Directed Flow of Charged Particles at Midrapidity Relative to the Spectator Plane in Pb-Pb Collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \).

Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agocs, A G; Agostinelli, A; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahmed, I; Ahn, S A; Ahn, S U; Aimo, I; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alexandre, D; Alici, A; Alkin, A; Alme, J; Alt, T; Altini, V; Altipinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslanbekov, M; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.111.232302

2013

Link to publication

Citation for published version (APA):
https://doi.org/10.1103/PhysRevLett.111.232302

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Directed Flow of Charged Particles at Midrapidity Relative to the Spectator Plane in Pb-Pb Collisions at √sNN = 2.76 TeV

B. Abelev et al.*
(ALICE Collaboration)
(Received 18 June 2013; published 6 December 2013)

The directed flow of charged particles at midrapidity is measured in Pb-Pb collisions at √sNN = 2.76 TeV relative to the collision symmetry plane defined by the spectator nucleons. A negative slope of the rapidity-odd directed flow component with approximately 3 times smaller magnitude than found at the highest RHIC energy is observed. This suggests a smaller longitudinal tilt of the initial system and disfavors the strong fireball rotation predicted for the LHC energies. The rapidity-even directed flow component is measured for the first time with spectators and found to be independent of pseudorapidity with a sign change at transverse momenta \(p_T \) between 1.2 and 1.7 GeV/c. Combined with the observation of a vanishing rapidity-even \(p_T \) shift along the spectator deflection this is strong evidence for dipolelike initial density fluctuations in the overlap zone of the nuclei. Similar trends in the rapidity-even directed flow and the estimate from two-particle correlations at midrapidity, which is larger by about a factor of 40, indicate a weak correlation between fluctuating participant and spectator symmetry planes. These observations open new possibilities for investigation of the initial conditions in heavy-ion collisions with spectator nucleons.

DOI: 10.1103/PhysRevLett.111.232302
PACS numbers: 25.75."/C0, 25.75.Ld

The goal of the heavy-ion program at the Large Hadron Collider (LHC) is to explore the properties of deconfined quark-gluon matter. Anisotropic transverse flow is sensitive to the early times of the collision, when the deconfined state of quarks and gluons is expected to dominate the collision dynamics (see reviews [1–3] and references therein), with a positive (in-plane) elliptic flow as first observed at the Alternating Gradient Synchrotron (AGS) [4,5]. A much stronger flow was subsequently measured at the Super Proton Synchrotron (SPS) [6], Relativistic Heavy Ion Collider (RHIC) [7–9], and recently at the LHC [10–12]. Elliptic flow at RHIC and the LHC is reproduced by hydrodynamic model calculations with a small value of the ratio of shear viscosity to entropy density [13–16].

Despite the success of hydrodynamics in describing the equilibrium phase of matter produced in a relativistic heavy-ion collision, there are still large theoretical uncertainties in determination of the initial conditions. Significant triangular flow measured recently at RHIC [17,18] and LHC [12,19,20] energies has demonstrated [21,22] that initial energy fluctuations play an important role in the development of the final momentum-space anisotropy of the distribution of produced particles.

The collision geometry is illustrated in Fig. 1, which depicts the participant overlap region and spectators as viewed in (a) the reaction plane and (b) the plane perpendicular to the beam. Figure 1(a) shows the projectile and target spectators repelled in the reaction (xz) plane from the center of the colliding system along the impact parameter (x) direction. An alternative scenario where spectators...
are attracted towards the center of the system is discussed in \[23\].

The directed flow is characterized by the first harmonic coefficient \(v_1\) in a Fourier decomposition of the particle azimuthal distribution with respect to one of the collision symmetry planes, \(\Psi\), as illustrated in Fig. 1(b) and discussed below

\[
v_1(\eta, p_T)(\Psi) = \langle \cos(\phi - \Psi) \rangle.
\]

Here \(\eta = -\ln(\tan(\theta/2))\), \(p_T\), \(\theta\), and \(\phi\) are the particle pseudorapidity, transverse momentum, polar, and azimuthal angles, respectively. The brackets \(\langle \ldots \rangle\) indicate an average over measured particles in all recorded events.

