (email: johan.mauritsson@fysik.Ith.se)
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Studying trajectory resolved contributions to the HHG spectrum is an attractive proposition because different
trajectories probe very different ionization conditions and have different excursion times. The most prominent
contributions to the harmonic emission strengths come from the so-called short and long trajectories, which have
excursion times of less than one laser cycle. Within a laser cycle the long trajectories are ionized close to the peak
field strength and have an excursion time exceeding 0.65 laser cycles. The short trajectories are ionized at low field
strengths and have shorter excursion times. Fortunately, the emission from these two trajectory classes can be
separated experimentally in the far field enabling, for each harmonic frequency, comparison between ionization
at two different sub-cycle field strengths, followed by two different excursion times. This requires, ideally, that
high accuracy measurements of both long and short trajectory contributions to each harmonic are made in the
same experimental setup’.

Until recently most experimental efforts that make use of high harmonics have been concentrated on opti-
mizing HHG from short trajectories, since their emission is well collimated and spectrally narrow. In addition,
trains of attosecond pulses have been successfully created and measured by selecting the short trajectories’ con-
tributions*'®. The emission from the long trajectories is more challenging to use because it is spectrally broader
and more divergent, hence it is usually removed by spatial filtering and/or the selection of specific phase matching
conditions in experiments as they otherwise can affect the temporal structure of the attosecond pulses'. In this
paper we report on measurements made with very well-controlled, high repetition-rate laser pulses, which allow
us to make trajectory resolved HHG measurements in argon gas while varying the ellipticity and the peak field
strength of the driving laser pulses. The results allow us to elucidate new features in the sub-cycle ionization step
that lead to long trajectories, that is, ionization at high field strengths followed by long excursion times.

In this article, we present two methods of probing sub-cycle strong-field dynamics by comparing the trajec-
tory resolved emission of high harmonics and then studying the long trajectories in depth. In the first part of
the article, a detailed experimental comparison of the ellipticity dependence as a function of harmonic order is
presented, for both the short and the long trajectories. While harmonic generation using elliptically polarized
driving fields has been extensively studied for the short trajectories both experimentally and theoretically?*-2¢, the
polarization dependence of the long trajectories have so far only been investigated theoretically***>?’. It follows
from the simple three-step model that harmonic generation will be very sensitive to the ellipticity of the driving
laser since the field acting on the electron while it is far from the ion can cause it to miss the recollision. Since
the long and the short trajectories have different excursion times, the impact of changing the ellipticity will be
different for the two classes of trajectories.

To explain the ellipticity dependence of the short trajectories it is sufficient to include wave packet spreading
due to quantum diffusion, which we can model by including a distribution of momenta transverse to the instante-
neous field vector at the moment of ionization. This distribution does not need to depend in detail on the moment
of ionization, since the ionization field strength is low for short trajectories. In order to explain the ellipticity
dependence of the long trajectories, however, this simple quantum diffusion model is not enough. Due to a larger
variation in ionization field strength for the different long trajectories, a field-strength dependent momentum
distribution has to be taken into account. We expect that at higher field strengths a broader transverse momentum
distribution results from the lowering of the ionization barrier. We include this effect in our theoretical analysis
of the long trajectory data via a simple extension of the three step model and find that it fits the our experimental
data very well over the HHG plateau.

In the second part of our study, the sub-cycle sensitivity of trajectory resolved HHG measurements is used
to study a region of the spectrum in which atomic resonances can alter the HHG signal. In particular, a window
resonance in argon that is far from any harmonic of the laser frequency in the field-free case is shown to have a
large effect on the long trajectory harmonic closest to it, but little or no effect on the short trajectory. We attribute
this to the fact that the long trajectory component is dynamically Stark shifted into resonance by the laser field,
which leads to a drastic enhancement of the emission from the long trajectory, but not the short where the field
strength is much weaker and is not sufficient to shift the state into resonance. We measure this effect for a set of
resonant harmonics over a range of driving field intensities.

Experimental setup

The experimental setup used for the experiment presented in this article is described in a recent publication®®
and is briefly outlined here. An Yb:KGW based laser system (“Pharos’, Light Conversion Ltd.) was used to deliver
170 fs, pulses with a central wavelength of 1030 nm. The laser system has a variable repetition rate between 1 and
600KkHz, but all the presented data were recorded at a repetition rate of 20kHz. The pulses were focused tightly
into a continuous argon gas jet, with a 90 m orifice, using a 100 mm focal length achromatic lens. Directly after
the interaction region, a differential pumping hole with an inner diameter of 0.5 mm was placed to minimize the
background gas in the detection chamber. The differential pump hole allowed for a pressure difference of the
background gas between the generation and detection chambers of 4-5 orders of magnitude. The HHG spec-
trum was measured using a home-built imaging spectrometer based on a variable-line-spacing grating and a
microchannel-plate with an attached phosphor screen and a camera with a resolution of 2456 x 2058 pixels and a
dynamic range of 14 bits. The grating diffracts and refocuses the XUV in the horizontal direction while the verti-
cal direction is left unaffected. Therefore the vertical direction provides the divergence of the XUV light while the
horizontal direction shows the spectrum.

Ellipticity measurement

Figure 1 shows a typical harmonic spectrum when a linearly polarized driving laser is used and the gas jet is
placed in the focal plane of the generating beam. The experimental parameters (pulse energy, gas density, spot
size, etc.) were optimized to generate harmonics from both the short and the long trajectories.
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Figure 1. Typical harmonic spectra optimized to generate harmonics from both the short and the long
trajectories.
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Figure 2. (a) Enlarged view of the harmonic spectrum at linear polarization for H19-H23 of Fig. 1. (b) Spatially
and spectrally integrated signal of H23 as a function of ellipticity. (c) Measurement of the ellipticity dependence of
three different spatial-spectral parts of H23 as indicated by the three arrows. The solid lines represent Gaussian fits
to the experimental data. (d) Pixel-by-pixel threshold ellipticity of the spatial-spectral region of part (a).

The Gaussian transverse and temporal intensity profile of the driving laser, in combination with the fact that
the dipole phase of the long trajectories has a stronger intensity dependence than the short trajectories, result in a
larger wavefront curvature and more divergent light generated by the long trajectories?*-!, this also explains the
spatial-spectral rings observed in the far field. We therefore attribute the inner part of the harmonic spectrum
to be dominated by the short trajectories, while the spatial-spectral rings are attributed to interference between
long trajectories of different emitters. As the trajectory dependent dipole phase is strongest for the low orders, the
interference rings are mainly seen for the low end of the plateau region. This spatial separation was exploited to
study the contributions from the long trajectories only.

A quarter-wave plate was used to introduce ellipticity, defined as the ratio between the minor and major axis
components of the driving laser field. Figure 2(a) shows an enlarged view of the spatial-spectral profile of har-
monics 19-23 of Fig. 1. Figure 2(b) shows a measurement of the spatially and spectrally integrated strength of
harmonic 23 (H23) as a function of ellipticity of the driving laser relative to the strength at linear polarization.
The integrated signal clearly follows a Gaussian distribution with respect to ellipticity as previously observed®.

We define the threshold ellipticity, €, as the amount of ellipticity required for the harmonic signal to drop
by a factor of two compared with linear polarization. Our very high signal-to-noise ratio allows us to analyze the
ellipticity dependence of each pixel rather than the spatially and spectrally integrated signal. Figure 2(c) presents
the strength of three different pixels within H23 as a function of ellipticity. The strength of each pixel is fitted
with a Gaussian profile to extract the corresponding threshold ellipticity of each pixel, which are used to create a
two-dimensional map of the threshold ellipticity as a function of energy and divergence angle. The full threshold
ellipticity maps for the conditions of Fig. 1 can be found in the Methods section. Focusing on H23 in Fig. 2(d),
we observe three different regions of threshold ellipticity; an inner region with a threshold ellipticity around 0.16,
and two outer regions with threshold ellipticities of around 0.09 and 0.1 respectively.
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Figure 3. The red (blue) line show the measured threshold ellipticity as a function of harmonic order for
the long (short) trajectories when the laser is focused in the middle of the gas jet. The error bars indicate the
standard deviations of the corresponding threshold ellipticity.

Figure 3 presents the average threshold ellipticity for both the long and the short trajectories as a function
of harmonic order for the conditions of Fig. 1. For the short trajectories, we observe a behavior similar to previ-
ous measurements®*?>%, i.e., the threshold ellipticity decreases slowly with increasing harmonic order. A similar
trend is also observed for the long trajectories, in contrast to what would be expected if only the excursion time
of these trajectories is considered.

Ellipticity theory

In a semi-classical model where the propagation step is calculated classically and the electron only has a velocity
parallel to the electric field, only linearly polarized light would produce high-order harmonics since any ellipticity
will prevent the electron from returning to its original position. The fact that high-order harmonics are observed
even for elliptically polarized light is usually attributed to quantum diffusion; the electron wave packet spreads
out as it is accelerated in the laser field. The wave packet spread allows for an overlap between the electron and the
parent ion, even when the electron is transversely displaced due to the elliptically polarized laser field.

Quantum diffusion can be seen as resulting from an initial distribution of velocities of the electron — the more
confined the electron is in one direction, the more it will spread. In particular, a spatial confinement in the direc-
tion perpendicular to the laser field, will lead to a transverse velocity distribution which is necessary for HHG.
A rough estimate of the confinement is given by the size of the groundstate. Using this estimate, a trajectory
spending longer time in the continuum will diffuse more which results in a lower HHG yield.

For the short trajectories, the above estimate of the quantum diffusion, which is independent of the ionization
time, is sufficient to explain the increase in sensitivity, as a function of harmonic order. For this set of trajectories
the highest energy photons are produced by electrons with the longest excursion time. As the transverse displace-
ment of the electron at the point of recombination increases with the excursion time, the trajectories leading to
the higher harmonics are displaced more than those leading to the low orders. Therefore the overlap between the
ion and the electron at the recombination time decreases with harmonic order.

For the long trajectories, this effect leads to the opposite result, as the kinetic energy of the returning electrons
decreases with increasing excursion time. To understand the experimentally observed ellipticity dependence
of this set of trajectories, we apply a model that also takes the sub-cycle variation of the initial electron velocity
distributions into account, as well as the change in excursion time for the different trajectories as the ellipticity is
varied. This effect plays a major role in the initial velocity distribution as the long trajectory electrons are ionized
closer to the peak of laser field, where the atomic potential is more distorted in the direction of the laser field,
and thus the electron wave packet is more perpendicularly confined at the time of ionization®?. The perpendic-
ular confinement of the electron at the ionization time leads to a large uncertainty in the perpendicular velocity
distribution.

Our method is similar to references 24-26, but the definition of threshold ellipticity is not the same in the
different studies. The procedure is as follows: First, we calculate the return energy of the electrons for the two first
sets of trajectories as a function of both ionization time and ellipticity. The position of an electron released at time
t;in an elliptical field F(t) = F/\1 + 2 [sin(wt); £ cos(wt) ] is found by integrating the Newtonian equations of
motion twice:

@ = F sin(wt) — sin(wt;) — w(t — t;) cos(wt;)
f N W2 1 + &2 elcos(wt) — cos(wt;) + w(t — t;)sin(wt;)]
+(t—t)v, + 1} (1)

where v; and r; are the initial velocity and position, respectively; F is the field amplitude, w the frequency of the
fundamental field, e € [—1, +1] is the ellipticity, with 0 meaning linear polarization along the x axis. Atomic units
are used. We assume that r;=r(t,) =0, where f, is the moment of return. Finding this time requires solving the
transcendental equation numerically. For elliptical polarization, the drift acquired by the electron can be coun-
tered by an initial velocity v, that is transverse to the driving field at the time of ionization (this is analogous to
quantum diffusion of the electron wavepacket as it is accelerated in the laser field). Thus, we solve (1) for f, and v;
for each t;€ [0.25T, 0.5T], T being the period, and each ¢ € [0, 1]. We assume that v, = v+ Vo where the two
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Figure 4. Map of return energies, as a function of ellipticity € and ionization time ¢,. I, is the ionization
potential of the ground state. Plotted are also isoenergetic curves corresponding to the harmonics of the
fundamental field, and the cut-off energy (shown by the solid black line), which decreases for increasing
ellipticity. Trajectories, which are ionized earlier than the cut-off energy, correspond to the long trajectories. It is
easy to see that a specific time of ionization does not correspond to a certain recombination energy.
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Figure 5. (a) Lineouts of Fig. 4 for 11 equidistant ellipticities from linear to circular polarization. From this plot
it is obvious that the cut-off decreases with increasing ellipticity and that it occurs for earlier ionization times. It
is also clear that the initial timing necessary to produce a specific harmonic changes with the ellipticity. (b) The
same as (a), but plotted as a function of excursion time t,=t, — t; instead.

components are parallel and perpendicular to the driving field at the time of ionization. Furthermore, we assume
that v =0, such that all uncertainty is in the initial transverse momentum, p, =m,v , (m.=1 in atomic units).

'The kinetic energy at the time of return is given by W} = p?(t,)/2; this gives the map of energies seen in Fig. 4.

As can be seen in Fig. 4, the cut-off position is shifted when the ellipticity is increased (i.e. the highest energy
photons can only be produced from linearly polarized light) and the initial timing leading to a specific harmonic
order is also changed. This trend is even more clear when lineouts at different ellipticities are presented as in
Fig. 5.

The next step to estimate the harmonic yield is to calculate the combined probability of ionizing at time ; and
having the required initial velocity for the electron to return. This is possible since the correspondence between a
certain harmonic and its ionization time for different ellipticities is already calculated. Since the required trans-
verse momenta for the long trajectories to return are quite large for high ellipticities, we use the full expression for
the transverse momentum distribution found in reference 33,

201, + p})*?

w(p, ) o< exp|— i
+ 3E(t,) @
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Figure 6. Map representing the combined probability of ionizing at time ¢; and having the initial transverse
velocity required for return as a function of ellipticity and ionization time. The isocurves are the same as in
Fig. 4, representing constant return energy. Following an isocurve gives the probability of generating a certain
harmonic, as a function of ellipticity.
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Figure 7. (a) The dashed lines show the numerically calculated threshold ellipticities for the long trajectories
in the plateau region according to our model. Correspondingly, the dotted lines show the threshold ellipticity
given by ref. 25. For comparison, the experimental data for the long trajectories are shown. The simulations
were done for a laser intensity of 8.5 - 10> W/cm? and a wavelength of 1030 nm. (b) Integrated harmonic spectra
for in-focus generation with various ellipticities. The color scale corresponds to different ellipticities from black
£=0) to light gray (¢ =0.25) in steps of 0.05. The fillings between the different harmonics allow us to better
visualize the differences. The various spectra have been normalized to the level of H15. The error bars used in
(a) show the standard deviations of the threshold ellipticities of the corresponding harmonic.

