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Abstract

This thesis addresses problems which require low-rank solutions under
convex constraints. In particular, the focus lies on model reduction of posi-
tive systems, as well as finite dimensional optimization problems that are
convex, apart from a low-rank constraint.

Traditional model reduction techniques try to minimize the error be-
tween the original and the reduced system. Typically, the resulting reduced
models, however, no longer fulfill physically meaningful constraints. This
thesis considers the problem of model reduction with internal and exter-
nal positivity constraints. Both problems are solved by means of balanced
truncation. While internal positivity is shown to be preserved by a symme-
try property; external positivity preservation is accomplished by deriving a
modified balancing approach based on ellipsoidal cone invariance.

In essence, positivity preserving model reduction attempts to find an
infinite dimensional low-rank approximation that preserves nonnegativity,
as well as Hankel structure. Due to the non-convexity of the low-rank
constraint, this problem is even challenging in a finite dimensional setting.
In addition to model reduction, the present work also considers such finite
dimensional low-rank optimization problems with convex constraints. These
problems frequently appear in applications such as image compression,
multivariate linear regression, matrix completion and many more.

The main idea of this thesis is to derive the largest convex minorizers of
rank-constrained unitarily invariant norms. These minorizers can be used
to construct optimal convex relaxations for the original non-convex problem.
Unlike other methods such as nuclear norm regularization, this approach
benefits from having verifiable a posterior conditions for which a solution to
the convex relaxation and the corresponding non-convex problem coincide. It
is shown that this applies to various numerical examples of well-known low-
rank optimization problems. In particular, the proposed convex relaxation
performs significantly better than nuclear norm regularization. Moreover, it
can be observed that a careful choice among the proposed convex relaxations
may have a tremendous positive impact on matrix completion.
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Computational tractability of the proposed approach is accomplished in
two ways. First, the considered relaxations are shown to be representable
by semi-definite programs. Second, it is shown how to compute the proximal
mappings, for both, the convex relaxations, as well as the non-convex prob-
lem. This makes it possible to apply first order method such as so-called
Douglas-Rachford splitting. In addition to the convex case, where global con-
vergence of this algorithm is guaranteed, conditions for local convergence
in the non-convex setting are presented.

Finally, it is shown that the findings of this thesis also extend to the
general class of so-called atomic norms that allow us to cover other non-
convex constraints.
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Preface

Contributions of the Thesis

The thesis consists of two chapters and four papers. The chapters provide
mathematical background that is needed to understand the papers. This
section describes the content of each chapter and the contribution of each
paper.

Chapter 1 – Positivity Preserving Balanced Truncation
The first chapter consists of material relevant for the publications covered
in Papers I and II. Basic control concepts, nonnegative matrices, positive
systems and balanced truncation are covered, as far as they are needed in
the context of positivity preserving balanced truncation. Based on that, the
main challenges that arise from positivity preserving model reduction are
discussed and linked to the contributions in Papers I and II.

Chapter 2 – Optimization
The second chapter covers some basic concepts in convex optimization, which
form the basis for Papers III and IV. Further, Berge’s maximum theorem
as well as the Douglas-Rachford splitting algorithm are introduced.

Paper I

Grussler, C. and T. Damm (2012). “A symmetry approach for balanced trun-
cation of positive linear systems”. In: 51st IEEE Conference on Decision
and Control (CDC), pp. 4308–4313.

This paper considers model order reduction of stable internally positive
linear systems. It is shown how a symmetry characterization can be used in
order to preserve positivity in balanced truncation. As a result, the reduced
model has the additional feature of being symmetric. In contrast to other
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methods, this approach works even in the absence of a positive state-space
realization. Specifically, it is proven that balanced truncation to order one
always preserves internal positivity. This also supplies a tractable necessary
condition for the existence of an internally positive realization.

This paper is part of the first author’s Master’s Thesis. The topic has
been suggested by the co-supervisor Anders Rantzer. All ideas are contribu-
tions of the first author, and have been derived in part under the supervision
of the second author.

Paper II

Grussler, C. and A. Rantzer (2014). “Modified balanced truncation preserv-
ing ellipsoidal cone-invariance”. In: 53rd IEEE Conference on Decision
and Control (CDC), pp. 2365–2370.

The paper addresses model order reduction of stable linear systems that
leave ellipsoidal (second-order) cones invariant. It is shown how balanced
truncation can be modified to preserve ellipsoidal cone-invariance. Further,
a numerically tractable method for verifying external positivity on a large
class of systems is provided. As a consequence of these results, external
positivity preserving model reduction can be performed within this class.
The paper is the first of its kind in the sense that none of the problems has
been addressed in the literature without involving internal positivity.

As part of a discussion of unpublished work, the second author has
pointed out to the first author that invariance with respect to ellipsoidal
cones is numerically verifiable. The rest of the paper is entirely the first
author’s contribution.

Paper III

Grussler, C., A. Rantzer, and P. Giselsson (2016). “Low-rank optimization
with convex constraints”. arXiv: 1606.01793.

The problem of low-rank approximation with convex constraints is con-
sidered. Given a data matrix, the objective of this paper is to find a low-rank
approximation that meets rank and convex constraints while minimizing the
distance to the data matrix in the Frobenius norm. It is proposed to use
the largest convex minorizer (under-approximation) of the squared Frobe-
nius norm and the rank constraint as a convex proxy, which can be combined
with other convex constraints to form an optimal convex minorizer of the
original non-convex problem. Unlike other approaches such as nuclear norm
regularization or alternating minimization methods, this approach has the
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advantage of having easily verifiable a posteriori conditions under which
the solutions to the convex relaxation and the original non-convex problem
coincide. The paper demonstrates that this is the case for several numeri-
cal examples of well-known low-rank optimization problems. In particular,
the proposed convex relaxation consistently performs better than the nu-
clear norm heuristic and indicates tremendous benefits for the problem
of matrix completion. Furthermore, the paper discusses why the proposed
approach can also be considered as a regularization method.

The expressibility and computational tractability is of great importance
for a convex relaxation. A closed-form expression for the proposed convex
relaxation is provided, in addition to its representation as a semi-definite
program. In order to deal with problems of large size, the so-called Douglas-
Rachford splitting algorithm is applied to the convex relaxation as well as
to the original non-convex problem. While in the convex case the algorithm
is known to converge, there is no such guarantee in a non-convex setting.
Nevertheless, if the proposed convex relaxation has a unique solution, it is
shown that the convex and non-convex Douglas-Rachford iterations locally
coincide. In particular, it is shown by an analytically tractable example
that scaling the cost function in the non-convex Douglas-Rachford helps in
finding solutions where the convex relaxation fails.

The work on this paper started with the observation of the first author,
that good nonnegativity preserving low-rank approximation can be found
using alternating minimization methods. These methods outperform non-
negative matrix factorization, as well as nuclear norm regularization. This
motivated the second author to apply Lagrange duality, yielding the r∗-
norm relaxation. The rest of the paper has been derived by the first author
as a result of discussions with the third author. The write up of the paper,
as well as the applications and numerical examples, are entirely the work
of the first author.

Paper IV

Grussler, C. and P. Giselsson (2016). “Low-rank inducing norms with opti-
mality interpretations”. Preprint.

The paper considers rank constrained problems and introduces a fam-
ily of low-rank inducing norms and regularizers of which the celebrated
nuclear norm is a special case. A posteriori guarantees on solving an under-
lying rank constrained optimization problem with these convex relaxations
are provided. In order to demonstrate the benefits that come with these
new regularizers, three matrix completion problems are evaluated. In all
examples, the nuclear norm heuristic is outperformed by convex relaxations

11
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based on other low-rank inducing norms. In particular, for two of the prob-
lems, it can be proven that there exist low-rank inducing norms that succeed
in recovering the partially unknown matrix, while the nuclear norm fails.
Both of these low-rank inducing norms are shown to be representable as
semi-definite programs and have cheaply computable proximal mappings.
The latter makes it possible to solve also problems of large size with the
help of scalable first-order methods. Finally, it is proven that these findings
extend to the more general class of atomic norm problems. In particular,
this allows us to solve corresponding vector-valued problems as well as
problems with other non-convex constraints.

This paper has been jointly derived by both authors. The numerical
examples were proposed by the first author, who has also carried out the
write up for most of the parts.

Additional Publications

Grussler, C. and A. Rantzer (2015). “On optimal low-rank approximation
of non-negative matrices”. In: 54th IEEE Conference on Decision and
Control (CDC), pp. 5278–5283.

Grussler, C., A. Zare, M. R. Jovanovic, and A. Rantzer (2016). “The use
of the r∗ heuristic in covariance completion problems”. In: 55th IEEE
Conference on Decision and Control (CDC).
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1
Positivity Preserving
Balanced Truncation

This chapter provides background material on positive systems and bal-
anced truncation. In the context of positivity preserving model reduction,
the main challenges are discussed, and linked to Papers I and II.

1.1 Basic Control Theory

In this section, basic concepts of linear control theory are recalled, which
can be found in standard text books, such as [Zhou et al., 1996; Datta, 2004;
Antoulas, 2005].

Linear Systems
Let A ∈ Rn$n, B ∈ Rn$m, C ∈ Rk$n and D ∈ Rk$m define a linear
time-invariant continuous-time system

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(S)

where x is the state, u the input, y the output and n the order of the system.
The solution to system (S) can be explicitly computed as

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ)dτ, (1.1)

where x(0) is the initial state and t ≥ 0. Since x depends on A and B only,
x is also referred as the state to (A, B).

13



Chapter 1. Positivity Preserving Balanced Truncation

Transfer Function and System Realization
The transfer function of the system (S) is given by G(s) = C(sI− A)−1B+D
and (A, B, C, D) is referred to as a realization or state-space representation
of G. There is no unique realization, because for any invertible T ∈ Rn$n it
holds that

G(s) = C(sI − A)−1B+ D = CT(sI − T−1AT)−1T−1B+ D.

Hence, also (T−1AT, T−1B, CT, D) is a realization of G. In particular, if two
realizations of G are driven by the same input with zero initial states, then
their outputs coincide.

The realization (A, B, C, D) is called a minimal realization if G does
not have a realization (Al, Bl, Cl, Dl) such that Al ∈ Rl$l with l < n.
Otherwise, (A, B, C, D) is said to be non-minimal. If (A, B, C, D) is said to
be a realization of the system (S), it refers to the corresponding transfer
function.

Controllability and Observability
The system (S) or (A, B) is said to be controllable if for any x(0), x̄ ∈ Rn

and t̄ > 0, there exists a (piecewise continuous) input u such that x(t̄) = x̄.
Otherwise, it is said to be uncontrollable.

Proposition 1.1—[Zhou et al., 1996]
The following are equivalent:

i. (A, B) is controllable.

ii. The controllability matrix

C :=
(
B AB · · · An−1B

)
∈ Rn$nm

has rank n.

iii. For all t > 0
Wc(t) :=

∫ t

0
eAτBBT eATτdτ ∈ Rn$n

is non-singular. 2

In particular, im(C ) is called the controllable subspace of (A, B), where
im(K) and denotes the image of a matrix K . Further, it holds for all t > 0
that

im(C ) = im(Wc(t)).

Hence, if (A, B) is controllable, then im(C ) = Rn. The orthogonal comple-
ment to im(C ) is called the uncontrollable subspace.

14



1.1 Basic Control Theory

The system (S) or (A, C) is said to be observable if for an arbitrary t̄ > 0
the initial state can be reconstructed from knowing u(t) and y(t) on the
interval [0, t̄]. Otherwise, it is said be unobservable.

Proposition 1.2—[Zhou et al., 1996]
The following are equivalent:

i. (A, C) is observable

ii. The observability matrix

O :=


C
CA
...

CAn−1

 ∈ Rkn$n

has rank n.

iii. For all t > 0
Wo(t) :=

∫ t

0
eATτCTCeAτdτ ∈ Rn$n

is non-singular. 2

The subspace defined by ker(O) is called the unobservable subspace of
(A, C), where ker(K) is the kernel of a matrix K . Further, it holds for all
t > 0 that

ker(O) = ker(Wo(t)).

Thus, if (A, C) is observable, then ker(O) = {0}. The orthogonal comple-
ment to im(O) is called the observable subspace.

Kalman decompositions
Let rc := rank(C ). Then there exists T ∈ Rn$n such that

Ã := T−1AT =
(
Ã11 Ã12
0 Ã22

)
, B̃ := T−1B =

(
B̃1
0

)
, C̃ := CT =

(
C̃1 C̃2

)
,

where Ã11 ∈ R
rc$rc , B̃1 ∈ R

rc$m is a controllable pair (see e.g. [Zhou et al.,
1996]). A realization of this type is said to be in Kalman controllability
form. If x̃ =

(
x̃T1 x̃T2

)T is the state to ( Ã, B̃) with x̃1 ∈ R
rc , then x̃2 cannot

be influenced by u and the controllable subspace of ( Ã, B̃) is given by{(
x̃1
0

)
∈ Rn : x̃1 ∈ R

rc
}
.
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Chapter 1. Positivity Preserving Balanced Truncation

In particular, if the initial state of ( Ã, B̃, C̃, D) equals zero, then x̃2 is zero
and so the term C̃2 x̃2 gives no contribution to the output. Hence, x̃2 is
not needed for a realization of (S). Indeed, if rc < n, then (A, B, C, D)
is non-minimal and ( Ã11, B̃1, C̃1, D) is a realization of (S). Note that
( Ã11, B̃1, C̃1, D) is obtained by projecting onto the controllable subspace in
the sense that x̃1 = P x̃ is the state to ( Ã11, B̃1) and

( Ã11, B̃1, C̃1, D) = (P ÃPT , P B̃, C̃PT , D),

where P :=
(
I 0

)
∈ Rrc$n with identity matrix I ∈ Rrc$rc .

Similarly, let ro := rank(O). Then there exists T ∈ Rn$n such that

Ã := T−1AT =
(
Ã11 0
Ã21 Ã22

)
, B̃ := T−1B =

(
B̃1
B̃2

)
, C̃ := CT =

(
C̃1 0

)
,

where Ã1 ∈ R
ro$ro , C̃1 ∈ R

k$rc is an observable pair. A realization of this
type is said to be in Kalman observability form. If x̃ =

(
x̃T1 x̃T2

)T is the
state to ( Ã, B̃) with x̃1 ∈ R

ro , then x̃2 does not influence the output ỹ = C̃ x̃
and the observable subspace of ( Ã, C̃) is given by{(

x̃1
0

)
∈ Rn : x̃1 ∈ R

ro
}
.

This implies that ( Ã11, B̃1, C̃1, D) is a realization of (S) and (A, B, C, D)
is non-minimal if ro < n. The observable realization ( Ã11, B̃1, C̃1, D) is
obtained by projecting onto the observable subspace in the sense that x̃1 =
P x̃ is the state to ( Ã11, B̃1) and

( Ã11, B̃1, C̃1, D) = (P ÃPT , P B̃, C̃PT , D)

with P :=
(
I 0

)
∈ Rro$n and I ∈ Rro$ro .

Since these decompositions can be applied successively, it follows that
(A, B, C, D) is a minimal realization if and only if it is both controllable
and observable.

Arnoldi Iteration
Assuming that (S) has a single input, the so-called Arnoldi iteration (see
below) can be applied to im(C ). The resulting unitary transformation V
puts (VT AV, VTB, CV, D) into Kalman controllability form. Similarly, if
the system has a single output, the Arnoldi iteration to im(OT) gives a
unitary matrix that transforms the system into Kalman observability form.

The Arnoldi iteration is a variant of the Gram-Schmidt iteration, tailored
to compute a particular orthogonal basis of the linear span of vectors

{b, Ab, . . . , Anb} ⊂ Rn.
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1.1 Basic Control Theory

If this basis is collected in the columns of V ∈ Rn$n, then it holds that
VT AV is an (upper) Hessenberg matrix, i.e. it is zero below the first subdi-
agonal. Further, VTb = qbqe1 with e1 and q · q denoting the first canonical
vector in Rn and the Euclidean norm, respectively. If A is symmetric, then
Arnoldi iteration is equivalent to the so-called Lanczos algorithm (see [Tre-
fethen and Bau III, 1997] for both methods).

Lyapunov Equations
Given A, Q ∈ Rn$n,

ATX + X A+ Q = 0 (1.2)

is called a Lyapunov equation with the solution X ∈ Rn$n. Let the spectrum
of A ∈ Rn$n be denoted by σ (A).