For a nonfluctuating nuclear matter distribution, the directed flow in the participant zone develops along the impact parameter direction. The collision symmetry requires that the directed flow be an antisymmetric function of pseudorapidity, \(v_1^{\text{odd}}(\eta) = -v_1^{\text{odd}}(-\eta)\). Because of event-by-event fluctuations in the initial energy density of the collision, the participant plane angle (\(\Psi_{\text{pr}}\)) defined by the dipole asymmetry of the initial energy density \[24,25\] and that of projectile (\(\Psi_{\text{sp}}\)) and target (\(\Psi_{\text{sp}}\)) spectators are different from the geometrical reaction plane angle \(\Psi_{\text{sp}}\) [x axis in Fig. 1(b)]. As a consequence, the directed flow can develop \[24–27\] a rapidity-symmetric component, \(v_1^{\text{even}}(\eta) = v_1^{\text{even}}(-\eta)\), which does not vanish at midrapidity.

The slope of \(v_1^{\text{odd}}\) as a function of rapidity at AGS \[5,28\] and SPS \[29,30\] energies is driven by the difference between baryon and meson production and shadowing by the nuclear remnants. At higher (RHIC) energies a multiple between baryon and meson production and shadowing by can be related via realistic model calculations, making baryon stopping in the nuclear overlap zone \[37\]. The two magnitude of the directed flow depends on the amount of

\[111, PRL \]

114 m from the interaction point on each side, covering the \(|\eta| > 8.78\) \(\text{(beam rapidity)}\) region. A typical energy measured by both ZDCs for 30%–40% centrality is about 100 TeV \[48\]. The spectator deflection in the transverse plane was measured with a pair of two-dimensional vectors

\[
\mathbf{Q}^{\nu} = (\mathbf{Q}_x^{\nu}, \mathbf{Q}_y^{\nu}) = \frac{4}{\sum_{i=1}^{4} E_i^{\nu} p_i} \left[\sum_{i=1}^{4} E_i^{\nu} p_i \right],
\]

where \(p_t\) denotes the ZDC on the \(\eta > 0 \ (\eta < 0)\) side of the interaction point, \(E_i\) is the measured signal, and \(n_i = (x_i, y_i)\) are the coordinates of the \(i\)th ZDC segment. An asymmetry of 0.1% \[49\] in energy calibration of the two ZDCs and an absolute energy scale uncertainty cancel in Eq. (2). To compensate for the run-dependent variation of the LHC beam crossing position, an event-by-event correction \(\mathbf{Q}^{\nu} = \mathbf{Q}^{\nu} - \langle \mathbf{Q}^{\nu} \rangle\) \[3\] was applied as a function of collision centrality and transverse position of the collision vertex relative to the center of the ALICE detector. Experimental values of the correction for the 30%–40% centrality class are \(\langle Q_x^{\nu} \rangle \approx 2.0(-1.5)\) mm and \(\langle Q_y^{\nu} \rangle \approx -1.1(0.01)\) mm.

The directed flow is determined with the scalar product method \[3,50\]
\[v_1(\Psi_{SP}^p) = \frac{1}{\sqrt{2}} \left[\frac{\langle u_x Q_{Q}^p \rangle}{\sqrt{\langle Q_x^2 \rangle}} + \frac{\langle u_y Q_{Q}^p \rangle}{\sqrt{\langle Q_y^2 \rangle}} \right], \]
\[v_1(\Psi_{SP}^s) = -\frac{1}{\sqrt{2}} \left[\frac{\langle u_x Q_{Q}^s \rangle}{\sqrt{\langle Q_x^2 \rangle}} + \frac{\langle u_y Q_{Q}^s \rangle}{\sqrt{\langle Q_y^2 \rangle}} \right], \]
where \(u_x = \cos \phi \) and \(u_y = \sin \phi \) are defined for charged particles at midrapidity. The odd and even components of the directed flow relative to the spectator plane \(|\Psi = \Psi_{SP}\) in Eq. (1)] are then calculated from the equations
\[v_1^{\text{odd}}(\Psi_{SP}) = [v_1(\Psi_{SP}^p) + v_1(\Psi_{SP}^s)]/2 \]
and
\[v_1^{\text{even}}(\Psi_{SP}) = [v_1(\Psi_{SP}^p) - v_1(\Psi_{SP}^s)]/2. \]
Equation (4) defines the sign of \(v_1^{\text{odd}} \) using the convention used at RHIC [33,34] and implies a positive directed flow [or deflection along the positive x-axis direction in Fig. 1(a)] of the projectile spectators.