I, is the ionization potential of the ground state. The tunneling rate is taken from ADK theory*. This com-
bined probability, which is the product of the separate probabilities described above, is displayed using a colour
scale in Fig. 6, as a function of ellipticity and ionization time.

The isoenergetic curves from Fig. 4 are also included in the figure. To calculate the yield of a given harmonic
order as a function of ellipticity, one extracts the probability along the corresponding isoenergetic curve.

Finally, in the last step of our model, the calculated yield as a function of ellipticity is fitted with Gaussian
functions for each harmonic to obtain the threshold ellipticities in a similar manner to the experimental data. The
result of the model for the long trajectories is presented in Fig. 7(a) together with the experimental data.

Our extended model compares very well with the experiment presented in this work; in particular the decrease
in threshold ellipticity with increasing harmonic order is explained. This is opposite to what would be expected
from sub-cycle field-independent quantum diffusion. It is also opposite to the analytical expression presented in
reference 39 which is included for comparison in Fig. 7(a) as a dotted line.

From Fig. 7(a) it is clear that some of the long trajectory harmonics (17, 21 and 23) have a lower threshold
ellipticity than what is predicted by the model. We attribute this to the presence of atomic resonances in the vicin-
ity of the corresponding energies, which clearly cannot be captured by the model we are using. In what follows,
we demonstrate that these resonances can be dynamically Stark shifted by the sub-cycle field strength and will
therefore influence the harmonic generation differently for the short and the long trajectories. The spatial sepa-
ration of the short and long trajectories leading to the same energy, enable us to directly compare the influence of
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Figure 8. Experimentally measured long (a) and short (b) trajectory intensities of H15-H37 as a function

of pulse energy of the fundamental field. H17 is shown in gray, H21 in black, and H23 in brown, while the
remaining harmonics are shown in a rainbow color scale from dark blue (H15) to dark red (H37) with
increasing order. The dashed line indicates roughly the conditions of Fig. 1. The inset of (a) schematically shows
how the Rydberg series for the 3s electrons in combination with the continuum for the 3p electrons creates a
series of window resonances. Absorption of an XUV photon can create a coherent superposition of the two
valence electrons which interfere and affects the absorption cross-section o "2 In argon this amounts to a
reduction of the absorption cross-section®. The vertical arrows within the inset indicate the expected direction
of the light induced energy-shift of the respective 3s!'3p°np! states.

the sub-cycle field strength. For a given harmonic order, the short trajectory is initiated at a field strength which is
insufficient to shift the state into resonance, thereby precluding the enhancement observed for the long trajectory
initiated at a higher sub-cycle field strength.

Resonant HHG

Resonant HHG in argon at a photon energy corresponding to H17 in our experiment has previously been
observed®. In our study, we also see an effect for H21 and H23 [Fig. 7(b)]. We will focus the discussion on H21,
where the effect is most pronounced. At linear polarization a strong enhancement of H21 is clearly observed,
while this enhancement is gone for an ellipticity of 0.2 as can be seen in Fig. 7(b). The change in ellipticity leads
to a variation in the intensity, since the pulse energy is kept constant. This means that the observed effect can be
due to either the intensity or the ellipticity. In order to disentangle the two, an intensity scan was performed for
linearly polarized light. Figure 8 shows the experimentally measured intensities of the long (a) and short (b) tra-
jectories for H15-H37 as a function of IR pulse energy. As clearly observed, the yield of H21 rises more rapidly for
the long trajectories once the IR pulse energy exceeds 0.14 mJ [Fig. 8(a)], while the emission from the short tra-
jectories are left unaffected [Fig. 8(b)]. Enhancement of the long trajectories can also be clearly seen for H17 and
H23, albeit, at slightly lower pulse energies. Harmonic 17 qualitatively follows the trend predicted for the single
atom response given in reference 35, thus H17 is not further discussed in the present work. Harmonic 23 reaches
a maximal strength at 0.15 mJ whereafter a slow decrease with respect to increased pulse energy is observed.

We interpret the behavior of H21 (but also H17 & H23) to be the result of HHG in the presence of an atomic
resonance. Resonant HHG may increase the harmonic yield through a number of different mechanisms®*-*!. For
H21 with photon energy of 25.2 eV, the closest resonance is the 3s>3p® — 3s!'3p®4p! transition (26.6eV), which is
a window resonance®>®. Our interpretation requires that the 3s!'3p®4p! state, which is lowest state in the 3s — np
closed channels, is red-shifted by approximately 1.4eV [see inset in Fig. 8(a)]. This is feasible as the dynamical
Stark shift of the 3s'3p®4p! state should be dominated by the interaction with the 3s — np closed channel, rather
than through coupling with the 3p — ¥(s, d) open channels****, and the Stark shifts on the order of the pondero-
motive energy are well known***’. In addition to the Stark effect, the IR intensity also causes a blueshift of the IR
energy, and thereby the XUV photon energies. However, it was confirmed from the intensity scan that this effect is
too small to explain the results, as the central frequencies of the harmonics did not change. Since we only observe
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the enhancement for the long trajectory, we interpret this as an effect of the comparably higher field strength for
this trajectory, at the time of ionization.

Reshaping of the argon HHG spectrum by this particular window resonance has previously been observed*,
however, the interpretation is fundamentally different in the work presented here. In reference 48, a few-cycle
pulse was used to generate broadband harmonics by HHG in a gas jet. The backing pressure for the continuous
gas jet was then increased significantly so that all other wavelengths than exactly the resonant wavelength were
suppressed by re-absorption in the generating gas. This led to a narrowing of H17 (of 800 nm) from a width of
roughly 1.5V to a width comparable to the field-free width of the window resonance®’. This leads us to believe
that the effect observed in reference 48 happens over a large volume, where the IR intensity is weak. The results
presented in this article, however, is clearly an effect that take place at high laser intensity, where the dynamical
Stark effect is strong.

The behavior of H23 with respect pulse energy of the driving laser can be understood as an effect of
over-shifting of the atomic resonances causing the enhancement. As indicated in the inset of Fig. 8(a) the
field-free detuning of H23 is less than the detuning of H21 with respect to both the transition energies into the
3s!3p°4p! and the 3s'3p5p! states, so the minimal required pulse energy for enhancement of this harmonic is
lower. Nevertheless, the maximal enhancement factor is largest for H21, due to the strong dipole coupling with
the red-shifted 3s'3p®4p! state.

As the pulse energy is increased beyond the optimum energy for resonant generation of H23 the enhancement
of this harmonic starts to vanish. The slow decrease likely originates from the long pulse duration of the driving
laser, which means that a number of cycles will have the optimum energy shift. A similar effect is expected to
occur for H21 at higher pulse energies, however, due to limitations of the laser system this was not seen in the
present work.

Apart from the major effects on H17, H21 and H23 observed both in the ellipticity and the intensity meas-
urements a minor amount of enhancement of H19, H25 and H27 can be observed for the long trajectories once
the IR pulse energy exceeds 0.15 m]J [Fig. 8(a)]. The field-free detuning from the 3s3p6np manifold of resonances
are larger for these harmonics, so any enhancement effect on these harmonics is both expected to be less, and to
occur at higher pulse energies in full agreement with the observation.

In conclusion, we have experimentally investigated the ellipticity and intensity dependencies of HHG from
the long and the short trajectories. This type of measurements enables us to probe the influence of the sub-cycle
field strength on HHG process. We have shown that the well-established semi-classical model has to be extended
by taking the instantaneous field strength into account, to also describe the general behavior of the long trajec-
tories. We have demonstrated how off-resonant states embedded in the continuum can enhance long trajectory
harmonics by being shifted into resonance by the strong driving laser, different amounts for different trajectories
due to the sub-cycle nature of the generation process. When the driving laser field is strong enough to cause an
enhancement at linear polarization, these harmonics show a stronger ellipticity dependence as the dynamical
Stark shift depends on the polarization.

This study highlights the importance of systematical studies of the generation process under various condi-
tions. Furthermore, the extension of the knowledge of the harmonic generation process to the long trajectories
will be beneficial for high-order harmonic spectroscopy studies.

Methods
Evaluation of experimental data. In this section we present the details of the analysis method used for
the experimental data.

It is well-known from the strong field approximation that for harmonics in the plateau region, there are several
electronic trajectories, which may contribute to the generation process. Emission from these different trajectories
interferes and shapes the far field spatial spectral profile. The phase of these trajectories can be approximated with
a phase proportional to the intensity I(x, y, z, t) such that

gtraj __ traj
8 =0, (x, y, 2, 1), 3)

where </>q"3j is the trajectory dependent dipole phase and /™ is the proportionality constant. The first two sets of
electron trajectories are usually referred to as the short and long trajectories. It well-established that in the plateau
region the proportionality constants are much larger for the long trajectories than for the short trajectories®"*.

The short trajectories can be isolated in the generation process by placing the gas jet behind the focal plane
and adjusting gas pressure and pulse energy accordingly***!. A spectrum optimized for this is shown in Fig. 9(a).
Figure 9(b) shows the corresponding threshold ellipticity map, which is extracted in a similar manner as in the
main article. When the gas jet instead is placed at the focus of the laser both sets of trajectories can efficiently
be phase-matched by adjusting the other experimental parameters accordingly. Figure 9(c) shows a spectrum
optimized to generate with both sets of trajectories, while Fig. 9(d) is the corresponding threshold ellipticity map.
As a consequence of the larger dipole phase of the long trajectories, the light produced by the these trajectories
are more divergent. This effect was used to spatially separate the contributions from only the long trajectories in
Fig. 9(c,d).

Figure 10 shows enlarged views of H19 for out-of-focus generation [(a)] and in-focus generation [(b)]. In the
out-of-focus case the harmonic exhibits a homogeneous spatial-spectral dependence with respect to ellipticity,
this is not observed for the in-focus case, where several regions of ellipticity dependence are clearly observed.

The homogeneity of the ellipticity dependence for out-of-focus generation [Fig. 10(a)] reveal that in order
to study ellipticity dependence of the short trajectories out-of-focus an imaging spectrometer is not needed and
a spatial-spectral integration with respect to harmonic order would be sufficient. This is clearly not the case of
in-focus generation [Fig. 10(b)].
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Figure 9. (a) Harmonic spectrum at linear polarization when the gas jet is placed behind the focal plane of the
laser. (b) Threshold ellipticity map as a function of energy and divergence angle for out-of-focus generation.
(c) Harmonic spectrum at linear polarization when the gas jet is placed in the focal plane of the laser.

(d) Threshold ellipticity map as a function of energy and divergence angle for in-focus generation.

1000 5

500

Counts
Counts

0
o ol 012 013 009 002 015 009 0.12 0.5
th &

Figure 10. (a) An enlarged view of the ellipticity map of H19 for out-of-focus generation [Fig. 9(b)]. The
lower panel shows a histogram of the threshold ellipticities. Each pixel is weighted with the corresponding
pixel strength at linear polarization. (b) An enlarged view of the ellipticity map of H19 for in-focus generation
[Fig. 9(d)]. The lower panels show histograms of the threshold ellipticities within the white boxes (left panel)
and the black box (right panel). The histograms are weighted with the corresponding pixel strength at linear
polarization.

Figure 11 shows the threshold ellipticity as function of harmonic order for the conditions of Fig. 9. Figure 11
shows normalized threshold ellipticity histograms as function of harmonic order. In the in-focus generation case
both the on-axis emission and off-axis emission are shown, in (b) and (c) respectively, while for out-of-focus
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Figure 11. Normalized threshold ellipticity histograms as a function of harmonic order together with

the extracted expectation values and standard deviations for: (a). The center of H15-H33 for out-of-focus
generation. (b) The center of H15-H37 for the in-focus generation. (¢) The outer regions of harmonic H15-H35
for in-focus generation.

case only the on-axis emission is shown in (a). We note that for harmonics close to the cut-off indications of the
long trajectory appears also for the out-of-focus case. In order to extract expectation values and standard devia-
tions for the various threshold ellipticities as a function of harmonic order and trajectories the experimental data
is smoothened using the Kernel density estimation method®>*. After smoothing, the data was fitted with two
Gaussian distributions for the long trajectories, while the short trajectories where fitted with a single Gaussian
distribution. The expectation value of the fitted Gaussian distributions are plotted as solid lines in Fig. 11, while
the uncertainty bars show the corresponding standard deviations of the fits.

Detection efficiency. We measured the ratio in detection efficiency between horizontal and vertical polari-
zation to be 1.38. 3 Three dimensional time-dependent Schrodinger equation calculations® show that the plateau
harmonics exhibit a smaller ellipticity than the driving infrared laser. We therefore estimate that the upper limit
of the non-fixed major axis impact on the measurement to be given by the following expression:

I < E;D, + E;Dy, (4)

where E, and E, are the major and minor axis component of the infrared electrical fields, and D, and D, are
the respective detection efficiencies. Using this expression together with the standard Jones matrix calculus for
polarization of the infrared light we estimated the upper limit on the determination of the threshold ellipticity to
be less than the presented standard deviations. The presented data was performed around the linear polarization
direction with the highest detection efficiency. Therefore the threshold ellipticity might be systematically under-
estimated slightly.
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Abstract. 'We measure spectrally and spatially resolved high-order harmonics generated in
argon using chirped multi-cycle laser pulses. Using a stable, high-repetition rate laser we
observe detailed interference structures in the far-field. The structures are of two kinds; off-
axis interference from the long trajectory only and on-axis interference including the short and
long trajectories. The former is readily visible in the far-field spectrum, modulating both the
spectral and spatial profile. To access the latter, we vary the chirp of the fundamental, imparting
different phases on the different trajectories, thereby changing their relative phase. Using this
method together with an analytical model, we are able to explain the on-axis behaviour and
access the dipole phase parameters for the short () and long (@;) trajectories. The extracted
results compare very well with phase parameters calculated by solving the time-dependent
Schrodinger equation. Going beyond the analytical model, we are also able to successfully
reproduce the off-axis interference structure.
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1. Introduction

High-order harmonic generation (HHG) is a nonlinear optical process, in which a comb
consisting of multiples of the driving laser frequency wy is emitted coherently after interaction
with a target [1, 2]. HHG and the understanding of the process itself has led to the
field of attosecond physics [3], which enables the time-resolved observation of electron
dynamics [4, 5, 6, 7].