Lemma 1.1—[Zhou et al., 1996]
There exists a unique solution X ∈ Rn$n to (1.2) if and only if λi + λ j ,= 0
for all λi, λ j ∈ σ (A). 2

For a (symmetric) positive definite P ∈ Rn$n, we write P 0 0 and P 4 0 if
it is positive semi-definite. Then

ATX + X A+ Q 5 0

is said to be a Lyapunov inequality with solution X .

Inertia
The inertia of a matrix A ∈ Rn$n is the triplet In(A) = (p(A), z(A), n(A))
consisting of the number of eigenvalues with positive, zero and negative
real part, respectively, counting multiplicities. Sylvester’s law of inertia
(see [Horn and Johnson, 2012]) states that if P ∈ Rn$n is non-singular,
then

In(A) = In(PT AP).

Proposition 1.3—[Antoulas, 2005]
Let A, Q ∈ Rn$n with Q 4 0 and (A, Q) observable. If there exists a
symmetric X ∈ Rn$n such that

ATX + X A+ Q = 0,

then In(A) = In(−X) and z(A) = 0. 2

If In(A) = (0, 0, n), then A ∈ Rn$n is called Hurwitz or stable. If A in
(S) is Hurwitz, then (S) is also said to be stable. The eigenvalues of A are
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Chapter 1. Positivity Preserving Balanced Truncation

also called the poles of a system. In particular, if the real part ℜ(·) of an
eigenvalue coincides with the spectral abscissa

µ(A) := max
λ∈σ (A)

ℜ(λ),

it is referred to as a dominant pole.

Controllability and Observability Gramian
Lemma 1.2—[Zhou et al., 1996]
Given a stable realization (A, B, C, D), the following holds:

i. The controllability Gramian Lc := limt→∞ Wc(t) fulfills

ALc + LcAT + BBT = 0

and (A, B) is controllable if and only if Lc 0 0.

ii. The observability Gramian Lo := limt→∞ Wo(t) fulfills

ATLo + LoA+ CTC = 0

and (A, C) is observable if and only if Lo 0 0. 2

Notice that for invertible T ∈ Rn$n, the Gramians to (T−1AT, T−1B, CT, D)
are obtained by

T−TLcT−T and TTLoT,

where T−T denotes the inverse of the transpose of T.

1.2 Nonnegative Matrices

A matrix N = (ni j) ∈ Rn$m is called nonnegative if all its elements are
nonnegative, i.e. ni j ≥ 0 for all i and j. We use the abbreviation N ∈ Rn$m

≥0 .
By the Perron-Frobenius Theorem (see e.g. [Meyer, 2000]) it holds that the
spectral radius

ρ(N) := max
λ∈σ (N)

pλp

of N ∈ Rn$n
≥0 is an eigenvalue of N with corresponding nonnegative eigen-

vector.
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1.3 Positive Systems

Metzler matrices
A matrix M ∈ Rn$n is said to be Metzler if there exists an α ∈ R such that

M +αI ∈ Rn$n
≥0 .

Note that M is Metzler if and only if eM is nonnegative [Haddad et al., 2010].
Moreover, it holds that µ(M) ∈ σ (M) with corresponding nonnegative
eigenvector.

Proposition 1.4—[Berman and Plemmons, 1994]
Let M ∈ Rn$n be Metzler, then the following are equivalent:

i. M is Hurwitz.

ii. There exists a diagonal D 0 0 such that MD + DMT ≺ 0.

iii. There exists ξ ∈ Rn
>0 such that −Mξ ∈ Rn

>0.

iv. M is non-singular and −M−1 ∈ Rn$n
≥0 . 2

1.3 Positive Systems

In the following the classes of externally and internally positive systems
are introduced. The state (input, output) of the system (S) is said to be
nonnegative if it is nonnegative for all t ≥ 0.

Internal Positivity
A system (S) is called internally positive if x and y are nonnegative, when-
ever the initial state x(0) and u are nonnegative. This is equivalent to the
matrix A being Metzler and B, C, D being nonnegative (see [Luenberger,
1979]). Thus internal positivity requires a certain realization which is not
necessarily minimal. Since A is Metzler, it follows that internally positive
systems have a dominant real pole.

Internally positive systems frequently appear in areas such as bio-
medicine, economics, data networks and many more, where y is the partial
observation of a state x that represents nonnegative quantities of drugs,
goods or bytes (see [Luenberger, 1979; Brown, 1980; Shorten et al., 2006;
Haddad et al., 2010; Farina and Rinaldi, 2011]). Even though internally pos-
itive systems have been studied over the past decades [Luenberger, 1979;
Ohta et al., 1984; Anderson et al., 1996; Son and Hinrichsen, 1996; Ben-
venuti and Farina, 2002], this class has only recently received significantly
more attention (see e.g. [Tanaka and Langbort, 2011; Ebihara et al., 2012;
Briat, 2011; Rantzer, 2015]). One of the main reasons for that lies in Propo-
sition 1.4, which allows us for instance
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Chapter 1. Positivity Preserving Balanced Truncation

• Stability verification in a scalable way, i.e. A ∈ Rn$n being Metzler
requires to determine n variables to verify stability, instead of n2

(see [Rantzer, 2015]).

• H∞-control with structured feedback controllers (see [Tanaka and
Langbort, 2011; Lidström and Rantzer, 2015]).

External Positivity
A system (S) is called externally positive if y is nonnegative whenever the
initial state x(0) = 0 and u is nonnegative. This is equivalent to the impulse
response CeAtB+D being nonnegative for all t ≥ 0 (see [Farina and Rinaldi,
2011]). Apart from the requirement that D ∈ Rk$m

≥0 , external positivity
is only an input-output property, which does not depend on a particular
realization. Consequently, internal positivity implies external positivity, but
not vice versa. The property that the system has a dominant real pole also
transfers to externally positive systems. (see [Farina and Rinaldi, 2011]).

In general, verification of external positivity is known to be NP-hard
(see [Blondel and Portier, 2002]). A computationally tractable (i.e. in poly-
nomial time) sufficient condition for external positivity is derived in Pa-
per II. Recently, the notions of internal and external positivity have been
generalized in [Rantzer, 2012; Sootla and Mauroy, 2015; Altafini, 2016] to
systems that only partially capture the properties of positive systems.

Positive Realization
Due to the significant benefits of internal positivity (see [Tanaka and Lang-
bort, 2011; Ebihara et al., 2012; Briat, 2011; Rantzer, 2015]), it is natural
to ask whether a given transfer function admits an internally positive real-
ization. The following is a brief discussion on the computational difficulties
that arise from this question. We restrict ourselves to the single-input-
single-output (SISO) case, i.e. k = m = 1 in (S).

Given any minimal realization (A, B, C, D) of the SISO system (S), the
reachable cone Kr is defined as the smallest closed convex cone containing

{eAtB : t ≥ 0}.

The observable cone is given by

Ko := {x : CeAtx ≥ 0 for all t ≥ 0}.

Given Ω ⊂ Rn, a matrix T ∈ Rn$n is said to leave S invariant if Tω ∈ Ω
for all ω ∈ Ω. Thus, Kr and Ko are left invariant by eAt for all t ≥ 0. It can
be shown that (S) is externally positive if and only if

Kr ⊂ Ko and D ≥ 0,
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1.4 Balanced Truncation

see [Ohta et al., 1984]. Internal positivity can be characterized similarly.
To this end, let a convex cone Kp ⊂ R

n be called polyhedral if there exists
a matrix P ∈ Rn$l such that Kp = {Py : y ∈ Rl

≥0}.

Proposition 1.5—[Ohta et al., 1984]
Let (A, B, C, D) be a minimal realization to the SISO-system (S) with D ≥ 0.
Then the system admits an internally positive realization if and only if there
exists a polyhedral convex cone Kp such that

i. Kp is left invariant by eAt for all t ≥ 0.

ii. Kr ⊂ Kp ⊂ Ko. 2

The first requirement is equivalent to A+γ I leaving Kp invariant for some
γ ≥ 0 (see [Ohta et al., 1984]). Thus testing whether a given Kp fulfills
the first requirement of Proposition 1.5 is possible via linear programming.
However, finding Kp = {Py : y ∈ Rl

≥0} remains a numerically intractable
problem, because neither l nor γ are known. In particular, only if the
state dimension is lower than three, it is possible to show that l = 2
and every externally positive system admits a minimal internally positive
realization (see [Farina and Rinaldi, 2011; Grussler, 2012]). Otherwise,
l may be arbitrarily large even if a minimal realization of an externally
positive system has a state of dimension three only (see [Farina and Rinaldi,
2011]).

This implies that verifying external via internal positivity can be arbi-
trarily difficult even for simple systems. In Paper II, a sufficient test for
external positivity is provided by replacing Kp with a so-called ellipsoidal
or second-order cone. The advantage is that finding an ellipsoidal cone Kp,
which fulfills the same two conditions as in Proposition 1.5, usually only
requires the solutions to a few semi-definite programs.

1.4 Balanced Truncation

(Cyber-)physical systems are described by mathematical models in terms
of differential equations such as (S). Under various assumptions, e.g. dif-
ferent initial conditions or control strategies, these models can be used to
simulate the behavior of the system. These simulations can help get a bet-
ter understanding of the system as well as save resources where otherwise
experimental trials need to be performed.

Due to the complexity of a system, the corresponding models often in-
volve large number of differential equations, which leads to computational
demanding simulations. This is especially evident in a growingly intercon-
nected world with models that describe power systems, Internet traffic,
transportation networks and many others.
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Chapter 1. Positivity Preserving Balanced Truncation

A systematic way of dealing with this curse of dimensionality is to apply
so-calledmodel reduction techniques. Given the system (S), the goal of model
reduction is to find a linear system with a similar input-output behavior,
but a lower dimensional state. For this purpose, many methods have been
developed (see [Moore, 1981; Glover, 1984; Gugercin and Antoulas, 2004;
Antoulas, 2005; Gugercin et al., 2008]) of which the most popular are based
on linear subspace projection.

Among the most widely used projection methods is the so-called bal-
anced truncation method (see [Moore, 1981; Gugercin and Antoulas, 2004]).
The advantages of this method are the existence of a simple error bound,
the need for few computational steps and its intuitive interpretation in
terms of energy functionals. The latter two advantages are some of the
reasons why balanced truncation is part of many undergraduate textbooks
(see e.g [Johansson, 1993; Glad and Ljung, 2000; Dullerud and Paganini,
2013]). Unfortunately, given a system (S), the computational effort of bal-
anced truncation is determined by the complexity of solving a Lyapunov
equation, which is typically of magnitude O(n3). If n is very large, it is
possible to apply large-scale methods such as [Gugercin et al., 2008] to
reduce the system to a size where balanced truncation is applicable. The
main ideas and computational steps of balanced truncation are outlined in
the following.

Minimal realization via Gramians
In Section 1.1 it is shown that the Kalman decompositions can be used
to compute a controllable realization by projecting on the controllable sub-
space. The same can be done by using the controllability Gramian.

Assume (A, B, C, D) is a stable realization of (S) with block diagonal
controllability Gramian Lc = blkdiag(Σ1, 0), where Σ1 ∈ R

rc$rc is positive
definite. Let

A =
(
A11 A12
A21 A22

)
, B =

(
B1
B2

)
, C =

(
C1 C2

)
be partitioned such that A11 ∈ Rr$r. Then the controllable subspace is
given by

im(Lc) =

{(
x1
0

)
∈ Rn : x1 ∈ R

rc
}

and the projection onto the controllable subspace (A11, B1, C1, D) is a con-
trollable realization of (S). Note that there always exists a unitary matrix
U, i.e. UTU = UUT = I, such that Lc = UTΛU, where Λ 4 0 is diagonal.
Thus, Λ is the controllability Gramian to the system

(UT AU,UTB, CU, D)
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1.4 Balanced Truncation

and the assumption that Lc is blockdiagonal can always be met. Analogous
considerations can be made for the observability Gramian, which allows us
to obtain a minimal realization.

Energy functionals
Assuming that (A, B, C, D) is a stable minimal realization to (S), the fol-
lowing discussion gives an intuitive measure on what other state equations
can be removed without changing the output behavior too much.

For a (piecewise continuous) function u : R≥0 → Rm the L2-norm is
defined by

quq2 := lim
t→∞

√∫ t

0
qu(t)q2 dt.

The L2 norm can be considered as a measure for the energy content of u.
Let the controllability Gramian Lc be non-singular. If the initial state is

zero and we wish to steer to x̄ over the time interval [0,∞), then a control
input u with minimal L2-norm is given by u(t) = BT eAT tL−1

c x̄ and

quq2
2 = x̄TL−1

c x̄,

see [Zhou et al., 1996]. The interpretation of this result is that states x̄which
need a small amount of energy are easy to reach from 0. In particular, if Lc
is diagonal with decreasingly sorted diagonal entries, then x̄ = en is hardest
to reach. Therefore, the influence of inputs u on xn can be considered to be
small. However, truncating xn, as with the projection onto the controllable
subspace, may still give a bad approximation, because xn could have great
effect on the output.

If the observability Gramian Lo is non-singular, x(0) = x0 and u " 0,
then y(t) = CeAtx0 and

qyq2
2 = xT0 Lox0.

The states x0 that provide a small contribution to the energy of y can
be interpreted as being hard to observe. For diagonal Lo with decreasingly
sorted diagonal entries, x0 = en is the hardest to observe and its influence on
ymay be neglected. Again, truncating xn may still give a bad approximation,
because xn could be significantly influenced by u.

Unlike projections onto observable and controllable subspaces, only
states that are both hard to reach and hard to observe can safely be ne-
glected.
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Chapter 1. Positivity Preserving Balanced Truncation

Balanced Realization
Given a stable realization (A, B, C, D) with Gramians Lc, Lo 0 0, the goal
of balancing is to find a non-singular T such that the equivalent system
(T−1AT, T−1B, CT, D) has diagonal Gramians that coincide. This transfor-
mation can be found as follows.

Let an eigenvalue decomposition of Lc be given by Lc = UΛcUT with
diagonal Λ 0 0 and unitary U. Then there exists a unitary matrix V such
that

UΛ
1
2 LoΛ

1
2UT = VΣcoVT ,

where Σco 0 0 is diagonal and Λ 1
2 is the matrix square root of Λ, i.e.

Λ
1
2 Λ

1
2 = Λ.

Letting Σ−
1
2co denote the inverse of Σ

1
2co, it follows that T := UΛ 1

2 Σ−
1
2co is

non-singular and

T−1LcT−T = Σco = TTLoT.

Hence, (T−1AT, T−1B, CT, D) has diagonal Gramians Σco and is called a
balanced realization. With such a realization, states are equally difficult to
reach and to observe. The eigenvalues of Σco are called the Hankel singular
values. Note that the squared Hankel singular values coincide with σ (LcLo),
because Σ2

co = T−1LcLoT.

Truncation and Error Bound
If (S) is a stable system with transfer function G, then the so-called
H∞-norm of G is defined as

qGq∞ := sup
ω∈R

qG(iω)q,

where q · q denotes the spectral norm. Assuming that (S) has zero initial
state, the H∞-norm can be expressed as

qGq∞ = sup
quq2≤1

qyq2,

where y is the output of (S) with input u. This norm can be used in order
to measure the error between the original system and its approximation.
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1.4 Balanced Truncation

Proposition 1.6—[Zhou et al., 1996]
Assume (A, B, C, D) is a balanced realization of a stable transfer function
G with Gramians Lc = Lo = Σco = blkdiag(Σ1, Σ2) 0 0 such that

Σ1 = blkdiag(σ1 Ik1 , . . . , σr Ikr) and Σ2 = blkdiag(σr+1 Ikr+1 , . . . , σN IkN ),

where σ1 > · · · > σN > 0 and Iki ∈ Rki for all i. Let

A =
(
A11 A12
A21 A22

)
, B =

(
B1
B2

)
, C =

(
C1 C2

)
be partitioned such that A11 ∈ Rk$k, where k :=

∑r
i ki. Then

(A11, B1, C1, D) is a balanced, minimal and stable realization of Gr that
satisfies

qG − Grq∞ ≤ 2
r∑
i=1

σi.

2

In [Beck et al., 1996; Sandberg and Rantzer, 2004] it has been shown that
the error bound in Proposition 1.6 also holds if the system is balanced with
respect to the so-called generalized Gramians L̃c and L̃o satisfying

AL̃c + L̃cAT + BBT 5 0,
AT L̃o + L̃oAT + CTC 5 0.

The reduced system Gr remains stable but (A11, B1, C1, D) may not be min-
imal. Furthermore, the corresponding generalized Hankel singular values,
i.e. σ (L̃c L̃o), cannot be smaller than the Hankel singular values (see Pa-
per I).

Singular Perturbation
Assume (A, B, C, D), G and Gr are as in Proposition 1.6, then

lim
s→∞

G(s) = lim
s→∞

Gr(s) = D.

