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Superfast Approximative Implementation of the IAA Spectral
Estimate

G. O. Glentis∗, Member, IEEE, and A. Jakobsson†, Senior Member, IEEE

Abstract— In this correspondence, we develop superfast approximative
one-dimensional algorithms for the computationally efficient implemen-
tation of the recent Iterative Adaptive Approach (IAA) spectral estimate.
The proposed methods are based on rewriting the IAA algorithm
using suitable Gohberg-Semencul representations, solving the resulting
linear systems of equations using the preconditioned conjugate gradient
method, where a novel preconditioning is applied using an incomplete
factorization of the Toeplitz matrix. Numerical simulations illustrate the
efficiency of both the proposed preconditioning as well as the overall
algorithm, offering a computational reduction of up to two orders of
magnitude as compared to our recently proposed efficient and exact IAA
implementation.

Index Terms— Toeplitz inversion, preconditioned conjugate gradient,
spectral estimation, Iterative Adaptive Approach (IAA), fast algorithms.

I. INTRODUCTION

COMPUTATIONALLY efficient high-resolution spectral estima-
tion algorithms are of great importance in numerous appli-

cations. Typically, to achieve improved resolution, higher than the
periodogram, one has to resort to using parametric or data-adaptive
non-parametric estimation techniques. Due to their inherent robust-
ness to model assumptions, the data-adaptive approaches are often
of particular interest, and the topic has attracted increasing interest
during the last decade. One such promising technique that is currently
widely studied is the so-called iterative adaptive approach (IAA),
recently proposed in [1] for passive sensing, channel estimation, and
single-antenna radar applications, and there shown to outperform
the well-known Capon and APES spectral estimation techniques [2]
for data with a sparse spectrum. As a result, the technique has
attracted significant interest in a variety of topics [3]–[5] As noted in
these papers, the IAA-based estimation techniques allow for accurate
high-resolution estimates even when only a few data snapshots are
available. However, this improved performance comes at the cost
of a notably high computational complexity, suggesting the need
for computationally efficient implementations of such estimates. In
[6], we presented several exact implementations for various IAA-
based estimators, exploiting efficient formulations of data dependent
trigonometric polynomials as well as suitable Gohberg-Semencul
(GS) representations of the estimated inverse covariance matrix. This
approach allows for substantial computational savings, but given the
requirement of an exact implementation, one is still limited to the
original formulation of the methods. In [7], we extended on this
work allowing also for non-stationary signals, formulating both exact
and approximative time-recursive sliding-window implementations.
As shown there, the approximative solutions allow for significant
additional computational savings, while still resulting in estimates
close to the exact solution. In this work, we return to the problem
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of stationary signals, instead formulating computationally efficient
approximate solutions of the IAA spectral estimate. Extending the GS
representations formulated in [6], we propose to solve the resulting
linear set of equations using a novel Quasi-Newton (QN) precon-
ditioned conjugate gradient (PCG) algorithm, termed the QN-PCG
algorithm. The proposed preconditioner is motivated by the QN
algorithm formulated in [8], and approximate the resulting Toeplitz
covariance matrix as being formed from a low-order autoregressive
(AR) process. It should be stressed that the AR-model is merely
used to roughly capture the main features of the spectrum in order
to form the preconditioning, but does not necessitate that the signal
is an AR-process. Using a GS factorization of the inverse of this
approximative covariance matrix as a preconditioning to the CG
algorithm will gather the eigenvalues of the matrix in a narrow
range, substantially improving the conditioning of the system. The
preconditioner is closely related to the technique just proposed in
[9], although, in that work, the preconditioner is derived using a
rather different approach, resulting eventually in the same form as
if it had been derived using an AR-process of order equal to half
the data length, whereas in our work it is allowed to be selected
as a user parameter, typically being significantly smaller than half
the data length. The here presented implementation is also different,
and more efficient, than the one in [9]. The resulting QN-PCG-IAA
algorithm will, using a sufficient number of iterations, yield an
exact implementation of the IAA estimate. However, the resulting
algorithm will then be computationally more demanding as compared
to our earlier fast IAA (FIAA) implementation proposed in [6]. Here,
we are primarily interested in using the proposed reformulation to
allow for approximative solutions using only a few PCG iterations,
and as a result allowing for substantial computational reductions as
compared to the FIAA algorithm, without more than a marginal loss
of accuracy in the resulting estimates. In the following section, we
briefly overview the IAA algorithm, the FIAA implementation, as
well as introduce some notations and novel results used in the latter
sections. In the interest of brevity, the presentation of the background
details is somewhat dense, and the reader is referred to [1], [4],
[6] for further details on the basics of the IAA method and the
FIAA implementation. Then, in Section III, we proceed to discuss
the proposed QN-PCG-IAA algorithm, as well as an approximative
algorithm, termed QN-IAA, that use the estimated preconditioning
matrix in place of the estimated covariance matrix of the signal. In
Section IV, we illustrate the achieved performance and complexity of
the discussed algorithms. Finally, Section V contains our conclusions.