The negative correlations \(\langle Q_x^2 \rangle Q_y^2 \rangle \) and \(\langle Q_y^2 \rangle Q_x^2 \rangle \) [51] indicate a deflection of the projectile and target spectators in opposite directions. These correlations are sensitive to a combination of the spectator’s directed flow relative to the reaction plane \(\Psi_{SP}^p \) and an additional contribution due to flow of spectators along the fluctuating \(\Psi_{SP}^s \) and \(\Psi_{SP} \) directions [see Fig. 1(b)]. The two contributions are not separable using current experimental techniques and both should be considered in theoretical interpretations of the results derived from Eqs. (3)–(5). Given that the transverse deflection of spectators \(d_{\text{spec}} = \sqrt{\langle Q_x^2 \rangle + \langle Q_y^2 \rangle} \) is tiny compared to the ZDC detector position \(z_{\text{ZDC}} = 114 \text{~m} \) along the beam direction, one can make a rough estimate of the corresponding transverse momentum carried by an individual spectator: \(p_T^{\text{spec}} = \sqrt{s_{\text{NN}}}(d_{\text{spec}}/z_{\text{ZDC}}) \). The measured \(d_{\text{spec}} = 0.67 (0.92) \text{~mm} \) [51] for the 5%–10% (30%–40%) centrality class which yields \(p_T^{\text{spec}} \sim 16(22) \text{~MeV/c} \). Correlations \(\langle Q_x^2 \rangle \) and \(\langle Q_y^2 \rangle \) in orthogonal directions, which can be nonzero due to residual detector effects, are less than 5% [51] of those in the aligned directions. The 10%–20% [51] difference between \(\langle Q_x^2 \rangle \) and \(\langle Q_y^2 \rangle \) for midcentral collisions is mainly due to a different offset of the beam spot from the center of the ZDCs in plane and perpendicular to the LHC accelerator ring. The corresponding dominant systematic uncertainty is evaluated from the spread of results for different terms in Eq. (3) and estimated to be below 20%. The results obtained with Eq. (3) are consistent with calculations using the event plane method [3]. The results with opposite polarity of the magnetic field of the ALICE detector are consistent within 5%. Variation of the results with the collision centrality estimated with the TPC, VZERO, and silicon pixel detectors [47] and with narrowing the nominal \(\pm 10 \text{~cm} \) range of the collision vertex along the beam direction from the center of the ALICE detector to \(\pm 7 \text{~cm} \) is less than 5%. Altering the selection criteria for the tracks reconstructed with the TPC resulted in a 3%–5% variation of the results. The systematic error evaluated for each of the sources listed above were added in quadrature to obtain the total systematic uncertainty of the measurement.

Figure 2(a) shows the charged particle directed flow as a function of pseudorapidity for 10%–20%, 30%–40%, and 10%–60% centrality classes. The \(v_1^{\text{odd}}(\eta) \) component is found to be negative and independent of \(\eta \). The \(v_1^{\text{even}}(\eta) \) component exhibits a negative slope as a function of pseudorapidity. This is in contrast to the positive slope expected from the model calculations [39,40] with stronger rotation of the participant zone at the LHC than at RHIC. The \(v_1^{\text{odd}}(\eta) \) at the highest RHIC energy [34] has the same sign of the slope and a factor of 3 larger magnitude. This is consistent with a smaller tilt of the participant zone in the x-z plane [see Fig. 1(a)] as predicted in [38] for LHC energies. Figure 2(c) compares \(v_1^{\text{odd}} \) with the STAR data [34] for Au-Au collisions at \(\sqrt{s_{\text{NN}}} = 200 \text{~(62)~GeV} \) down-scaled by the ratio 0.37 (0.12) of the slope at the LHC to