It can be shown (see [Liu and Anderson, 1989]) that also the reduced system

(A11 − A12A−1
22 A21, B1 − A12A−1

22 B2, C1 − C2A−1
22 A21, D − C2A−1

22 B2)

with transfer function Ĝr(s) fulfills the error bound in Proposition 1.6 and

lim
s→0

G(s) = lim
s→0

Ĝr(s).

This variant of balanced truncation is referred to as singular perturbation
balanced truncation.
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Chapter 1. Positivity Preserving Balanced Truncation

Positivity Preservation
Approximating a positive system with a lower dimensional positive system is
a valid desire, since negative values in the output of the reduced system may
lack interpretability in terms of the original system dynamics. Furthermore,
internal positivity is required, if the intention is to apply tools, such as
in [Tanaka and Langbort, 2011; Briat, 2011; Rantzer, 2015], to the reduced
system.

Commonly used model reduction methods such as balanced truncation,
however, do generally neither preserve internal nor external positivity. The
reason for this is threefold:

i. Necessary transformations, such as balancing a system, usually destroy
internal positivity.

ii. A priori, it is unknown whether the truncated system is externally
positive.

iii. Internally positive realizations can be high-dimensional compared to
the corresponding minimal realization.

In particular, a transformation matrix T ∈ Rn$n leaves Rn$n
≥0 invariant if

and only if T = PD, where P ∈ Rn$n is a permutation matrix and D 0 0 is
diagonal. If T is a balancing transformation with respect to the generalized
Gramians L̃c and L̃o, then

T−1 L̃c L̃oT = D−1PT L̃c L̃oPD

being diagonal implies that L̃c L̃o is diagonal. In [Reis and Virnik, 2009] this
observation is utilized, because Proposition 1.4 indeed guarantees the exis-
tence of diagonal L̃c and L̃o. Thus reduced internally positivity preserving
approximations can be obtained while having an a priori error bound. Sim-
ilar ideas based on Proposition 1.4 are used in [Sootla and Rantzer, 2012].
The problem that arises from such approaches is that T is essentially just
a permutation, which often yields conservative errors in the H∞-norm.

In Paper I an alternative method is suggested which is based on a
symmetry property of balanced realizations, allowing to preserve internal
positivity. Further, the work in Paper II is the first of its kind that relaxes
this requirement by preserving external positivity, only. As a consequence,
it is possible to perform generalized balanced truncation steps on externally
positive systems without requiring an internally positive realization to begin
with.

Finally, note that there exist non-linear optimization methods such as
[Feng et al., 2010; Li et al., 2011; Li et al., 2014] that intend to preserve
internal positivity. Unfortunately, they are computationally intractable and
are not guaranteed to converge (see [Grussler, 2012]).
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2
Convex Optimization

This chapter provides background material on convex optimization which
can be found in standard text books, such as [Luenberger, 1968; Rockafel-
lar, 1970; Hiriart-Urruty and Lemaréchal, 1996; Bauschke and Combettes,
2011].

2.1 Convex Sets

In the remainder of this chapter, it is assumed that all Hilbert spaces are
real, finite-dimensional and equipped with an inner product 〈·, ·〉 and norm
q · q = √〈·, ·〉. In particular, it is assumed that all sets are subsets of the
Hilbert space H if not otherwise stated.

Convex Set
Given x1, . . . , xk ∈ H, a point of the form

k∑
i=1

αixi with
k∑
i=1

αi = 1 and αi ≥ 0 for all i,

is said to be a convex combination of x1, . . . , xk. Geometrically, the set of all
convex combinations of x1 and x2 is the line segment between x1 and x2.

A set C is called convex if

αx1 + (1−α)x2 ∈ C

for all x1, x2 ∈ C and all α such that 0 ≤ α ≤ 1.

Convex Hull and Extreme Points
Given a set S, the convex hull conv(S) is defined as the smallest convex set
containing S. In particular,

conv(S) =
{ k∑

i=1
αixi : k > 0,

k∑
i=1

αi = 1, xi ∈ S, αi > 0 for all i
}
.
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Let cl(S) denote the topological closure of S, then

cl(conv(S))

is called the closed convex hull of S. Notice, in general

cl(conv(S)) ,= conv(cl(S)).

Lemma 2.1—[Hiriart-Urruty and Lemaréchal, 1996]
If S is bounded (compact), then conv(S) is bounded (compact). 2

Let C be convex, then e ∈ C is said to be an extreme point of C, if there does
not exist x1, x2 ∈ C \ {e} such that e is a convex combination of x1 and x2.
The set of all extreme points of the convex set C is denoted by ext(C).

Lemma 2.2—[Hiriart-Urruty and Lemaréchal, 1996]
If C is a compact convex set, then

C = conv(ext(C)). 2

Lemma 2.3—[Rockafellar, 1970]
Two closed convex sets C1 and C2 coincide if and only if

sup
x∈C1

〈x, y〉 = sup
x∈C2

〈x, y〉.

for all y ∈ H 2

Cone
A set K is said to be a cone if

αx ∈ K

for all x ∈ K and all α ≥ 0. Thus, K is a convex cone if

α1x1 +α2x2 ∈ K

for all x1, x2 ∈ K and all α1, α2 ≥ 0.

Convex Conic Hull
The convex conic hull of a set S is defined as the smallest convex cone
containing S and therefore

cone(S) =
{ k∑

i=1
αixi : k > 0, xi ∈ S, αi ≥ 0 for all i

}
.

A cone is said to be solid if it contains an interior point.
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Affine Subspace
Given x1, . . . , xk ∈ H, a point of the form

k∑
i=1

αixi with αi ∈ R for all i

is said to be a linear combination of x1, . . . , xk. Geometrically, the set of all
linear combinations of x1 and x2 forms the line through x1 and x2.

A set L is said to be a linear subspace if

α1x1 +α2x2 ∈ L

for all x1, x2 ∈ L and all α1, α2 ∈ R. If x1, . . . , xk ∈ L is the smallest
number of non-zero elements such that

L =

{ k∑
i=1

αixi : αi ∈ R for all i
}
,

then k is called the dimension dim(L) of the linear subspace L. In partic-
ular, if L = {0} then dim(L) = 0.

A shifted linear subspace A is called an affine subspace or linear variety,
i.e. for all x0 ∈ A it holds that

A = {x0 + x : x ∈ L(A)} ,

where

L(A) := {α1(x1 − x0) +α2(x2 − x0) : x1, x2 ∈ A, α1, α2 ∈ R}

is a linear subspace that is parallel to A. The dimension of A is defined as

dim(A) := dim(L(A)).

The affine hull aff(S) of a set S is defined as the smallest affine subspace
containing S and therefore

aff(S) =
{ k∑

i=1
αixi : k > 0,

k∑
i=1

αi = 1, xi ∈ S, αi ∈ R for all i
}
.

Relative Interior
The relative interior of a convex set C is defined as

ri(C) := {x ∈ aff(C) : ∃δ > 0 such that aff(C) ∩Bδ (x) ⊂ C} ,

where Bδ (x) := {x ∈ H : qxq ≤ δ} .
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Chapter 2. Convex Optimization

Carathéodory’s Theorem on the Convex Hull
Let C be a convex set such that dim(aff(C)) = k, then Carathéodory’s
Theorem on the Convex Hull (see [Hiriart-Urruty and Lemaréchal, 1996])
says that

C =
{k+1∑

i=1
αixi :

k+1∑
i=1

αi = 1, xi ∈ C, αi ≥ 0 for all i
}
.

In particular, if C is compact, then

C =
{k+1∑

i=1
αixi :

k+1∑
i=1

αi = 1, xi ∈ ext(C), αi ≥ 0 for all i
}
.

2.2 Convex Functions

In the following, let the effective domain of a function f : H → R ∪ {∞} be
defined as

dom( f ) := {x ∈ H : f (x) < ∞}.
If dom( f ) ,= ;, then f is called proper. In the remainder it is assumed that
all functions are proper.

Convex Function
A function f : H → R ∪ {∞} is called convex if

f (αx1 + (1−α)x2) ≤ αf (x1) + (1−α) f (x2)

for all x1, x2 ∈ dom( f ) and all α with 0 ≤ α ≤ 1. If − f is convex, then f is
called concave. The effective domain of a convex function f is convex and f
is continuous on ri(dom( f )).

Strictly Convex Function
A convex function f : H → R ∪ {∞} is called strictly convex if

f (αx1 + (1−α)x2) < αf (x1) + (1−α) f (x2)

for all x1, x2 ∈ dom( f ) with x1 ,= x2 and for all α with 0 ≤ α ≤ 1.

Strongly Convex Function
A function f : H → R ∪ {∞} is said to be strongly convex with parameter
m > 0 if

x ]→ f (x) − m
2
qxq2

is convex.
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2.3 Optimality

Closed Function
A convex function f : H → R∪{∞} is said to be closed if the epi-graph of f

epi( f ) := {(t, x) ∈ R$H : f (x) ≤ t} (2.1)

is a closed set.

Conjugate Function
The conjugate function to f : H → R ∪ {∞} at x∗ ∈ H is defined as

f ∗(x∗) := sup
x
[〈x, x∗〉 − f (x)].

Subdifferentials
Let f : H → R ∪ {∞} be a convex function, then

� f (x0) := {x∗0 ∈ H : f (x) ≥ f (x0) + 〈x− x0, x∗0 〉 for all x ∈ H}

is called the subdifferential of f at x0.
Note that if � : H → R ∪ {∞} is another convex functional such that

ri(dom(�)) ∩ ri(dom( f )) ,= ;, then

�[ f (x0) + �(x0)] = � f (x0) + ��(x0),

where the addition is taken with respect to the Minkowski sum, i.e.

� f (x0) + ��(x0) := {x+ y : x ∈ � f (x0), y ∈ ��(x0)}.

2.3 Optimality

An optimization problem is said to be convex if it can be written in the form

minimize
x

f (x) (2.2)

where f : H → R ∪ {∞} is convex.

Minimum and Maximum
Let f : H → R ∪ {∞} and x0 ∈ H be such that there exists δ > 0 with

f (x0) ≤ f (x) for all x ∈ Bδ (x0) ∩ dom( f ). (2.3)

Then f (x0) is called a local minimum with local minimizer x0. If (2.3) is
fulfilled for all δ > 0, then f (x0) is a global minimum of f with global
minimizer x0. Analogously, one can define local (global) maximum and
maximizer if the reversed inequality in (2.3) holds.
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Global Optimality
The following is a summary of some well-known properties of the solutions
to (2.2).

Proposition 2.1—see [Hiriart-Urruty and Lemaréchal, 1996]
Let f : H → R ∪ {∞} be convex and µ := infx f (x), then

i. The solution set Σ := {x : f (x) = µ} is convex.

ii. xv is a local minimizer of f if and only if xv is a global minimizer.

iii. f (xv) = µ if and only if 0 ∈ � f (xv).

iv. If f is strictly convex, then Σ is either a singleton or the empty set.

v. If f is strongly convex, then Σ is a singleton.

vi. If dom( f ) is compact, then f has a global minimum. 2

Berge’s Maximum Theorem
In the following, let P(H) denote the power set of H, i.e. the set of all
subsets. For Θ ⊂ R, a multivalued function (correspondence) F : Θ → P(H)
is said to be upper hemicontinuous at θ ∈ Θ, if for all open sets V ⊂ H
with F(θ) ⊂ V, there exists δ > 0 such that

F(y) ⊂ V for all y ∈ (θ − δ ,θ + δ ) ∩ Θ.
Further, F is called lower hemicontinuous at θ ∈ Θ if for all open sets
V ⊂ H with V ∩ F(x0) ,= ;, there exists δ > 0 such that

F(y) ∩ V ,= ; for all y ∈ (θ − δ ,θ + δ ) ∩ Θ.
If F is both upper and lower hemicontinuous at θ , then F is simply called
continuous at θ . Finally, F is said to be compact-valued (convex-valued) at
θ ∈ Θ if F(θ) is a compact (convex) set.

The so-called Berge’s Maximum Theorem (see [Berge, 1963; Sundaram,
1996]) provides conditions for the continuity of a parameter-dependent con-
cave function and the so-called upper hemicontinuity of its set of maximiz-
ers.

Proposition 2.2—Berge’s Maximum Theorem under Convexity
Let S ⊂ H and Θ ⊂ R. Assume F : Θ → P(H) is continuous, compact- and
convex-valued on Θ and f : S $ Θ → H is (jointly) continuous. Let

f v(θ) := max{ f (x,θ) : x ∈ D(θ)},
Fv(θ) := {x ∈ F(θ) : f (x,θ) = f v(θ)}.

Then f v is continuous and Fv is upper hemicontinuous on Θ. Furthermore,
Fv is convex-valued on Θ if f (·, θ) is concave on Θ. 2
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2.4 Duality Theory

Optimization problems are often not formulated as minimizing just a single
function. If the cost function f in the primal problem (2.2) is split into
several parts, it may be beneficial to consider the so-called corresponding
dual problem, which can be easier to solve than the primal problem. There
are several notions of duality such as Fenchel, Lagrange or Gauge duality
(see [Rockafellar, 1970; Freund, 1987]). Here, the former two concepts are
discussed.

Lagrange Duality
The following notational conventions are needed to introduce Lagrange
duality. Let Y be a Hilbert space containing a solid cone K ⊂ Y. The cone
K induces an ordering in the sense that if x, y ∈ K then

x 5K y if and only if x− y ∈ K.

An operator G : Ω → Y is said to be convex, if Ω ⊂ H is convex and

G(αx1 + (1−α)x2) 5K αG(x1) + (1−α)G(x2)

for all x1, x2 ∈ Ω and for all α with 0 ≤ α ≤ 1. Let Z be a Hilbert space,
then A : H → Z is called a linear operator if

A(α1x1 +α2x2) = α1A(x1) +α2A(x2)

for all x1, x2 ∈ H and for all α1, α2 ∈ R.
A primal problem in Lagrange duality is commonly stated as

pl := inf
x∈D

f0(x)

s.t. G(x) 5K 0
A(x) = y0

where f0 : H → R ∪ {∞} and G : Ω → Y are convex, A : H → Z is linear
with y0 ∈ Z and D := dom( f ) ∩ Ω. The associated Lagrange dual problem
is

dl := max
Λ4K0
Φ∈Z

inf
x∈D

[ f0(x) + 〈Λ, G(x)〉 + 〈Φ, A(x) − y0〉].

It can be shown that pl ≥ d f and pl − dl is referred to as the duality gap.

Proposition 2.3—Slater’s condition
Assume that pl > −∞ and that there exists x0 ∈ ri(D) with

G(x0) 5K 0 and A(x0) = y0,

then pl = dl. 2
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Fenchel Duality
A primal problem in Fenchel duality is usually stated as

p f := inf
x
[ f (x) + �(x)], (2.4)

and its corresponding Fenchel dual problem is given by

d f := −min
xv
[ f ∗(xv) + �∗(−xv)],

where f , � : H → R ∪ {∞} are closed and convex. It holds that p f ≥ d f
and p f − d f is called the duality gap.

Proposition 2.4—Fenchel’s duality theorem
Assume that p f > −∞ and

ri(dom( f )) ∩ ri(dom(�)) ,= ;, 2

then p f = d f .

In [Magnanti, 1974], it is shown that Fenchel duality is equivalent to La-
grange duality, i.e. Proposition 2.3 can be proven by Proposition 2.4 and
vice versa.

2.5 Douglas-Rachford Splitting Algorithm

In numerical convex optimization, many solvers are so-called interior point
methods (see e.g. [Boyd and Vandenberghe, 2004; Nocedal and Wright,
2006]). An advantage of these methods is that they usually exhibit fast
convergence. However, this comes at the cost of having computationally de-
manding iterates (see .e.g [Toh et al., 1999; Peaucelle et al., 2002]), which
grow unfavorably with the number of decision variables.

In order to maintain computability for large optimization problems, one
can apply so-called proximal splitting algorithms (see [Combettes and Pes-
quet, 2011; Parikh and Boyd, 2014]). Among these algorithms is the cele-
brated Douglas-Rachford Splitting Algorithm (see [Douglas and Rachford,
1956; Lions and Mercier, 1979; Eckstein and Bertsekas, 1992; Bauschke
and Combettes, 2011; Combettes and Pesquet, 2011]), which is discussed
here.
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Proximal Mapping
The proximal mapping of a closed convex function f : H → R ∪ {∞} is
defined as

proxγ f (z) := argmin
x

(
f (x) + 1

2γ
qx− zq2

)
,

where γ > 0. Note that by Proposition 2.1 it holds that

z− xv ∈ �γ f (xv),

where xv := proxγ f (z).