The HHG process can be understood using a semi-classical three step model in which an
electron is first ionized by tunnelling, is subsequently accelerated in the laser field, and finally
returns to the ion core and upon recombination releases its excess kinetic energy leading to the
emission of high energy photons [8, 9]. The generated harmonics are of odd orders since the
process is repeated every half cycle of the laser field. This semi-classical understanding has
been verified extensively through comparison with experiments and with more sophisticated
calculations based on the integration of the time-dependent Schrodinger equation (TDSE)
within the single-active-electron (SAE) approximation, either in its full numerical form [10]
or within the strong field approximation (SFA) [11]. From this three-step model for HHG, it
follows that for each harmonic energy there are multiple quantum paths (QPs) the electron can
follow in the continuum. They correspond to different pairs of ionization and return times (#;,
1), that give rise to the same kinetic energy upon return. The two first QPs, termed the short
and long QPs, both return within one cycle after ionization, with the short QP being released
later and returning earlier than the long QP. The emission generated from each of these two
QP contributions has different macroscopic coherence properties [12, 13, 14] because of the
different microscopic phase that is imparted via the semi-classical action accumulated along
each path. As we will describe in more detail below, this phase is approximately proportional
to the cycle-averaged laser intensity with a phase coefficient « that increases with the time spent
in the continuum. This means that the intensity dependence of the short-path contribution to
the harmonic emission is much smaller than that of the long-path contribution. Therefore, the
short QP emission has a smaller spectral and spatial divergence imparted by the temporal and
radial variation of the laser intensity in the generation region.

The dipole properties of the HHG process may lead to various interference effects, since
the same final energy is generated from several different trajectories. Interferences appearing
as spectral and/or spatial structures in the harmonic far-field emission have been reported and
identified as interferences between the short and the long quantum path contribution, known
as quantum path interferences (QPI) [15, 16, 17, 18, 19]. Other works identify complicated
spatial and spectral features of harmonics produced by individual quantum paths at high driving
intensities, due to strong spatio-temporal phase and amplitude modulations in the generation
medium [20, 21] or due to the spectral interference of adjacent harmonics [22].The emission
from the short QP contribution has been characterized in much more detail [23, 24, 25] than
that from the long QP contribution [22] as the latter is more difficult to accurately phase match
and control experimentally [15, 19].

In this paper we present a detailed experimental characterization of the phase properties
of the short and long QP contributions to HHG, via QPI in both the spectral and spatial
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domain which we control through the chirp of the generating laser pulse, also changing the
pulse duration and the intensity. We identify and distinguish quantum path interferences from
macroscopic interference effects arising within the emission of the long trajectory. We use
a commercial turn-key laser system that produces long multi-cycle pulses (with durations
> 170fs, corresponding to > 50 cycles at the driving wavelength 4 = 1030 nm), which yield
spatially and spectrally well-resolved harmonics with high signal-to-noise ratio. The stable
operation of the laser in combination with the long and controllable pulses allow us to observe
and characterize the QPI for a range of harmonics in argon spanning from harmonic 11, which
is below the ionization threshold, to harmonic 37. In a single spectrum, clear spatial and
spectral modulation of the harmonic order is visible, predominantly for the contribution of
larger spatial and spectral divergence, i.e. the long QP contribution. The interference between
the short and the long QPs, however, is not visible from one spectrum alone, but it is sensitive
to intensity variation of the driving field. Therefore, controlling the shape of the driving pulse
by adding a frequency chirp, the HHG process is affected through the increase in pulse duration
and a decrease of the peak intensity. This reveals the interference between the short and long
QPs, since their respective phases depend differently on the peak intensity. Additionally, the
sign of the driving pulse chirp changes the spectral phase of the harmonic emission and in
particular influences the QPs differently.

We implement a model based on the semi-classical description of HHG [14] as driven
by a laser pulse, which is Gaussian in the temporal and spatial domain. This simple model
captures the observed on-axis short-long QPI features very well and can be used to extract the
phase coefficients @, and @; from the experimental results. We also compare the experimental
results to numerical calculations performed both within the SAE-TDSE and the SFA. We
measure experimental values for ¢; in good agreement with those obtained in [15, 26]. For «;
we measure values that are small and negative for a range of low-order harmonics, indicating
that the interaction between the returning electron and the ionic potential plays a substantial
role in the generation of these harmonics. Negative values for a; have been predicted in some
calculations [24, 25] but have not to our knowledge been observed experimentally to this date.

We further investigate the off-axis interference structures by employing a more complete,
but numerical model. The spectral-spatial modulation due to the long QP is very well
reproduced by this model and explains the significance of the contributions that go beyond
the analytical model, namely phase curvature effects of higher order than parabolic and the
intensity dependence of the dipole phase parameters «;.

The paper is organized as follows: in section 2, the experimental method used to obtain
the data is briefly outlined, and in section 3, these data are presented. In section 4, the
mathematical model is described and in section 5 the quantum mechanical calculations used
to verify our modelling are presented. Whereas sections 4—5 are mainly concerned with the
short-long QPI, section 6 describes the interference structures visible off-axis, where no short
QP is present. Finally, in section 7 we discuss our results and what we can extract from them.
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Figure 1. Experimental scheme; in our experiment the HH emission consists of contributions
related to the two shortest QPs: short (blue) and long (black). We gradually vary the chirp
of the driving pulses and observe spatially and spectrally resolved HH. The experiment can
be understood as an interferometer, where the phase difference Ay between the long and
short trajectories varies with the driving intensity 7, the emitted frequency w and the angle of
emission 6 and the chirp parameter b.

2. Experimental method

The high-order harmonics (HHs) were generated in argon by a commercially available compact
Yb:KGW PHAROS laser (Light Conversion). The pulse energy was 150 uJ, the central
wavelength A = 1030 nm and the repetition rate was set to 20 kHz. The pulse-to-pulse stability
of this laser is < 0.5 % rms over 24 hours. The duration and chirp of the pulses were varied by
adjusting the grating compressor. The adjustment of the grating enabled a gradual change of
the pulse duration from negatively chirped pulses of 500 fs to Fourier-transform (FT) limited
pulses of Trr = 170 fs to positively chirped pulses of 500 fs (corresponding to 50-145 cycles) in
106 steps. The acquisition time for one image was around 80 ms, averaging around 1600 shots.
The calibration of the pulse duration as a function of the grating position was based on
the peak intensity of the pulse. The observed cut-offs of HHs 25-37 were mapped to a specific

driving intensity using the cut-off law
qhwo = 3.17621#(7-)2 + 1, =3.170, + I, €))

cemuwy

where ¢ is the harmonic order, A is the reduced Planck constant, wq is the angular central
frequency of the driving laser, I, is the ionization potential of argon, e and m are the charge
and the mass of electron, ¢ is the permittivity of vacuum and Io(7) is the peak laser intensity
for the pulse of duration 7, at the centre of the driving field. The laser peak intensity is taken
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to vary as
TFT
Io(7) = IO(TFT)Ta )

where the peak intensity at FT-limited duration Io(7gr) is on the order of 10 Wcm™2. The
laser beam with a diameter of 3.5 mm was focused by an achromatic lens with a focal length
100 mm, resulting in a beam waist of 18 pm (estimated using Gaussian optics). As generating
medium argon gas was used, supplied through an open-ended, movable gas nozzle with 90 um
inner diameter. The relative position of the nozzle and the laser focus was such that phase
matching allowed the observation of both short and long trajectory harmonics [27, 28].

The generated harmonic emission was analysed by a flat-field grazing-incidence
XUV spectrometer (based on Hitachi Grating 001-0639, with the nominal line-spacing of
600 lines/mm). The grating diffracted and focused the harmonics in the dispersive plane and
reflected them in the perpendicular direction onto a 78 mm diameter microchannel plate (MCP,
Photonis), which was imaged by a CCD camera (Allied Vision Technologies, Pike F-505B
with a pixel size of 3.45 um X 3.45 um; the resolution was set to 2000 pixels x 2000 pixels and
the dynamic range to 14 bits). This arrangement allowed to study the spectral content of the
emission as well as the divergence of the individual harmonics. The HH spectra were recorded
for 106 positions of the pulse compressor grating, see figure 1. A more detailed description
of the setup can be found in [29].

3. Experimental results

A typical image of HHs on an MCP is displayed in figure 2(a) for the case of a FI-limited
driving pulse. The HHs are both spatially and spectrally divergent, with clear ring structures
appearing around a strong, narrow central structure. The off-axis structures are attributed to
the long QP only, whereas the on-axis structures contain both QPs. However, the on-axis
structures do not show to any visible modulation in a single spectrum. To reveal the on-axis
interference, the acquired HH spatial-spectral profiles for 106 different values of the chirp
parameter were analysed by plotting different lineouts of the images as a function of the driving
pulse duration. The spatial-spectral profile of g = 17 is shown magnified in figure 2(b). The
horizontal axis (and lineouts) correspond to the spectral variation, whereas the vertical axis
(and lineouts) to the spatial variation. The lines represent regions of interest, from which
subfigures (c)—(f) are extracted. (d) and (e) are the spectral and spatial lineouts of the central
area of the generated harmonics with contribution from both the long and short trajectories,
while the off-axis lineouts (c) and (f) show mainly behaviour of the long trajectory contribution,
therefore lacking interference between the two trajectories (however, long—long interference
remains). In the following analysis we focus on the on-axis areas, where short—long QPI
patterns are apparent, as in (d) and (e). The spatial and spectral lineouts for other orders are
presented in sections 4.1 and 4.2. We return to the off-axis interference structures in section 6.
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Figure 2. (a) Observed HHs as recorded by MCP under driving with transform-limited
pulses, numbers indicate the spectral position of the first and second order diffraction of HHs
for ¢ = 11 — 43, the rectangle shows the area, for which an example of the analysis is given.
(b) Magnified image of the area around HH17. The solid lines indicate where the lineouts
on-axis and on the central harmonic energy, respectively, were made. Similarly, the dotted
lines indicate where the lineouts oftf-axis and off the central harmonic energy were made. (c)
shows the off-axis spectral lineouts corresponding mainly to the long trajectory contribution,
while (d) shows the on-axis spectral lineout with a clear QPI pattern. Similarly, (e) shows the
on-centre spatial lineout with a clear QPI pattern and (f) is a spatial lineout covering mainly
the long trajectory contribution. 300,,_ fs means 300 fs pulse duration with positive/negative
chirp; 170y fs means FT-limited duration. The colour scale is logarithmic and is the same in
all figures throughout the article, unless stated otherwise.
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4. Mathematical model

To explain and analyse the observed QPI, we have developed a mathematical model based on
the interplay of the HH contributions from different QPs; similar to the simple model of [14].
We concentrate on the two first trajectories, the so called short (s) and long (/). The main
difference is that, since the long trajectory spends more time in the continuum, it acquires more
phase which leads to larger divergence, both spatially and spectrally. This phase is labelled
®,/;. Using the SFA, the dipole phase can be calculated by integrating the semi-classical
action [11, 25] (in atomic units):

2
b+ AOF ,p}, 3)

"
(Ds/z(ti,lr,p)=qwotr—/ dt{[ >
t

where the trajectory of the electron is defined by its ionization time, #;, return time, #,, and
momentum p. A(r) is the vector potential of the driving field. In figure 3, (3) is plotted for
a few different harmonic orders, using the experimental conditions of the present work. The
ionization time #; and the return time ¢, are found by solving Newton’s equations of an electron
in an electric field. The general behaviour of the phases as a function of intensity leads us to
the following approximate expression:

q)s/l(rs 1) = (D?/l + a’s/ll("y Z, 1), 4
200 | q=45 .
150 q=35 .
o)
£ 100} q=25
2 il
Z ADO 4
< 50;___5;2__15\ i
O
2
&
8 o} .
_50 - 3
~100 ‘ ‘ ‘
0 1 2 3

Intensity [1014 W/cmz]

Figure 3. Dipole phase as a function of intensity, for different high-order harmonics of
A = 1030nm, calculated using (3). The red (blue) lines correspond to the short (long)
trajectories. For the intensities used in the experiment (4 x 1013 Wem™ to 1 x 10 W cm™2),
the curves are well approximated by (4). The two dashed lines are fits to the asymptotes of the
red lines, i.e. they are not perfectly horizontal. The slopes of these fits are —a;.
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where CD? I is a phase offset and ay/,; are slopes of the phases as function of the intensity [14].
This adiabatic model is valid for the experimental conditions of the present work [30].
In our simple model, we assume a tight-focus geometry with a small interaction volume

and we only consider HH generated in the focal plane z = 0.

4.1. Divergence

To model the behaviour of the harmonics along the divergence axis as the pulse duration
varies, the emission from the two trajectories is approximated as a sum of Gaussian beams.
Such beams can be propagated to the far field analytically (in the paraxial approximation),
and the geometrical properties necessary are determined from the experimental conditions.
In Appendix A.1, the full derivation of the divergence model can be found. The main result is
that the total far field can be written in cylindrical coordinates as

Edetector(r, 2) = Es(r, z) + Ei(r, 2), ©)

where .
Eqyi(r.2) = Cylg (1)W(2) exp [-iG(r, z: ro, 2R +iD(r, 2)]. (6)

Cy1 are weights for the trajectories, n is a nonlinearity parameter, W(z) and G(r, z; ro, zR) are
functions depending on the geometry as well as the ionization process, whereas ®,; is the
phase in (4), which only depends on the atomic properties. rg is the beam waist (18 pm) and
zR the effective Rayleigh range (~1 mm).

The spatial profiles of the generated HH beams are calculated for ¢ = 11 — 37, using the
variation of the pulse duration 7 as in the experiment. The experimental input values are 4, ry,
z and Iy(t) [determined using (1)], whereas unknown parameters are CI)(S’,CD?,as, ay, n and the
ratio Cl2 : C2. Tn our procedure we neglect the influence of phase offset difference |®? — CD?|
— it influences only the phase of the fringe pattern (with 27 periodicity), but not the shape.
The procedure for retrieving the values of a,; for the different harmonics is the following: 1)
The experimental spatial lineouts are normalized separately for each harmonic, 2) positions of
interference maxima and minima are determined [shown as the white and black lines overlaid
in figure 4] in order to highlight the shape of the interference pattern, 3) the parameters of
the model are then fitted such that the frequency of the fringes and their curvature in the
model match that of the experiment (see figure 4 for ¢ = 17). The phase difference (a; — ;)
between the two trajectories can by itself explain the observed frequency of the fringes, on-
axis. However, we have more information available in that the fringe pattern has a curvature,
which allows us to retrieve not only the difference between «;/, but also their absolute values.
This is because the curvature of the fringes depends on mean value (a; + ay)/2 as well as on
the difference a; — @, which is why an iterative fit has to be made. The contrast and the overall
intensity of the divergence pattern, are mainly affected by nonlinearity parameter n and by the
ratio of long and short trajectory contribution C12 :C2.

For g = 15 — 21, automated fitting of the model to the experimental data could be done,
while for the higher harmonics, a visual fit was the only option, since the interference signal
was too weak for these harmonics. The retrieved values of the parameters are listed in table 1.
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Figure 4. Illustration of the fitting procedure for retrieval of the values of ay/; for the different
harmonics. In the left panel the experimental data are shown with the maxima (white lines)
and minima (black lines) extracted. In the right panel, the coloured map is the result of the
mathematical model described in section 4.1, while the lines are the same as in the left panel.
300,/ fs means 300 fs pulse duration with positive/negative chirp; 170y fs means FT-limited
duration.