FIG. 2 (color online). (a) \(v_1 \) and (b) \(\langle p_T \rangle / \langle p_T \rangle \) versus pseudorapidity in Pb-Pb collisions at \(\sqrt{s_{\text{NN}}} = 2.76 \text{~TeV} \). (c) \(v_1^{\text{odd}} \) compared to the STAR data [34] for Au-Au collisions at \(\sqrt{s_{\text{NN}}} = 200 \text{~(62.4)~GeV} \) down-scaled by a factor 0.37 (0.12). The statistical (systematic) uncertainties are indicated by the error bars (shaded bands). Lines (to guide the eye) represent fits with a linear (constant) function for \(v_1^{\text{odd}} \) (\(v_1^{\text{even}} \)).
that at RHIC energy. These ratios indicate a strong violation by a factor of 1.82 (4.55) of the beam rapidity scaling discussed in [36].

Figure 2(b) shows the relative momentum shift \(\langle p_x \rangle / \langle p_T \rangle \equiv \langle p_T \cos(\phi - \Psi_{SP}) \rangle / \langle p_T \rangle \) along the spectator plane as a function of pseudorapidity. It is obtained by introducing a \(p_T / \langle p_T \rangle \) weight in front of \(u_x \) and \(u_y \) in Eq. (3). The nonzero \(\langle p_x \rangle / \langle p_T \rangle \) shift has a smaller magnitude than \(\nu_1^{\text{odd}} \). The \(\langle p_x \rangle / \langle p_T \rangle \) vanishes which is consistent with the dipolelike event-by-event fluctuations of the initial energy density in a system with zero net transverse momentum. Disappearance of \(\langle p_x \rangle \) at \(\eta = 0 \) indicates that particles produced at midrapidity are not involved in balancing the transverse momentum carried away by spectators.

Figures 3(a) and 3(b) present \(v_1 \) and \(\langle p_x \rangle / \langle p_T \rangle \) versus collision centrality. The even components were calculated by taking values at negative \(\eta \) with an opposite sign. Both \(v_1 \) components have weak centrality dependence. The \(\langle p_x \rangle \) component is zero at all centralities, while \(\langle p_x \rangle / \langle p_T \rangle \) is a steeper function of centrality than \(\nu_1^{\text{odd}} \). This suggests that \(\nu_1^{\text{odd}} \) has two contributions. The first contribution has a similar origin as \(\nu_1^{\text{even}} \) due to asymmetric dipolelike initial energy distribution. The second contribution grows almost linearly from central to peripheral collisions and represents an effect of sideward collective motion of particles at nonzero rapidity due to expansion of the initially tilted source. This \(\nu_1^{\text{odd}} \) is balanced by that of the particles produced at opposite rapidity and in very forward (spectator) regions. The magnitude of \(\nu_1^{\text{odd}} \) at the LHC is significantly smaller than at RHIC with a similar centrality dependence [see Fig. 3(c)].

Figure 4(a) presents \(v_1 \) as a function of \(p_T \). Both components change sign around \(p_T \) between 1.2 and 1.7 GeV/c which is expected for the dipolelike energy fluctuations when the momentum of the low \(p_T \) particles is balanced by those at high \(p_T \) [24–27]. The \(p_T \) dependence of \(v_1^{\text{even}} \) relative to \(\Psi_{SP} \) is similar to that of \(v_1^{\text{even}} \) relative to \(\Psi_{PP} \) estimated from the Fourier fits of the two-particle correlations [12,20,42], while its magnitude is smaller by a factor of 40 [27,52]. This can be interpreted as a weak correlation, \(\langle \cos (\Psi_{PP} - \Psi_{SP}) \rangle \ll 1 \), between the orientation of the participant and spectator collision symmetry planes. Compared to the RHIC measurements in Fig. 4(b), \(\nu_1^{\text{odd}} \) shows a similar trend including the sign change around \(p_T \) of 1.5 GeV/c in central collisions and a negative value at all \(p_T \) for peripheral collisions.

According to hydrodynamic model calculations [24,27,53] particles with low \(p_T \) should flow in the direction opposite to the largest density gradient. This, together with the negative even and odd \(v_1 \) components relative to \(\Psi_{SP} \) measured for particles at midrapidity with low transverse momentum \(p_T \leq 1.2 \) GeV/c allows one, in principle, to determine if spectators deflect away from or towards the center of the system. However, a detailed

![FIG. 3](color online). (a) \(v_1 \) and (b) \(\langle p_x \rangle / \langle p_T \rangle \) versus centrality. (c) \(\nu_1^{\text{odd}} \) comparison with STAR data [34]. See text and Fig. 2 for description of the data points.