Douglas-Rachford Iteration
Assume that the optimization problem is split as

min
x
[ f (x) + �(x)], (2.5)

where f , � : H → R ∪ {∞} are close and convex, and that there exist a
solution to (2.5). Then the Douglas-Rachford iteration is given by

xk = proxγ f (zk−1), (2.6a)
yk = proxγ �(2xk − zk−1), (2.6b)
zk = zk−1 + ρ(yk − xk), (2.6c)

where γ > 0 and ρ ∈ (0, 2). A special instance of the Douglas-Rachford
splitting algorithm is the so-called alternating direction method of multi-
pliers (see [Glowinski and Marroco, 1975; Gabay and Mercier, 1976; Boyd
et al., 2011]).

Fixed Points
In the following, it is explained why a limit point to (2.6a) is also a minimizer
to (2.5). Rewriting (2.6a)–(2.6c) as

zk = F(zk−1) (2.7)

with

F(z) := z+ ρproxγ �(2proxγ f (z) − z) − ρproxγ f (z) (2.8)

shows that the Douglas-Rachford method is a fixed-point iteration. For any
of these fixed-points zv ∈ H with

xv := proxγ f (zv),
yv := proxγ �(2proxγ f (zv) − zv),
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it holds that

zv − xv ∈ �γ f (xv), 2xv − zv − yv ∈ �γ �(yv),

and xv = yv. This is implies that

0 ∈ �γ ( f (xv) + �(xv)),

thus xv is a solution to (2.5). Conversely, if a solution xv to (2.5) fulfills

−w ∈ �γ f (xv) and w ∈ �γ �(xv),

then zv = xv − wv is a fixed point to (2.7).
Under the given assumptions on f and � the operator F is known to be

firmly nonexpansive, i.e. for all x, y ∈ H it holds that

〈F(x) − F(y), x− y〉 ≥ qF(x) − F(y)q2.

This is the key property for showing that Douglas-Rachford iteration al-
ways converges (see [Douglas and Rachford, 1956; Lions and Mercier, 1979;
Eckstein and Bertsekas, 1992]).
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Paper I

A Symmetry Approach for Balanced
Truncation of Positive Linear Systems

Christian Grussler Tobias Damm

Abstract

We consider model order reduction of positive linear systems and
show how a symmetry characterization can be used in order to preserve
positivity in balanced truncation. The reduced model has the additional
feature of being symmetric.

© 2012 IEEE. Reprinted, with permission, from Proceedings of the 2012
IEEE 51st Annual Conference on Decision and Control (CDC), Maui, USA,
2012.
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1. Introduction

Mathematical modeling of biological, chemical and physical systems often
leads to complex high-dimensional models, which are hard to analyze and
simulate. Approximating high-order models by ones of reduced order is the
central goal of model order reduction in control and has received consider-
able attention e.g. in [Moore, 1981; Fernando and Nicholson, 1983; Safonov
and Chiang, 1989; Sandberg and Rantzer, 2004; Gugercin et al., 2008]. Here
we consider linear time-invariant systems

G :
{
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(1)

with state vector x ∈ Rn, input u ∈ Rm and output y ∈ Rp, for small m, p
and large dimension n. Our goal is to approximate (1) by a system of the
same structure with the same m and p, but with smaller order r < n. For
this purpose different methods have been developed, the most popular of
which are based on linear subspace projection, such as balanced truncation
[Moore, 1981] or Krylov subspace methods [Antoulas, 2005], [Gugercin et
al., 2008].

In practice, one often deals with so called (internally) positive systems
(see [Farina and Rinaldi, 2011]) whose output and state variables are non-
negative, whenever the input and initial states are confined to be nonnega-
tive. Such systems occur, e.g. within the discretization of partial differential
equations [Saad, 2003], transport models or compartmental systems [Lu-
enberger, 1979]. It is desirable that the reduced system also is positive.
Unfortunately, positive systems are defined on cones instead of linear sub-
spaces [Ohta et al., 1984; Berman et al., 1989; Farina and Rinaldi, 2011],
and therefore methods based on linear subspace projection typically do not
preserve positivity. As a consequence, new methods have been developed
in [Reis and Virnik, 2009; Feng et al., 2010; Li et al., 2011]. However, with
rather conservative results regarding the H∞-error and the computational
effort.

In this paper we present several new results related to positivity pre-
serving model order reduction. First, we show that balanced truncation
to order one always gives a positive approximation. Then, for single-input
single-output (SISO) systems, a symmetry condition for computing positive
realizations is derived. Since any balanced realization of a SISO-system can
be shown to be sign-symmetric with respect to the entries in A, B and C
(see [Moore, 1981; Fernando and Nicholson, 1983]), we can describe a pro-
cedure to compute a positive reduced order model of a SISO-system, by just
comparing signs in the sign-symmetric realization. In the worst case, this
procedure only allows for the scalar approximation mentioned above, but
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in practical examples, it also yields positive approximations of higher order
with acceptable errors. These approximations have the additional property
of being symmetric, which is desirable for instance, in case of linear net-
works with reaction-diffusion structure [Ishizaki et al., 2010].

2. Preliminaries

Throughout this paper we use the following notation for real matrices and
vectors X = (xi j). We say that X is positive, X ≫ 0, if all its entries are
positive (xi j > 0 for all i, j). It is called nonnegative, X = 0, if all entries
are nonnegative (xi j ≥ 0 for all i, j). By pX p = (pxi jp) = 0 we denote the
entrywise absolute value of X .

A square matrix X is reducible, if there exists a permutation matrix
P = [P1, P2] so that PT

2 X P1 = 0. Otherwise, it is irreducible (see [Berman
and Plemmons, 1994]). By σ (X) we denote the spectrum of X .

If X is square and symmetric, then we write X > 0, or X ≥ 0 if X is
positive definite, or nonnegative definite, i.e. σ (X) ⊂ [0,∞[. We also use
these notations to describe the relation between two arbitrary elements, e.g.
A ≥ B is defined by A− B ≥ 0. A real vector valued function u(t) ∈ Rn is
called nonnegative if and only if u(t) = 0 for all t.

Proposition 1—Perron-Frobenius [Luenberger, 1979; Meyer, 2000]
If A = 0 is irreducible, then there exist a real λ0 > 0 and a vector x0 ≫ 0
such that

1. Ax0 = λ0x0.

2. λ0 ≥ pλp, ∀λ ∈ σ (A).

3. The algebraic multiplicity of λ0 is one.

If A = 0 is reducible, then there exists a real λ0 ≥ 0 and a vector x0 ≥ 0
such that

1. Ax0 = λ0x0.

2. λ0 ≥ pλp, ∀λ ∈ σ (A).

Moreover, there exists a permutation matrix π , such that

πT Aπ =

B1 ∗ ∗
. . . ∗

Bk

 ,

where each Bi is irreducible or equal to zero. In particular, if A is diago-
nalizable and λ0 has multiplicity m0, then A has m0 linearly independent
nonnegative eigenvectors. 2
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Next, let us define positive systems (see [Farina and Rinaldi, 2011]).

Definition 1—External Positivity
A linear system (A, B, C, D) as in (1) is called externally positive if and only
if its output, corresponding to a zero initial state, is nonnegative for every
nonnegative input. 2

Definition 2—Internal Positivity
A linear system (1) is called (internally) positive if and only if its state and
output are nonnegative for every nonnegative input and every nonnegative
initial state. 2

To characterize a continuous positive system, one needs the notion of a
Metzler matrix (or Z-matrix) [Berman and Plemmons, 1994]. A matrix
A ∈ Rn$n is Metzler if there exists an α ∈ R such that A+αIn = 0, where
In is the n $ n identity matrix. If A is Metzler then eAt = 0 for all t ≥ 0
[Luenberger, 1979].

Proposition 2—[Farina and Rinaldi, 2011]
A continuous linear system (1) is positive if and only if A is Metzler and
B, C, D = 0. 2

3. Balanced Truncation to Order One

In the following we consider asymptotically stable positive systems
(A, B, C, D) as in (1). We assume the reader to be familiar with the concept
of standard balanced truncation (see e.g. [Antoulas, 2005; Reis and Virnik,
2009]). In general, balanced truncation does not return a positive system –
unless the system is reduced to the order r = 1.

Theorem 1—Positive Order-1 Balanced Truncation
If (A1, B1, C1, D1) is the reduced system of order 1, obtained by standard
balanced truncation of (A, B, C, D), then it has a positive, asymptotically
stable realization (A1, pB1p, pC1p, D1) of order 1. 2

Proof Let P and Q be the Gramians of (A, B, C, D), implicitly given by

AP + PAT = −BBT , ATQ+ QA = −CTC, (2)

or in their explicit form by

P =
∫ ∞

0
eAtBBT eAT tdt, Q =

∫ ∞

0
eAT tCTCeAtdt. (3)
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Obviously, P and Q are nonnegative and thus PQ, too. Balancing the system
via a state-space transformation x = Tξ yields

T−1PQT = blkdiag
(
σ 2

1 Ik1 , . . . , σ 2
N IkN , 0

)
with Hankel singular values σ1 > · · · > σN and corresponding multiplicities
k1, . . . , kN (see [Zhou et al., 1996]). Hence, the columns of T are eigenvectors
of PQ and by Theorem 1 there exists a nonnegative right-eigenvector v1 to
the largest eigenvalue σ1, i.e.

PQv1 = σ1v1 with T =
(
v1, . . . , vn

)
.

Analogously, there exists a nonnegative left-eigenvector w1 such that
T−1 =

(
w1, . . . , wn

)T . If k1 = 1, the asymptotic stability of the reduced
system of order one leads to

A1 = wT
1 Av1 < 0, B1 = wT

1 B = 0, C1 = Cv1 = 0, D1 = D = 0.

If k1 > 1, it could happen that A1 = 0. But since the reduced system of
order k1 (belonging to all σ1) is asymptotically stable, there must exist at
least one asymptotically stable first order approximation. By Theorem 1
we conclude the reducibility of PQ and the positivity of each first order
approximation. In both cases Theorem 2 concludes the proof.

Balanced truncation can also be performed by using −v1 and −w1. In
this case we substitute B1 and C1 by their elementwise absolute values. 2

In general, Theorem 1 does not transfer to singular perturbation balanced
truncation (see [Reis and Virnik, 2009]). Further, Theorem 1 gives a neces-
sary condition on the positivity, independent of its realization. By numerical
experiments, we can observe that this is a strong condition. Many of the
non-positive systems fail at this point.

4. The Positive Realization Problem

From the proof of Theorem 1 we can deduce that even in case of an ap-
proximation to order one, balanced truncation does not necessarily return
a positive realization. However, it is straightforward to see, that every first
order externally positive system has a positive realization of the same di-
mension. The same is true for second order SISO-systems (see [Ohta et
al., 1984]). But higher-order externally positive systems do not necessarily
admit an internally positive realization of the same dimension – even if
they possess only real poles (see [Ohta et al., 1984] again). Knowing that
balanced truncation always results in a minimal system, the positive re-
alization problem and its connection to balanced realizations becomes the
major obstacle beside the actual positivity preservation.

47



Paper I. A Symmetry Approach. . . Positive Linear Systems

We call a linear system quasi-symmetric if A = AT and C = kBT for
some k > 0. If k = 1 the system is said to be symmetric (see [Liu et al.,
1998]).

Theorem 2—Positivity of Symmetric Systems
Every quasi-symmetric SISO system possesses a symmetric positive mini-
mal realization, which can be computed by Arnoldi’s (or Lanczos’) algorithm.2

Proof Let (A, B, C, D) be a quasi-symmetric system with Gramians P and
Q. Then from (3) it follows that Q = k2P. Diagonalization of kP gives

kP = TTΣT
PQ = k2P2 = TTΣ2T = T̃−1PQT̃

with T̃ = 1√
kT. Obviously, T̃ is a balancing transformation matrix and the

balanced system is given by

(T−1AT̃, T̃−1B, CT̃) = (TT AT,
√
k(BT)T ,

√
kBT).

Thus, it is always possible to find a symmetric minimal realization of a
quasi-symmetric system. Arnoldi’s algorithm (see [Trefethen and Bau III,
1997; Antoulas, 2005]) yields a unitary transformation matrix

V =
(

B
qBq2

∗
)
,

such that VT AV is upper Hessenberg with positive elements on its lower
diagonal. If A = AT and C = BT , this means that VT AV is Metzler and

CV = (BTV) =
(
qBq2 0 · · · 0

)
.

Positivity now follows from Proposition 2. 2

5. Symmetric Balanced Truncation

If balanced truncation of a SISO system results in a symmetric reduced
model, then (by Theorem 2) we are able to compute its positive realization.
To this end we recall the following important result of balanced SISO-
systems (see also [Moore, 1981; Fernando and Nicholson, 1983]).

Proposition 3
Let G(s) be the transfer function of an arbitrary SISO-system. Then there
exists a balanced realization (A, B, C, D) of G(s), such that (A, B, C, D) is
sign symmetric, i.e. pAp = pAT p and pBp = pCT p. 2
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Proof Let (A, B, C, D) have simple Hankel singular values {σ1, . . . , σn}. By
definition of a balanced system, its Lyapunov equations can be written as

AΣ + ΣAT = −BBT \ ai jσ j + σia ji = −bibj,
ATΣ + ΣA = −CTC \ ai jσi + σ ja ji = −cic j, (4)

for i, j = 1, . . . , n and Σ := diag(σ1, . . . , σn). In particular it holds for i = j :

2aiiσi = −b2
i = −c2

i [ bi = ±ci. (5)

If i ,= j we can deduce from (4) and (5)(
σ j σi
σi σ j

)(
ai j
a ji

)
=

(
bibj
cic j

)
=

(
bibj
±bibj

)
.

Solving for
(
ai j a ji

)T yields
(
ai j
a ji

)
=

bibj
σ 2
j − σ 2

i

(
σ j ∓ σi
±(σ j ∓ σi)

)

and hence ai j = ±a ji.
In case of multiple Hankel singular values we can assume w.l.o.g.

Σ = diag(σ1 Ik1 , σ2, . . . , σn) for k1 > 1. By partitioning A =
(
A1 ∗
∗ ∗

)
and

B =
(
B1
∗
)

correspondingly to σ1 Ik1 , we can write σ1(A1 + AT1 ) = B1BT
1 .

Diagonalizing
B1BT

1 = UTdiag
(
λ, 0

)
U with λ > 0

gives
σ1(UA1UT +UAT1UT) = UB1BT

1UT = diag
(
λ, 0

)
and it follows for Ã := UA1UT , that ãi j = −ã ji. By T := diag(U, I) we
define a balanced sign symmetric realization

( Ã, B̃, C̃, D̃) := (TATT , TB, CTT , D).
2

Note that bibj = −cic j if and only if ai j = −a ji. Hence, balanced truncation
returns a k-th order symmetric approximation as long as ci = bi for all
i = 1, . . . , k. From Theorem 1 we know that k ≥ 1.

Theorems 1–3 provide the basis of the following Symmetric Balanced
Truncation Algorithm (SBT).
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Algorithm 1—Symmetric Balanced Truncation Algorithm
Let G be a given linear system as in (1), then:

1. Compute a balanced realization (Ab, Bb, Cb, Db).

2. Compare the entries of Bb and Cb in order to identify the smallest k,
where ck ,= bk.

3. Perform the truncation of (Ab, Bb, Cb) to obtain a reduced symmetric
system Gr of the order r < k.

4. Obtain a positive realization of Gr with the help of Lanczos Algorithm.
2

Due to the symmetry constraint the reduced models possess only real eigen-
values. Thus, we can expect to approximate a system well, only if its dom-
inating poles are real. Such systems often occur in the context of sparse
large-scale systems, i.e. n≫ 1000. For such high dimensions balanced trun-
cation may not be applicable and therefore a pre-approximation is required.
In [Gugercin et al., 2008] it is shown empirically, that the Iterative Rational
Krylov Algorithm (IRKA) gives comparable good results as balanced trun-
cation. The same can be said about the size of the symmetric part after
balancing a reduced model, which is obtained by IRKA. This makes IRKA
an advisable pre-approximator for our method.

The applicability to large-scale systems and the general independence of
a specific state-space representation can be considered the main advantages
of SBT. This method is often preferable to those presented in [Reis and
Virnik, 2009; Feng et al., 2010; Li et al., 2011], for the following reasons.
The methods in [Feng et al., 2010] and [Li et al., 2011] have the common
goal of satisfying the Bounded Real Lemma [Zhou et al., 1996] for the error-
system, i.e. between the original and the reduce model. Both are using an
iterative linearization approach and consequently do not have a convergence
guarantee. The linear matrix inequalities (LMIs), which need to be solved,
are usually very expensive to solve (see [Peaucelle et al., 2002]).