In figure 5(b), the far-field divergence profiles as simulated by the spatial model are shown
for the values of ay; as extracted by the fitting procedure described above (these values are
presented in table 1). To be noted is that the model manages to reproduce the hyperbolic
fringes visible for divergences smaller than ~ 5 mrad; however, the prominent ring structure
visible for larger divergences are not reproduced by this model. As will be discussed in more
detail in section 6, the rings arise when including higher-order terms than parabolic in the
phase curvature. The ring structure in a given harmonic depend on higher-order corrections
to the harmonic phase beyond the simple linear dependence on the intensity with phase
coefficient @. In particular, the far-field radiation pattern for the long-trajectory harmonics
consists of interfering contributions from parts of the near-field where these harmonics belong
to the plateau and parts of the near-field where these harmonics belong to the cut-off. Such
contributions to the same harmonic will have different values of «.

Table 1. Values of parameters used in the divergence model [see figure 5(b)] for the simulation
of the spatial profiles of generated HH.
q 113 15 17 19 21 23 25 27 29 31 33 35 37

ag/(107¥emWwW-hy —10 -11 -10 -10 -10 -9 -7 -5 5 15 15 18 20 24
a; /107 % em?W-)y 50 50 51 50 43 43 40 38 35 35 33 31 28 24
n 6 8 7 7 6 6 6 6 7 10 10 11 14 17
c}:C? 2 2100 100 100 100 100 100 100 100 100 30 50 5
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Divergence [mrad]
Divergence [mrad]

300_ 1700 3004 300_ 1709 3004 300- 1700 300, 300 1700 300,
Duration [fs] Duration [fs]
(a) Experiment. (b) Model.

Figure 5. Comparison of experimental and modelled data for variation of divergence profiles
with gradually varied duration of the driving pulses for ¢ = 11 — 37. In the left part of
the images the driving pulses are negatively chirped, whereas in the right part are positively
chirped. The signal for the low harmonic orders, especially apparent for ¢ = 11, is limited to
positive divergence by the shape of the MCP.

4.2. Spectrum

To understand the variation of the spectral profile as a function of the driving field chirp, it
is important to model the temporal behaviour of the harmonic generation, and particularly
its response to change in instantaneous frequency. The detailed derivation can be found

in Appendix A.2. The main result this time is that the field contribution for a given harmonic
from the short/long trajectory can be written

Egi(t) = Cyp 1% (1) exp |iguwo + i 12 +iag () +i0° (7

gb(7)
2 s/l

The far-field spectra of the generated HHs are computed as the Fourier transform of the
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sum of the fields generated by the short and long trajectory contributions
S(w) = FIEs(1) + E(1)], ®)
and the intensity in the far field is given by
I() & |S(@)]*. ©)

The simulated spectra are shown in figure 6(b). The experimental input parameters are
the same as for the spatial profile simulation and the retrieved values of the parameters are
listed in table 2. Again, <Dg/l is assumed to be zero, since it only influences the phase of
the interference fringes, but not their shape. When determining the values of ay;, the main
attention is given to the width of the measured spectra and to the curvature of the QPI fringes.
The values were found by a pure visual fit of the model to the experimental data, no automated
fitting was employed. The n was kept same as in the simulation of the divergence lineouts,
while the ratio C12 : C? had to be decreased, due to the fact that only the middle part of the
divergence cone is evaluated [see figure 2(d)]. In this cone, the relative contribution of the
short trajectory is much stronger than when a broad divergence region is considered, leading
to a lower ratio C7 : C2.

The asymmetric behaviour of the central part of the spectra with respect to the chirp
parameter (clearly apparent in figure 6(a) for ¢ = 13, 15, 17), enables us to determine negative
values of @, in the region below threshold and in the plateau. It is possible to make this
identification, since the central part of the spectrum is dominated by the short trajectory
contribution. The instantaneous frequency of the generated HH field is described by (A.15)
— the time derivative of the argument of (7). For negatively chirped pulses, the chirp of the
driving pulse [the second term in (A.15)] has the same sign as the chirp introduced by the
dipole phase [third term in (A.15)] and a broad spectrum of frequencies is generated. In
contrast, when the pulse is positively chirped, the second and third terms have opposite signs
and partly compensate each other, with a narrower spectrum as the result. The negative sign
of a; for the low orders leads to this compensation occurring for negatively chirped pulses
(the left side of the spectra in figure 6), while for higher orders, the compensation occurs for
positively chirped pulses (the right side of the spectra in figure 6). The sign change occurs
around harmonic 23, where the narrowest spectrum of short trajectory is found for FT-limited
pulses. For the long trajectory, all ; are positive, such that the compensation always occurs
for positively chirped pulses.

Table 2. Values of parameters used in the spectral model [see figure 6(b)] for the simulation

of the spectral profiles of generated HH.
q 113 15 17 19 21 23 25 27 29 31 33 35 37

as/(107¥emWy —10 -11 -9 -10 -8 -4 -2 4 10 14 16 20 20 20
a; /107 ¥em?W-l)y 35 40 48 55 56 50 45 50 40 35 30 27 27 27
n 6 8 7 7 6 6 6 6 7 10 10 11 14 17
2C7 : C2 1 11 ! 1 1 1 1 1 1 1 1 1 1
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Figure 6. Comparison of experimental and modelled data for variation of HH spectra with
gradually varied duration of the driving pulses for ¢ = 11 — 37. In the left part of the images
the driving pulses are negatively chirped, whereas in the right part they are positively chirped.
As is explained section 4.2, the fit of the spectral model to the data was purely visual, matching
the the amount of fringes and their positions.

4.3. Dipole phase parameters

In figure 7, the retrieved values of @/, from both the divergence model and the spectral model,
are shown. The values of a,/; predicted by different theoretical calculations and retrieved for
various experimental conditions (driving wavelengths A and intensities /) can be compared, by
expressing them in dimensionless values a: Il related to the optical cycle of the driving pulse:

2ce0ma)8h

@y =~y (10)

The theory predicts the values of @] = 27 and a; ~ 0 in the plateau region, with both values
converging to 7 towards the cut-off [31, 25]. The errors in the parameters a,; are difficult
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Figure 7. Overview of the retrieved dipole phase parameters a; and ; from the divergence
model (squares) and from the spectral model (stars), for long (blue) and short (red) trajectory,
along with their estimated uncertainties. The right-hand scale is calculated according to
equation (10).

to quantify. It is possible to make an estimate by comparing the values extracted using the
divergence model and spectral model. They should in principle yield the same values, since
they are both based on the assumption that the phase can be written as stated in (4). However,
since the spectral data are extracted from a smaller part of the divergence cone than the spatial
data, the former are more sensitive to errors which could explain the larger variation in the
data. An estimate of the error is given by the mean discrepancy between the two models,
which is ~ 2.5 X 107! cm? W~! for the short trajectory and ~ 6 x 1074 cm? W~! for the long
trajectory.

5. Quantum mechanical calculations

For comparison, calculations of the HH yield are performed by integrating the TDSE for a
range of intensities using a newly developed graphics processing unit (GPU) implementation
of the algorithm outlined in [32]. For a large range of intensities, the time-dependent dipole
acceleration a(z, I') of the atom is computed, and the quantum path distributions (QPDs) are
extracted in the same manner as described in great detail in [33]; first a Fourier transform is
performed to get the spectrum a(w, I) and subsequently, for each harmonic order ¢, a Gabor
transform is performed along the intensity axis to obtain the QPDs a(qg; I, @). In figure 8, the
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QPDs leading to emission of the different harmonics are plotted in an intensity range around
the experimental intensity, along with the experimentally retrieved values of @,; as presented
in tables 1, 2. For comparison, the same procedure is performed for the SFA; the main
difference is that the long trajectory is much more pronounced in the SFA, whilst the TDSE
also shows longer trajectories. In general, though, they both agree well with the experimental
results.

One important difference compared to the models presented above, is that these
calculations are performed at slightly lower intensity, 7 x 10> Wem™2 as compared to
1 x 10" Wcem™. These calculations are performed using a trapezoidal pulse shape, with
exactly this intensity, while in the experiment and the models, the pulse shape is Gaussian,
which naturally spans a distribution of intensities, up to the nominal intensity, Io(7¢r).

6. Analysis of off-axis ring-like structures

In figure 9, a theoretical far-field spectrum calculated for the parameters of the experiment
is shown. The time-dependent dipole acceleration a(t) is calculated by the TDSE for a set
of atoms in the focal plane. The collective emission is propagated to the far-field, as is
described below in section 6.2. Qualitatively, the agreement with the experimental spectrum
in figure 2(a) is very good; the appearance of further spatial modulation can be attributed to
the lack of intensity averaging as is present in the experiment. Notably, the ring-like structures
off-axis (i.e. for divergences > 5 mrad) are present, whereas they are missing in the results of
the Gaussian model in its parabolic phase approximation as presented in figure 5(b). This can
be understood as follows: The harmonic emission can be written as

E(r,t) = A(r, t) exp[i®@(r, 1)), (11)

where A(r, t) is the amplitude and ®(r, ) the phase, both dependent on the location and time of
emission. If we assume we can divide the emission into different contributions from different
harmonic orders ¢ and different trajectories j, we get

E(r,1) = ) Ag(r, 1) explidy;(r, )], (12)

qj
with

0D, *D,;

(qu:q)gj—i_ ol I(V,I)-FO(W ,
N——
Qqj

and

D). = qDo(1) + Dy (lo)

contains the phase of the fundamental ®((¢) and the atomic dipole response at the peak of
the field. In the Gaussian model, the amplitude A,(r,?) is of the form / %(r, 1), where the
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Figure 8. Quantum path distributions (QPDs), normalized, for the harmonics ¢ =11-39,
calculated at the driving field intensity 7 x 10’3 W cm™=2. Bright regions correspond to more
likely values of « for a certain harmonic order. The white lines correspond to the experimentally
retrieved values of @, with the lower values belonging the short trajectories and the higher values
to the long trajectory. The right-hand o* (the variable conjugate to ) scale is given in radians
in accordance with (10).

In the SFA, the long trajectory is significantly more prevalent compared to the short
trajectory, and this has been observed before [33]. In contrast, the TDSE yields short and
long trajectories of comparable weight, and even longer trajectories are visible; also this is a
previously known result [34]. The third trajectory has not been observed in the experiments,
which might be due to the unfavourable phase matching conditions.
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Figure 9. Theoretical far-field spectrum [cf. figure 2(a)], for the case for FT-limited driving
pulse (1701s). The single-atom response of a set of atoms is calculated using the TDSE and
propagated via a Hankel transform to the far-field.

fundamental field intensity is given by

t2 r2
I(r, 1) = Iy(t) exp (——) exp (_F)

2
27 g (13)
f2 rZ r4 6
:]O(T)exp —2—7_2 ]_2_7-§+8_],~(‘)‘+0(r) .

2D, . i
(067‘”) and higher. Furthermore, it is

only possible to analytically propagate the emission to the far-field if the radial profile of the
intensity in the phase is approximated up to second order in r. By including higher-order
terms of the spatial profile through a numerical far-field transform, ring structures appear in
the far-field amplitude (see figure 10). It is not enough, however, to fully explain the off-axis
behaviour of the interference rings — the long trajectory also probes a wider range of intensities,
also those for which a certain harmonic would be considered to be in the cut-off regime. This
02?2"-" and higher-order terms in the expansion of the
phase with respect to the intensity. The effects of these considerations will be briefly surveyed
below.

The normal approximation is to neglect terms of O

means we cannot ignore the influence of

6.1. Adiabatic model

The Gaussian model in its simplest form does not explain the correct behaviour of the off-axis
emission. To find the missing link, we employ an adiabatic model, where instead of assuming
the form (12), we opt for something in-between (11) and (12):

A(r) =) alg: 1(r)], (14)

q
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that is, we still decompose the emission into different harmonic orders, but it is not trajectory-
resolved anymore. a[q; I(r)]) can be the dipole acceleration moment for harmonic order ¢
as calculated using the TDSE, in the manner described in section 5, or the dipole spectrum
from the SFA. The model is adiabatic inasmuch it does not consider the temporal intensity
variation of the driving pulse, but only the spatial intensity variation I(r) at the peak of the
pulse. Furthermore, only emission from the focal plane is considered.

6.2. Exact far-field propagation

The far-field amplitude of the emission is found by propagation. In cylindrical coordinates
and cylindrical symmetry, this is given by [35]:

Uo(p) = —izi exp(ikz) exp (izﬁpz) Ho{A(r)}(kp/2nz), 15)
nz z

where Ho{A(r)} is the zeroth-order Hankel transform of the near-field radial amplitude A(r),
r is the near-field radial coordinate, p is the far-field radial coordinate, k is the wavevector
g2 /A (q is the harmonic order and A is the fundamental wavelength) and z is the propagation
distance. The Hankel transform is computed numerically using the algorithm presented in
[36].

6.3. Off-axis interference structures

Propagating a Gaussian profile with a non-flat phase variation gives modulation of the far-field
amplitude, as seen in figure 10. Depending on the form of the near-field phase variation with
the spatial profile, different structures appear.



212

PAPER IV. CARLSTROM ET AL.

—

103

102 L

10!
10°

107!
10°

10%
10!

10°
10°

102

10!

0

20

L (a) - E
{110 £

IS | 5

N 0 i

1-10 5

- . =
. . —20 A

. . 20 o

b <
(b) / 110 g
[ 1L | ©
= 0 i

5 . 1-10 5
=

. . —20 A

. . 20 o

<

- © ’ {10 £
IS | 5

i 1= |
/ 17108
ol o oobol ) 720 5

T T T T T 20 _’E‘

d &

_ () / 110 é
IS ] 5

= - 0 =

] 3 1-10 &
ey A _ 1 1 1 1 5

10 sonl bl ) 6 Il Il 720
102 108 104 105 4 -2 0 2 4-20-10 0 10 20

I [W/em?] z/R Divergence [mrad]

Figure 10. Explanation of how the off-axis rings come about. The left-most column shows
the phase variation of HH25 in the focal plane, as a function of the fundamental intensity, for
the case of no variation (a), a phase proportional to the intensity (b), a crude fit to the phase
as calculated by the SFA (c) and the full SFA phase (d). The second case corresponds to (4).
The grey, vertical line indicates the cut-off intensity for HH25; for lower intensities, HH25 is a
cut-off harmonic, while for higher intensities, it is in the plateau regime. The middle column
indicates with solid black lines, the beam waist of the driving field as a function of z, and
the wavefront in the focal plane. The colour map behind shows g—‘f, which is related to the k&
vector; emission from areas of the same colour will have the same direction. The right-most
column shows the far-field amplitude. With a flat phase in the focal plane, the Gaussian shape
will be preserved. With a simple Gaussian phase (as the intensity profile of the fundamental
is Gaussian) in the near-field, ring structures will appear in the far-field amplitude. With
more complicated phase behaviour in the near-field, the far-field amplitude will also be more
complicated.
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In figure 11, the interference pattern for ¢ = 25 is displayed, from the experiment as
well as calculated using the adiabatic model, for a few different phase variations with the
spatial profile. Whereas both the TDSE and the SFA qualitatively agree quite well with the
experiment, the Gaussian beam model does not. It is thus necessary, but not sufficient, to
include higher-order terms in the expansion of the intensity profile. Indeed, one must also
include higher-order terms in the variation of the phase with the intensity. For the short-long
interference, this mainly takes place where two trajectories actually exist, namely in the plateau
regime. The values of «;/; as presented in tables 1, 2, reflect this by successfully reproducing
the short-long interference, but not the long—long, as is evident when comparing with the
TDSE/SFA.

