DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.

Osorio, Ana; Milne, Roger L; Kuchenbaecker, Karoline; Vaclová, Tereza; Pita, Guillermo; Alonso, Rosario; Peterfongo, Paolo; Blanco, Ignacio; de la Hoya, Miguel; Duran, Mercedes; Diez, Orland; Ramón Y Cajal, Teresa; Konstantopoulou, Irene; Martinez-Bouzas, Cristina; Andrés Conejero, Raquel; Soucy, Penny; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; Swe-Brc, Swe-Brc; Arver, Brita; Rantala, Johanna; Loman, Niklas; Ehrencrona, Hans; Olopade, Olufunmilayo I; Beattie, Mary S; Domchek, Susan M; Nathanson, Katherine; Rebbeck, Timothy R; Arun, Banu K; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; John, Esther M; Whittimore, Alice S; Daly, Mary B; Southey, Melissa; Hopper, John; Terry, Mary B; Buys, Saundra S; Janavicius, Ramunas; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Steele, Linda; Neuhausen, Susan L; Ding, Yuan Chun; Hansen, Thomas V O; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie

Published in:
PLoS Genetics

DOI:
10.1371/journal.pgen.1004256

2014

Link to publication

Citation for published version (APA):
Osorio, A., Milne, R. L., Kuchenbaecker, K., Vaclová, T., Pita, G., Alonso, R., ... Benitez, J. (2014). DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. PLoS Genetics, 10(4), [e1004256]. DOI: 10.1371/journal.pgen.1004256
DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

1 Human Genetics Group, Spanish National Cancer Centre (CNIO), Madrid, Spain, 2 Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain, 3 Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia, 4 Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom, 5 Genotyping Unit (CeGen), Spanish National Cancer Centre (CNIO), Madrid, Spain, 6 IFOM, Fondazione Istituto IRCCS di Oncologia Molecolare, Milan, Italy, 7 Genetic Counseling Unit, Hereditary Cancer Program, IDIBELL-Catalan Institute of Oncology, Barcelona, Spain, 8 Molecular Oncology Laboratory, Hospital Clinic San Carlos, IDISSC, Madrid, Spain, 9 Institute of Biology and Molecular Genetics, Universidad de Valladolid (IBGM-UVA), Valladolid, Spain, 10 Oncogenetics Laboratory, University Hospital Vall d’Hebron, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Institut de recerca (VHIR), and Universitat Autonoma de Barcelona, Barcelona, Spain, 11 Oncology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain, 12 Molecular Diagnostics Laboratory IRPP, National Centre for Scientific Research Demokritos Agia Paraskevi Attiki, Athens, Greece, 13 Molecular Genetics Laboratory (Department of Biochemistry), Crues Hospital Barakaldo, Bizkaia, Spain, 14 Medical Oncology Hospital, Oncologia de Lyon, Lyon, France, 15 Cancer Genomics Laboratory, Centre Hospitalier Universitaire de Québec and Laval University, Quebec City, Canada, 16 Department of Oncology, Lund University, Lund, Sweden, 17 Department of Oncology, Karolinska University Hospital, Stockholm, Sweden, 18 Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden, 19 Department of Oncology, Lund University Hospital, Lund, Sweden, 20 Department of Clinical Genetics, Lund University Hospital, Lund, Sweden, 21 Center for Clinical Cancer Genetics and Global Health, University of Chicago Medical Center, Chicago, Illinois, United States of America, 22 Departments of Medicine, Epidemiology, and Biostatistics, University of California, San Francisco, California, United States of America, 23 Abramson Cancer Center and Department of Medicine, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America, 24 Abramson Cancer Center and Center for Clinical Epidemiology and Biostatistics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America, 25 University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America, 26 Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America, 27 Department of Epidemiology, Cancer Prevention Institute of California, Fremont, California, United States of America, 28 Department of Health Research & Policy, Stanford University School of Medicine, Stanford, California, United States of America, 29 Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America, 30 Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Parkville, Australia, 31 Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Melbourne, Victoria, Australia, 32 Department of Epidemiology, Columbia University, New York, New York, United States of America, 33 Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America, 34 VU University Hospital Santariski Clinics, Hematology, oncology and transfusion medicine center, Department of Molecular and Regenerative Medicine, Vilnius, Lithuania, 35 Department of Genetics, University of Pretoria, Pretoria, South Africa, 36 Department of Population Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America, 37 Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark, 38 Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark, 39 Department of Medical Genetics, University of Copenhagen, Copenhagen, Denmark, 40 Clinical Cancer Genetics, City of Hope, Duarte, California, United States of America, 41 Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumori (INT), Milan, Italy, 42 Division of Cancer Prevention and Genetics, Istituto Europeo di OncoLOGIA, Milan, Italy, 43 IFOM, Fondazione Istituto IRCCS di Oncologia Molecolare and Cogenetech Cancer Genetic Test Laboratory, Milan, Italy, 44 Division of Experimental Oncology 1, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy, 45 Unit of Hereditary Cancer, Department of Epidemiology, Prevention and Special Functions, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy, 46 Unit of Medical Genetics, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy, 47 Department of Molecular Medicine, “Sapienza” University, Rome, Italy, 48 UO Anatomia Patologica, Ospedale di Circolo-Università dell’Insubria, Varese, Italy, 49 Unit of Molecular bases of genetic risk and genetic testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumori (INT), Milan, Italy, 50 Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 51 Genetic Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom, 52 South East Thames Regional Genetics Service, Guy’s Hospital London, United Kingdom, 53 Oncogenetics Team, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom, 54 Yorkshire Regional Genetics Service, Leeds, United Kingdom, 55 Ferguson-Smith Centre for Clinical Genetics, Yorkhill Hospitals, Glasgow, United Kingdom, 56 West Midlands Regional Genetics Service, Birmingham Women’s Hospital Healthcare NHS Trust, Edgbaston, Birmingham, United Kingdom, 57 Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, United Kingdom, 58 Sheffield Clinical Genetics Service, Sheffield Children’s Hospital, Sheffield, United Kingdom, 59 Clinical Genetics Department, St George’s Hospital, University of London, London, United Kingdom, 60 Department of Clinical Genetics, Royal Devon & Exeter Hospital, Exeter, United Kingdom, 61 Department of Clinical Genetics, East Anglian Regional Genetics Service, Addenbrookes Hospital, Cambridge, United Kingdom, 62 Institute of Human Genetics, Centre for Life, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom, 63 South East of Scotland Regional Genetics Service, Western General Hospital, Edinburgh, United Kingdom, 64 North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Trust, London, United Kingdom, 65 Oxford Regional Genetics Service, Churchill Hospital, Oxford, United Kingdom, 66 Northern Ireland Regional Genetics Centre, Belfast City Hospital, Belfast, United Kingdom, 67 South West Regional Genetics Service, Bristol, United Kingdom, 68 Academic Unit of Clinical and Molecular Oncology, Trinity College Dublin and St James’s Hospital, Dublin, Eire, 69 Cheshire & Merseyside Clinical Genetics Service, Liverpool Women’s NHS Foundation Trust, Liverpool, United Kingdom, 70 Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America, 71 Centre of Familial Breast and Ovarian Cancer and Centre for Integrated Oncology (CIO), University Hospital of Cologne, Cologne, Germany, 72 Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany, 73 Department of Gynaecology and Obstetrics, Division of Tumor Genetics, Klinikum rechts der Isar, Technical University Munich, Munich, Germany, 74 Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany, 75 Institute of Human Genetics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany, 76 Department of Gynaecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany, 77 Institute of Human Genetics, Department of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany, 78 Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm, Germany, 79 Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany, 80 Department of Human Genetics, University of Münster, Münster, Germany, 81 Department of Gynaecology and Obstetrics, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany, 82 Institute of Human Genetics, Campus Virchow Klinikum, Charite Berlin, Berlin, Germany, 83 Centre of Familial Breast and Ovarian Cancer, Department of Medical Genetics, Institute of Human Genetics, University Würzburg, Würzburg, Germany, 84 Institut Curie, Department of Tumour Biology, Paris, France, 85 Institut Curie, INSERM U830, Paris, France, 86 Université Paris Descartes, Sorbonne Paris Cité, Paris, France, 87 Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon – Centre Léon Bérard, Lyon, France, 88 INSERM U1052, CNRS UMR3286, Université Lyon 1, Centre de Recherche en Cancérologie de Lyon, Lyon, France, 89 Center for Medical Genetics, Ghent University, Ghent, Belgium, 90 Gynecologic Oncology Group Statistical and Data Center, Roswell Park Cancer Institute, Buffalo, New York, United States of America, 91 Prince of Wales Hospital. Sydney, Australia, 92 Ohio State University, Columbus Cancer Center, Columbus, Ohio, United States of America, 93 Division of Gynecologic Oncology, NorthShore University HealthSystem, Evanston, Illinois, United States of America, 94 Division of Gynecologic Oncology, NorthShore University HealthSystem, Chicago, Illinois, United States of America, 95 For Tufts Medical Center, Boston, Massachusetts, United States of America, 96 Yale University School of Medicine, New Haven, Connecticut, United States of America, 97 Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland, 98 Department of Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands, 99 Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands, 100 Family Cancer Clinic, Netherlands Cancer Institute, Amsterdam, The Netherlands, 101 Department of Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands, 102 Department of Clinical Genetics, VU University Medical Centre, Amsterdam, The Netherlands, 103 University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetration susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03–1.16), p = 2.7 × 10⁻⁵) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03–1.21, p = 4.8 × 10⁻⁵). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.