The method in [Reis and Virnik, 2009] is based on LMIs, consisting only
of 2n variables. In the following we refer to this method as Generalized
Balanced Truncation (GBT). It generalizes the idea of balanced truncation
by using diagonal solutions P̃ ≥ 0 and Q̃ ≥ 0 of the LMIs

AP̃ + P̃ AT ≤ −BBT , AT Q̃+ Q̃A ≤ −CTC . (6)

Such solutions exist, since A is Metzler (see [Berman and Plemmons, 1994]).
Balanced truncation based on the generalized Gramians P̃ and Q̃ preserves
the error formula [Beck et al., 1996], but the bound is more conservative,
as the following proposition shows.
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Proposition 4
Let (A, B, C, D) be a minimal system, λ1 ≥ · · · ≥ λn be the eigenvalues of
PQ given by (2), and λ̃1 ≥ · · · ≥ λ̃n be the eigenvalues of P̃Q̃ as defined in
(2). Then λi ≤ λ̃i for all i = 1, . . . , n. 2

Proof By subtracting equations (2) from the inequalities (6) it follows by
the stability of the system [Zhou et al., 1996], that P̃−P ≥ 0, or equivalently
that P̃ ≥ P > 0. In the same way we obtain Q̃ ≥ Q > 0. It holds, that

σ (PQ) = σ (P−
1
2 (PQ)P

1
2 ) = σ (RQR)

where R = P 1
2 . Analogously, σ ( P̃Q̃) = σ (R̃Q̃R̃) with R̃ ≥ R > 0. Since

R̃Q̃R̃ − RQR = R̃Q̃R̃ − R̃QR̃ + R̃QR̃ − RQR =

= R(Q̃− Q)R + Q−
1
2

(
(Q

1
2 R̃Q

1
2 )2 − (Q

1
2 RQ

1
2 )2

)
Q−

1
2 ,

it follows by Q̃ ≥ Q, as well as Q 1
2 R̃Q 1

2 ≥ Q 1
2 RQ 1

2 , that R̃Q̃R̃ ≥ RQR.
The inequalities for the eigenvalues now follow from the Courant-Fischer
theorem [Lancaster and Tismenetsky, 1985]. 2

From a geometric point of view this is clear, since balancing with respect to
the generalized Gramians does not project the system onto the controllable
and observable subspace. In particular, standard balanced truncation with
diagonal Gramians is essentially a permutation of the states followed by
truncation.

In contrast, SBT inherits the good H∞-error behavior of balanced trunca-
tion. For that reason even a small symmetric part often yields good results.
In Section 6 we compare SBT and GBT numerically. Since GBT can also be
used for singular perturbation balanced truncation, we always present the
error of the better one.

6. Examples

We discuss some properties of SBT and compare it with the method in [Reis
and Virnik, 2009].

6.1 Water Reservoirs
We start with the same water reservoir example as in [Reis and Virnik,
2009]. As schematically shown in Fig. 1, we consider a system of n connected
water reservoirs. All reservoirs R1, . . . , Rn are assumed to be located on the
same level. Base area and fill level of reservoir Ri are denoted by ai and
hi, respectively. Further, Ri and R j are connected by a pipe of diameter
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u

R1

fo,1

h1 R2

fo,2

h2

R3

fo,3

h3

Rn−1

fo,n−1

hn−1

Rn

fo,n

hn

f12

f13
fn−1,n

Figure 1. System of n water reservoirs.

di j = d ji ≥ 0, resulting in a flow fi j from Ri to R j, where fi j is assumed to
be linearly dependent on the pressure difference at both ends. The external
inflow to reservoir R1 serves as the single input of the system. The output is
the sum of all outflows fo,i of Ri through a pipe with diameter do,i. According
to Pascal’s law the system flows are described by

fi j(t) = d2
i j · k · (hi(t) − h j(t)) ,

fo,i(t) = d2
o,i · k · (hi(t) − h j(t)) ,

where k is a constant representing gravity as well as viscosity and density
of the medium. Thus, the fill level hi of Ri is subject to the differential
equation

ḣi =
k
ai

(
− d2

o,ihi(t) +
n∑
j=1

d2
i j(h j(t) − hi(t))

)
+

1
ai
δ1iu(t),

where δ1i = 1 if i = 1 and zero otherwise. Writing these equations as a
linear state-space system results in a SISO-system (A, B, C, D) given by
B =

( 1
a1
, 0, . . . , 0

)T , C = k
(
d2
o,1 · · · d2

o,n
)
and a symmetric A with entries

ai j := k
ai

{
−d2

o,i −
∑n

m=1 d2
im, i = j

d2
i j i ,= j,

with dii := 0.

In [Reis and Virnik, 2009] the system is supposed to consist of two sub-
structures of five reservoirs each. In both substructures each reservoir is
connected to every other by a pipe of diameter 1, i.e di j = 1 for i ,= j and
i, j = 1, . . . , 5 and i, j = 6, . . . , 10, respectively. The connection of the sub-
structures is established by a pipe of diameter d1,10 = d10,1 = 0.2, between
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reservoir 1 and 10. For simplicity, ai = 1 and k = 1. One can show that the
transfer function is just G(s) = 1

s+1 .
Applying SBT to this system yields an exact realization of G. In contrast,

since GBT does not return a minimal realization, we get G̃(s) = 3.039
s+3.039 , with

a relative H∞-error of 0.5014.
Now we modify the system to get a minimal example with unsymmetric

A. First, we set do,i = 0.01·i to get minimality. Further assume that the first
substructure admits a flow from R1 to R j, but not vice versa, i.e. d j1 = 0 for
j = 2, . . . , n2 . For 50 water tanks per substructure, SBT gives a symmetric
model of order 2

A2 =

(
−0.1305 0.0914
0.0914 −0.2676

)
, B2 =

(
0.0457

0

)
,

C2 =
(
0.0457 0

)
, D2 = 0,

with error 0.0032. About the same error is achieved by GBT only for reduc-
tion order 91. We conclude that SBT performs fairly well even for systems
with non-symmetric A-matrix.

6.2 Heat Equation
Consider the two-dimensional heat equation

Ṫ = JT = �2

�x2T +
�2

�y2T (7)

on the unit square. The Dirichlet boundary conditions on the four edges are
interpreted as inputs. Using a finite difference discretization on a uniform
grid of step size h = 1

N+1 sketched in Fig. 2 we get the relations

JTi j ( −
1
h2 (4Ti j − Ti+1, j − Ti, j+1 − Tj−1, j − Ti, j−1),

T41

T31

T21

T11

T42

T32

T22

T12

T43

T33

T23

T13

T44

T34

T24

T14

x

y

u2

u1

u4

u3

h

Figure 2. Discretized heat equation on the unit square.

53



Paper I. A Symmetry Approach. . . Positive Linear Systems

for the temperatures at the inner grid points. Let A denote the N2 $
N2 Poisson-matrix and B := [bi j] ∈ RN2$4, where bi j = 0 except for the
following cases:

bi1 := 1, for i = 1, 2, . . . , N
bi2 := 1, for i = N, 2N, . . . , N2

bi3 := 1, for i = N(N − 1) + 1, N(N − 1) + 2, . . . , N2

bi4 := 1, for i = 1, N + 1, . . . , N(N − 1) + 1

This gives the discretized system

ẋ = 1
h2 Ax+

1
h2 Bu with u ∈ R4 and x ∈ RN2 . (8)

As the output we take the average temperature, i.e.

y = 1
N2Cx, with C :=

(
1 · · · 1

)
∈ R1$N2 .

For small h the system will be very large.
Starting the comparison between SBT and GBT with a SISO-system,

i.e. u2 = u3 = u4 = 0 and N = 10, yields for SBT a realization of order 15
without any error. In contrast, GBT gives a relative H∞-error of 3.9087·10−5

by just reducing one state. Moreover, if GBT halves the order it has nearly
the same error as balanced truncation to order 1.

For N = 50, we get a system of order 2500, for which it takes GBT hours
to calculate a reduced model, due to the high complexity of conventional

10−4 10−3 10−2 10−1 100 101 102

−200

−180

−160

−140

−120
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M
ag

ni
tu
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(d
B)

Figure 3. Bode plot: Error system of the heat equation with 2500 states
(N = 50) and SBT of order 15.
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LMI-solvers [Peaucelle et al., 2002]. In case of a large-scale system we
apply IRKA to decrease the system to a order lower than 1000, followed by
the usual symmetry argument. These computations consume less than half
an hour and return a 15-th order model. The Bode diagram of the error
system, as shown in Fig. 3, indicates that the reduction error is zero up to
machine precision.

Applying balanced truncation to the full MISO-system results in a re-
duced system (Ar, Br, Cr), with

Ar = ATr and Cr = B1
r = · · · = B4

r ,

where B1
r , . . . , B4

r denote the columns of Br. In case of N = 10 SBT returns
as in the SISO-case a reduced system of order 15 with zero error. However,
the error of reducing just one state by GBT increases to 0.0070.

7. Conclusion

We have presented a positivity preserving model reduction method for SISO-
systems based on the sign-symmetry of balanced SISO-systems. It always
yields at least some positive approximation since the reduced model of order
1 is guaranteed to be positive. Application of this idea to MIMO systems
provides a necessary condition for positivity, which is preferable over a con-
sideration of the impulse response [Farina and Rinaldi, 2011]. Furthermore,
the reduction method works independently of a positive state-space realiza-
tion. Hence, large-scale systems can be treated by pre-approximations with
methods such as the Iterative Rational Krylov algorithm [Gugercin et al.,
2008]. Besides, the method preserves and provides symmetry in the A-
matrix.
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Paper II

Modified Balanced Truncation
Preserving Ellipsoidal

Cone-Invariance

Christian Grussler Anders Rantzer

Abstract

We consider model order reduction of stable linear systems which
leave ellipsoidal cones invariant. We show how balanced truncation can
be modified to preserve cone-invariance. Additionally, this implies a
method to perform external positivity preserving model reduction for a
large class of systems.
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1. Introduction

Cone-invariance of linear time-invariant systems is a common feature,
which is appearing nowadays very frequently in the literature. This is due
to an increased interest in systems with compartmental structure as they
can be found in bio-medicine, economics, data networks and many more ap-
plication areas (see [Luenberger, 1979; Brown, 1980; Shorten et al., 2006;
Farina and Rinaldi, 2011]). For example, consider the linear time-invariant
system

G :
{
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(1)

with state vector x ∈ Rn, input u ∈ Rm and output y ∈ Rk. Here x could
stand for the temperature in n rooms within a building, influenced by the
temperature of m radiators u. The temperature in k sensor locations, e.g.
floors, is then represented by y. Consequently, x and y are confined to be
nonnegative, whenever u is nonnegative. In the literature, such systems are
referred to as being internally positive and as being externally positive if
the system is positive from input to output (see Section 2).

Naturally, these systems often tend to be of large dimension n and need
to be approximated with the help of model order reduction. Unfortunately,
conventional model reduction methods (see e.g. [Moore, 1981; Glover, 1984;
Gugercin and Antoulas, 2004; Antoulas, 2005; Gugercin et al., 2008]) do not
preserve external positivity.

However, working with an approximation that is violating basic physical
constraints by allowing for instance negative concentrations of chemical
substance always leaves the question of how conclusive results on this basis
are. Recently developed methods have tackled this problem by preserving
internal positivity (see [Reis and Virnik, 2009; Feng et al., 2010; Li et
al., 2011; Grussler and Damm, 2012; Sootla and Rantzer, 2012]), i.e. the
invariance with respect to (w.r.t.) the nonnegative orthant.

The main goal of this work is to present a variant of balanced truncation,
which guarantees to preserve invariance w.r.t. an ellipsoidal cone (see Sec-
tion 2 and 3). An immediate consequence of this result is the preservation
of external positivity under the assumption of ellipsoidal cone-invariance
(see Section 4). Unlike internal positivity, our definition has the advan-
tage of being computationally tractable and independent of a particular
state-space realization (see Sections 2 and 4). In Section 6 we will see that
ellipsoidal cone-invariance is often implied by internal positivity. Moreover,
numerical experiments indicate that the error-difference between balanced
truncation and our method appears to be fairly small (see Section 6).
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2 Preliminaries

2. Preliminaries

The following notations for real matrices and vectors X = (xi j) are used
throughout this paper. We say that X ∈ Rm$n

≥0 is nonnegative, if all entries
are nonnegative (xi j ≥ 0 for all i, j). By pX p = (pxi jp) we denote the entry-wise
absolute value of X and by xi its i-th column, if not further specified.

If X = XT , then we write X 0 0, or X 4 0 if X is positive definite, or
semi-definite, i.e. the set of eigenvalues of X , σ (X) ⊂ [0,∞[. We also use
these notations to describe the relation between two matrices, e.g. A 4 B
defines A − B 4 0. A real vector valued function u(t) ∈ Rm is called
nonnegative if and only if u(t) ∈ Rm

≥0 for all t ≥ 0. The inertia (p, z, n)
of X is defined by the number of eigenvalues of X with positive, zero and
negative real-parts, respectively counting multiplicities. Next, let us define
cone-invariance.

Definition 1—Invariant cone
Let K ⊂ Rn be a cone and A ∈ Rn$n. K is called A-invariant if and only
if AK ⊂ K. K is called exponentially A-invariant if and only if ∀t ≥ 0 :
eAtK ⊂ K. 2

Definition 2—Cone invariance
(A, B) is called cone-invariant w.r.t. a cone K if and only if bi ∈ K, for all i
and K is exponentially invariant w.r.t. A. 2

Similar to the introductory example, cone-invariance says: if the state-vector
starts within a cone K then it will remain there for all nonnegative inputs u.
Two important classes of cone-invariant systems are the so-called externally
and internally positive systems, which will be discussed in Section 4.

In the following we define ellipsoidal cones, the essential ingredient for
our main result. This class has been investigated in [Stern and Wolkowicz,
1991b; Stern and Wolkowicz, 1991a], which is why we adapt the notations.

Definition 3—Ellipsoidal cones
Let Q = QT ∈ Rn$n with inertia (n− 1, 0, 1), then

KQ := {x : xTQx ≤ 0}

is called an ellipsoidal double-cone. If p ∈ Rn is such that

{p}⊥ ∩KQ = {0}

where {p}⊥ denotes the orthogonal complement of linear span {p} of p,
then we call KQ,p := {x : xTQx ≤ 0, pT x ≥ 0} an ellipsoidal cone. 2

It is obvious that KQ,p and −KQ,p := KQ,−p are proper convex cones. In the
following, we make the convention that Qn := blkdiag(In−1,−1) and KQn,en
is called the ice-cream cone, where en is the n-th canonical unit vector.
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Lemma 1
Let KQ be an ellipsoidal double-cone and KQ,un the corresponding ellipsoidal
cone, where un is an eigenvector belonging to the negative eigenvalue of Q.
Their dual sets can be parametrized as

K∗
Q = KQ−1 and K∗

Q,un = KQ−1,un .

2

Proof Let KQ,un be an ellipsoidal cone with σ (Q) = {λ1, . . . , λn}, where

λ1 ≥ λ2 ≥ · · · ≥ λn−1 > 0 > λn.

Diagonalizing Q with

UTQU = diag(λ1, . . . , λn) =: ∆

defines a transformation matrix T = p∆p 1
2UT , which gives

TKQ,un = KT−TQT−1,T−Tun = KQn,en .

Since K∗
Qn,en = KQn,en it follows that (TKQ,un)

∗ = KQn,en and therefore

K∗
Q,un = TTKQn,en = KT−1QnT−T ,T−1en = KU∆−1UT ,Uen = KQ−1,un .

By KQ being independent of un we conclude the proof. 2

The boundary of KQ,p is given by

�KQ,p = {x : xTQx = 0, pT x > 0} ∪ {0}.

From this it follows that p ∈ int(K∗
Q,p), which by the preceding Lemma is

equivalent with pTQ−1p < 0. Thus, for given Q = QT with inertia (n−1, 0, 1)
we conclude that KQ,p is a proper convex cone if and only if

pTQ−1p < 0.

Moreover, p ∈ int(K∗
Q,p) if and only if there exists τ > 0 such that

∀x ∈ KQ,p : xTQx+ τ xTppT x > 0,

which is equivalent to
Q+ τppT 0 0.