10
s BTN
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NN

Divergence [mrad]
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Duration [fs]

Figure 11. Far-field propagation of HH25 for a few different cases: (a) Gaussian model, long
trajectory only [figure 10 (b)], (b) SFA log-fit phase [figure 10 (c)], (c) SFA [figure 10 (d)],
(d) TDSE, (e) experiment. The short—long trajectory contributions has been saturated to focus
on the off-axis interference; the colour scale of the theory (a—d) is linear while that of the
experiment (e) is logarithmic as above, due to the much higher dynamic range of the theory.

It cannot be said that the model presented in figure 10 (c), figure 11 (b) only probes
the long—long interference, since it is a fit to the phase as given by the SFA; however, as
seen in figure 8, the SFA underestimates the short trajectory contribution compared the long
trajectory. A crude fit to the SFA phase would thus smooth out any contribution of low
amplitude such as the short trajectory one. We can thus say that the model essentially shows
the long trajectory behaviour as is apparent from the emphasis on off-axis ring behaviour and
suppression of the short-long interference at 0 mrad, which is visible in the SFA calculation
shown in figure 11 (c).

7. Discussion

We find that our mathematical models agree well with the experimental data in the central
regions of the spatial and spectral lineouts (figures 5 and 6). They show the robustness of the
simple model introduced in [14], even when it is extended to chirped driving fields. It is a
clear sign of QPI, similar to the one described in [37], where QPI was studied using excitation
by a weak perturbation consisting of a laser pulse with controlled delay. In analogy with that
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study, we can think of varying the chirp of the driving pulse as the addition of a controlled
perturbation to the driving field.

As noted above, the pulse intensity is only dependent on the magnitude of the chirp
parameter b. This behaviour is clearly reflected in the spatial lineouts, for which the peak
intensity is the parameter with largest influence; the lineouts are vertically and horizontally
symmetric. The data presented in figure 5(a) are analogue to the intensity scans presented in
earlier work [17, 38, 39, 40, 41, 19]. However, the sign of the chirp parameter is important in
the spectral lineouts, which substantially differ for negatively and positively chirped driving
laser pulses.

The values found by comparison of our mathematical model with the experimental data are
in good agreement with the theoretical prediction for a; in the whole region of ¢ and for e close
to the cut-off region (see figure 7). Our measured and calculated values of a; are also in good
agreement with earlier experimental work [15, 19] and theoretical predictions [24, 25, 42, 39].
In this study we have consistently extracted, in both the spectral and spatial measurements,
negative values for @ for a range of harmonics below and near the ionization threshold. While
negative values of a; have been theoretically predicted [24, 25], this is to our knowledge the
first experimental measurement of negative ;. Also our theoretical data as calculated by
the TDSE yield negative values of a; for the low orders, although not in perfect agreement
with the experimental data. It is worth noting that negative values of «; are a clear sign of
interactions between the returning electron wave packet and the ionic core, i.e. that the atomic
potential cannot be neglected in the description of the low-order short-trajectory harmonics.
If this effect can be reproduced with even higher precision, it could lead to either a possible
improvement of the accuracy of the short-range part of the pseudo-potential used or point
towards the need for inclusion of multi-electron effects in the description of the atom used in
the calculations.

We have shown in this paper that it is possible to measure «/; for the different harmonics.
To fully characterize the temporal structure of the generated radiation, however, it is not
enough to determine the values of ay; for the different frequency components. One would
also need to measure the value of @2 I in (4). Using our method, we would also be able to
determine |d)2 - d)?l to within 27, but not their absolute values, therefore prohibiting the full
temporal reconstruction. If one would have interference between, e.g., the long trajectories
of two neighbouring harmonics as was the case in [22], one would be able to determine
CD?(q) - CI)?(q + 1), thereby enabling the full reconstruction.

Under our experimental conditions, the harmonics ¢ = 11 and ¢ = 13 correspond
to energies below the ionization potential threshold 7, and are so called below-threshold
harmonics. In both cases, we observed the QPI mainly in the divergence lineouts. The
experimental observation and theoretical explanation of the QPI for below-threshold harmonics
were first made by D. C. Yost et al. in 2009 [43] and al* was expected to be a}* ~ 2.5m - 3nm
and ag ~ 0. However, in our model we found values a; ~ 27 and a; ~ —0.47; these values
are in a good agreement with later theoretical calculations [42, 26].

The prominent ring structures, clearly observed for regions of large spatial and spectral
divergence, thus mainly due to the long trajectory, are covered by our extended model. The
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rings appear when higher orders than parabolic in the phase curvature are included in the
propagation of the Gaussian beams. To reproduce the detailed structures of the rings, one has
to also include higher orders in the intensity dependence of the phase. This is of particular
importance for harmonics that have comparable contributions from the plateau and cut-off
regimes. In [20], similar structures were observed, interpreted as temporal Maker fringes, e.g.
an effect of phase matching between subsequent planes of generation. The presence of this
kind of phase matching in the present work cannot be ruled out, but the qualitative agreement
of our theoretical results [figure 11(c—d)] with the experimental results [figure 11(e)] suggests
that the explanation presented here is viable.

8. Summary

In this paper, we have presented experimental data with interference structures, observed in
HHG from argon. The structures are of two kinds; firstly due to QPI between the first two
trajectories and secondly due to long trajectory emission from atoms experiencing different
local field strengths. The former interference has been systematically investigated by varying
the chirp of the driving laser pulses and the observed patterns are well explained by a simple
mathematical model based on a semi-classical description of HHG. By careful comparison
of the experimental observations with the model, we are able to determine the dipole phase
parameters @, and a; for ¢ = 11-37, which are in a good agreement with theoretical predictions
([25]), except for the short trajectory contribution in the below-threshold harmonics and plateau
regions, where we found «; to be negative with a value a; ~ —0.47.

Furthermore, the long trajectory interference was successfully modelled by taking into
account phase curvature effects beyond the parabolic term. It was shown that the variation of
the dipole phase parameters with respect to intensity has to be considered, to obtain the right
behaviour of the resultant interference patterns.
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Note added in proof. After acceptance of this article, we became aware of recent related
work: [44].

Appendix A. Derivation of Gaussian model

Appendix A.1. Divergence model

Modelling the spatial profiles, we suppose that the main contribution to the generated HHs
arises around the temporal maximum of the laser peak Io(7), that the driving laser field has
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a Gaussian profile in the focal plane (z = 0) characterized by the beam waist ry, and that the
generated HH fields of the long and short trajectory (EZ, Elq) can be expressed [using (4)] as

n

E‘] — CS/Z i0g )

s/l ¢

VIo(T) exp (—é)
’

0

(A1)
2

B n
i 2
Vio(T) exp (_r_z)} R exp [ias/llo(‘r) exp (—Lz
T T

0 0

= L/l

s

where Cy/; is a proportionality constant and # is the nonlinearity order of the HH conversion.

By Taylor expansion to second order in r, the phase term ia; lo(7) exp ( ) can be simplified

toia lo(t) — i2a; /110(T)r—2- In this approximation the generated field has a Gaussian intensity
profile, a parabolic wavefront, and a phase offset. It is straightforward to identify these with
a wavefront and an intensity profile of a shiffed Gaussian beam (GB), which has its waist
position located at —z{ e

Wos/1 r2

2
. r . .
qz{/l - lkq—f +1§(?{/1) +ing |-

Eg(r,z=0) =Ey R
s/l s/l

zy) wz(zw)
(A2)
Subsequently the propagation of the generated HH can be treated as a propagation of two
GBs. These sought-after GBs can be fully characterized by the amplitudes Ey,/,;, the distances
of their waists from the HH interaction region (plane) e e the Rayleigh distances z% NE the
wavevector of the generated HH k, (corresponding to the Wavelength 44), and the phases 7/;.
£(z) = arctan(z/zR) is the Gouy phase. For a thorough treatment of GBs, we refer the reader
to [45]. kg is given and all other variables can be found by comparing (A.1) in the parabolic

approximation and (A.2). From comparison of the spatial parts of the equations, we get

f
w(z/) o
Eospt = Copy=y (7) w(zl,) = = (A3)
and from the phase parts we find
f f ] f f
_ 0 — a0
R, = R(z;,) = day (0 syt = @ + asplo() + kgzy ) = £(zg ). (A4)
If we express the (A.3) and (A.4) using GBs
_ 2,0k 2|2 _ R\2/.2
wi(2) = wogsyr |1+ 27/(2g)) , Ryi(z) =z |1+ (212,
we get a set of two equations for two unknown variables z{/ , and zg , with solutions
2 2R
n/lq(Rs/l) ry/n f Rv/] 0/n As
Zs/l Zs/l ( : )

/IZ(RY/I)2 +7ry [n? /IZ(RY/I)2 +7rg [n?
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Finally, the generated HH field at the detector at distance z can be modelled as a sum of GBs
representing short and long QP contribution, Egeector(?, 2) = Es(r, z) + Ej(r, 7), where

Eo(r, 2) = Egyy—2! r oz — ik FiZ(Z) +i
S r’ <) = ) ~ —— - .1 Ly - An =~ s Y )
st Oé/lws/l(zs/l) WSZ/](ZS/I) a%s/l qZRs/l(Zs/l) $/t st
X (A.6)
and Z,) =z + zf I The quantity that is measured is proportional to
| Edetector(rs 2)|* = |Es(r, 2)* + | Ei(r, 2)|* + 2| Es(r, 2)|| Ei(r, 2)| cos| x(r, 2)], (A7)
where
qu2 1 1 _ _ f f
NnZ)==——7" 572" o= | T14&)— )] —14(Zs ) — {(g
x(r,z) > [Rs(zs) Rl(Zz)] [4(Z5) = 4] = [4(z5) — £(z)] (A8)

+(0) = DY) + (a5 — a)lo(7).

Appendix A.2. Spectral model

Turning to the spectral behaviour of the harmonics, we can assume that the main contribution
is generated in the middle of the focus and that we can neglect the spatial variation of @;/;.
We describe the short and long trajectory contributions as

Es () = Eogpi(r) exp [igu(0)t +i®y(1)] (A9)
where E,/(¢) is the amplitude of the generated field approximated by
Eogi(t) = Copl % (2). (A.10)

I(¢) is the time-varying intensity in the middle of generation plane and w(¢) is the frequency
of the driving laser. The instantaneous frequency of the generated HH w,;(¢) is determined
as the time derivative of the phase of (A.9):

a1(t)
ws/l(t) = qw(t)+as/17~ (A.11)
We suppose that the driving pulse is linearly chirped
w(t) = wo + b(7)t, (A.12)

where wy is the central frequency of the driving laser field and b(7) is the chirp rate. The
driving field intensity varies as

I(t) = In(7) exp (—41—22;2) : (A.13)

where Iy(7) can be determined from (2). The chirp rate b is then related to the duration of the
laser pulse 7 and to the duration of the Fourier transform limited pulse 7gr as

42 [72
b(r) = £ |2~ 1. (A.14)
T TFT
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In the presented lineouts, the negatively chirped pulses are on the left side (negative sign in
the above equation), whereas the positively chirped pulses (positive sign) on the right side.

Together with (A.12) and the time derivative of (A.13), we find the instantaneous
frequency of the generated HH:

8

1‘;210). (A.15)

wy/i(t) = quo + gb(T)t — ay; .

For our simulation, the generated HH field is described as

qb(7)

Eyp(t) = Copl 3 (1) exp |iquot +i-——1> + oy, 1(1) +i00 | . (A.16)

The far-field spectra of the generated HHs are computed as the Fourier transform of the sum
of the fields generated by the short and long trajectory contributions

S(w) = FIEs(1) + E(1)], (A.17)
and the intensity in the far field is given by

I(w) « |S(w)]*. (A.18)
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ABSTRACT

We study high-order harmonic generation in argon
driven by a carrier-envelope phase stabilized few-cycle
200 kHz optical parametric chirped pulse amplifier sys-
tem, as a function of cep and dispersion. The spectra
exhibit a complex pattern of interference fringes when
the dispersion is changed. These structures are well re-
produced by simulations based on the solution of the
time-dependent Schrodinger equation as well as by a
simple multiple-pulse interference model. This allows
us to deduce the temporal structure of the attosecond
pulse train, including the relative phase between con-
secutive attosecond pulses. This relative phase can be
controlled by varying the cep of the driving field.

_—_o e e—,

1 INTRODUCTION

The use of few-cycle optical pulses for time-resolved
measurements requires detailed characterization and
control of the amplitude and phase of the pulses, in-
cluding the carrier-envelope phase (Ckp), i.e. the offset
between the electric field oscillation and the maximum
of the envelope. While the frontier in pulse duration
has moved to the attosecond range fifteen years ago
using high-order harmonic generation (HHG) in gases
[1, 2], the level of characterization and control of these
attosecond pulses with a central frequency in the ex-
treme ultraviolet (xuv) spectrum and a duration reach-
ing down to a few cycles [3, 4], is far from reaching
that of optical or infrared few-cycle pulses. Three main
techniques exist today for attosecond pulse character-
ization: Streaking (or FROG-CRAB; frequency resolved
optical gating for complete reconstruction of attosecond
bursts [5]) has been developed for the characterization
of single attosecond pulses, while RABBITT (reconstruc-

tion of attosecond harmonic beating by interference of
two-photon transitions [6]) determines the characteris-
tics of an average attosecond pulse in a train. Auto-
correlation of xuv attosecond pulses is a challenging
method which requires high xuv flux. None of these
techniques give information on the cep of the attosec-
ond pulses, and how it varies from one pulse to the
next in a train.

High-order harmonic generation strongly depends
on the phase modulation (chirp) of the driving laser
[7, 8], as well as, for a few-cycle pulse, on its cer [9].
The spectral width of the generated harmonics becomes
narrower when the fundamental pulses are negatively
chirped, due to compensation of the phase modulation
due to the generation process (so-called dipole phase),
which leads to a positive chirp [10]. Control of the cep
is important when HHG is driven by few-cycle pulses,
since the process is sensitive to the electric field oscil-
lations. Changing the cep may lead to spectral shifts
between odd and even orders, or for very short driving
pulses, between harmonic peaks and quasi-continuum
[9]; it may also lead to the appearance of substructures
between harmonic peaks [11]. The generation of single
attosecond pulses requires asymmetric electric fields
[12] and therefore precise control of the laser cep.