II. AN OVERVIEW OF IAA AND FIAA

Let {yn}Nn=0 ∈ C denote a uniformly sampled sequence of
observations for which one wish to compute a spectral estimate.
Form the data and frequency vectors yN+1 =

[
y0 . . . yN

]T ,
fN+1(ωk) =

[
1 eωk . . . eωkN

]T , where (·)T denotes the
transpose, and where ωk = 2π k

K
, k = 0, 1, . . . ,K − 1, typically1

with K > N+1. Denote the power of the signal Φs(ωk) = |α(ωk)|2,
where α(ωk) is the complex-valued spectral amplitude at frequency

1For K = N , IAA yields the DFT spectrum for all iterations.
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ωk, and let RN+1 denote an estimate of the sample covariance
matrix. Then, for all frequencies of interest, the IAA spectral estimate
is formed by iteratively estimating α(ωk) and RN+1, until practical
convergence, as (see [1], [4] for details)

α(ωk) =
fHN+1(ωk)R−1

N+1yN+1

fHN+1(ωk)R−1
N+1fN+1(ωk)

, (1)

RN+1 =

K−1∑
k=0

|α(ωk)|2fN+1(ωk)fHN+1(ωk) (2)

where (·)H denotes the conjugate transpose, with RN+1 initialized
to the identity matrix IN+1. Throughout this paper, unless otherwise
stated, boldface capital letters, single or double indexed, denote
square or rectangular matrices of appropriate size, i.e., XN and
XN,M denote N×N and N×M matrices, respectively. Typically, no
more than m = 10−15 iterations are needed to allow for convergence
[1]. The brute force implementation of m iterations of the IAA
method, as described by (1) and (2), results in a computational cost
of CIAA = m

[
2K(N + 1)2 +K(N + 1) + (N + 1)3

]
operations.

However, this figure can be drastically improved by taking into
account the special structure of RN+1 and the operations required
to update α(ωk) and RN+1 each iteration. To do so, one may
note that RN+1 is the upper left part of the circulant matrix [6]
CK = WH

Kdiag
{
|α(ω0)|2, . . . , |α(ωK−1)|2

}
WK ,, where WK is

the Discrete Fourier Transform (DFT) matrix of size K ×K, i.e.,

CK =

[
RN+1 ×
× ×

]
(3)

with the symbol × denoting unspecified terms of no relevance. Since
CK is a circulant matrix, with its first column denoted cK , it can be
computed using the Inverse DFT (IDFT) as cK = WH

KαααK , where
αααK =

[
|α(ω0)|2 . . . |α(ωK−1)|2

]T
. As a consequence of the

embedding of RN+1 in CK , the first column of RN+1, denoted by
rN+1, can be extracted as the N + 1 initial elements of cK .