Together with the main result in [Stern and Wolkowicz, 1991a], this leads
to the following theorem.
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3 Central Theory

Theorem 1
Let Q = QT with inertia (n−1, 0, 1). Then KQ,p := {x : xTQx ≤ 0, pT x ≥ 0}
is exponentially invariant w.r.t. A if and only if

∃γ,τ ∈ R : ATQ+ QA+ 2γQ 5 0, Q+ τppT 0 0.

2

Notice that if σ (A+γ I) ∩ iR = ;, then Q exists if and only if the inertia of
A+γ I and−Q are equal (see e.g. [Datta, 2004]). Equivalently, A has a single
dominant real eigenvalue λmax ∈ σ (A) and σ (A+γ I) ∩R≥0 = {λmax +γ}.

3. Central Theory

In the following we consider asymptotically stable systems as in (1), where
(A, B) is invariant w.r.t. to an ellipsoidal double-cone. We assume the
reader to be familiar with the concept of standard balanced truncation
(BT) (see e.g. [Moore, 1981; Beck et al., 1996; Antoulas, 2005]).

In general, balanced truncation does not preserve the invariance with
respect to an ellipsoidal cone – unless the system is reduced to order r = 1.
To this end, we will modify the concept of balanced truncation to what we
call cone-balanced truncation. For notational simplicity we start by deriving
the main results for the case of a controllable system. Nonetheless, the
reader should check that the results are still true in the uncontrollable
case. Let us start with the first of two following modifications of balancing
a system.
Proposition 1
Given (A, B) and γ > 0, let Q = QT with inertia (n − 1, 0, 1) and P 0 0
fulfil

i. ATQ+ QA+ 2γQ 5 0,

ii. bTj Qbj < 0 for all j,

iii. AP + PT = −BBT .

Then there exists T ∈ Rn$n such that

T−1PT−T = blkdiag(σ1, σ2 Ik2 , . . . , σs Iks)
TTQT = blkdiag(−σ1, σ2 Ik2 , . . . , σs Iks)

where σ1 > · · · > σs > 0, k2 + · · ·+ ks = n− 1 and

σ1 ≥

√∑
i>1

σ 2
i . (2)

2
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Proof Assume that P and Q are as in the claim and fulfil i. - iii.. We
perform a singular value decomposition P = UΣPUT and define L := UΣ

1
2
P .

By another singular value decomposition of LTQL into

LTQL = VΣ2VT

we define T := LVΣ− 1
2 . Then we can verify that

P̄ := T−1PT−T and Q̄ := TTQT

fulfill

P̄ = Σ
1
2 VTL−1LLTL−TVΣ

1
2 = Σ,

pQ̄p = pΣ−
1
2 VTLTQLVΣ−

1
2 p = Σ,

with Σ = blkdiag(σ1 Ik1 , . . . , σs Iks), σ1 > · · · > σs > 0 and k1 + · · ·+ ks = n.
By Sylvester’s law of inertia it follows that the inertia of TTQT remains
invariant, which is why P̄ and Q̄ are equal up to a sign-change on one of
the diagonal entries.

We will show now that trace(Q̄) < 0 implies that the sign-change occurs
at σ1 and k1 = 1. To this end, assume without loss of generality that P = I
and pQp = Σ2, i.e.

ATQ+ QA+ 2γQ 5 0, (3)
bTj Qbj < 0 for all j, (4)
A+ AT = −BBT . (5)

By substitution of A = −BBT − AT in (3) we get

−(BBT + A)Q− Q(BBT + AT) − 2γQ 5 −4γQ. (6)

Taking the trace over (6) and using

•
∑

j>0 bTj Qbj = trace(BBTQ) = trace(QBBT) < 0

• trace(AQ+ QAT + 2γQ) = trace(ATQ+ QA+ 2γQ) ≤ 0

gives the following inequalities

−4γ trace(Q) ≥ −2trace(BBTQ) > 0

\ trace(Q) ≤ 1
2γ

(
trace(BBTQ)

)
< 0.

Therefore, by the inertia of Q and the assumption that σ1 > · · · > σs > 0,
we conclude that the largest magnitude in Q is negative. 2
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If (A, B, C, D) is a system with (A, B), P, Q, γ and T as in Proposition 1,
then truncating any of the last n− 1 states of

( Ā, B̄, C̄, D̄) := (T−1AT, T−1B, CT, D)

preserves controllability as well as ellipsoidal cone-invariance. But, since
TTQT is indefinite we cannot apply the error-bound known from balanced
truncation. Instead, we perform another balancing of ( Ā, B̄, C̄, D̄) which
will provide us with such.

Proposition 2
Let ( Ā, B̄, C̄, D̄) be such that ( Ā, B̄) is invariant w.r.t to KQ̄ and

Ā P̄ + P̄ ĀT = −B̄B̄T

for diagonal P̄ 0 0 with P̄ = pQ̄p. Then

∃∆ 0 0 : ĀT∆ + ∆ Ā 5 −C̄T C̄

with ∆ being diagonal. 2

Proof If ( Ā, B̄, C̄, D̄) is as in the assumptions, then by Lemma 1 and The-
orem 1 we conclude that

ĀT Q̄+ Q̄ Ā+ 2γ Q̄ 5 0, (7)
Ā P̄ + P̄ ĀT = −B̄B̄T , (8)
Q̄−1 + εb̄jb̄Tj 0 0, for all j, (9)

for sufficiently large ε > 0. Multiplying (7) with Q̄−1 from the right and the
left yields

ĀQ̄−1 + Q̄−1 ĀT + 2γ Q̄−1 5 0 (10)

and multiplying (8) by 2γε gives

2γε ĀP̄ + 2γε P̄ ĀT + 2γε B̄B̄T = 0, (11)

where 2γεσ1 − σ−1
1 > 0. Adding up (10) and (11) results in

Ā∆−1 + ∆−1 ĀT + 2γ
(
Q̄−1 + ε B̄B̄T) 5 0

with ∆ := (2γε P̄ + Q̄−1)−1 0 0. Finally, a proper scaling of ∆ gives a
diagonal solution to

ĀT∆ + ∆ Ā 5 −C̄T C̄. (12)
2
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Now, if P̄ and ∆ are as in Proposition 2 we can define a second balancing
transformation

T̄ := blkdiag
(

1, p̄22

δ22
, . . . , p̄nn

δnn

) 1
4

such that
( Ã, B̃, C̃, D̃) := (T̄−1 ĀT̄, T̄−1 B̄, C̄T̄, D̄)

fulfils

Ã P̃ + P̃ ÃT = −B̃B̃T ,
ÃT Q̃+ Q̃ Ã 5 −C̃T C̃

where P̃ and Q̃ are diagonal and equal except for the first diagonal entry.

Definition 4—Cone-balanced
A linear system ( Ã, B̃, C̃, D̃) is called cone-balanced if ∃γ > 0, P̃, Q̃ 0 0 and
K̃ = K̃T with inertia (n− 1, 0, 1) such that

ÃT K̃ + K̃ Ã+ 2γ K̃ 5 0,
ÃT Q̃+ Q̃ Ã 5 −C̃T C̃,
ÃT P̃ + P̃ Ã = −B̃B̃T ,

where P̃, Q̃ and K̃ are diagonal with

k11 < 0 and p̃22 = q̃22 ≥ · · · ≥ p̃nn = q̃nn. 2

Again, truncating a cone-balanced system preserves ellipsoidal cone-
invariance and it is well known (see e.g. [Beck et al., 1996]) that the error-
bound result from standard balanced truncation carries over to the diagonal
elements of P̃.
Theorem 2
Suppose ( Ã, B̃, C̃, D̃) is a cone-balanced realization of a stable, mini-
mal cone-invariant system with transfer function G̃(s) and controllability
Gramian P̃ = blkdiag

(
Σ1, Σ2

)
,

Σ̃1 = blkdiag
(
σ̃1, σ̃2 Ik2 . . . , σ̃r Ikr

)
,

Σ̃2 = blkdiag
(
σ̃r+1 Ikr+1 , . . . , σ̃p Ikp

)
,

where σ̃2 > · · · > σ̃r > σ̃r+1 > · · · > σ̃p > 0.
Truncating the states corresponding to Σ2 results in an approximation
(Ar, Br, Cr, Dr) of order 1 +

∑r
i=2 ki with transfer function Gr(s), which is

cone-balanced, controllable and stable. Moreover, it holds for the H∞-error

qG̃(s) − Gr(s)q∞ ≤ 2
p∑

i=r+1
σ̃i. (13)

2

66



4 Positive Systems

It is known (see [Grussler and Damm, 2012]) that the σ̃i in (13) are always
larger than the Hankel singular values. Nevertheless, we will see in Section
6 that we can get fairly close to them. The whole algorithm for cone-balanced
truncation (CBT) is summarized in Algorithm 1.

Algorithm 1 Cone balanced truncation (CBT)
1: Let (A, B, C, D) be a minimal system.

2: IF (A, B) fulfils Proposition 1.
3: Find T ∈ Rn$n such that ( Ā, B̄, C̄, D̄) := (T−1AT, T−1B, CT, D) has

diagonal controllability Gramian P̄ and ( Ā, B̄) is invariant w.r.t. KQ̄
with P̄ = pQ̄p.

4: Minimize
∑

i>1 δ ii subject to

ĀT∆ + ∆ Ā 5 −C̄T C̄
∆ := blkdiag(δ11, . . . , δnn) 0 0.

5: Find a cone-balanced realization ( Ã, B̃, C̃, D̃) with generalized singular
values σ̃i :=

√
p̄iiδ ii, i > 1.

6: Choose a reduced order according to (13) and truncate ( Ã, B̃, C̃, D̃).
7: END

4. Positive Systems

In the following we formally define externally and internally positive sys-
tems and compare them with ellipsoidal cone-invariant systems. After that,
it will be evident why our result naturally extends to the class of externally
positive systems.

Definition 5—External Positivity
A linear system (1) is called externally positive if and only if its output
corresponding to a zero initial state is nonnegative for every nonnegative
input. 2

Proposition 3—[Farina and Rinaldi, 2011]
A linear system (A, B, C, D) is externally positive if and only if ∀t ≥ 0 :
CeAtB ∈ Rk$m

≥0 and D ∈ Rk$m
≥0 . 2

It is readily seen that every single-input-single-output (SISO) externally
positive system (A, B, C) is invariant with respect to its so-called reachable
and observable cone

R(A, B) := clcone{eAtB : t ≥ 0} and O(A, C) := {x : ∀t ≥ 0 : CeAtx ≥ 0},
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where cone(·) denotes the convex conic hull and cl(·) the topological closure
(see [Ohta et al., 1984]).

Definition 6—Internal Positivity
A linear system (1) is called internally positive if and only if its state and
output are nonnegative for every nonnegative input and every nonnegative
initial state. 2

Internal positivity of (1) requires that the nonnegative orthant Rn
≥0 is

exponentially invariant w.r.t. A. In [Berman and Plemmons, 1994] it is
shown that this is the case if and only if A is Metzler, i.e.

∃α ≥ 0 : A+αI ∈ Rn$n
≥0 .

Theorem 3—[Farina and Rinaldi, 2011]
A continuous linear system (A, B, C, D) is internally positive if and only if
A is Metzler and B, C, D are nonnegative. 2

Verification of external positivity is known to be NP-hard (see e.g. [Blondel
and Portier, 2002]). Restricting oneself to internally positive systems is a
convenient way to deal with this problem. But, as indicated in Theorem 3,
internal positivity depends on very specific state-space realizations. Finding
such a realization is known to be computationally difficult (see [Ohta et al.,
1984; Anderson et al., 1996]). We believe, if one is only interested in external
positivity, it is beneficial to look at externally positive systems, which are
ellipsoidal cone-invariant. In this case, verification of external positivity can
be performed with the help of convex optimization.

Theorem 4
Given (A, B, C, D) with D ∈ Rk$m

≥0 , assume that there exists Q = QT with
inertia (n− 1, 0, 1) and γ,τ ∈ R such that

1. ATQ+ QA+ 2γQ 5 0,

2. bTj Qbj < 0 for all j,

3. Q+ τicTi ci 0 0 for all i,

4. CB ∈ Rk$m
>0 ,

where ci is the i-th row of C. Then (A, B, C, D) is externally positive. 2

Proof The result follows directly from Lemma 1 and Theorem 1, which
imply that (A, B, C, D) is invariant w.r.t. KQ,cTi , for all i.
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5 Discussion

Corollary 1
Assume ( Ã, B̃, C̃, D̃) is a stable and externally positive system fulfilling
Theorem 4. Then cone-balanced truncation preserves external positivity. 2

Proof Assume w.l.o.g. that ( Ã, B̃, C̃, D̃) is externally positive and cone-
balanced w.r.t. KQ,ci = KQ,e1 for all i. Moreover, we assume that we reduce
our system by one order with CBT to ( Ā, B̄, C̄, D̄). Clearly, 1) – 3) in Theorem
4 are preserved after cone-balanced truncation. To see 4), observe that

bj ∈ KQ,e1 [
(
b1, j · · · bn−1, j 0

)T
∈ KQ,e1 [ c̄ib̄j ≥ 0.

2

We will refer to this method as positive cone-balanced truncation (PCBT).

5. Discussion

In the previous two sections we have formally derived a solution to the
following problems

I. Ellipsoidal cone preserving model reduction.

II. External positivity preserving model reduction under the constraint of
ellipsoidal cone-invariance.

Now, we want to get some further insights into these problems and into the
numerical computations involved.

First, notice it is straightforward to extend all results to discrete-time
linear systems – for ellipsoidal cones see e.g. [Stern and Wolkowicz, 1991b].
Furthermore, Lemma 1, Proposition 1 and the duality between observability
and controllability imply that if a non-minimal system is ellipsoidal cone-
invariant then this is also true for its minimal realization.

A major draw-back of our method is the need to solve linear matrix
inequalities (LMIs) in order to preserve external positivity – LMI-solvers
are usually computational demanding (see e.g. [Peaucelle et al., 2002]).
Given the NP-hardness of the verification problem, this is a small price to
pay. Moreover, standard balanced truncation usually requires pre-reduction
methods such as [Gugercin et al., 2008] to be able to handle large-scale
systems. Hence, it is valid to assume a reduced system whose LMIs are
sufficiently fast solvable.

Further observe, if one only wants to verify/preserve cone-invariance, it
is often enough to consider Lyapunov equations. To see this, assume (A, B)
is controllable with σ (A+γ I)∩iR = ; and no bj is in the span of the eigen-
vectors belonging to the non-dominant eigenvalues. If KQ is exponentially
A-invariant then so is e−AtKQ, t ≥ 0, which by our assumptions implies
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that ∃t ≥ 0 : bj ∈ e−AtKQ, for all j. More explicitly, if B ∈ Rn one could
solve

ATQ+ QA+ 2γQ = −R 5 0,
AP + PAT + 2γ P = −BBT .

Assuming without loss of generality that P is diagonal with p11 < 0, then

BTQB = trace(BBTQ) = trace(P(ATQ+ QA+ 2γQ)) = trace(PR)

yields that BTQB < 0 for any R 4 0 with r11 > 0 and rii = 0, i > 1.

Corollary 2
Assume (A, B, C, D) is a minimal symmetric SISO-system, i.e. A = AT and
B = CT and assume that A has single dominant eigenvalue. Then there
exists Q = QT fulfilling Theorem 4. 2

Proof By the previous discussion it follows that there exists Q = QT and
un, such that KQ,un is exponentially invariant w.r.t. A and B ∈ KQ,un . Hence,
CT ∈ KQ,un and

∀t ≥ 0 : CT eA
t
2 eA

t
2 B = qeA

t
2 Bq2 > 0.

W.l.o.g. we can assume that

KQ,un = KQn,en and BTQnB = CQnCT < 0.

That implies that CT ∈ int(K∗
Qn,en) which is why KQ,en = KQ,CT . 2

It is straightforward to show that all symmetric SISO-systems have an
internally positive realization of the same dimension.

A practical procedure to deal with large-scale externally positive systems
could be the following:

1. Reduce the system with help of a Krylov-subspace method (see [An-
toulas, 2005; Gugercin et al., 2008]) to an order where Lyapunov
equations can be solved efficiently.

2. Apply CBT to reduce the system to an order where the LMIs in The-
orem 4 can be solved efficiently.

3. Use PCBT to verify external positivity and to reduce the system even
further.
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6 Examples & Comparison

Our derivations deal with externally positive systems (A, B, C) where

CB ∈ Rk$m
>0 .

To treat cases with zero entries in CB one could pre-approximate the orig-
inal system with (A, eAεB, C) for ε > 0. Then

∀t > 0 : CeAε+tB > 0

by the assumption of a single dominant real pole. The error between those
systems can be made arbitrarily small by the choice of ε.