The recent progress of optical parametric ampli-
fier systems based upon chirped pulse amplification
(orcra) now allows the study of HHG and attosecond
pulse trains using few-cycle pulses, at high repetition
rate (> 100 kHz), with excellent stability regarding in-
tensity, phase and cep [13, 14]. In this work, we study
HHG in argon as a function of dispersion of the driv-
ing pulse (and consequently also of its CcEp) using a
200 kHz, cEP stabilized, 6 fs, 800 nm orcra system. The
dispersion scans, obtained when recording harmonic
spectra as a function of glass thickness transmission,
present complex interference patterns over a large (40
eV) bandwidth. To understand these structures, we
perform simulations based upon the time-dependent
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Schrodinger equation (TDSE) and we develop an ana-
lytical multiple pulse interference model, based upon
the semi-classical description of HHG. Our model is
validated by comparison with the TDSE results and ap-
plied to the experimental pulses characterized in our
experiment [15]. The calculations reproduce most char-
acteristics observed in the experimental data. Further-
more, we are able to deduce the spectral phase and cep
of the individual attosecond pulses in the train. The
dispersion of the fundamental pulses allows us to pre-
cisely control the phase difference between consecutive

attosecond pulses.

dispersion scan

OPCPA

Seed: 6fs
CEP stable

S

Pump: 200 kHz
15 pd +40 pJ

f-2f interferometer

BK7-glass

IR pulse

HHG gas nozzle

Bpd, <7fs
200 kHz

spectrometer

SHG crystal

Figure 1: Experimental Setup. The dispersion of a few-
cycle 1R pulse from a cEP stabilized 200 kHz orcra sys-
tem is controlled with a Bky glass wedge pair. The 1r
pulses drive dispersion controlled HuG. With a flip mir-
ror the pulse can be characterized via a dispersion scan
method.

2 EXPERIMENT

The laser used in our experiment is a few-cycle,
200 kHz repetition rate, CEp stabilized orcra laser sys-
tem [16]. The system provides 6 uJ pulses with a dura-
tion of <7 fs. The CEP is measured in an f-2f interferom-
eter to be goomrad (integrated over two pulses), which
corresponds to a timing jitter of the carrier of 160as.
The pulse duration is measured by a dispersion scan
characterization method which uses second harmonic
generation in a thin crystal (see Fig. 1 and [15]). The
laser pulses are focused tightly, using an achromat with
a focal length of 5cm, into a high pressure gas jet filled
with argon, where HHG takes place (see Fig. 1). The
dimension of the medium is estimated to be slightly
larger that 5o0pum and the gas pressure to be approxi-
mately 1bar. The high-pressure gas jet was designed
to optimize phase matching of the short trajectory har-
monics in these tight focusing geometrical conditions
[17]. After passing through a 200 nm thick Al filter in
order to block the infrared (1r) radiation, the harmonics
are detected by a flat-field xuv-spectrometer, consist-
ing of an xuv-grating and a Mcp detector. The disper-
sion, including obviously the cep, of the few-cycle 1r
driving pulses is varied using the same motorized Bk7-
glass wedge pair that is used for the d-scan IR pulse

characterization. The induced group delay dispersion
(GpD) by transmission trough Bky is equal to 44 fs?/mm
at 8oonm. The laser compressor, consisting of chirped
mirrors and a wedge pair, is set up in order to precom-
pensate transmission through air, glass (entrance win-
dow, and achromat) such that the shortest pulse in the
HHG interaction region is obtained at the position called
“zero glass insertion”. In order to obtain good signal-
to-noise ratio, each harmonic spectrum is acquired by
integrating over about 200 000 shots.
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Figure 2: xuv-spectra as a function of dispersion. (a)
Experimental result; (b) Calculation using the interfer-
ence model with the retrieved pulse from the experi-
ment. The red line in (b) represents the position of the
classical cut-off.

The experimental key result of this work is presented
in Fig. 2a which shows the harmonic spectrum (har-
monic 17th to 41th) obtained in argon gas as a func-
tion of glass insertion from the Bky wedge pair. The
corresponding Gpp is indicated on the right axis. The
strongest HHG signal and highest cut-off is observed
close to a Fourier-transform limited 1r pulse at zero
glass insertion. The harmonic signal also decreases sig-
nificantly for orders larger than 31th, due to the prox-
imity of the Cooper minimum in the photoionization
cross-section of argon, which affects the recombination
step in the single atom response [18]. The signal de-
creases for large Gpps (glass insertion of + 0.7 mm) due
to the decrease in 1R-pulse intensity. Harmonic genera-
tion can, however, be observed at large glass insertion,
an effect that we attribute to the compression of some
spectral parts of the complex IR pulse at these large
dispersion values, as retrieved from our d-scan mea-
surements. The harmonics, are spectrally broader for



negative GpD than for positive GpD, in agreement with
previous results [7, 8, 19].

Furthermore, two different interference pattern can
be observed. The most striking pattern is visible over
the whole spectral range and consists of almost hori-
zontal fringes, separated by ~ 28 um Bk7-glass which
corresponds to a 77 shift of the cep of the driving pulse.
The slope of these fringes varies from slightly positive
at negative GDD to negative at insertion values larger
than 0.3 mm. At larger insertions, around +0.75 mm,
vertical interference fringes can be observed.

For a temporal interpretation of these 1r-chirp and
cep dependent observations, we first perform a spec-
tral analysis. We introduce a simple interference model
and verify it by comparing with the results from the
experiment and the TDSE calculations.

B ———— L S [o B ———

3 SPECTRAL ANALYSIS

In order to calculate the high-order harmonic spectra
as a function of dispersion, we solve the TDSE in the
single-active-electron approximation [20] with an argon
model atom [21]. We assume a fundamental Gaussian
pulse with 6.2 fs pulse duration (FWHM of the tempo-
ral intensity profile) at zero glass insertion. The funda-
mental wavelength is 850 nm, which corresponds to the
center of mass of the experimental spectrum, and the
peak intensity at Fourier-transform limited pulse dura-
tion is 2.3x10™ W/cm?. HHG spectra are obtained by
Fourier transforming the time-dependent acceleration
of the dipole moment. We do not include propaga-
tion in the nonlinear medium. Only the effect of the
short trajectory contribution is included, at least for the
shortest pulse duration; to isolate the response from the
short trajectory, a soft mask is placed in close vicinity
of the nucleus, such that long electron trajectories are
absorbed and do not contribute to the emission.

The results are presented in Fig. 3. Many of the
features observed in the experiment are qualitatively
reproduced. CcEr-fringes are observed throughout the
spectra, with a dispersion-dependent slope, the Cooper
minimum of argon is found at about 50eV, and the
harmonic peaks are narrower, as well as slightly blue-
shifted for positive dispersion.

The spectra in Fig. 2a and 3a are quite different
at large positive or negative dispersion, which we at-
tribute to the difference between the theoretical fun-
damental pulse (purely Gaussian) and the experimen-
tal fundamental pulse (complex temporal structure) as
well as to the influence of the long trajectory in the the-
oretical results. The latter effect is most likely respon-
sible for the splitting of the harmonics which occurs in
the theory at a glass insertion of about 0.5 mm.
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Figure 3: Calculated xuv-spectra as a function of dis-
persion. (a) TDSE result; (b) Analytical calculation using
the interference model. The red lines represent the po-
sition of the cut-off; the green curves in both (a) and
(b) are the calculated position where the harmonics are
spectrally compressed, by solving s(Q), 1) = 0 according
to (7).

To understand more quantitatively the complex spec-
tra observed in the experiment as well as in the TDSE
calculations, we develop a simple model based upon
interferences between attosecond pulses [11, 14]. The
characteristics of the attosecond pulses are calculated
using a semi-classical approach, [18, 22], which in-
cludes three steps: tunnel ionization, propagation of a
free electron in the laser field and recombination lead-
ing to the emission of an xuv photon. The three steps
are repeated every half cycle of the laser field. For a
few-cycle field, these three steps are slightly different
from one half-cycle to the next one.

The complex spectral amplitude of the total xuv field
is given by

E@Q) = Z ‘Am(Q)Iei[nf'vl+Pilﬂ+¢nl(n)],

m

(1)

where () is the angular frequency, m the pulse index,
| Ay | the modulus of the spectral amplitude of the mth
attosecond pulse, t,, the timing of the attosecond pulse
and ®,,(Q)) the spectral phase of the mth attosecond
pulse. Ot represents the group delay of the attosecond
pulse, while ®,,(Q) also includes higher-order effects
(GpD, etc). The sign flip between consecutive attosecond
pulses is described by the m7t term.

We evaluate (1) with the following approximations.
The m-th pulse timing, t,,, is taken as the zero crossing
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of the fundamental electric field, which corresponds to
the time of return corresponding to the lowest ‘plateau’
harmonic in the three step model. Both cer and dis-
persion of the fundamental pulse is transferred to the
attosecond pulses via the variation of the timing t,.
The xuv spectrum A,,(Q)) is assumed to have a super-
Gaussian shape for every attosecond pulse m spanning
from the ionization potential of the generation gas up
to the classical cut-off, which depends on the intensity
of the fundamental field at t,, [I,, = I(t;)]. The posi-
tion of the cutoff is indicated by a red line in Fig. 2b.
The integrated power spectrum fooo | A (Q)[2dQ) of the
attosecond pulses varies with the laser intensity as
the ionization rate, which can be determined from the
Ammosov-Delone-Krainov approximation [23]. The
spectral intensity | A (Q))|? is weighted by the probabil-
ity for recombination, extracted from [24]. We calculate
P,,(Q)) as the classical action of the electron trajectory
in the continuum (divided by 7). The spectral phase
and amplitude of the driving 1r-pulse is obtained by
assuming a Gaussian pulse as in the TDSE or by using
a d-scan measurement of the laser pulse (see Fig. 1),
in order to mimic the experimental conditions as close
as possible. As shown in Fig. 2b and Fig. 3b, almost
all experimental and TDSE features are very well repro-
duced by our interference model. This confirms that
the multi-pulse interference model can indeed be used
to understand the spectral observations qualitatively.
Furthermore, this excellent agreement motivated us
to look for an analytical expression for the phase of the
HHG radiation field, to determine, for example, the po-
sition of the interference fringes. We consider a funda-
mental Gaussian pulse with central frequency w, peak
amplitude Eg = V1, duration T, chirp coefficient b, cep

“). @

2\
E(t) = Egexp <—?> sin (wt — Qcer — Et

The zeros of the electric field, which define the timing
tm, are such that

Pcer,

TvVwE T G
Only one of the solutions is physically correct and for
small dispersion, t; can be approximated by

Pcer
w

ty e T Qe ). (@)

A 51m11ar expansion can be derived for the phase ®,.
We first approximate its frequency dependence using a
polynomial expansion, which reads as,

+ 7((pCEP +2mr@esr + m’r

Qu(Q) = alu + p(Q— ) )
where «, B and 1 are the polynomial coefficients, while
Q); represents the lowest-order harmonic above thresh-
old (see Supplementary Information). With I,, ~ I(1 —

+ La-0)?
I

t2,/1%), ®p becomes

O(Q) = al + B(Q— Q) + %(Q ;)2
+(-

The next step in this derivation is to relate b, T and
@cer to the glass insertion ¢ (see Supplementary Infor-
mation for details). (1) can therefore be written as

2(Q,0) E‘A

where z, f and s describe the phase contributions which
are independent of m, proportional to m and to m? re-
spectively. Their expression is indicated in the Supple-
mentary Information. Let us first neglect the influence
of the m? term. In this case, (7) describes a spectrum
of harmonics. Constructive interferences are obtained
for f(Q,¢) = 2qm, where q is an integer, which deter-
mines the position of the harmonics for a given dis-
persion (or cep). The m?-term contributes to broaden
and ultimately deteriorate the harmonic spectra. The
zero of s(Q), () gives the position where harmonics are
sharpest. It is indicated by the green line in Fig. 2b
and 3b in perfect agreement with the numerical calcu-
lation. Finally the position of the interference fringes
can be estimated from the m-term by requiring that the
phase difference between consecutive attosecond pulse
is equal to a multiple of 27.

2mAPegy | M2 0 2
=t [~al+ Ha-0) ]

(6)

9
gt 2,2
2w w?T

(Q / 1mf Q,0)+im? :,(Q() )
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4 TEMPORAL ANALYSIS

Finally, we examine the temporal structure of the har-
monic spectrum by Fourier transforming the calculated
electric field, both in the case of the TpSE and with our
numerical model. Figure 4a,b presents the attosecond
pulse train at zero glass insertion for the case corre-
sponding to Fig. 3a,b. The two calculations are based on
the same fundamental electric field (blue curves) and
the results are quite similar (red curves). Five attosec-
ond pulses with different chirp and timing can be iden-
tified. Their duration in the intensity profile vary from
223 as at the center of the fundamental pulse to 779 as at
the edges according to the TpsE simulation. The three
central xuv bursts exhibit a minimum in the middle,
with lower frequency of the emission for times earlier
than the minimum and higher frequencies after. The
minimum results from the Cooper minimum at 50eV
in the photoionization cross-section. This spectral min-
imum is transferred to the temporal profile of the xuv
bursts through the time-energy link inherently present
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Figure 4: The temporal structure analysis of HHG sim-
ulated by TDsE, solving the interference model numer-
ically and analytically. Subfigures a and b show the
generated xuv field (red) by a sine fundamental field
(blue) by solving TDSE and the interference model nu-
merically respectively. The 2D plot in ¢ is the numerical
solution of the interference model and shows the mod-
ulus square of the complex field a function of the glass
insertion around +50 pm. Three lineouts are marked at
15, 0 and -15 um of the glass insertion. Plot d,e and f
are the pulse trains calculated from the analytic model
corresponding to these three glass insertions.
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in the HHG process; for the short trajectory contribu-
tion, earlier times correspond to lower energy of the
emission and vice versa [25]. The xuv bursts emitted
before and after the three central ones, do not exhibit
this minimum since the instantaneous intensity is too
low the generate harmonics with high enough energy.
Figure 4c presents the evolution in time of the at-
tosecond pulse train as as function of the glass inser-
tion around £50 pm. The color plot shows the modulus
of the attosecond pulses. The position of these pulses
moves as the cep changes. We indicate three lineouts
which correspond to a 7t phase change of the funda-
mental cer. To evaluate the variation of the relative
CEP variation between consecutive attosecond pulses a
constant phase z((),¢) in (7) is removed from all the
pulses and the resulting attosecond fields are indicated
in Fig. 4d,ef. Firstly, it can be observed that the pulses
at ofs are Fourier-transform limited, since we have cho-
sen this pulse as m = 0, and have removed z((, /).
Secondly, the cep of the pulse at 1.3 fs (m = 1) varies
from 7, to 0.657 and 0.567 as the fundamental cer
varies by 7t. The pulse becomes also weaker at nega-
tive dispersion and slightly broader, due to the lower
intensity leading to a lower ionization rate as well as
a narrower bandwidth. In contrast, the pulse at -1.3 fs
presents a similar but reversed variation. Hence, it is
shown that relative phase, including the atto-cep and
chirp, between attosecond pulse can be controlled by
applying dispersion on the fundamental pulse.