![FIG. 4](color online). (a) \(v_1 \) versus transverse momentum. (b) \(\nu_1^{\text{odd}} \) comparison with STAR data [34]. See text and Fig. 2 for description of the data points. Lines (to guide the eye) represent fits with a third order polynomial.
theoretical calculation of the correlation between fluctuations in the spectator positions and energy density in the participant zone such as in [23] is required to provide a definitive answer to this question.

In summary, the v_1^{odd} and v_1^{even} components of charged particle directed flow at midrapidity, $|\eta| < 0.8$, are measured relative to the spectator plane for Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV. The v_1^{odd} has a negative slope as a function of pseudorapidity with a magnitude about 3 times smaller than at the highest RHIC energy. This suggests a smaller tilt of the medium created in the participant zone at smaller than at the highest RHIC energy. This suggests a smaller tilt of the medium created in the participant zone at the LHC, with insufficient rotation to alter the slope of $v_1^{\text{odd}}(\eta)$ as predicted in [39,40]. As a function of p_T, v_1^{odd} and v_1^{even} cross zero at p_T between 1.2 and 1.7 GeV/c for semicentral collisions. Disappearance of $\langle p_T \rangle$ for particles produced close to zero rapidity suggest that they do not play a role in balancing the p_T kick of spectators. The shape of $v_1^{\text{even}}(p_T)$ and a vanishing $\langle p_T \rangle^{\text{even}}$ is consistent with dipolelike fluctuations of the initial energy density in the participant zone. A similar shape but with about 40 times larger magnitude was observed for an estimate of $v_1^{\text{even}}(p_T)$ relative to the participant plane from the Fourier fits of the two-particle correlation [12,20,42]. This indicates that fluctuating participant and spectator collision symmetry planes are weakly correlated, which is important experimental input for modeling the ill-constrained initial conditions of a heavy-ion collision. Future studies of the directed flow at midrapidity using identified particles and extension of the v_1 measurements to forward rapidities should provide a stronger constraint on the effects of initial density fluctuations in the formation of directed flow.

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE), and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community’s Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the “Region Pays de Loire,” “Region Alsace,” “Region Auvergne,” and CEA, France; German BMBF and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OKTA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi,” Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT, DGAPA, México, ALFANET, and the EPLANET Program (European Particle Physics Latin American Network) Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research—NASR (Autoritatea Națională pentru Cercetare Științifică—ANCS); Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations, and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT, EELA, Ministerio de Economía y Competitividad (MINECO) of Spain, Xunta de Galicia (Consellería de Educación), CEADEN, Cubaenergía, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); USA Department of Energy, USA National Science Foundation, the State of Texas, and the State of Ohio.

A. Telesca,6 A. Ter Minasyan,17 C. Terrevoli,24 J. Thäder,28 D. Thomas,58 R. Tieulent,84 A. R. Timmins,55 D. Tlusty,2
M. Vajzer,2,3 M. Vala,50,46 L. Valencia Palomo,88 S. Vallero,15 P. Vande Vyvre,6 J. W. Van Hoorne,6
M. van Leeuwen,58 L. Vannucci,129 A. Vargas,90 R. Varma,53 M. Vasileiou,102 A. Vasiliev,17 V. Vechernin,26
M. Veldhoen,58 M. Venaruzzo,76 E. Vercellin,15 S. Vergara,90 R. Vernet,131 M. Verweij,68,58 L. Vickovic,106
G. Volpe,6 B. von Haller,11 I. Vorobyev,26 D. Vranic,28,6 J. Vrálková,67 B. Vulpecu,42 A. Vyushin,72 B. Wagner,25
M. C. S. Williams,19 M. Winn,29 B. Windelband,29 C. Xiang,74 C. G. Yaldu,68 Y. Yamaguchi,108 H. Yang,45,58
S. Yang,25 P. Yang,74 S. Yano,130 S. Yasnopolskiy,17 J. Yi,86 Z. Yin,74 I.-K. Yoo,86 J. Yoon,81 I. Yushmanov,17
V. Zaccolo,52 C. Zach,2 C. Zampolli,19 S. Zapozhets,80 A. Zarochentsev,26 P. Závada,120 N. Zavilyaev,72
H. Zbroszczyk,92 P. Zelnicek,64 I. S. Zgura,93 M. Zhalov,57 Y. Zhang,74 X. Zhang,63,42,74 F. Zhang,74 H. Zhang,74
G. Zinovjev,21 Y. Zoccarato,84 M. Zynovyev,21 and M. Zyzak35