The CNIO study was supported by Mutua Madrileña Foundation (FMMA), Spanish Association against Cancer (AECC08), RTICC (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A10710, C1229/A11174, C5047/A8384, C5047/A15007, C5047/A10692), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (No. 1 U19 CA 148537 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CHR) for the CHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Foundation. SWE-BRCA collaborators are supported by the Swedish Cancer Society. BRCA-gene mutations and breast cancer in South African women (BMBSA) was supported by grants from the Cancer Association of South Africa (Cansa) to E.v.H. UCHICAGO is supported by NCI Specialized Program of Research Excellence (SPOR) in Breast Cancer (CA125183), R01 CA142996, U10CA161032 and by the Ralph and Marion Falk Medical Research Trust, the Entertainment Industry Fund National Women's Cancer Research Alliance and the Breast Cancer research Foundation. OIO is an ACS Clinical Research Professor. UPENN study is supported by Basser Research Center (SMD, KN, TRR), Breast Cancer Research Foundation (KN), Komen Foundation for the Cure (SMD). The Women’s Cancer Program (WCP) at the Samuel Oschin Comprehensive Cancer Institute is funded by the American Cancer Society Early Detection Professorship (SDP-06-258-01-COUN). BCFR study: This work was supported by grant U11 CA164920 from the National Cancer Institute. The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government or the BCFR. BFBOCC is supported by: Lithuania (BFBOCC-LT): Research Council of Lithuania grant LIG-07/2012 and Hereditary Cancer Association (Pavelidžio vežio asociacija);
Introduction