—_— e D e—— ——————

5 CONCLUSION

We presented a dispersion dependent HHG spectrum
obtained in argon with highly resolved cep fringe pat-
terns over the whole dispersion and spectral range. We
could show that the relative phase of consecutive pulses
in an attosecond-pulse train generated from a few cycle
cep-stablized can be controlled by the dispersion of the
driving IR pulse.

—_— e O e
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1 MULTIPLE PULSE INTERFERENCE MODEL

The total xuv field as defined in the main article, is
given by

E(Q) = 2Am(Q)ei[ﬂt,n+mn+¢,n(0)1 (1)
m

where () is the angular frequency, m labels a pulse in
the pulse train, A,, the spectral amplitude of the m™
attosecond pulse, t,, the timing of the attosecond pulse,
and @,,(Q)) the spectral phase of the mth attosecond
pulse. Qf,, represents the group delay of the attosec-
ond pulse, while ®,,(Q) includes higher-order effects
(DD, etc). The sign flip between consecutive attosec-
ond pulses is accounted for by the m term.

A key step to solve this model, either numerically
or analytically, is to define and determine the spectral
envelope A;,(Q), the generation time t,, and the phase
term ®,,(Q2). In the following sections, we present and
discuss how we choose these components.

1.1 The spectral envelope

The xuv spectrum for each burst, A,,(Q), is assumed
to be super-Gaussian, spanning from the ionization po-
tential of the generation gas to the classical cut-off. For
each cycle, the spectrum is multiplied by the cycle-
averaged tunnel-ionization rate and modulated by the

recombination cross-section (including the Cooper min-
imum). The ionization rate is calculated from the
Ammosov-Delone-Krainov approximation. The cycle-
averaging leads to a lower yield in the cut-off regime.

1.2 The generation time

The generation times t,,; are set to be the zero-crossings
of the driving fundamental field. This is only valid for
the generation time of the lowest high-order harmonic
(shown in fig 1), however, using this scheme the gen-
eration time f,; can be numerically determined for an
almost arbitrary driving field. An analytic solution only
works in simple cases.

Here, we consider a chirped Gaussian pulse, given

by

2 b
E(t) = Eexp [—?+i<§t2—wot+(/’cﬂ’>] ©)

where E is the amplitude, 7 is the pulse duration at
the given dispersion, b is the chirp coefficient, wy is the
central frequency, and @cgp is the CEP of the fundamen-
tal. b and T can also be calculated from the Fourier-
transform limited pulse duration 7y and the group de-
lay dispersion (Gpp) ¢. Considering that the pulse is a
sine wave, the field crosses zero when the total phase is
mr, m € Z. Hence, the time ¢, can be determined by
solving the quadratic equation

b
Etz — wot + Qcgp = —MT, (3)
where the solutions are
wy £ /Wi — 2b(@cer + m7)
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Figure 1: A schematic of the generation timing for short
trajectory in three step model.

By Taylor-expanding the term within the square root,
ty is reduced to

b
@ ‘U_O + m(q’gsr +2mr@cee + mZTL'Z). (5)

1.3 The phase ®,,(Q))

The reduced dipole phase coefficient a*(2) can be ex-
pressed in a polynomial form

Q-0
o™ -0

* (Q - Qi)z
Q" — 2

ay(Q) = a5+ B* (©)

with
2cegmawih
=——_U 4

() = =

m(Q), @)

where (); is the frequency corresponding to the ion-
izion potential of the gas media Q; = I,,/h, QE"’) is the
frequency at classical cut-off and, aj, 8%, and y* are the
first three polynomial coefficients which are dimension-
less. The benefit of using the dimensionless constants is
that they are invariant with respect to the unit system.

ng) — ); can be substituted through the cut-off law

(m)
3.17U,

o -0 = =5 ®)
where Ué,m) is the ponderomotive energy which is pro-

portional to the intensity I,,. Hence, if we put in the
ponderomotive energy as well as

‘B*

‘BI = 3.17¢2 7 (9a)
thel)mw%
y=—T o (9b)

5/
3.17¢2
2hceg mwg

the total phase can be expressed as

2

e
Op(Q) =—
m(€) 2cegmewih
/
X |aghn + B/(Q = 0) + (= 02| +.
m

(10a)

ol + B(Q — ) + 7-(Q = Q) 4. (10b)
m

In atomic units, this expression is reduced to

“*EZ IS*
D, (Q) =21
m(Q) 4w} 317wy
4v*wy
3.172E2

m

(Q-qy)
(11)

+ Q-0 +..,

where Ey, is the electric field strength of the fundamen-
tal field.

The group delay (Gp) of the xuv pulse can be given
by the derivative of the phase ®(Q)

6p(Q) = B—CDg,(gQ)

31762 Q-0
yhceomw% ng) _ Q;

(12)
= /3 +

This equation reflects the fact that the frequency com-
ponents between the lowest ‘plateau” harmonic and the
cut-off are generated in a similar temporal distribution
for different cut-offs (or generation intensities). When
only considering the first three coefficients (ag, 8, and
7), the contribution to the Gp can be seen in Fig. 1:
gives a constant time shift which is marked as a gray
box and 1 indicates the chirp of the xuv pulse.

To express (10b) as a function of index m, the analytic
expression of the intensity I, is required. I, can be
found by putting t,, into the Gaussian pulse

_ _fn
Iy = Texp b

2
zl(lfl_—"z'>

where I is the peak intensity for the given dispersion ¢.

(13)



By inserting the expression for t;, from (5), we get

Lo P mi (143)
" 426 wh 4
b m3md b
- — |1+ (PC;" (14b)
TPwy Wy wh
I m?m? 3bpcgr | 30792
_ 4 1 CEP 1
7R ( + 2 + 2008 (140)
2I@pcpe MTT 3bpcer | VP92
_ B 14— e 14d
2wy wo ( ng + ng (149)
L Re2
11— %3” 14 D0ar D0 )|
2w} wj 4wy

Due to the small prefactors, the m* and m> terms are
neglected. For the maximum value we consider (19 =
6 fs, Ay = 850 nm) the term b@cgr/ wg is also much less
than unity. Thus I, can be further simplified as

I (1 _ (Pcep2> (15)
T wo

Similarly, the inverted intensity can be calculated to

2.2

I m*m 21 Qcgp mrT
Im N .

Wi 2wy wp

(16)

Again inserting (5), we get

(Pcep
T2w0> (17)

Hence, the phase ®(Q)) can be expressed as

11 mn?  2gcw mn

T2 w3 IT2wq wy T( +

I

D,(Q) = al +B(O— ) +

(-

To-ay

2m TTPcEp le 7'[2

(PCEP
+
w?T?

T2w?

(18)
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2 ANALYTIC SOLUTION

By inserting thhe timings (5), the dipole phase (10b),
and the intensities (15) into the interference model (1),
we get

ZA’” Ot,,,+m-t+¢‘,n(0)]

m

N Am(Q)e[i("lf(ﬂ)+m25(0))]’ (19)
m

where
2(Q) = e <1+b‘Pm> Tal+B(Q -0
wo 2 Wy
T2y Pem Yo _ 0.2
+1Q-0)+ wo[ al + T -0,
(20a)
b Q
R R
0
27'[(]7@:1’ - Y N2 (20b)
w%_rz [ "‘OIJFI(Q Qx)}/
and
() =200 i[ 1+ 20-00]. @
s = 23 ag 20C
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Abstract

Tonization with ultrashort pulses in the extreme ultraviolet (xuv) regime can be used to prepare
an ion in a superposition of spin-orbit substates. In this work, we study the coherence properties
of such a superposition, created by ionizing xenon atoms using two phase-locked xuv pulses at
different frequencies. In general, if the duration of the driving pulse exceeds the quantum beat
period, dephasing will occur. If however, the frequency difference of the two pulses matches the
spin-orbit splitting, the coherence can be efficiently increased and dephasing does not occur.

1 INTRODUCTION

The wave nature of matter is central to the
quantum mechanical description of microcosmos;
therefore coherence is an important property of
any quantum system. An example of a coher-
ent system is the superposition of two pure states,
[p) = a|l) + b|2); such superpositions form the
basis for the field of quantum information, where
they are used to represent qubits. The manipu-
lation of qubits for quantum computing necessar-
ily requires that the coherence of the system is re-
tained; if not, the information contained within the
qubit is lost. In quantum optics, superpositions
between two states may be created via a transition
between the two states with an appropriately tai-
lored pulse (e.g. a 7t/2-pulse) [figure 1 (a)].

Superpositions of states can also be achieved
by direct excitation using short light pulses [fig-
ure 1 (b)], provided the bandwidth of the pulse is
larger than the energy difference (fiw,1) between
the two states.
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FiGure 1: Different ways of preparing coherent superposi-
tions using light; (a) excitation of a two-level sys-
tem, such as those used for qubits in quantum in-
formation; (b) coherent excitation from the ground
state to two excited bound states; (c) single-photon
ionization, with the ion left in a superposition of
substates; (d) strong-field ionization, also leaving
the ion in a superposition of substates.

This requires a pulse duration short enough, T <
27 /wy. If the superposition is successfully cre-
ated, it may be observed through quantum beats
(Teets, Eckstein, and Hénsch 1977, Salour and
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Cohen-Tannoudji 1977, Mauritsson et al. 2010;
Tzallas et al. 2011) which usually last substantially
longer than the pulse duration. The characteris-
tic decay time is termed the coherence time. In the
cases depicted in 1 (a) and (b), the light couples
the bound states and enables coherent population
transfer in both directions.

Another way to produce a superposition of
states is via short-pulse ionization, when the ion is
left in different final states, e.g. due to spin-orbit
interaction. This can be done using either high-
frequency [figure 1 (c)] or high-intensity short-
pulse [figure 1 (d)] radiation. As previously, the
bandwidth of the ionizing pulse has to exceed the
energy splitting between the ion states. Kurka et
al. (2009) investigated case 1 (c) by photo-ionizing
neon using short xuv pulses from a free-electron
laser. A coherent superposition of the ionic fine-
structure substates was prepared and probed by
subsequent ionization. Using a strong laser field
[figure 1 (d)], Goulielmakis et al. (2010) photo-
ionized krypton, leaving the residual Kr™ ion in a
coherent superposition of the ionic substates. The
quantum beat was observed by probing with a
delayed attosecond (as) xuv pulse. This experi-
mental activity stimulated an important theoreti-
cal effort to investigate the coherence of superpo-
sitions of states produced either directly by photo-
excitation [figure 1 (b); Tzallas et al. 2011; Kliinder
et al. 2013], single-photon ionization [figure 1 (c);
Nikolopoulos 2013], or strong-field ionization [fig-
ure 1 (d); Pabst et al. 2011; Pabst, Lein, and Woérner
2016].

In this article, we present a theoretical study
of single-photon ionization of a rare gas using tai-
lored xuv pulses. We use two phase-locked pulses
of different frequencies (e.g. two high-order har-
monics), to ionize xenon atoms, leaving the ion in
a superposition of the ionic substates 5p° 2P§ 12,172
(figure 2). When the frequency difference be-
tween the two pulses equals the spin—orbit split-
ting, the coherence can be retained, in princi-
ple, indefinitely. This resonance condition cor-
responds to a situation where the two quantum
paths to the same final photo-electron energy can-
not be distinguished. We investigate the toler-
ance of this resonance condition, i.e. given a ion-
izing pulse duration, how strict is the require-
ment on the driving pulse being in resonance to
while still maintaining a certain level of coher-

ence? Our method is based on an exact solution of
the time-dependent Schrodinger equation using a
fully correlated atomic model and assuming weak-
field (perturbative) ionization. The coherence of
the quantum system is analyzed using the density
matrix formalism.

This paper is organized as follows; in the fol-
lowing section, the model is presented, along with
the tools that are used to calculate the evolution
of the superposition of states in the presence of
the pump pulse. We then present the results and
conclude with a discussion. Atomic units are used
throughout, unless otherwise stated.
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2 THEORETICAL FRAMEWORK

We are interested in studying the coherence of dif-
ferent ionic states produced by photo-ionization
with tailored xuv pulses. To this end, we use as a
model system noble gases, which have a spin—orbit
splitting of the ground state (np® ZP;:, ji = 3/2,1/2),
in particular xenon (n = 5).
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FIGURE 2: Resonant ionization; we photo-ionize with
two frequencies ()<, (-, which have a spac-
ing of Aw.

Figure 2 shows a simplified diagram of photo-
ionization of a np electron. The ionic ground state



has a spin-orbit splitting, which in xenon is 1.3 eV.
We ionize with a weak xuv pulse with two fre-
quency components, whose difference is Aw. The
two frequency components, ()~ and Q., can leave
the ion in either P9, or P, resulting in four differ-
ent pathways. If the frequency difference is equal
to the spin-orbit spacing, there will be two indis-
tinguishable pathways (indicated by bold arrows)
to the same final photo-electron energy; we call
this the resonant case. We introduce the detuning
ratio d = Aw/AEs,, and study photoionization in
the vicinity of this resonance (d = 1).

The calculations are performed by solving the
time-dependent Schrodinger equation (TDSE) in a
limited subspace,

.0
i [¥(1) = HB[¥(D), (1)
where the Hamiltonian in the dipole approxima-
tion is

H()

=Ho+ E(t)z. (2)

Ho is the atomic Hamiltonian, £(t) the electric
field, and z is the dipole operator. The solution is
found by propagating the initial state (the neutral
ground state) to time ¢

[¥(£)) = U(t,0)[Yo), ©)
where the short-time propagator is approximated
by a Magnus (1954) propagator of fourth order
(Saad 1992; Alvermann, Fehske, and Littlewood
2012).

The basis functions and the dipole matrix el-
ements are determined using aTsp2k (Froese Fis-
cher et al. 2007) and Bsr (Zatsarinny 2006; Zat-
sarinny and Froese Fischer 2009). The time-
dependent wavefunction is expanded as

[¥(1) = co(t)¥0) + LT [ deci(toliee), ()

where [¥) is the ground state ns?np® Sy, co(t) its
complex, time-dependent amplitude, i denotes the
different residual ions, and ee the photo-electron of
angular momentum e and energy ¢ (related to the
momentum k by ¢ = k?/2). The ionization chan-
nels formed by different possible combinations of
i and e, are listed in table 1 (in the case of jK cou-

pling).
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TaBLE 1: Ionization channels accessible via one-photon
ionization from the valence shell of a noble gas
(final ] = 1), in the case of jK coupling (Cowan
1981).