(ALICE Collaboration)

1Lawrence Livermore National Laboratory, Livermore, California, USA
2Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
3Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež u Prahy, Czech Republic
4Yale University, New Haven, Connecticut, USA
5Physics Department, Panjab University, Chandigarh, India
6European Organization for Nuclear Research (CERN), Geneva, Switzerland
7Sezione INFN, Turin, Italy
8Politecnico di Torino, Turin, Italy
9Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
10Dipartimento di Fisica e Astronomia dell’Università e Sezione INFN, Bologna, Italy
11Variable Energy Cyclotron Centre, Kolkata, India
12Department of Physics Aligarh Muslim University, Aligarh, India
13COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
14Korea Institute of Science and Technology Information, Daejeon, South Korea
15Dipartimento di Fisica dell’Università e Sezione INFN, Turin, Italy
16Institute for Theoretical and Experimental Physics, Moscow, Russia
17Russian Research Centre Kurchatov Institute, Moscow, Russia
18School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19Sezione INFN, Bologna, Italy
20Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi,” Rome, Italy
21Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
22Faculty of Engineering, Bergen University College, Bergen, Norway
23Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
24Dipartimento Interateneo di Fisica “M. Merlin” and Sezione INFN, Bari, Italy
25Department of Physics and Technology, University of Bergen, Bergen, Norway
26V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
27National Institute for Physics and Nuclear Engineering, Bucharest, Romania
28Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
29Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
30Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany
31Department of Physics, The Ohio State University, Columbus, Ohio, USA
32Rudjer Bošković Institute, Zagreb, Croatia
33Sezione INFN, Padova, Italy
34SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS-IN2P3, Nantes, France
35Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
36Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier, CNRS-IN2P3, Institut Polytechnique de Grenoble, Grenoble, France

PRL 111, 232302 (2013) PHYSICAL REVIEW LETTERS week ending 6 DECEMBER 2013

232302-9
\[\text{Department of Física de Partículas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain}\]

\[\text{Physics Department, University of Cape Town and iThemba LABS, National Research Foundation, Somerset West, South Africa}\]

\[\text{Helsinki Institute of Physics (HIF) and University of Jyväskylä, Jyväskylä, Finland}\]

\[\text{Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal, CNRS-IN2P3, Clermont-Ferrand, France}\]

\[\text{Joint Institute for Nuclear Research (JINR), Dubna, Russia}\]

\[\text{Institut de Physique Corpusculaire (IPPC), Clermont Université, Université Blaise Pascal, CNRS-IN2P3, Clermont-Ferrand, France}\]

\[\text{University of Tsukuba, Tsukuba, Japan}\]

\[\text{Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain}\]

\[\text{Moscow Engineering Physics Institute, Moscow, Russia}\]

\[\text{University of Toulouse, Toulouse, France}\]

\[\text{The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland}\]

\[\text{Institut de Physique Corpusculaire (IIPC), Clermont Université, Université Blaise Pascal, CNRS-IN2P3, Clermont-Ferrand, France}\]

\[\text{Joint Institute for Nuclear Research (JINR), Dubna, Russia}\]

\[\text{Institut de Physique Corpusculaire (IPPC), Clermont Université, Université Blaise Pascal, CNRS-IN2P3, Clermont-Ferrand, France}\]

\[\text{University of Munich, Munich, Germany}\]

\[\text{Saha Institute of Nuclear Physics, Kolkata, India}\]

\[\text{Moscow Engineering Physics Institute, Moscow, Russia}\]

\[\text{University of Connecticut, Storrs, Connecticut, USA}\]

\[\text{Institut de Physique Nucleaire d'Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France}\]

\[\text{University of St Andrews, St Andrews, Scotland, UK}\]

\[\text{Instituto de Física, Universidad de la República, Montevideo, Uruguay}\]