Carrying an inherited mutation in the BRCA1 or BRCA2 gene increases a woman’s lifetime risk of developing breast, ovarian, and other cancers. The estimated cumulative risk of developing breast cancer by the age of 70 in BRCA1 and BRCA2 mutation carriers varies between 43% to 86%; similarly, between 11% to 59% of mutation carriers will develop ovarian cancer by the age of 70 [1-3]. These considerable differences in disease manifestation suggest the existence of other genetic or environmental factors that modify the risk of cancer development. The Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA), was established in 2006 [4] and with more than 40,000 mutation carriers currently provides the largest sample size for reliable evaluation of even modest associations between single-nucleotide polymorphisms (SNPs) and cancer risk. CIMBA studies have so far demonstrated that more than 25 SNPs are associated with the risk of developing breast or ovarian cancer for BRCA1 or BRCA2 carriers. These were identified through genome-wide association studies (GWAS) of breast or ovarian cancer in the general population or through BRCA1- and BRCA2-specific GWAS [5-8]. Cells harboring mutations in BRCA1 or BRCA2 show impaired homologous recombination (HR) [9-11] and are thus critically dependent on other processes the DNA repair machinery such as poly ADP ribose polymerase (PARP1) involved in the Base Excision Repair (BER) pathway. The BER pathway is crucial for the replacement of aberrant bases generated by different causes [12]. A deficiency in BER can give rise to a further accumulation of double-strand DNA breaks which, in the presence of a defective BRCA1 or BRCA2 background, could persist and lead to cell cycle arrest or cell death; this makes BRCA2-deficient cells extremely sensitive to PARP inhibitors, as previously demonstrated [13]. We hypothesize that SNPs in PARP1 and other members of BER may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers. SNPs in XRCC1, one of the main components of BER, have been recently evaluated within the CIMBA consortium [14], however a comprehensive study has not yet been performed of either XRCC1 or the other genes participating in BER.

In the present study, we used a tagging SNP approach to evaluate whether the common genetic variation in the genes involved in the BER pathway could be associated with cancer risk in a large series of BRCA1/2 mutation carriers using a two-stage approach. The first stage involved an analysis of 144 tag SNPs in the 36 SNPs showing the strongest evidence of association in stage I. Two independent studies were performed with the iCOGS genotyping array.

Results

Breast cancer association

In stage I, 144 selected Tag SNPs covering the 18 selected BER genes were genotyped in 968 BRCA1 and 819 BRCA2 mutation carriers from five CIMBA centres (Spanish National Cancer ResearchCentre (CNIO), Hospital Clinico San Carlos (HCSC), Catalan Institute of Oncology (ICO), Demokritos and Milan Breast Cancer Study Group (MBCSG). Of those, 30 were excluded because of low call-rates, minor allele frequency (MAF)<0.05, evidence of deviation from Hardy Weinberg Equilibrium (p-value<10^-3) or monomorphism. Associations with
breast cancer risk were assessed for 94 SNPs, as summarized in Table S1. The 36 SNPs that showed evidence of association at \(p \leq 0.05 \) were selected for analysis in stage II. Of the 36 SNPs successfully genotyped in the whole CIMBA series comprising 15,252 BRCA1 and 8211 BRCA2 mutation carriers, consistent evidence of association with breast cancer risk (\(p \text{-trend} \leq 0.05 \)) was observed for six SNPs (Table 1). The strongest evidence of association was observed for rs1466785 in the NEIL2 gene (HR: 1.19, 95% CI: 1.08–1.3, \(p = 6 \times 10^{-5} \)). Although three other SNPs were found to be associated with ovarian cancer risk in BRCA2 mutation carriers (\(p \text{-trend} < 10^{-3} \)), these results were based on a relatively small number of ovarian cancer cases. Imputed data did not show any SNPs with substantially more significant associations with ovarian cancer risk except for rs3093926 in PARP2, associated with ovarian cancer risk in BRCA2 mutation carriers for which there was a SNP, rs61995342, with a stronger association (HR: 0.67, \(p = 4.6 \times 10^{-5} \)) (Figure S1).

Discussion

Based on the interaction of synthetic lethality that has been described between PARP1 and both BRCA1 and BRCA2, we hypothesize that this and other genes involved in the BER pathway could potentially be associated with cancer risk in BRCA1/2 mutation carriers. Several studies have recently investigated the association of some of the BER genes with breast cancer; however, no definitive conclusions can be drawn, given that some publications suggest that SNPs in these genes can be associated with breast cancer risk with marginal \(p \)-values while others rule out a major role of these genes in the disease [15–21]. There is only one study from the CIMBA consortium which has evaluated the role of three of the most studied SNPs in the XRCC1 gene, c.-77C>T (rs3213245) p.Arg280His (rs25489) and p.Gln399Arg (rs25487), ruling out associations of these variants with cancer risk in BRCA1 and BRCA2 mutation carriers [14]. However, a comprehensive analysis of neither XRCCI nor the other genes involved in the pathway in the context of BRCA mutation carriers has been performed. In the present study we have assessed the common genetic variation of 18 genes participating in BER by using a two stage strategy.

Eleven SNPs showed evidence of association with breast and/or ovarian cancer at \(p < 0.05 \) in stage II of the experiment (Table 1). Of those, six showed a \(p \)-trend \(p < 0.01 \) and were therefore considered the best candidates for further evaluation. Only one of those six, rs1466785 in the NEIL2 gene (endonuclease VIII-like 2) showed an association with breast cancer risk while the other five, rs2304277 in OGG1 (8-guanine DNA glycosylase), rs167715 and rs4135087 in TGD (thymine-DNA glycosylase), rs3093926 in PARP2 (Poly(ADP-ribose) polymerase 2) and rs34259 in UNG (uracil-DNA glycosylase) were associated with ovarian cancer risk.