Ne ‘ Channel configuration
1 np (ZP"/ )kd2[1/2]1
2 np5(2P"/ Yks 2[3/2]4
3| nmpP(Pg, )kd2[3/2]1
4 np (ZP"/ Yks 2[1/2)1
5| npP (RS, kd 232y
6 (1/2]
7 [/

”5"P6(251/2)kp 1/2]y
nsnp®(2Sy /5 )kp 2[3/2)1

In the field-free basis, Hy is simply a diago-
nal matrix, with the energies of the photo-electron
with respect to the lowest ionization threshold
as matrix elements. In the weak-field limit, the
partial-wave expansion is restricted to total angu-
lar momentum | < 1, i.e. no multi-photon pro-
cesses are considered. Furthermore, ionization
is only allowed from the outer np shell (photo-
electron energies in the range oeV to 11eV in the
case of xenon), to avoid autoionization of embed-
ded Rydberg states in the vicinity of the nsnp® 2S,/,
threshold. We also neglect mixing of singlet and
triplet terms. Thus, the only non-zero matrix ele-
ments of the dipole operator z are (ice|z|¥o) (and
the complex conjugate), which are spin-averaged
by Bsr.

The analysis of the coherence is made using
the density matrix formalism [Landau and Lifshitz
1977, §14], where the full density matrix operator is
defined (time dependence t suppressed)

pr = [F)(¥], (5)
with matrix elements of the continuum block
Pl (e1,€2) = ¢ (e1)ei2" (2)- (6)

We reduce this density matrix to a ion—channel
density matrix by first taking the trace over the
photo-electron energies:

pie= [ de (e[¥)(¥]¢)

:/dSZZ/dsld£2< \zlslel>c (e1)
iyip e1€2

(7)

2" (e2) (ine2eale)

— ZZ/ds lire1) pfll“: g, €)(izea].

iyip €1€2

Xc
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FIGURE 3: Real time coherence build-up, for the case of ionization with two harmonics, 13 and 14 of a fundamental frequency

dAEs, in the non-resonant case (d = 1.3) left and the resonant case (d = 1) right. The upper panels show the
driving fields used; the red curve correspond to a pulse duration (FwHM of the temporal intensity profile) of 500 as
while the black curve correspond to a pulse duration of 15fs. The middle panels show the populations in the
residual ionic substates (solid: contribution from channel 3 to 2P;’/Z; dashed: contribution from channel 5 to 2P‘l’/z),
which increases with time. The lower panels show the induced coherence between the ionic substates, which is
built up over time. For the short-pulse case, there is always coherence left at the end of the pulse, while for the
longer pulse duration, the resonance criterion has to be fulfilled d ~ 1. The lower population in the non-resonant

case is explained by the decrease in photoionization cross-section with increasing photon energy.

Finally, we construct the ion density matrix by
tracing over the photo-electron angular momenta:

i =Y )Y lelier)o?

¢ iyip 0102

=) li)ei, (il

e ijip

(ieale)

®)

Only channels for which all quantum numbers
are the same (except for the angular momentum
of the ion) are considered in (8); here only chan-
nels 3 and 5 in table 1 contribute. The diagonal
elements (p,,;;) of this matrix measure the popu-
lation in each of the ionic states (np® ZPQ/LI /, and
nsnp6 25), while the off-diagonal elements (o)
contain the coherences between the ionic states.
Decoherence due to the spin—orbit interaction is
neglected.

—_— e D —————————

3 RESULTS

We investigate the real time build-up of coherence
with a xuv pulse of short or long duration in the

general case (see figure 3; left-hand side: non-
resonant case, right-hand side: resonant case). The
electromagnetic fields are presented in the upper
panels. In both cases, they consist of harmonics
13 & 14 of a fundamental driving field. The short-
pulse duration is 500as, while the long-pulse du-
ration is 15fs resulting in the formation of a peri-
odic beating of the xuv pulse. Regardless of the
pulse duration, the population in the ionic sub-
states (middle shown in solid and dashed lines)
increases as pulse ionizes the atom. The popula-
tion is proportional to the integral of the pulse in-
tensity, hence the appearance of steps in the popu-
lation.

We first consider the non-resonant case (left
panels of figure 3), where the fundamental driving
frequency is d = 1.3AEs,. For a short pulse dura-
tion, the coherence increases during the interaction
and stays constant after the pulse has passed. In
contrast for long pulse duration, the coherence is
transiently built up and vanishes completely at the
end of the pulse. The decoherence time, i.e. the
time from the onset of the pulse to the decrease
of the coherence (see lower panel of figure 3), is
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FIGURE 4: Degree of coherence as a function of pulse duration (FwHM of temporal intensity profile) and detuning ratio d. The
hyperbolas in the main panel indicate the ‘detuning bandwidth’ within which g1, > (2,/e)~'. The red horizon-
tal/vertical lines mark lineouts at constant duration/detuning ratio, which are shown in the lower/left panels. The
grey, dashed line in the lower panel is a Gaussian function whose width is the energy uncertainty for which 15fs
is the quantum beat period. Correspondingly, the grey, dashed line in the left panel is the combined overlap of
four Gaussian functions (representing the electron spectral peaks), two centred at the same energy, and two offset
by £AEs,. At vanishing pulse duration, the spectral uncertainties of the Gaussian functions are infinite. As the
pulse duration exceeds the quantum beat period, the peaks become spectrally resolvable, and the total overlap at
the central frequency becomes half of that at vanishing pulse duration.

related to the quantum beat period of the ionic
substates; for xenon with a spin-orbit splitting of
1.3€V, itis 3.2fs.

In the resonant case (right panels of figure 3),
the situation is completely different. The coher-
ence is built up during all the interaction time, and
remains after the end of the pulse. The existence
of this resonant condition can be understood by
considering the population of the ionic substates
(labelled |1) and |2), for simplicity) resulting from
a periodic sequence of ionization events occuring
at times # (k € IN). The wavefunction is then

[¥(t1)) = ca(tr)e P ]1) + e (1) eiPr()]2),
C)
where ¢yyy is the phase of the ionizing xuv field
at time t;. At the kth event, the wavefunction be-

comes
[¥(t)) =c1 (k)P W[1) + ca(ty)eiPr(t)]2)
+U(tk 1) [¥ (b)),

where U(t, tr—1) propagates the wavefunction
from an earlier time step. The propagator can be
written

(10)

U (ty, tk—1) = exp(—iHAL), (11)

where the Hamiltonian matrix (assuming no spin—
orbit coupling) is

(B0
Hf(O EZ)'

and At = f; — f;_; is the separation between the
ionization events. Finally, the wavefunction reads

(12)
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as

k
[¥(t) =Y c1(ty)eilfrov(ta)—Er(k—a)at]
#=0 (13)
x {m +C~e—iAEAf(k—a)‘2>] )

where & = c(t,)/c1(t,) (this ratio is assumed to be
constant with t,; i.e. it only depends on the relative
photoionization cross-section) and AE = E; — E;.
The last factor expresses the fact that the periodic
ionization does not introduce dephasing between
the two substates, as long as
_2nq
=g
is fulfilled, where g is a rational number. This is a
generalization of the quantum beat period for an
energy separation AE, which does not depend on
the duration of the xuv pulse. In the spectral do-
main, this corresponds to requiring the final elec-
tron kinetic energy to be the same (for g = 1).

In order to assess to which degree the ionic
states are coherent, we use the degree of coherence:

_ _lomn]

At (14)

N
which normalizes the coherence between two ions
to their respective populations. We study the de-
gree of coherence, as a function of xuv pulse dura-
tion and detuning ratio (figure 4). For short pulse
durations, this quantity is larger than ¥: (left panel
of figure 4). In this regime, the interaction with the
xuv pulse occurs within one quantum beat period
(3.2fs), and the four pathways indicated in figure 2
into the continuum have a partial spectral overlap.
For larger pulse durations, two of the pathways be-
come distinguishable, and do not contribute to the
coherence between the ionic substates. The two
remaining pathways, namely via Q. leaving the
ion in P9, and (). leaving the ion in P?/z, are in-
distinguishable, provided the resonance condition
d = 1 is met. The maximum degree coherence is
v.. If d # 1, complete decoherence occurs in the
long-pulse limit.

Pmn (15)

—_— e D —————————

4 CONCLUSION

In summary, we have shown that it is possible to
induce coherence using pulses of duration longer

than the coherence time, provided a resonance
condition is fulfilled, namely that the driving field
has at least two frequency components spaced by
the energy difference of the levels of interest. This
result shows that when the electron wave packets
arising from different pathways have the same ki-
netic energy, we cannot know which way the ion-
ization occurred. This situation is reminiscent of a
Young’s double slit experiment.

_—_o e, eee—,

5 ACKNOWLEDGMENTS

scMm acknowledges the help of Oleg Zatsarinny,
and would like to thank Tomas Brage, Kevin Dun-
seath, and Andreas Wacker for helpful discus-
sions. This work was supported by the Swedish
Foundation for Strategic Research, the Swedish
Research Council, the Knut and Alice Wallen-
berg Foundation, the European Research Council
(parpr), and by funding from the NsF under grant
PHY-1307083.

—_—— e D <

REFERENCES

Alvermann, A, H Fehske, and P B Littlewood (2012). ‘Nu-
merical time propagation of quantum systems in radia-
tion fields’. New Journal of Physics 14.10, p. 105008. DOIL:
10.1088/1367-2630/14/10/105008.

Cowan, Robert (1981). The theory of atomic structure and
spectra. Berkeley: University of California Press. IsBN:
0520038215.

Froese Fischer, Charlotte, Georgio Tachiev, Gediminas
Gaigalas, and Michel R. Godefroid (2007). ‘An MCHF
atomic-structure package for large-scale calculations’.
Computer Physics Communications 176.8, pp. 559-579. DOI:
10.1016/j.cpC.2007.01.006.

Goulielmakis, Eleftherios, Zhi-Heng Loh, Adrian Wirth,
Robin Santra, Nina Rohringer, Vladislav S. Yakovlev,
Sergey Zherebtsov, Thomas Pfeifer, Abdallah M. Azzeer,
Matthias F. Kling, Stephen R. Leone, and Ferenc Krausz
(2010). ‘Real-time observation of valence electron mo-
tion”. Nature 466.7307, pp. 739-743. DOIL 10 .1038 /
natureog212.



Kliinder, K, Per Johnsson, Marko Swoboda, Anne L'Huillier,
Giuseppe Sansone, M Nisoli, Mark JJ Vrakking, Kenneth
Joseph Schafer, and Johan Mauritsson (2013). ‘Recon-
struction of attosecond electron wave packets using quan-
tum state holography’. Physical Review A 88.3, p. 033404.
DOL: 10.1103/PhysRevA.88.033404.

Kurka, M, A Rudenko, L Foucar, KU Kiihnel, YH Jiang, Th
Ergler, Th Havermeier, M Smolarski, S Schossler, K Cole,
et al. (2009). “Two-photon double ionization of Ne by free-
electron laser radiation: a kinematically complete exper-
iment’. Journal of Physics B: Atomic, Molecular and Optical
Physics 42.14, p. 141002.

Landau, Lev Davidovich and Evgeny Mikhailovich Lifshitz
(1977). Quantum mechanics : non-relativistic theory. 3rd.
Vol. 3. Course of Theoretical Physics. Oxford New York:
Pergamon Press. 1SBN: 978-0-08-020940-1.

Magnus, Wilhelm (1954). ‘On the exponential solution of dif-
ferential equations for a linear operator’. Communications
on Pure and Applied Mathematics 7.4, pp. 649-673. DOL
10.1002/ cpa.3160070404.

Mauritsson, Johan, Thomas Remetter, Marko Swoboda,
Kathrin Kliinder, Anne L'Huillier, Kenneth Joseph
Schafer, O. Ghafur, F. Kelkensberg, W. Siu, Per Johns-
son, Marc J J Vrakking, I. Znakovskaya, T. Uphues, S.
Zherebtsov, M. E. Kling, F. Lépine, E. Benedetti, F. Fer-
rari, Giuseppe Sansone, and M. Nisoli (2010). ‘Attosec-
ond Electron Spectroscopy Using a Novel Interferometric
Pump-Probe Technique’. Physical Review Letters 105 (5),
p- 053001. DOL 10.1103/PhysRevLett.105.053001.

Nikolopoulos, L. A. A. (2013). ‘Time-Dependent Theory of
Angular Correlations in Sequential Double Ionization’.
Physical Review Letters 111.9. DOI: 10.1103 / physrevlett.
111.093001.

243

Pabst, Stefan, Loren Greenman, Phay J. Ho, David A. Mazz-
iotti, and Robin Santra (2011). “Decoherence in Attosec-
ond Photoionization’. Physical Review Letters 106.5. DOI:
10.1103/physrevlett.106.053003.

Pabst, Stefan, Manfred Lein, and Hans Jakob Wérner (2016).
‘Preparing attosecond coherences by strong-field ioniza-
tion’. Physical Review A 93.2. DOI: 10.1103/physreva.g3.
023412.

Saad, Yousef (1992). “Analysis of some Krylov subspace ap-
proximations’. SIAM Journal on Numerical Analysis.

Salour, MM and C Cohen-Tannoudji (1977). ‘Observation of
Ramsey’s interference fringes in the profile of Doppler-
free two-photon resonances’. Physical Review Letters 38.14,
p- 757- DoL 10.1103/PhysRevLett.38.757.

Teets, R, ] Eckstein, and TW Hénsch (1977). ‘Coherent two-
photon excitation by multiple light pulses’. Physical Re-
view Letters 38.14, p. 760.

Tzallas, P, E. Skantzakis, L. A. A. Nikolopoulos, G. D.
Tsakiris, and D. Charalambidis (2011). ‘Extreme-
ultraviolet pump-probe studies of one-femtosecond-scale
electron dynamics’. Nature Physics 7.10, pp. 781-784. DOI:
10.1038/nphys2033.

Zatsarinny, Oleg (2006). ‘BSR: B-spline atomic R-matrix
codes’. Computer Physics Communications 174.4, pp. 273—
356. DOIL: 10.1016/j.CpC.2005.10.006.

Zatsarinny, Oleg and Charlotte Froese Fischer (2009). ‘Atomic
structure calculations using MCHF and BSR’. Computer
Physics Communications 180.11, pp. 2041-2065. DOI: 10.
1016/j.cpc.2009.06.007.






245



246 PAPER VI. CARLSTROM ET AL.

a(t) [arbau.]

FIGURE Q.1: The time—frequency representation of the score on p asrendered in 1965 by the
USSR Russian Academic Chorus under the conduction of Alexander Sveshnikov
(Anexcanap Bacuabesuu Csemnnkos; 1890-1980). Upper panel: the sound
wave as a function of time. Lower panel: the same signal represented simulta-
neously in the time—frequency domain, visualizing the time-dependent frequency
content variation of the signal. Indicated in red is the nominal pitch of the lead
voice; the pattern is reproduced at higher frequencies, the harmonics of the fun-

damental.
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