RN+1dN+1 , yN+1 (4)

can be solved using the celebrated Levinson-Durbin (LD) algorithm.
To do so, partition RN+1 as

RN+1 =

[
r0 rfHN
rfN RN

]
=

[
RN JNrf∗N

rfTN JN r0

]
, (5)

with r0 and rfN defined accordingly, where (·)∗ denotes the conjugate,
and JN is the exchange matrix, which, by using the matrix inversion
lemma (see, e.g., [2]), yields

R−1
N+1 =

[
0 0T

0 R−1
N

]
+ āN+1ā

H
N+1 (6)

=

[
R−1
N 0

0T 0

]
+ JN+1ā

∗
N+1ā

T
N+1JN+1 (7)

where

āN+1 =

[
1
aN

]
/

√
αfN (8)

and
aN = −R−1

N rfN , αfN = r0 + rfHN aN (9)

The resulting LD algorithm (see page 100 in [2]), allows for a solution
of (9) at a cost of approximately N2 operations. Extension of the LD
algorithm to handle (4) as well results in an additional cost of N2

operations. The overall complexity can be halved by instead using
the GS factorization of R−1

N+1 for the computation of the matrix

TABLE I
THE MODIFIED PRECONDITIONED CONJUGATE GRADIENTS METHOD

Initialization

aN = aINI
N

efN = −rN −RNaN

ρ0 = efHN efN

Iterate until practical convergence, for κ = 1, 2, . . .

zN = P−1
N efN

gk−1 = zHNefN
γ = 0, (if κ = 1)

vN = 0, (if κ = 1)

γ = gκ−1/gκ−2, (if κ 6= 1)

vN = zN + γvN , (if κ 6= 1)

wN = RNvN

δ = gκ−1/(v
H
NwN )

aN = aN + δvN

efN = efN − δwN
ρκ = efHN efN

vector product that is involved in solving (4). To see this, define the
down-shifting operator

ZN+1(ν) =

[
0T ν
IN 0

]
(10)

and C(ξξξN+1, ν) as the ν-circulant matrix having ξξξN+1 along its first
column, given by

C(ξξξN+1, ν) =
[
ξξξN+1 ZN+1(ν) . . . (ZN+1(ν))N ξξξN+1ξξξN+1

]
.

(11)
Clearly, C(ξξξN+1, 1) and C(ξξξN+1,−1) define a circulant matrix and
skew-circulant matrix, respectively. Moreover, C(ξξξ, 0) coincides with
the Toeplitz lower matrix L(ξξξN+1), formed with ξξξN+1 along its first
column. Let µ and ν be two constants. Then, it can be shown that
the two following lemmas hold:

Lemma 1: The inverse covariance matrix R−1
N+1 can be computed

by the following GS-type factorization, provided that µν 6= 1,

R−1
N+1 =

1

1− νµ

2∑
i=1

σiC(tiN+1, ν)CH(siN+1, µ), (12)

where σ1 = 1 and σ2 = −1, and

t1N+1 , āN+1 s1N+1 = t1N+1

t2N+1 , ZN+1(ν)JN+1ā
∗
N+1 s2N+1 , ZN+1(µ)JN+1ā

∗
N+1

Lemma 2: The lower order matrix R−1
N allows for a GS factor-

ization of the form[
R−1
N 0

0T 0

]
=

1

1− νµ

2∑
i=1

σiC(t̄iN+1, ν)CH(s̄iN+1, µ), (13)

provided that νµ 6= 1, where

t̄1N+1 , āN+1 s̄1N+1 = t̄1N+1

t̄2N+1 , JN+1ā
∗
N+1 s̄2N+1 , JN+1ā

∗
N+1

Proof: See the Appendix for proofs of both lemmas.
Using ν = µ = 0, one obtains the standard lower and upper Toeplitz
GS decomposition. If instead using ν = 0 and µ = 1, one obtains a
lower triangular and circulant GS decomposition variant [10]. Finally,
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if ν = 1 and µ = −1, a circulant and skew-circulant GS decomposi-
tion is obtained [11]. Using (12), one may reduce the cost of solving
(4) to about φ(N + 1) operations, where φ(N) denotes the cost of
performing an FFT of length N , providing that āN+1, given by (8),
is available. Here, the circulant and skew-circulant GS decomposition
is adopted, i.e. (4) is computed via (12) using ν = 1 and µ = −1.
This results in a lower computational complexity as compared to
the standard approach, bounded by 10φ(N + 1) operations, where
4φ(N + 1) accounts for the preprocessing and 6φ(N + 1) results
from the actual matrix vector multiplication [11], a fact that can be
useful in the case when the products of the same matrix with several
vectors are required. Thus, the numerator of (1), fHN+1(ωk)dN+1, can
be computed by means of fast Toeplitz vector multiplication methods
at a cost proportional to φ(N + 1). The denominator of (1) can
similarly be handled using a trigonometric polynomial, defined as
(see also [12]) ϕ(ωk) = fHN (ωk)R−1

N+1fN (ωk) =
∑N
i=−N ϕie

 2π
K
k.