The minor allele of NEIL2 rs1466785 was associated with increased breast cancer risk in BRCA2 mutation carriers; moreover, when considering the genotype-specific risks observed that the best fitting model was the dominant one. NEIL2 is one of the oxidized base-specific DNA glycosylases that participate in the initial steps of BER and specifically removes oxidized bases from transcribing genes [22]. By imputing using the 1000 genome data we found six correlated SNPs in strong LD with rs1466785 showing more significant associations (\(p \leq 10^{-5} \)) (Figure 1).

Ovarian cancer association

Due to lack of power we did not perform analysis of associations with ovarian cancer in stage I. However, we performed this analysis for the 36 SNPs tested in stage II. Although they had been selected based on their evidence of association with breast cancer risk, under the initial hypothesis they are also plausible modifiers of ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. We found four SNPs associated with ovarian cancer risk with a \(p \text{-trend} < 0.01 \) in BRCA1 or BRCA2 mutation carriers (Table 1). The strongest association was found for rs2304277 in OGG1 in BRCA1 mutation carriers (HR: 1.12, 95% CI: 1.03–1.21, \(p = 4.8 \times 10^{-5} \)).

The association was somewhat stronger under the dominant model (HR: 1.19, 95% CI: 1.08–1.3, \(p = 6 \times 10^{-5} \)). Although three other SNPs were found to be associated with ovarian cancer risk in BRCA2 mutation carriers (\(p \text{-trend} < 10^{-3} \)), these results were based on a relatively small number of ovarian cancer cases. Imputed data did not show any SNPs with substantially more significant associations with ovarian cancer risk except for rs3093926 in PARP2, associated with ovarian cancer risk in BRCA2 mutation carriers for which there was a SNP, rs61995342, with a stronger association (HR: 0.67, \(p = 4.6 \times 10^{-5} \)) (Figure S1).
<table>
<thead>
<tr>
<th>BRCA1 carriers</th>
<th>SNP name</th>
<th>Gene</th>
<th>Unaffected (Number)</th>
<th>Affected (Number)</th>
<th>Unaffected (MAF)</th>
<th>Affected (MAF)</th>
<th>HR per allele<sup>a</sup></th>
<th>HR heterozygote<sup>b</sup></th>
<th>HR homozygote<sup>b</sup></th>
<th>p-trend<sup>c</sup></th>
<th>p-het<sup>c</sup></th>
<th>p-hom<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer</td>
<td>rs3847954<sup>d</sup></td>
<td>UNG</td>
<td>7455</td>
<td>7797</td>
<td>0.18</td>
<td>0.19</td>
<td>1.05 (1.00–1.11)</td>
<td>1.09 (1.02–1.16)</td>
<td>0.99 (0.84–1.16)</td>
<td>0.04</td>
<td>0.011</td>
<td>0.713</td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td>rs2072668</td>
<td>OGG1</td>
<td>12786</td>
<td>2461</td>
<td>0.22</td>
<td>0.23</td>
<td>1.09 (1.01–1.18)</td>
<td>1.16 (1.05–1.27)</td>
<td>1.03 (0.82–1.28)</td>
<td>0.016</td>
<td>3 × 10<sup>–3</sup></td>
<td>0.77</td>
</tr>
<tr>
<td>rs2269112</td>
<td>OGG1</td>
<td></td>
<td>12789</td>
<td>2461</td>
<td>0.17</td>
<td>0.18</td>
<td>1.11 (1.02–1.21)</td>
<td>1.11 (1.01–1.23)</td>
<td>1.21 (0.92–1.58)</td>
<td>0.013</td>
<td>0.014</td>
<td>0.268</td>
</tr>
<tr>
<td>rs2304277</td>
<td>OGG1</td>
<td></td>
<td>12783</td>
<td>2462</td>
<td>0.2</td>
<td>0.21</td>
<td>1.12 (1.03–1.21)</td>
<td>1.19 (1.08–1.3)</td>
<td>1.01 (0.79–1.30)</td>
<td>4.8 × 10<sup>–3</sup></td>
<td>6 × 10<sup>–4</sup></td>
<td>0.69</td>
</tr>
<tr>
<td>rs10161263</td>
<td>SMUG1</td>
<td></td>
<td>12790</td>
<td>2462</td>
<td>0.34</td>
<td>0.32</td>
<td>0.92 (0.86–0.99)</td>
<td>0.88 (0.80–0.97)</td>
<td>0.90 (0.78–1.04)</td>
<td>0.024</td>
<td>9 × 10<sup>–3</sup></td>
<td>0.49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BRCA2 carriers</th>
<th>SNP name</th>
<th>Gene</th>
<th>Unaffected (Number)</th>
<th>Affected (Number)</th>
<th>Unaffected (MAF)</th>
<th>Affected (MAF)</th>
<th>HR per allele<sup>a</sup></th>
<th>HR heterozygote<sup>b</sup></th>
<th>HR homozygote<sup>b</sup></th>
<th>p-trend<sup>c</sup></th>
<th>p-het<sup>c</sup></th>
<th>p-hom<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer</td>
<td>rs2072668<sup>e</sup></td>
<td>OGG1</td>
<td>3879</td>
<td>4328</td>
<td>0.23</td>
<td>0.21</td>
<td>0.91 (0.85–0.98)</td>
<td>0.95 (0.87–1.04)</td>
<td>0.75 (0.62–0.91)</td>
<td>0.018</td>
<td>0.098</td>
<td>7 × 10<sup>–3</sup></td>
</tr>
<tr>
<td>rs2269112</td>
<td>OGG1</td>
<td></td>
<td>3880</td>
<td>4329</td>
<td>0.17</td>
<td>0.16</td>
<td>0.91 (0.84–0.99)</td>
<td>0.93 (0.85–1.03)</td>
<td>0.76 (0.58–0.99)</td>
<td>0.035</td>
<td>0.083</td>
<td>0.054</td>
</tr>
<tr>
<td>rs3136811<sup>f</sup></td>
<td>POLB</td>
<td></td>
<td>3873</td>
<td>4321</td>
<td>0.06</td>
<td>0.07</td>
<td>1.12 (1.05–1.25)</td>
<td>1.17 (1.03–1.32)</td>
<td>0.86 (0.49–1.48)</td>
<td>0.032</td>
<td>0.019</td>
<td>0.715</td>
</tr>
<tr>
<td>rs2304277<sup>g</sup></td>
<td>OGG1</td>
<td></td>
<td>3880</td>
<td>4330</td>
<td>0.21</td>
<td>0.19</td>
<td>0.91 (0.84–0.97)</td>
<td>0.94 (0.85–1.03)</td>
<td>0.74 (0.60–0.91)</td>
<td>0.013</td>
<td>0.058</td>
<td>0.01</td>
</tr>
<tr>
<td>rs1466785</td>
<td>NEIL2</td>
<td></td>
<td>3879</td>
<td>4330</td>
<td>0.4</td>
<td>0.43</td>
<td>1.09 (1.03–1.16)</td>
<td>1.20 (1.09–1.37)</td>
<td>1.16 (1.03–1.31)</td>
<td>2.7 × 10<sup>–3</sup></td>
<td>1 × 10<sup>–4</sup></td>
<td>0.455</td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td>rs167715</td>
<td>TGR</td>
<td>7577</td>
<td>631</td>
<td>0.12</td>
<td>0.09</td>
<td>0.76 (0.62–0.94)</td>
<td>0.72 (0.58–0.90)</td>
<td>0.89 (0.41–1.89)</td>
<td>7.4 × 10<sup>–3</sup></td>
<td>4.1 × 10<sup>–3</sup></td>
<td>0.866</td>
</tr>
<tr>
<td>rs3093926<sup>i</sup></td>
<td>PARP2</td>
<td></td>
<td>7580</td>
<td>631</td>
<td>0.07</td>
<td>0.05</td>
<td>0.64 (0.49–0.84)</td>
<td>_</td>
<td>_</td>
<td>1.5 × 10<sup>–3</sup></td>
<td>_</td>
<td></td>
</tr>
<tr>
<td>rs4135087</td>
<td>TGR</td>
<td></td>
<td>7580</td>
<td>631</td>
<td>0.09</td>
<td>0.11</td>
<td>1.32 (1.09–1.59)</td>
<td>1.33 (1.07–1.65)</td>
<td>1.67 (0.84–3.28)</td>
<td>2.8 × 10<sup>–3</sup></td>
<td>3.8 × 10<sup>–3</sup></td>
<td>0.185</td>
</tr>
<tr>
<td>rs34259</td>
<td>UNG</td>
<td></td>
<td>7580</td>
<td>631</td>
<td>0.2</td>
<td>0.17</td>
<td>0.80 (0.69–0.94)</td>
<td>0.84 (0.70–1.01)</td>
<td>0.51 (0.29–0.90)</td>
<td>7.6 × 10<sup>–3</sup></td>
<td>0.025</td>
<td>0.028</td>
</tr>
</tbody>
</table>