\[\text{Institut de Physique Corpusculaire (IPPC), Clermont Université, Université Blaise Pascal, CNRS-IN2P3, Clermont-Ferrand, France}\]

\[\text{University of Copenhagen, Copenhagen, Denmark}\]

\[\text{University of Stockholm, Stockholm, Sweden}\]

\[\text{University of Tsukuba, Tsukuba, Japan}\]

\[\text{Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain}\]

\[\text{Moscow Engineering Physics Institute, Moscow, Russia}\]

\[\text{University of Toulouse, Toulouse, France}\]

\[\text{The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland}\]

\[\text{Joint Institute for Nuclear Research (JINR), Dubna, Russia}\]

\[\text{Institut de Physique Corpusculaire (IIPC), Clermont Université, Université Blaise Pascal, CNRS-IN2P3, Clermont-Ferrand, France}\]

\[\text{University of Munich, Munich, Germany}\]

\[\text{Saha Institute of Nuclear Physics, Kolkata, India}\]

\[\text{Moscow Engineering Physics Institute, Moscow, Russia}\]

\[\text{University of Connecticut, Storrs, Connecticut, USA}\]

\[\text{Institut de Physique Nucleaire d'Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France}\]

\[\text{University of St Andrews, St Andrews, Scotland, UK}\]

\[\text{Instituto de Física, Universidad de la República, Montevideo, Uruguay}\]

\[\text{Institut de Physique Corpusculaire (IPPC), Clermont Université, Université Blaise Pascal, CNRS-IN2P3, Clermont-Ferrand, France}\]

\[\text{University of Munich, Munich, Germany}\]

\[\text{Saha Institute of Nuclear Physics, Kolkata, India}\]

\[\text{Moscow Engineering Physics Institute, Moscow, Russia}\]

\[\text{University of Connecticut, Storrs, Connecticut, USA}\]

\[\text{Institut de Physique Nucleaire d'Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France}\]

\[\text{University of St Andrews, St Andrews, Scotland, UK}\]

\[\text{Instituto de Física, Universidad de la República, Montevideo, Uruguay}\]

\[\text{Institut de Physique Corpusculaire (IPPC), Clermont Université, Université Blaise Pascal, CNRS-IN2P3, Clermont-Ferrand, France}\]

\[\text{University of Munich, Munich, Germany}\]

\[\text{Saha Institute of Nuclear Physics, Kolkata, India}\]

\[\text{Moscow Engineering Physics Institute, Moscow, Russia}\]

\[\text{University of Connecticut, Storrs, Connecticut, USA}\]

\[\text{Institut de Physique Nucleaire d'Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France}\]

\[\text{University of St Andrews, St Andrews, Scotland, UK}\]

\[\text{Instituto de Física, Universidad de la República, Montevideo, Uruguay}\]

\[\text{Institut de Physique Corpusculaire (IPPC), Clermont Université, Université Blaise Pascal, CNRS-IN2P3, Clermont-Ferrand, France}\]

\[\text{University of Munich, Munich, Germany}\]

\[\text{Saha Institute of Nuclear Physics, Kolkata, India}\]

\[\text{Moscow Engineering Physics Institute, Moscow, Russia}\]

\[\text{University of Connecticut, Storrs, Connecticut, USA}\]

\[\text{Institut de Physique Nucleaire d'Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France}\]

\[\text{University of St Andrews, St Andrews, Scotland, UK}\]

\[\text{Instituto de Física, Universidad de la República, Montevideo, Uruguay}\]

\[\text{Institut de Physique Corpusculaire (IPPC), Clermont Université, Université Blaise Pascal, CNRS-IN2P3, Clermont-Ferrand, France}\]

\[\text{University of Munich, Munich, Germany}\]

\[\text{Saha Institute of Nuclear Physics, Kolkata, India}\]

\[\text{Moscow Engineering Physics Institute, Moscow, Russia}\]

\[\text{University of Connecticut, Storrs, Connecticut, USA}\]

\[\text{Institut de Physique Nucleaire d'Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France}\]

\[\text{University of St Andrews, St Andrews, Scotland, UK}\]

\[\text{Instituto de Física, Universidad de la República, Montevideo, Uruguay}\]
Deceased.