The coefficients ϕi of the trigonometric polynomial can efficiently
be computed using the GS representation of R−1

N+1 at a cost of
5φ(2(N + 1)) [13]. Finally, ϕ(ωk), for k = 0, 1 . . . ,K − 1, is
computed using an FFT of size equal to K. Thus, the computational
complexity of the fast IAA (FIAA) implementation is CFIAA =
m
[
(N + 1)2 + 12φ(2(N + 1)) + 3φ(K)

]
. With these results, we

are now ready to proceed to formulating the proposed PCG algorithm.

III. THE PROPOSED PCG-IAA IMPLEMENTATION

The CG method can be used to form an iterative solution of a
set of equations such as (4). The advantage of using the CG method
stems from the fact that the matrix vector products involved can be
accomplished using efficient techniques based on the FFT due to the
Toeplitz nature of RN+1. In theory, after N + 1 iterations, the CG
algorithm provides the exact solution of (4). In practice, however,
this may not be so, due to the round-off errors caused by the finite
precision arithmetic implementation. Moreover, the convergence rate
of the algorithm may seriously be affected when RN+1 is an ill-
conditioned matrix. In this case, an increased number of iterations is
required to obtain an accurate solution. One way to handle this effect
is to apply a preconditioning to speed up the convergence rate of the
algorithm, i.e., instead of solving (4), one solves the preconditioned
system (see, e.g., [14]) P−1

N+1RN+1dN+1 = P−1
N+1yN+1, where

PN+1 is the so-called the preconditioning matrix, which should
be easy to construct and to invert, and have the property that the
condition number κ(P−1

N+1RN+1) should be close to one, or, at least,
it should be much lower than the condition number of the original
matrix RN+1. As we are here not only interested in estimating the
solution of (4), but also in computing the displacement representation
of R−1

N+1, we present a slightly different version of the standard PCG
algorithm, first computing the generators of R−1

N+1, then applying
the PCG on (9), and, finally, estimating dN+1 using (12). The
modified PCG algorithm is tabulated in Table I, where P−1

N RNaN =
−P−1

N rfN is solved first, followed by a GS-based computation of
dN+1. The computational complexity of PCG methods depends on
the type of preconditioning matrix PN utilized. Using a circulant
preconditioning matrix is perhaps the most popular approach adopted,
since the inverse of a circulant matrix is easily computed and a variety
of circulant matrices have been proposed and have been studied in
terms of convergence efficiency. Regrettably, we have using numerical
simulations found that most of the available circulant preconditioning
matrices do not work well, or at all, when used in combination with
IAA due to the inherent assumptions these make on the spectrum of
the Toeplitz matrix, which are not fulfilled in the here examined case
of data with sparse spectra (see also the numerical examples given
in Section IV). As a result, we will instead propose a novel QN

TABLE II
RATIO THE COMPLEXITY OF THE PCG METHOD OVER THE COMPLEXITY

OF THE LD ALGORITHM, CR = CQN−PCG/CLD , WHEN THE NUMBER

OF THE PCG ITERATIONS k = 10.

Using 10 iterations
N C-PCG QN-PCG

32 64 128 256 512
64 2.34 3.81 - - - -

128 1.34 1.86 2.32 - - -
256 0.76 0.98 1.09 1.44 - -
512 0.42 0.53 0.56 0.64 0.92 -
1024 0.23 0.29 0.3 0.32 0.39 0.62
2048 0.13 0.16 0.16 0.16 0.18 0.24
4096 0.07 0.09 0.09 0.09 0.09 0.11

based preconditioner, constructed from an incomplete factorization
of R−1

N+1. The QN adaptive algorithm, originally proposed in [8]
provides an efficient and low complexity implementation scheme of
approximate recursive least squares algorithms, by imposing a low
order AR approximation on the input signal of the adaptive algorithm.
A similar method has also be presented in [15] in the context of
AEC. Motivated by [8], we are here applying an QN methodology
when forming the iterative solution of Toeplitz systems using the PCG
method. Given a Toeplitz matrix RN , the new preconditioned matrix
is constructed from an incomplete factorization of the inverse R−1

N ,
as if it had been derived using an AR-process of order M � N .