^aHazard Ratio per allele (1 df) estimated from the retrospective likelihood analysis.
^bHazard Ratio under the genotype specific models (2df) estimated from the retrospective likelihood analysis.
^cp-values were based on the score test.
^dHR per allele of 1.69 and p-trend of 1 × 10^{–4} for BRCA2 mutation carriers in stage I of the study.
^eHRR per allele of 1.43 and p-trend of 0.01 for BRCA1 mutation carriers in stage I of the study.
^fHRR per allele of 1.30 and p-trend of 0.03 for BRCA2 mutation carriers in stage I of the study.
^gHRR per allele of 0.64 and p-trend of 0.057 for BRCA2 mutation carriers in stage I of the study.
^hHRR per allele of 1.25 and p-trend of 0.04 for BRCA1 mutation carriers in stage I of the study.
ⁱHRR per allele of 1.25 and p-trend of 0.058 for BRCA1 mutation carriers in stage I of the study.
^jHRS did not yield results under the genotype specific model due to the low minor allele frequency.

Highlighted in bold are those SNPs showing strongest associations with breast or ovarian cancer risk (p<0.01).

Complete description of results from stage I are included in Supplementary Table S1.

doi:10.1371/journal.pgen.1004256.t001

Table 1. Associations with breast and ovarian cancer risk for SNPs observed at p-trend<0.05 in stage II of the experiment.
been proven to alter the transcriptional response to oxidative stress [24]. Moreover, this SNP has been proposed to partly explain the inter-individual variability observed in NEIL2 expression levels in the general population and has been proposed as a potential risk modifier of disease susceptibility [25].

Several studies have been published showing associations between SNPs in NEIL2 and lung or oropharyngeal cancer risk [26,27] but to our knowledge, no association with breast cancer risk has been reported. We hypothesize that the potential association observed in the present study could be explained by the interaction between NEIL2 and BRCA2, each of them causing a deficiency in the BER and HR DNA repair pathways, respectively. This would explain why the breast cancer risk modification due to rs1466785 would only be detected in the context of BRCA2 mutation carriers and not in the general population.

