Importance of carbon as limiting nutrient for bacterioplankton in a boreal sub-arctic coastal system.

Soares, Ana; Berggren, Martin

2015

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
IMPORTANT OF CARBON AS LIMITING NUTRIENT FOR BACTERIOPLANKTON IN A BOREAL SUB-ARCTIC COASTAL SYSTEM

Ana Soares & Martin Berggren
Department of Physical Geography and Ecosystem Science, Lund University
ana.soares@nateko.lu.se

- Although nutrient stoichiometry predicted phosphorus (P) limitation, carbon (C) strongly limited bacterioplankton respiration (BR)
- Increases in organic C loading may exacerbate coastal oxygen (O₂) depletion

Results and discussion

Figure 2. Relative impact (%) of additions of C, N and P, shown as the change in marginal mean (response of bacterial respiration adjusted for all other variables in the model). The nutrient enrichment experiments were performed on a total of 8 dates, and the results were interpolated for the whole period. Flow data was obtained from the Swedish national monitoring programme.

Table 1. In situ concentrations of dissolved organic carbon (DOC), total nitrogen (tN), total phosphorus (tP) and C:N:P ratios.

<table>
<thead>
<tr>
<th>Date</th>
<th>DOC mgL⁻¹</th>
<th>TN mgL⁻¹</th>
<th>TP μgL⁻¹</th>
<th>C:N:P (mol/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/04/2014</td>
<td>5.9</td>
<td>0.33</td>
<td>12</td>
<td>795:81:1</td>
</tr>
<tr>
<td>09/06/2014</td>
<td>2.9</td>
<td>0.24</td>
<td>6</td>
<td>1239:19:1</td>
</tr>
<tr>
<td>04/05/2014</td>
<td>3.1</td>
<td>0.14</td>
<td>6</td>
<td>1335:32:1</td>
</tr>
<tr>
<td>24/05/2014</td>
<td>4.1</td>
<td>0.28</td>
<td>15</td>
<td>706:41:1</td>
</tr>
<tr>
<td>19/06/2014</td>
<td>3.7</td>
<td>0.29</td>
<td>8</td>
<td>1195:58:1</td>
</tr>
<tr>
<td>08/07/2014</td>
<td>3.8</td>
<td>0.37</td>
<td>7</td>
<td>1402:108:1</td>
</tr>
<tr>
<td>24/08/2014</td>
<td>3.9</td>
<td>0.21</td>
<td>6</td>
<td>1079:81:1</td>
</tr>
<tr>
<td>05/09/2014</td>
<td>3.3</td>
<td>0.23</td>
<td>7</td>
<td>1218:66:1</td>
</tr>
</tbody>
</table>

Nutrient stoichiometry predicted P as main limiting nutrient (Table 1), however BR was mostly C limited. Our study underscores the role of terrestrial dissolved organic carbon (tDOC) fluxes on coastal oxygen concentrations, which is expected to increase in face of global changes (Wikner and Andersson 2012). Our findings further evidence the shortcomings of nutrient stoichiometry in predicting ecologically available nutrient pools.

Background

Dissolved O₂ concentrations in coastal waters are related to the influx of inorganic N and P which promotes primary productivity and BR (Bianchi et al. 2010). Particularly heterotrophic bacterioplankton is affected by fluxes of N and P directly through resource regulation and indirectly through control on primary producers. Additionally, heterotrophic BR may be constrained by inflows of tDOC to coasts (Nydahl et al. 2013). However, consensus on whether BR in aquatic systems is controlled by C or P is missing (Dorado-García et al. 2014). In the northern Baltic Sea, coastal waters are recipients of large shares of tDOC (Gustafsson et al. 2014) and typically show high C:P ratios. In such systems it is hypothesized that BR is limited by P rather than by C.

All three C, nitrogen (N) and P elements increased BR when added alone (Fig. 2) or combined (Fig. 3 and 4). Among single element additions, C had the strongest effects on BR ranging from a 6 % increase at high flow to a 700% increase at winter low flow. Combined additions of C and P and C and N had similar impacts on BR (~660%).