Step 1. Assuming that R` is positive definite, at least for ` = M ,
R−1
M is factored using (12) as

R−1
M =

1

2

2∑
i=1

σiC(tiM )SH(siM ), (14)

where, using (8)-(9), aM−1 = −R−1
M−1r

f
M−1, and

āM =

[
1

aM−1

]
/
√
αfM−1, αfM−1 = r0 + rfHM−1aM−1 (15)

with aM−1 and αfM−1 computed either using the LD algorithm,
provided that all principal minors up to size M − 1 are positive
definite, or by using another standard linear systems solution method,
such as Cholesky’s algorithm. This step requires O(M2) operations,
when the LD algorithm is utilized.

Step 2. Given aM , the novel QN preconditioner is constructed
as the Toeplitz matrix QN , whose first column is formed from the
autocorrelation sequence q`, ` = 0, 1, . . . N − 1, defined as

q` ,


r`, ` = 0, 1, . . . ,M − 1

−
M∑
i=1

a
[i]
M−1q`−i+1, ` = M, . . . , N − 1

(16)

The special structure of QN allows for the computation of the inverse
matrix Q−1

N using (6) as

Q−1
N =

[
0 0T

0 R−1
M

]
+ AN,N−M−1A

H
N,N−M−1, (17)

where, defining ãN = [āTM 0TN−M ]T ,

AN,N−M−1 =
[
ãN ZN+1(0)ãN . . . (ZN+1(0))N−M ãN

]
(18)

since, by construction, the reflection coefficient k` = 0, for ` =
M+1,M+2, . . . , N (see also (3.5.6) and (3.5.7) in [2]. In practice,
QN is never computed, since its inverse is given directly by (17).

Step 3. We proceed to use PN = QN as the preconditioning
matrix in the PCG scheme described in Table I. In this case, P−1

N =
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Q−1
N can efficiently be implemented using (17). Indeed, due to the

special structure of Q−1
N , the required matrix vector products can

be computed using FFT based schemes, at a cost of no more that
O(φ(N)) +O(φ(M)) operations. The computational complexity of
the proposed PCG scheme for the computation of the generator of
R−1
N+1 is thus CQN−PCG = k

(
8φ(N) + 9N + 6φ(M) + 6M)

)
+

M2 +9φ(N)+3N , where the first term corresponds to the repetitive
computations imposed by the method and the second term to the
initialization of the algorithm. The computational gain achieved by
the proposed QN-PCG method over the standard LD algorithm is
illustrated in Table III, giving the ratio of the complexity of the
PCG method over that of the LD algorithm, for matrix sizes up to
N = 4096, and various QN sizes and when the number of iterations
is set k = 10. As is clear from the table, the QN-PCG offers a
substantial computational saving as compared to the LD algorithm,
especially for longer vectors. We proceed to use the above QN-PCG
algorithm to estimate the displacement representation of R−1

N+1, i.e.,
the estimation of āN+1, as defined in (8), by means of computing
aN in (9) using the PCG algorithm tabulated in Table I along with
the QN preconditioner in (17). We term the resulting scheme the
Quasi-Netwon PCG IAA (QN-PCG-IAA) algorithm. The initialization
of the QN-PCG algorithm of Table I can be done either by setting
aINI
N = 0N , or more efficiently, by using the estimate of aN obtained

in the previous IAA iteration. This stems from the fact that, upon
convergence, RN+1 will not change too much in between successive
IAA iterations. The successive IAA iteration initialization scheme
converges faster, or equivalently, a lower number of PCG iterations
are required to achieve a given accuracy. Finally, better performance
can be achieved by introducing a Newton-based refinement scheme
following the QN-PCG solution, with [16]

efN = −rfN −RNaN (19)

aN = aN + R−1
N efN (20)

iterated until practical convergence. Usually, only very few steps
are required for the convergence of the algorithm, provided that
a good guess for aN is used for initialization, and an accurate
estimate of R−1