The strongest evidence of association found in BRCA1 carriers was between rs2304277 in the OGG1 gene and ovarian cancer risk. The association was more significant when considering the dominant model. OGG1 removes 8-oxodeoxyguanosine which is generated by oxidative stress and is highly mutagenic, and it has been suggested that SNPs in the gene could be associated with cancer risk [28–31]. This is an interesting result, given that to date only one SNP, rs4691139 in the 4q35.3 region, also identified through the iCOGS effort, did not show better results for a more plausible causal SNP.

We have identified four SNPs associated with ovarian cancer risk in BRCA2 mutation carriers, rs167715 and rs4135087 in the TDG gene, rs34259 in the UNG gene and rs3093926 in PARP2. However, these last results should be interpreted with caution given that the number of BRCA2 carriers affected with ovarian cancer is four-fold lower than for BRCA1 carriers and the statistical power was therefore more limited, increasing the possibility of false-positives. In the case of PARP2, imputed data showed a lower p-value of association (4×10^{-6}) for another SNP, rs61995542, that had a slightly higher MAF than rs3093926 (0.074 vs. 0.067) (Figure S1). However, it must still be interpreted with caution due to small number of ovarian cancer cases in the BRCA2 group.

It is worth noting that, four of the five genes for which strongest evidence of association was observed, are all DNA glycosylases participating in the initiation of BER by removing damaged or mismatched bases. Apart from the already mentioned NEIL2 and OGG1, TDG initiates repair of G/T and G/U mismatches commonly associated with CpG islands, while UNG removes uracil in DNA resulting from deamination of cytosine or replicative incorporation of dUMP. We have not found strong associations with SNPs in genes involved in any other parts of the pathway, such as strand incision, trimming of ends, gap filling or ligation. It has been suggested that at least in the case of uracil repair, base removal is the major rate-limiting step of BER [33]. This is consistent with our findings, suggesting that SNPs causing impairment in the function of these specific DNA glycosylases through the 1000 Genome did not show better results for a more plausible causal SNP.

Figure 1. p-values of association (−log10 scale) with breast cancer risk in BRCA2 carriers for genotyped and imputed SNPs in the NEIL2 gene. SNP rs1466785 is indicated with a purple arrow and the best causal imputed SNPs, rs804276 and rs804271 are indicated with a red arrow. Colors represent the pairwise r². Plot generated with LocusZoom [42] (http://csg.sph.umich.edu/locuszoom/). doi:10.1371/journal.pgen.1004256.g001
could give rise to accumulation of single strand breaks and subsequently DNA double strand breaks that, in the HR defective context of BRCA1/2 mutation carriers would increase breast and ovarian cancer risk.

The fact that the SNPs tested are located in genes participating in the same DNA repair pathway as PARP1, make them especially interesting, not only as risk modifiers but also because they could have an impact on patients' response to treatment with PARP inhibitors. BRCA1/2 mutation carriers harboring a potential modifier SNP in DNA glycosylases could be even more sensitive to PARPi due to a constitutional slight impairment of the BER activity. This is a hypothesis that should be confirmed in further studies. The design of this study in two stages, the hypothesis-based approach adopted to select genes, and that it is based on the largest possible series of BRCA1 and BRCA2 carriers available nowadays, mean that the results obtained are quite solid. However, the study still has some limitations such as the possible existence of residual confounding due to environmental risk factors for which we did not have information.

In summary, we have identified at least two SNPs, rs1466785 and rs2304277, in the DNA glycosylases NEIL2 and OGG1, potentially associated with increased breast and ovarian cancer risks in BRCA2 and BRCA1 mutation carriers, respectively. Our results suggest that glycosylases involved in the first steps of the BER pathway may be cancer risk modifiers in BRCA1/2 mutation carriers and should be more comprehensively studied. If confirmed, these findings could have implications not only for risk assessment, but also for treatment of BRCA1/2 mutation carriers with PARP inhibitors.

Materials and Methods

Subjects

Eligible subjects were female carriers of deleterious mutations in BRCA1 or BRCA2 aged 18 years or older [6]. A total of 55 collaborating CIMBA studies contributed genotypes for the study. Numbers of samples included from each are provided in Table S2. A total of 1,787 mutation carriers (968 with mutations in BRCA1 and 819 with mutations in BRCA2) from the CNIO, HICSC, ICO, Demokritos and MBCSG were genotyped in the first stage of the study. Stage II included 23,463 CIMBA samples (15,252 with mutations in BRCA1 and 8,211 with mutations in BRCA2). All carriers participated in clinical and/or research studies at the host institution under IRB-approved protocols.

Methods stage I

Selection and genotyping of SNPs. Eighteen genes (UNG, SMUG1, MBD4, TGD, OGG1, MUTYH, NTHLI1, MPG, NEIL1, NEIL2, APEX1, APEX2, LIG3, XRCC1, PNP, POLB, PARP1 and PARP2) involved in the BER pathway were selected, based on the information available at http://www.cgd.icnet.uk/DNA_Renovation_Genes.html as at the 31st December, 2009. Tag SNPs for the selected genes were defined using Haploview v.4.0 (http://www.broad.mit.edu/mpg/haplovie) with an r² threshold of 0.8 and a minimum minor allele frequency of 0.05. In addition, SNPs with potentially functional effects already described in the literature were selected. A final number of 144 SNPs was included in an oligonucleotide pool assay for genotyping using the Illumina Veracode technology (Illumina Inc., San Diego, CA). Three hundred nanograms of DNA from each sample were genotyped using the GoldenGate Genotyping Assay with Veracode technology according to the published Illumina protocol. Genotype clustering and calling were carried out using the GenomeStudio software. SNPs with a call rate <0.95 were excluded from further analysis. Duplicate samples and CEPH trios (Coriell Cell Repository, Camden, NJ) were genotyped across the plates. SNPs showing Mendelian allele-transmission errors or showing discordant genotypes across duplicates were excluded.