Finally, note that if an externally positive system has a strictly dominant
real pole of multiplicity one, then the system possesses a positive realization
[Anderson et al., 1996]. Thus our method also preserves internally positive
realizability. Unfortunately, internal positivity is not sufficient to ensure
the requirements of Theorem 4.

6. Examples & Comparison

By considering some numerical examples, we discuss the quality of (positive)
cone-balanced truncation. The results are compared to symmetric balanced
truncation (SBT) in [Grussler and Damm, 2012] and standard balanced
truncation (BT). Moreover, by the comparisons in [Grussler and Damm,
2012; Grussler, 2012] and [Sootla and Rantzer, 2012] it follows, that even
a reduced model of order one often outperforms the methods in [Reis and
Virnik, 2009; Feng et al., 2010; Li et al., 2011; Sootla and Rantzer, 2012].

Our comparison will always start from a minimal realization, which can
be considered a pre-reduction. In order to make the solutions unique, we
will add to minimize

trace(Q+ τCTC)
in case of PCBT, which turned out to give good results. For CBT we use the
same γ -shift as determined by PCBT and Q is given by

ATQ+ QA+ 2γQ = −CTC.

6.1 Heat Equation
We begin with one of the examples given in [Grussler and Damm, 2012],
the two-dimensional heat equation on a square

Ṫ = JT = �2

�x2T +
�2

�y2T (14)

with control of the Dirichlet boundary conditions of the four edges. Discreti-
sation on a uniform grid leads to the following linear internally positive
system:

Ṫ = AT + Bu with u ∈ R4 and T ∈ RN2 (15)
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Figure 1. Normalized H∞-error in heat experiment 1:
(S)BT: (symmetric) standard balanced truncation
CBT: cone preserving balanced truncation
PCBT: positivity preserving CBT

where A is the N2 $ N2-Poisson-matrix and B := [bi j] ∈ RN2$4, where
bi j = 0 except for the following cases:

bi1 := 1, for i = 1, 2, . . . , N
bi2 := 1, for i = N, 2N, . . . , N2

bi3 := 1, for i = N(N − 1) + 1, N(N − 1) + 2, . . . , N2

bi4 := 1, for i = 1, N + 1, . . . , N(N − 1) + 1

One may think of this example in the same way as in the one given in
the introduction. In our first experiment the output is equal to the global
average temperature, i.e.

y = 1
N2CT, with C := 1TN2 :=

(
1 · · · 1

)
∈ R1$N2 .

In this case it was shown that SBT performs very well, because the
minimal balanced realization is a symmetric system. Then by Corollary 2
it must be possible to apply PCBT. Repeating this experiment for (P)CBT
with N = 10 gives the H∞-error as shown in Figure 1. We observe, (P)CBT
performs closely to (S)BT, the error-difference is due to numerical issues
and a different sorting of the singular values. Moreover, PCBT does not
suffer from disregarding the advantage of symmetry, as exploited by SBT.
In fact, (P)CBT preserves it and an internally positive realization can be

72



6 Examples & Comparison
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Figure 2. (Generalized) Hankel singular values in heat
experiment 1:

(S)BT: (symmetric) standard balanced truncation
CBT: cone preserving balanced truncation
PCBT: positivity preserving CBT

found here as well. Also the error-bounds for (P)CBT lie within a good range
as indicated in Figure 2, where the generalized Hankel singular values of
P(CBT) result from Theorem 2.

Now, we modify this example by using the second and the fourth input
only. Furthermore, we split the unit-square into 5 equally spaced vertical
stripes and let y represent the average temperature in each of these zones,
i.e.

C = blkdiag
(
1TN2

5
, 1TN2

5
, 1TN2

5
, 1TN2

5
, 1TN2

5

)

In this case, the minimal balanced system is no longer symmetric. Therefore,
SBT will arrive with an approximation of order 1 and the same error as
BT. Again, the normalized errors are shown in Figure 3.

6.2 Balanced truncation destroying positivity
It is readily verified that

G(s) = (s+ 1)10

(s+ 1)
∏3

k=2(s+ 2− e±
√
kπ)
∏9

k=4(s+ 2− 1
k)

defines an externally positive systems, which has an ellipsoidal cone-
invariant realization. BT does not preserve these properties for the reduced
models of order two and four. A comparison of the normalized errors is

73



Paper II. Modified Balanced Truncation Preserving. . . Cone-Invariance

2 4 6 8 10 12 14
10−15

10−10

10−5

100

Order

qG
−
G
rq
∞

qG
q ∞

Figure 3. Normalized H∞-error in heat experiment 2:
BT: standard balanced truncation
CBT: cone preserving balanced truncation
PCBT: positivity preserving CBT

presented in Figure 4. Although, both methods perform well, observe the
comparably large error of PCBT for order two. Interestingly, other well es-
tablished model reduction methods, such as [Glover, 1984] and [Gugercin
et al., 2008] also destroy positivity for a better error performance.

7. Conclusion

We have not only presented a model reduction method which guarantees
to preserve ellipsoidal cone-invariance but also defined a class of systems,
which gives a broad intersection of some well studied cone-invariant sys-
tems. In fact, it seems that ellipsoidal cone-invariance is often implied by
internal positivity. By that a numerical test for external/internal positivity
has been established as well as a method for external positivity preserving
model order reduction.
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Paper III

Low-Rank Optimization with Convex
Constraints

Christian Grussler Anders Rantzer Pontus Giselsson

Abstract

The problem of low-rank approximation with convex constraints,
which often appears in data analysis, image compression, and model
order reduction, is considered. Given a data matrix, the objective is
to find a low-rank approximation that meets rank and convex con-
straints, while minimizing the distance to the data matrix in the
Frobenius norm. The problem of matrix completion can be seen as
a special case of this. Today, one of the most widely used techniques
is to approximate this non-convex problem using convex nuclear norm
regularization. In many situations, this technique does not give solu-
tions with desirable properties. In this paper, we propose an alternative
to the nuclear norm heuristic that promotes low-rank solutions. It is
based on using the largest convex minorizer (under-approximation) of
the squared Frobenius norm and the rank constraint as a convex proxy.
This optimal convex proxy can be combined with other convex con-
straints to form an optimal convex minorizer of the original non-convex
problem. With this approach, easily verifiable conditions are obtained,
under which the solutions to the convex relaxation and the original
non-convex problem coincide. Several numerical examples are provided
for which that is the case. It is shown that the proposed convex re-
laxation consistently performs better than the nuclear norm heuristic,
especially in the matrix completion case. The expressibility and com-
putational tractability are of great importance for a convex relaxation
so that they can be applied using standard software. A closed-form
expression for the proposed convex relaxation is provided in addition
to its representation as a semi-definite program. Furthermore, it is
shown how to compute the proximal operator of the convex approxima-
tion. This allows the use of scalable first-order methods to solve convex
approximation problems of large size.

Preprint.
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1. Introduction

The rank captures many of the essential components of an otherwise com-
plex operator. For instance, the rank of a matrix N ∈ Rn$m equals the
dimension of its column space. In other words, if a matrix has low rank
then only a small number of basis vectors are needed to span its range and
a possibly high dimensional subspace in Rm can be disregarded when study-
ing y = Nx. Hence, if N is sufficiently close to a lower rank matrix, it may be
sufficient to study the approximation y ( N̂ x where rank(N̂) < rank(N).

Due to this simplifying concept, many areas such as image analysis,
model order reduction, multivariate linear regression, etc. desire a low-
rank approximation (see [Izenman, 1975; Antoulas, 2005; Markovsky, 2008;
Candès and Plan, 2010; Recht et al., 2010; Chandrasekaran et al., 2012;
Reinsel and Velu, 1998; Hastie et al., 2015; Larsson and Olsson, 2016; Vidal
et al., 2016]). In Sections 6 to 9 some of these applications are explained in
greater depth.

For unitarily invariant norms an optimal low-rank approximation can
be found by performing a singular value decomposition (SVD) (see Sec-
tion 2). Unfortunately, these approximations usually do not fulfill struc-
tural constraints such as element-wise nonnegativity, Hankel-structure,
prescribed entries, etc. (see [Higham, 2002; Chu et al., 2003; Berry et al.,
2007; Markovsky, 2008; Candès and Recht, 2009; Olsson and Oskarsson,
2009; Recht et al., 2010; Reinsel and Velu, 1998]). Only in a few cases, an ex-
plicit solution to the constrained low-rank approximation problem is known
(see [Antoulas, 2005; Markovsky, 2008; Reinsel and Velu, 1998]). For this
reason, other concepts based on convex optimization have been developed
(see [Fazel et al., 2001; Recht et al., 2010; Chandrasekaran et al., 2011;
Larsson et al., 2014]). Many of them rely on nuclear norm regularization,
which allows the incorporation of any convex constraint (see Section 5.1).
Nevertheless, the question if this yields solutions to the non-convex problem
is not addressed, unless one aims for a minimum rank solution (see [Candès
and Recht, 2009; Recht et al., 2010]). Besides the nuclear norm heuristic,
other commonly used heuristics, e.g. for element-wise nonnegativity are
briefly considered in Section 6.

In this work, we study the optimal low-rank approximation problem
with a prescribed target rank and convex constraints (see Problem 1). This
is a continuation of the authors work [Grussler and Rantzer, 2015]. It is
shown that a globally optimal solution to our non-convex problem can often
be determined by convex optimization (see Section 3). In particular, if the
SVD-approximation of a matrix is unique, then it is a solution to a semi-
definite program (SDP). Even though the approach presented can be linked
to the regularization method in [Larsson et al., 2014; Larsson and Olsson,
2016], we will see that the proposed method does not require a costly search
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for a regularization parameter.
In Section 4 some computational aspects of the convexified problem

are discussed. First, an SDP-representation of the convex proxy is pre-
sented, which allows the computation of solutions for small scale examples
with SDP-representable constraints. Subsequently, we derive the so-called
Douglas-Rachford iteration in order to deal with examples of larger size and
sufficiently simple constraints (see Section 4.2). As a consequence, we will
be able to prove local convergence of the Douglas-Rachford iterations of the
original non-convex problem.

The paper is organized as follows. In Section 2 we recap the uncon-
strained low-rank approximation problem and define our main problem.
The main approach is derived and discussed in Section 3 with some compu-
tational aspects examined in Section 4. Other known approaches, including
the nuclear norm heuristic are discussed in Section 5. In Sections 6 to 9
some applications are presented that show the usefulness of this approach.
Moreover, the examples are chosen to illustrate some properties and draw-
backs of this method. Finally, we draw a conclusion and discuss future
research in Section 10.

2. Background

The following notation for real matrices X = (xi j) ∈ Rn$m is used through-
out this paper. If X = XT , i.e. X is symmetric, then we write X ∈ S.
Moreover, if X is positive definite (semi-definite) we use the notation X 0 0
(X 4 0). We also use these notations to describe the relation between two
matrices, e.g. A 4 B means A− B 4 0.

The non-increasingly ordered singular values of X ∈ Rn$m, counted
with multiplicity, are denoted by σ1(X) ≥ · · · ≥ σmin{m,n}(X). Further,
〈X, Y 〉 :=

∑m
i=1
∑n

j=n xi jyi j = trace(XTY ) defines the Frobenius inner-
product for X, Y ∈ Rn$m. Correspondingly, the Frobenius norm is defined
as

qXqF :=

√√√√ m∑
i=1

m∑
j=n

x2
i j =

√√√√min{m,n}∑
i=1

σ 2
i (X).

The Frobenius norm is unitarily invariant, i.e. qUXVqF = qXqF for all
unitary matrices U and V . A complete characterization of all unitarily in-
variant norms can be found in [Horn and Johnson, 2012]. This work mainly
considers the unitarily invariant norms that are found in the following
Lemma. A proof to this lemma is provided in Section A.3.
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Lemma 1
Let M ∈ Rn$m, and r ∈ N be such that 1 ≤ r ≤ q := min{m,n}. Then,

qMqr :=

√√√√ r∑
i=1

σ 2
i (M) = sup

qXqF=1
rank(X)≤r

〈M, X〉 (1)

is a unitarily invariant norm with dual norm

qMqr∗ := max
qXqr≤1

〈M, X〉 = max∑r
i s2

i≤1

[ r∑
i=1

σi(M)si + sr
q∑

i=r+1
σi(M)

]
.

Moreover,

qMq1 ≤ · · · ≤ qMqq = qMqF = qMqq∗ ≤ · · · ≤ qMq1∗. (2)
rank(M) ≤ r if and only if qMqr = qMqF = qMq∗r. (3)

2

Notice that qMq1 = σ1(M) is equal to the spectral norm and its dual norm
qMq1∗ =

∑min{m,n}
i=1 σi(M) is equal to the nuclear (trace norm). These norms

can be formulated using convex linear matrix inequalities (see [Fazel et al.,
2001; Recht et al., 2010]). In Section 3 is shown that the same holds true for
q · q2

r and q · q2
r∗. Unfortunately, there is no closed form expression for q · qr∗.

However, as discussed in [Freimer and Mudholkar, 1984], the necessary
computations for evaluating dual norms of this form can be reduced to a
one-dimensional parameter search.

Recently, the vector version of the r∗-norm has appeared as under the
names k-support norm (see [Argyriou et al., 2012]) or overlapping norm
(see [Bach et al., 2012]). As a result, some authors have adopted that name
for the matrix case (see [Lai et al., 2014; Eriksson et al., 2015; McDonald
et al., 2015]). However, as for other vector/matrix norm pairings e.g. the
{1 norm of the singular values is called the nuclear norm, we have chosen
the r∗-norm notation to distinguish between the matrix and vector case.
This also avoids confusion if the k-support-norm is applied to the entries of
a matrix and not its singular values.

2.1 Statements
Let us turn to the underlying problem of this work. We start with the tra-
ditional optimal low-rank approximation problem in Rn$m, which is formu-
lated as follows. Given N ∈ Rn$m and r ∈ N such that 1 ≤ r ≤ min{m,n},
find a solution Mv ∈ Rn$m to

minimize qN − Mq2
F

subject to rank(M) ≤ r
(4)
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In case of the Hilbert-Schmidt norm, the natural operator generalization
of the Frobenius-norm, this problem has been solved by Schmidt and gen-
eralized by Mirsky to unitarily invariant norms (see [Antoulas, 2005]). The
result is stated next.
Proposition 1
Let N ∈ Rn$m and r ∈ N such that 1 ≤ r ≤ min{m,n}, then

min
M∈Rn$m

rank(M)≤r

qN − Mq = qdiag(σr+1(N), . . . , σmin{m,n}(N))q,

holds for any unitarily invariant norm q · q.
If an SVD of N is given by N =

∑min{m,n}
i=1 σiuivTi , a solution to (4) can be

derived as Mv = svdr(M) :=
∑r

i=1 σiuivTi , which we refer to as a standard
SVD-approximation. This solution may not be unique if the norm does not
depend on all singular values or if σr(N) = σr+1(N). Nevertheless, with the
Frobenius norm and σr(N) ,= σr+1(N) the uniqueness of Mv is guaranteed.

However, this solution does not account for additional constraints. In
this work, we look at the following extension of (4).
Problem 1
Given N ∈ Rn$m, find Mv ∈ Rn$m with rank(Mv) ≤ r such that

min
M∈Rn$m

rank(M)≤r

[
1
2
qN − Mq2

F + �(M)
]
=

1
2
qN − Mvq2

F + �(Mv),

where � : Rn$m → R ∪ {∞} is a given closed proper convex function
(see Definition A.2). 2

Compared to (4), Problem 1 has an additional function � that can be used to
add information about the desired solution. Both problems are non-convex
due to the rank constraint. Nevertheless, we will see in Section 3 that they
can often be solved by convex optimization. In particular, if (4) has a unique
solution, it is possible to determine it by solving a semi-definite program.
Notice that Problem 1 also deals with cases where N = 0 and thus covers
the class of matrix completion problems (see Section 7).

In the following we often use �(M) " χC(M), where

χC(M) :=
{

0, M ∈ C
∞, M /∈ C

is defined to be the indicator function of a (convex) set C ⊂ Rn$m. We also
use χrank(M)≤r to denote the indicator function of the set of matrices with at
most rank r. In the remainder of this paper, it is assumed that �+χrank(M)≤r
is proper.
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3. The r∗-approach
In the following we consider the problem of finding optimal solutions to
Problem 1. It is a continuation of the authors work [Grussler and Rantzer,
2015]. The insights obtained here will allow us to generalize and improve
upon current standard approaches (see Section 7). The main idea is to derive
a convex minorizer (under-approximation) of the non-convex cost-function
in Problem 1 by means of Fenchel-duality (see Section A.2). We denote by
f ∗ and f ∗∗ the conjugate and bi-conjugate functions of f : Rn$m → R∪{∞}
(for those unfamiliar with these concepts see Definition A.1).