N is available. Here, the output of the QN-PCG is
used for initialization and R−1

N is re-estimated at each step from
its displacement representation, using (13), at O(φ(N)) cost. As an
alternative, one may form an approximative IAA algorithm by instead
of computing R−1

N+1 use the proposed matrix Q−1
N+1, as defined in

(17), in place of R−1
N+1 directly in the IAA algorithm. In this way,

an approximate IAA algorithm is formed by iteratively estimating
α(ωk) and QN+1,

α(ωk) =
fHN+1(ωk)Q−1

N+1yN+1

fHN+1(ωk)Q−1
N+1fN+1(ωk)

, (21)

RM =

K−1∑
k=0

|α(ωk)|2fM (ωk)fHM (ωk) (22)

Q−1
N+1 =

[
0 0T

0 R−1
M

]
+ AN+1,N−MAH

N+1,N−M (23)

until practical convergence, for k = 0, 1, . . . ,K−1. Using M � N ,
a significant computation reduction can then be achieved, at the
expense of a possible degradation in the quality of the spectrum esti-
mate. Since M � N , the LD algorithm is employed for the computa-
tion of the generators of R−1

M . Moreover, the denominator of (21) can
be computed efficiently, since ϕ(ωk) , fHN+1(ωk)Q−1

N+1fN+1(ωk)

equals to ϕ(ωk) = ϕ̂(ωk) + (N − M)|fHM āM |2 where ϕ̂(ωk) ,
fHM (ωk)R−1

M fM (ωk). We denote the resulting approximative algo-
rithm the QN-IAA algorithm. It is worth noting that, using (15),
one obtain the interpretation of ϕ(ωk) as the harmonic mean of
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Fig. 1. a) Spectral estimates obtained using IAA for the data set in [17], with
N + 1 = 512, m = 10, and K = 2048 and the absolute error between the
IAA and the QN-PCG-IAA algorithm using only k = 8 QN-PCG iterations
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Fig. 2. Performance of the QN-IAA algorithm, with M = 32 and 64, for
N = 511, m = 10, and K = 2048.

all lower order AR spectra, i.e., for the original IAA algorithm
ϕ(ωk) =

∑N
n=0

(
αARi (ωk)

)−1
, whereas for the QN-IAA algorithm,

one obtain

ϕ̂ωk) =

M−1∑
n=0

1

αARi (ωk)
+

(N −M)

αARM (ωk)
(24)

where αARi (ωk) denotes the spectrum estimated by an AR model of
order i.