Statistical analysis. To test for departure from Hardy-Weinberg equilibrium (HWE), a single individual was randomly selected from each family and Pearson’s X² Test (1df) was applied to genotypes from this set of individuals. The association of the SNPs with breast cancer risk was assessed by estimating hazard ratios (HR) and their corresponding 95% confidence intervals (CI) using weighted multivariable Cox proportional hazards regression with robust estimates of variance [34]. For each mutation carrier, we modeled the time to diagnosis of breast cancer from birth, censoring at the first of the following events: bilateral prophylactic mastectomy, breast cancer diagnosis, ovarian cancer diagnosis, death or date last known to be alive. Subjects were considered affected if their age at censoring corresponded to their age at diagnosis of breast cancer and unaffected otherwise. Weights were assigned separately for carriers of mutations in BRCA1 and BRCA2, by age and affection status, so that the weighted observed incidences in the sample agreed with established estimates for mutation carriers [1]; [34].

We considered log-additive and co-dominant genetic models and tested for departure from HR = 1 by applying a Wald test based on the log-HR estimate and its standard error. Additional independent variables included in all analyses were year of study, centre and country. All statistical analyses were carried out using Stata: Release 10 (StataCorp. 2007. Stata Statistical Software: Release 10.0. College Station, TX: Stata Corporation LP). Robust estimates of variance were calculated using the cluster subcommand, applied to an identifier variable unique to each family.

Methods stage II

iCOGS SNP array. Stage II of the experiment was performed as part of the iCOGS genotyping experiment. The iCOGS custom array was designed in collaboration between the Breast Cancer Association Consortium (BCAC), the Ovarian Cancer Association Consortium (OCAC), the Prostate Cancer Association Group to Investigate Cancer Associated in the Genome (PRACTICAL) and CIMBA. The final design comprised 211,155 successfully manufactured SNPs of which approximately 17.5% had been proposed by CIMBA. A total of 43 SNPs were nominated for inclusion on iCOGS based on statistical evidence of association in stage I of the present study (p≤0.05). Of these, 36 were successfully manufactured and genotyped in CIMBA mutation carriers.

iCOGS genotyping and quality control. Genotyping was performed at Mayo Clinic and the McGill University and Génome Québec Innovation Centre (Montreal, Canada). Genotypes were called using Illumina’s GenCall algorithm. Sample and quality control process have been described in detail elsewhere [32,35]. After the quality control process a total of 23,463 carriers were genotyped for the 36 selected SNPs.

Statistical analysis. Both breast and ovarian cancer associations were evaluated in stage II. Censoring for breast cancer followed the same approach as in stage I. Censoring for ovarian cancer risk occurred at risk-reducing salpingo-oophorectomy or last follow-up.

The genotype-disease associations were evaluated within a survival analysis framework, by modelling the retrospective likelihood of the observed genotypes conditional on the disease phenotypes [9,34,36,37]. The associations between genotype and breast or ovarian cancer risk were assessed using the 1 d.f. score test statistic based on this retrospective likelihood. To allow for the
non-independence among related individuals, we accounted for the correlation between the genotypes by estimating the kinship coefficient for each pair of individuals using the available genomic data [34,38,39]. These analyses were performed in R using the GenABEL libraries and custom-written functions in FORTRAN and Python.

To estimate the magnitude of the associations (HRs), the effect of each SNP was modeled either as a per-allele HR (multiplicative model) or as genotype-specific HRs, and was estimated on the log-scale by maximizing the retrospective likelihood. The retrospective likelihood was fitted using the pedigree-analysis software MENDEL. The variances of the parameter estimates were obtained by robust variance estimation based on reported family membership.

All analyses were stratified by country of residence and based on calendar-year and cohort-specific breast cancer incidence rates for mutation carriers. Countries with small number of mutation carriers were combined with neighbouring countries to ensure sufficiently large numbers within each stratum. USA and Canada were further stratified by reported Ashkenazi Jewish (AJ) ancestry.

Imputation. Genotypes were imputed separately for BRCA1 and BRCA2 mutation carriers using the v3 April 2012 release (Genomes Project et al., 2012) as reference panel. To improve computation efficiency we used a two-step procedure which involved pre-phasing in the first step and imputation of the phased data in the second. Pre-phasing was carried out using the SHAPEIT software [40]. The IMPUTE version 2 software was used for the subsequent imputation [41]. SNPs were excluded from the association analysis if their imputation accuracy was $r^2 < 0.3$ or MAF < 0.005 in any of the data sets. For the final analysis we only took in account those SNPs with an imputation accuracy $r^2 > 0.7$, MAF > 0.01 and being located in the region comprised within 15 kilo bases (kb) downstream and upstream the gene where the genotyped SNP showing an association was located (Table 1). Associations between imputed genotypes and breast cancer risk were evaluated using a version of the score test as described above but with the posterior genotype probabilities replacing the genotypes.

Supporting Information

Figure S1 p-values of association (−log10 scale) with breast and ovarian cancer risk in BRCA1 and BRCA2 carriers for genotyped and imputed SNPs considering 15 kb upstream and downstream the genes in which SNPs described in Table 1 were located. rs numbers of SNPs from Table 1 are indicated at the top of each panel and in the graph with a purple arrow. For PARP2 gene, the imputed SNP with the strongest association, rs61995542 is indicated with a red arrow. Colors represent the pairwise r^2.

Table S1 Association with breast cancer for the 94 SNPs selected for analysis in stage I.

Table S2 number of BRCA1 and BRCA2 carriers by study.
CONoorsozio Stati Italiani sui Tumori Ereditari Alla Mamella (CONISIT TEAM) acknowledged: Monica Barile and Irene Forcino of the Istituto Europeo di Oncologia, Milan, Italy; Antonella Savarese and Aline Martayan of the Istituto Nazionale Tumori Regina Elena, Rome, Italy; Stefania Tommasi, Brunella Pilato and Rossana Lambro of the Istituto Nazionale Tumori “Giovanni Paolo II” - Bari, Italy and the personnel of the Cogenetics Cancer Genetic Test Laboratory, Milan, Italy.

The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON) consists of the following Collaborating Centres: Coordinating center: Netherlands Cancer Institute, Amsterdam, NL: M. M. Collée, A.M.W. van den Ouwel, M. J. Hooning, C. Seynaeve, C. H. van Deurzen, I. M. Oosterwijk, A. H. van der Luijt; Amsterdam Medical Center, NL: M. G. E. M. Ausems, R. B. van der Laan; Amsterdam Medical Center, NL: C. M. Aalès, T. A. M. van Os; VU University Medical Center, Amsterdam, NL: J. J. P. Gilze, Q. Waisfisz, H. E. J. Meijers-Heijboer; University Hospital Maastricht, NL: E. B. Gomez-Garcia, M. J. Blok; University Medical Center Groningen, NL: C. J. Oosterwijk, A. H. van der Hout, M. J. M. Moors, G. H. de Bock. The Netherlands Foundation for the detection of hereditary tumours, Leiden, NL: H. F. Vasen. Hungarian Breast Cancer Society, Budapest, Hungary: András Péczely, Ferenczi, Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary) and the clinicians and patients for their contributions to this study.

Interdisciplinary Health Research Internal Team Breast Cancer susceptibility (INHERIT) we wish to thank the heads and staff of the Cancer Genetic Test Laboratory, Milan, Italy.

The German Consortium of Hereditary Breast and Ovarian Cancer (GC-HBOC): we acknowledge the contribution of Kim De Leenheer and Anne De Paeppe. We wish to thank the technical support of Ilse Coene en Breet Crombeez.

Hospital Clinico San Carlos (HCSC) study: we acknowledge Alicia Tosar for her technical assistance.

Helsinkii Breast Cancer Study (HEBCS) would like to thank Drs. Kristiina Aittomaki, Carl Blomqvist and Kirsimari Aaltonen and Taru A. Muranen and RN Itra Erkkila for their help with the HEBCS data and samples.

The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON) consists of the following Collaborating Centres: Coordinating center: Netherlands Cancer Institute, Amsterdam, NL: M. M. Collée, A.M.W. van den Ouwel, M. J. Hooning, C. Seynaeve, C. H. van Deurzen, I. M. Oosterwijk, A. H. van der Luijt; Amsterdam Medical Center, NL: M. G. E. M. Ausems, R. B. van der Laan; Amsterdam Medical Center, NL: C. M. Aalès, T. A. M. van Os; VU University Medical Center, Amsterdam, NL: J. J. P. Gilze, Q. Waisfisz, H. E. J. Meijers-Heijboer; University Hospital Maastricht, NL: E. B. Gomez-Garcia, M. J. Blok; University Medical Center Groningen, NL: C. J. Oosterwijk, A. H. van der Hout, M. J. M. Moors, G. H. de Bock. The Netherlands Foundation for the detection of hereditary tumours, Leiden, NL: H. F. Vasen. Hungarian Breast Cancer Society, Budapest, Hungary: András Péczely, Ferenczi, Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary) and the clinicians and patients for their contributions to this study.

Interdisciplinary Health Research Internal Team Breast Cancer susceptibility (INHERIT) we wish to thank the heads and staff of the Cancer Genetic Test Laboratory, Milan, Italy.

The German Consortium of Hereditary Breast and Ovarian Cancer (GC-HBOC): we are very thankful to all family members who participated in this study, Wolfram Heinritz, Center Leipzig, and Dieter Schafer, Center Frankfurt, for providing DNA samples and Juliane Kohler for excellent technical assistance.

Family Cancer Clinics, and the Clinical Follow Up Study for their contributions to this resource, and the many families who contribute to kConFab.

National Israeli Cancer Control Center (NICCC): we wish to thank the NICCC National Familial Cancer Consultation Service team led by Sara Dishon, the lab team led by Dr. Flavio Lejzkowicz, and the research field operations team led by Dr. Mily Pinchev.

The Ohio State University Comprehensive Cancer Center (OSUCCG) acknowledges Leigha Senter, Kevin Sweet, Carolina Caven and Michelle O’Connor were instrumental in accrual of study participants, ascertainment of medical records and database management. Samples were processed by the OSU Human Genetics Sample Bank.SMC team wishes to acknowledge the assistance of the Meirav Comprehensice breast cancer center at the Sheba Medical Center for assistance in these studies.

Sheba Medical Centre (SMC): SMC team wishes to acknowledge the assistance of the Meirav Comprehensice breast cancer center team at the Sheba Medical Center for...

References