IV. PERFORMANCE EVALUATION

In this section, we examine the performance of the proposed QN-
PCG-IAA algorithm using numerical simulations. For simplicity, the
data set described in [17] is used, with the number of available
data samples set equal to N + 1 = 512. We use m = 10 IAA
iterations, and, when relevant, the predictor size associated with the
QN preconditioner set equal to M = 62. The size of the frequency
grid is set to K = 2048. Figure 1 (a) illustrates the IAA spectrum
estimate of the examined data set. However, to be competitive with
the FIAA algorithm, the proposed QN-PCG-IAA method should be
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able to provide fairly accurate results using only a few PCG iterations.
The performance of the proposed scheme when M = 64, the number
of QN-PCG iterations is k = 8, followed by k1 = 2 Newton
refinement iterations, is illustrated in Figure 1 (a), where the norm
error, over all frequencies, in this case equals 1.2 · 10−5. As can be
seen from the figure, the algorithm offers an almost as good estimate
in this case, although at a computational complexity of only 55% of
the one required by the FIAA algorithm. Here, the jagged nature
of the rate of convergence is due to the evolution over the IAA
iterations, with the error temporarily increasing as a new covariance
matrix is formed in the beginning of a new iteration. Working on
larger data sets while keeping the QN-PCG parameters the same
as before, a significant complexity reduction is achieved, reducing
the computational load to a small fraction of that required by the
FIAA algorithm, namely 30%, 17%, and 9% at the expense of a
higher error norm, being 8 · 10−5, 7.3 · 10−3 and 9 · 10−3, when
N=1023, 2047, and 4095, respectively. Clearly, the computational
reduction versus accuracy trade-off is prominent, especially as N
becomes larger. Increasing the QN parameter, M , or the number of
PCG iterations, k, more accurate estimates are obtained. Using, for
example, M = 512 or M = 1024, the error norm is reduced to
1.5 · 10−4 and 3 · 10−6, while the complexity remains at 12% and
17% of that of the FIAA method, respectively, for the case when
N = 4095. Should one increases the number of the PCG iterations
to k = 18 and k1 = 2, even better results are obtained, namely
2.1 · 10−5 and 4.8 · 10−9 at a cost of 17% and 26% of that of the
FIAA, respectively. However, it is worth noting that, from a practical
point of view, the lower accuracy does not affect the quality of the
estimated spectra noticeably, since in all cases the possible amplitude
misadjustment is far below that of the noise margin at the particular
frequencies, and does not affect the frequency discrimination at all.
We proceed to examine the performance of the proposed QN-IAA
algorithm for various values of the parameter M , noting that, when
M = 0, the QN-IAA algorithm degenerates to the DFT. As is shown
in Figure 2, QN-IAA performs pretty well, even for small values
of M as compared to the data size N + 1, which is a remarkable
achievement taking into account the crude approximation imposed
on the data covariance matrix. The computational complexity of the
proposed methods is illustrated in Figure 3. The curves designated by
QN-PCG(k)-IAA correspond to the cost of the proposed QN-PCG-
IAA algorithm, using k−2 PCG and 2 Newton refinement iterations,
for M = 32, M = 64, and M = 128. Clearly, the algorithm
allows for up to an order of magnitude improvement as compared
to the complexity of the FIAA algorithm, where QN-PCG(10)-IAA
becomes more efficient than the FIAA for N > 256 and QN-
PCG(20)-IAA for N > 512, and where the influence of the size of
M on the overall complexity is noticeable only for relatively small
values of N . From the figure, the proposed approximate QN-IAA
algorithm is also seen to offers a significant further cost reduction
(up to two orders of magnitude) for M = 16, M = 32, M = 64,
and M = 128. It is worth noting that the proposed preconditioning
method can also be used for the solution of Hermitian positive definite
Toeplitz equations. As shown in Figure 4, illustrating the eigenvalue
spread for the covariance matrix with and without preconditioning,
i.e., R̂−1

N RN and RN , respectively, for N + 1 = 512, the proposed
QN-PCG-IAA algorithm performs quite good, even when a very few
number of iterations are used for the QN-PCG Toeplitz solver. Let the
elements of the first column of a Toeplitz matrix, T, be the Fourier
coefficients of the generating function f(θ), i.e., (see also [14])
tn = 1

2π

∫ π
−π f(θ)e−nθdθ, n = 0,±1,±2, . . . The effectiveness of

the proposed preconditioner can then be examined in the context of
the iterative Toeplitz solvers, using the generating functions f1(θ) =
θ4 + 1, f2(θ) = |θ|3 + 1, f3(θ) = θ4, and f4(θ) = θ4(π2 − θ2)
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Fig. 3. The computational complexity of the discussed algorithms for
different predictor sizes, M .

to generate Toeplitz matrices of size N = 1024, here designated by
T1, T2, T3, and T4, respectively. Moreover, a fifth matrix, T5, is
considered, as resulting from the m = 10 iteration of the standard
FIAA algorithm, RN . The right hand side vector of the Toeplitz linear
system to be solved is set equal to ones, i.e.,−rfN , bN = [1 . . . 1]T .
The PCG algorithms are all initialized by setting the initial guess
of the solution sought equal to zero, while iterations are performed
until a desired threshold of the solution error norm,

√
ρ, is reached,

usually expressed as tol ·
√

bTNbN , where tol = 10−7. The number
of iterations required by each PCG algorithm to reach the desired
error threshold are tabulated in Table III, where † indicates that
the CG iterations did not converge. Apart from the standard CG
algorithm (without preconditioning), here denoted I , the PCG using
various circulant preconditioners are examined, namely T. Chan’s
preconditioner, denoted CF , and the preconditioners resulting from
the use of the r-th order generalized Jackson kernels, denoted Kκ,2r ,
r = 2, 3, 4, which are the preconditioners considered to be the more
efficient in the case of ill-conditioned Toeplitz systems [14]. The
proposed preconditioning method, denoted QN(M), is considered
for several values of M ; it should be stressed that in the final case,
when M = N/2, the method is equivalent to the preconditioning
approach just presented in [9]. As is clear from the table, the proposed
preconditioner offers substantial improvements as compared to the
typically used preconditioners, especially for large values of M .
However, it is worth noting that the proposed version, allowing for the
possibility of using M < N/2, enables the use of a lower complexity
preconditioner 2, while still offering almost the same performance as
the high order preconditioner proposed in [9].

V. CONCLUSIONS

In this work, we have presented computationally efficient ap-
proximative formulations of our earlier exact implementations of

2It is worth noting that the implementation in [9] is based on an upper-
triangular fast Toeplitz computation, as compared to the here presented
circulant skew-circulant fast Toeplitz and inverse Toeplitz computations, with
the former requiring at least double, or more, computations as compared
to the latter. Even though our implementation also offer some other further
simplifications, these here introduced simplifications could also be included
in [9], and therefore, as such, does not make the results differ. The notable
improvement instead lies in the possibility of using lower order models.
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TABLE III
NUMBER OF PCG ITERATIONS FOR VARIOUS TOEPLITZ MATRICES AND

PRECONDITIONING MATRICES, FOR N = 1024 AND tol = 10−7 .

T1 T2 T3 T4 T5

I 71 430 † † 728
CF 5 10 587 350 544
Kκ,4 5 6 24 25 893
Kκ,6 5 6 23 24 929
Kκ,8 5 6 22 25 1004
QN(8) 3 17 902 817 3162
QN(16) 3 5 280 290 1737
QN(32) 2 3 94 95 552
QN(64) 2 2 38 40 164
QN(128) 1 2 21 23 111
QN(256) 1 1 13 15 58
QN(512) 1 1 9 10 28

the recent IAA spectral estimator. The proposed one- and two-
dimensional approximate algorithms have been shown to offer a
substantial complexity reduction as compared to their exact coun-
terparts, although without more than a marginal loss of performance.
The proposed algorithms exploit a novel preconditioning of an
incomplete factorization of a Toeplitz matrix, generalizing a just
proposed preconditioning algorithm formed using a similar principle.
The estimates are then formed by rewriting the IAA estimate using
suitable Gohberg-Semencul representations, and solving the resulting
linear set of equations using a preconditioned conjugate gradient
technique. Complexity calculations and numerical examples illustrate
the accuracy and efficiency of the proposed algorithm.

APPENDIX

A. Proof of Lemma 1

Using (6), (7), along with that ZN+1
N+1(ν) = νIN+1, one can express

the displacement of R−1
N+1 with respect to the lower shifting block

matrices ZN+1(ν) and ZN+1(µ)T as

∇R−1
N+1 , R−1

N+1 − ZN+1(ν)R−1
N+1Z

T
N+1(µ)

= āN+1ā
H
N+1 − ZN+1(ν)JN+1ā

∗
N+1ā

T
N+1JN+1Z

T
N+1(µ),

which, via repeated multiplications by the down-shifting operator
(10), and by the subsequent summation of the resulting equations,
leads to the desired expressions [18].

B. Proof of Lemma 2

Using (6) and (7), one obtain[
R−1
N 0

0T 0

]
− ZN+1(ν)

[
R−1
N 0

0T 0

]
ZTN+1(µ) =

āN+1ā
H
N+1 − JN+1ā

∗
N+1ā

T
N+1JN+1

which, via repeated multiplications by the down-shifting operator
(10), and by the subsequent summation of the resulting equations,
yields (13).
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