Theorem 1
Let N ∈ Rn$m, and r ∈ N such that 1 ≤ r ≤ min{m,n}. Then the conjugate
and bi-conjugate functions of

f (M) := 1
2
qN − Mq2

F + χrank(M)≤r(M)

are given by

f ∗(D) = 1
2
qN + Dq2

r −
1
2
qNq2

F , (5)

f ∗∗(M) = 1
2
qMq2

r∗ − 〈N, M〉 +
1
2
qNq2

F . (6)

for all D, M ∈ Rn$m. 2

Proof Let N ∈ Rn$m and f (M) := 1
2qN − Mq2

F + χrank(M)≤r(M). Then,

f ∗(D) = sup
M∈Rn$m

rank(M)≤r

[
〈D, M〉 − 1

2
qN − Mq2

F

]

= sup
M∈Rn$m

rank(M)≤r

−
1
2
qN − M + Dq2

F + 〈D, N〉 +
1
2
qDq2

F

= −
1
2
qN + Dq2

F +
1
2
qN + Dq2

r + 〈D, N〉 +
1
2
qDq2

F

= −
1
2
qNq2

F +
1
2
qN + Dq2

r

where the third equality follows by Proposition 1, because

−
1
2
qN + Dq2

F +
1
2
qN + Dq2

r = qdiag(σr+1(N + D), . . . , σmin{m,n}(N + D))q2
F .
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Hence,

f ∗∗(M) = sup
D∈Rn$m

[
〈D, M〉 + 1

2
qNq2

F −
1
2
qN + Dq2

r

]

= sup
D∈Rn$m

[
〈D − N, M〉 + 1

2
qNq2

F −
1
2
qDq2

r

]

=
1
2
qNq2

F − 〈N, M〉 + sup
D∈Rn$m

[
〈D, M〉 − 1

2
qDq2

r

]

=
1
2
qNq2

F − 〈N, M〉 +
1
2
qMq2

r∗,

where the last equality follows by

1
2
q · q2

r∗ =
(

1
2
q · q2

r

)∗
,

which is for instance shown in [Rockafellar, 1970, Corollary 15.3.1]. 2

It is possible to show that f ∗ and f ∗∗ are convex (see [Hiriart-Urruty and
Lemaréchal, 2013]). Moreover, f (M) ≥ f ∗∗(M) for all M ∈ Rn$m, i.e. f ∗∗
is a convex minorizer of f . In fact, f ∗∗ it is the largest convex minorizer
of f (see [Hiriart-Urruty and Lemaréchal, 1996, Theorem X.1.3.5]), that
is, it is the point-wise supremum of all affine functions majorized by f
(see Figure 1). This allows us to construct the following dual and bi-dual
problem to Problem 1:

− min
D∈Rn$m

[
�∗(−D) + 1

2
qN + Dq2

r −
1
2
qNq2

F

]
, (A)

min
M∈Rn$m

[
1
2
qMq2

r∗ − 〈N, M〉 +
1
2
qNq2

F + �(M)
]
. (B)

Observe that f ∗∗ + � is the largest convex minorizer of f + � with � as
a summand. Therefore, we propose to use (B) instead of the nuclear norm
heuristic (see (25) in Section 5.1) as a convex proxy to Problem 1. We
will see that it has many interesting properties and that sometimes it can
be guaranteed to solve the original non-convex problem. Theorem 1 gives
the following duality result through Fenchel-duality (see Lemma A.1 and
Proposition A.3).
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− f ∗(D1)

− f ∗(D2)

− f ∗(D3)

− f ∗(D4)

− f ∗(D5)

M

Figure 1. Schematic plot of f (M), f ∗∗(M) and tangents
through − f ∗(Di).

Proposition 2
Let N ∈ Rn$m and � : Rn$m → R∪{∞} be a closed proper convex function.
Then for all r ∈ N such that 1 ≤ r ≤ min{m,n}

min
M∈Rn$m

rank(M)≤r

[
1
2
qN − Mq2

F + �(M)
]

≥ − min
D∈Rn$m

[
�∗(−D) + 1

2
qN + Dq2

r −
1
2
qNq2

F

]
(C)

= min
M∈Rn$m

[
1
2
qMq2

r∗ − 〈N, M〉 +
1
2
qNq2

F + �(M)
]
.

2

Since the original Problem 1 is non-convex, there is a duality-gap for some
choices of � (see Section 7). This is reflected by the inequality in (C).
However, there are many situations with no duality-gap. Next, a number of
important cases are presented.

In the following, the set of minimizers of a function f over a given set
S ⊂ Rn$m is denoted by argminS f . If argminS f = {xv} is just a singleton,
we write xv = argminS f .
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Proposition 3
Assume that (B) has a minimizer Mv with rank(Mv) ≤ r. Then,

argmin
M∈Rn$m

rank(M)≤r

[
1
2
qN − Mq2

F + �(M)
]

= argmin
M∈Rn$m

rank(M)≤r

[
1
2
qMq2

r∗ − 〈N, M〉 +
1
2
qNq2

F + �(M)
]
. 2

Proof The result follows by combining Proposition 2 with (3) in Lemma 1.2

Thus obtaining a rank-r solution to the convex relaxation problem (B) im-
plies solving the original non-convex problem. Next, this result is restated
to provide additional insight on the solution to Problem 1.

Proposition 4
Assume that Dv is a solution to (A) and σr(N + Dv) ,= σr+1(N + Dv) or
σr(N + Dv) = 0. Then there is no duality gap in (C) and svdr(N + D∗) is
the unique minimizing argument of Problem 1, i.e.

svdr(N + Dv) = argmin
M∈Rn$m

rank(M)≤r

[
1
2
qN − Mq2

F + �(M)
]
.

2

The theorem provides a simple sufficient condition for the uniqueness of a
solution to Problem 1. However, this is not a necessary condition. A proof of
Proposition 4 is given in a more general setting than in Theorem 2, which
also allows us to say something about the rank of the solution to the convex
relaxation if there is a duality-gap.

Theorem 2
Let Dv and Mv be solutions to (A) and (B), respectively. Further, suppose
that an SVD of N + Dv is given by N + Dv =

∑min{m,n}
i=1 σiuivTi with

σr−t ,= σr−t+1 = · · · = σr = · · · = σr+s ,= σr+s+1,

where t = r and s = min{m,n}−r if σ1 = σr and σmin{m,n} = σr, respectively.
Then there exists T ∈ Rs+t$s+t such that

Mv =
r−t∑
i=1

σiuivTi + σr
(
ur−t+1 . . . ur+s

)
T
(
vr−t+1 . . . vr+s

)T
where T 4 0, qTq1 ≤ 1, and qTq1∗ = t. In particular, rank(Mv) ≤ r + s,
and if σr ,= σr+1 or σr = 0, then Mv = svdr(N + Dv). 2
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A proof to this theorem is given in Section A.4. Observe that whenever
(B) does not have a unique solution, Proposition 1 and Theorem 2 imply
that σr(N + Dv) = σr+1(N + Dv) for all solutions Dv to (A). Furthermore,
Theorem 2 shows that svdr(N) with σr(N) ,= σr+1(N) can be determined
by solving a convex problem.
Corollary 1
Let N ∈ Rn$m, and r ∈ N be such that 1 ≤ r ≤ min{m,n}. Then

min
M∈Rn$m

rank(M)≤r

1
2
qN − Mq2

F =
1
2
qNq2

F −
1
2
qNq2

r

= min
M∈Rn$m

[
1
2
qMq2

r∗ − 〈N, M〉 +
1
2
qNq2

F

]

and
svdr(N) ∈ argmin

M∈Rn$m

[
1
2
qMq2

r∗ − 〈N, M〉
]
.

If σr(N) ,= σr+1(N) or σr = 0 then

svdr(N) = argmin
M∈Rn$m

[
1
2
qMq2

r∗ − 〈N, M〉
]
.

2

Proof Since � = 0 implies that �∗(D) < ∞ \ D = 0, the result follows by
Theorem 2. 2

Finally, notice that several extensions of Problem 1 are covered by the
preceding results. For instance, one can consider the weighted case

min
M∈Rn$m

rank(M)≤r

[
1
2
qW(N − M)q2

F + �(M)
]

(7)

where W ∈ Rl$n and rank(W) = n. Let �̃(M̃) := �(W†M̃), where W†

denotes the pseudo-inverse of W (see [Horn and Johnson, 2012]). Since
rank(M̃) = rank(W†M̃) = rank(M), one can reformulate (7) such that it
fits the formulation of Problem 1:

min
M∈Rn$m

rank(M)≤r

[
1
2
qW(N − M)q2

F + �(M)
]
= min

M̃∈Rn$m

rank(M̃)≤r

[
1
2
qWN − M̃q2

F + �̃(M̃)
]
.

In particular,

qW(N − M)q2
F = trace((N − M)TWTW(N − M)) =: 〈N − M, N − M〉WTW

defines another inner product and norm, and thus a suitable W may enable
us to satisfy the requirements of Proposition 4 in situations where the
Frobenius norm fails.
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3.1 Geometric interpretation
Assuming that �(M) " χC(M) for some closed convex set C ⊂ Rn$m, the
preceding results have an insightful geometric interpretation. Note that (B)
has the same solutions as

min
M∈C

〈N,M〉=c

qMqr∗, (8)

where c := 〈N, Mv〉, and Mv is a solution to (B). The solutions of (8) can be
found by studying the set Bε̄r∗ ∩ H ∩ C where

Bεr∗ := {X ∈ Rn$m : qXqr∗ ≤ ε},
H := {X ∈ Rn$m : 〈N, X〉 = c},

and
ε̄ := min{ε ≥ 0 : Bεr∗ ∩ H ∩ C ,= ;}.

Proposition 4 states that if σr(N + Dv) ,= σr+1(N + Dv), then Bε̄r∗ ∩ H ∩ C
consists of a single element. This can also be understood geometrically with
the help of the following Lemma, which generalizes the corresponding result
for the nuclear norm and r = 1 (see [Recht et al., 2010]).
Lemma 2
The set of the extreme points of the unit-ball B1

r∗ is

E := {X ∈ Rn$m : qXqF = 1, rank(X) ≤ r}.

Hence, B1
r∗ = conv(E), where conv(·) denotes the convex hull. 2

Proof By (1) in Lemma 1, it holds that for all N ∈ Rn$m

sup
M∈conv(E)

〈N, M〉 = qNqr = sup
M∈B1

r∗
〈N, M〉. (9)

Since conv(E) and B1
r∗ are closed convex sets, Lemma A.2 implies that

B1
r∗ = conv(E). If a point M̄ ∈ E is not an extreme point of E, then

M̄ =
∑

iαiMi, with
∑

iαi = 1,

such that
Mi ∈ K \ {M̄} and αi > 0 for all i.

Hence, by the Cauchy-Schwarz inequality we conclude that

1 = 〈M̄, M̄〉 =
∑

iαi〈M̄, Mi〉 ≤
∑

iαi = 1.

However, this can only be true if 〈M̄, Mi〉 = 1 for all i. Equivalently, M̄ = Mi
by the Cauchy-Schwarz inequality and that is a contradiction. 2
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B1
r∗

(a) B1
r∗ (shaded area) as the convex hull

of E (elements ○) with the boundary of
B1

min{m,n}∗( ).

Bε̄r∗
〈N, M〉 = c

C
Mv

(b) Unique solution:
{Mv} = Bε̄r∗ ∩ H ∩ C with rank(Mv) ≤ r.

Bε̄r∗

〈N, M〉 = c

C
Mv

1

Mv
2

(c) Non-unique solutions:
conv ({Mv

1 , Mv
2}) = Bε̄r∗ ∩ H ∩ C with

rank(Mv
1) ≤ r and rank(Mv

2) ≤ r.

Bε̄r∗

〈N, M〉 = c

C
Mv

(d) Duality gap:
{Mv} = Bε̄r∗ ∩ H ∩ C with rank(Mv) > r.

Figure 2. Schematic plots to visualize (8) geometrically.

Therefore, a geometric interpretation of σr(N + Dv) ,= σr+1(N + Dv) is
that the only intersection point of H and Bε̄r∗ ∩C is an extreme point of Bε̄r∗
and C (see Figure 2(b)). Hence, the case of σr(N + Dv) = σr+1(N + Dv) ,= 0
can occur if and only if H intersects Bε̄r∗∩C at several points (see Figure 2(c)
and Section 6.1) or if there is a duality gap in (C) (see Figure 2(d) and
Section 7.3). Finally notice that one can also use Lemma 2 as a definition of
q · qr∗. This has been done for vectors in [Argyriou et al., 2012; Bach et al.,
2012] in an attempt to generalize the {1 norm.
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3.2 Real-valued r
In the following we will see that allowing r to be real-valued can be consid-
ered as a regularization parameter. Unlike typical regularization methods
(see Sections 5.1 and 5.2), this parameter has a close relationship to the
rank of the corresponding solutions.

It suffices to discuss the case where Proposition 4 does not apply. There-
fore, let

Dvt := argmin
D∈Rn$m

[
�∗(−D) + 1

2
qN + Dq2

t

]
,

and
Mv

t := argmin
M∈Rn$m

[
1
2
qMq2

t∗ − 〈N, M〉 + �(M)
]
.

be defined for all t ∈ N such that 1 ≤ t ≤ min{m,n}, and assume that
there exists r ∈ N with

σr(N + Dvr) = σr+1(N + Dvr) and rank(Mv
r ) > r.

Furthermore, assume that

1
2
qN − Mv

r q
2
F + �(Mv

r ) >
1
2
qN − Mv

r+1q
2
F + �(Mv

r+1)

with
rank(Mv

r+1) > rank(Mv
r ).

Then, on the one hand, one may face the situation that Mv
r is an approxi-

mation of small rank, but poor cost qN−Mv
r q

2
F+�(Mv

r ). On the other hand,
qN − Mv

r+1qF + �(Mv
r+1) may be acceptable, but rank(Mv

r+1) is too large.
Thus a trade-off between Mv

r and Mv
r+1 is desired. This can be achieved by

letting r become a non-integer valued in the r norm. The r norm is then
defined as

q · qr :=

√√√√ mro∑
i=1

σ 2
i (·) + (r− mro)σ 2

lrn(·), (10)

where mro := max{z ∈ Z : z ≤ r} and lrn := min{z ∈ Z : z ≥ r}. Observe
that for r ∈ N and α ∈ [0, 1] we have

q · q2
r+α = (1−α)q · q2

r +αq · q2
r+1. (11)

This means that q·q2
r+1−α is a convex combination of q·q2

r and q·q2
r+1, and thus

indicates its usefulness in supplying the desired trade-off solution. Similar
to Theorem 2, it remains true with r ∈ R≥1 that rank(Mv

r ) ≤ lrn + s if

σlrn(N + Dvr) = · · · = σlrn+s(N + Dvr) > σlrn+s+1(N + Dvr). (12)
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Hence, allowing r to assume values in R≥1 may allow us to find solutions
of both lower rank and lower cost. Next let us have a closer look at the
dependency of s on r in (12).

We define

F(D, r) := �∗(−D) + 1
2
qN + Dq2

r +
1
2
qNq2

F .

Using (2) in Lemma 1 and the piecewise linearity in (11), it follows that F
is convex. From Berge’s Maximum Theorem (see [Berge, 1963, p. 116] or
[Sundaram, 1996, Theorem 9.17] for the convex case) it is known that the
parameter depending set

C∗(r) := argmin
D∈Rn$m

[
�∗(−D) + 1

2
qN + Dq2

r +
1
2
qNq2

F

]

is upper hemicontinuous in r. This means that for all r ∈ [1,min{m,n}]
and all ε > 0 there exists δ > 0 such that for all t ≥ 1

pt− rp < δ [ C∗(t) ⊂ Bε (C∗(r)) , (13)

where

Bε (C∗(r)) := {X ∈ Rn$m : ∃D ∈ C∗(r) such that qX − DqF < ε} .

For simplicity assume that Dvr is unique. By (13) and the continuity of the
singular values (see [Stewart and Sun, 1990, Corollary 4.9]), it follows that
a sufficiently small increase of r does not increase s in (12). Therefore, just
as in nuclear norm regularization, one often observes that rank(M∗

t ) looks
like a staircase as t varies over [r, r + 1] (see Figure 9(b) in Section 8.1).
Notice, the same observation can be made with

F(M, r) := 1
2
qMq2

r∗ − 〈N, M〉 +
1
2
qNq2

F + �(M)

and

C∗(r) := argmin
M∈Rn$m

[
1
2
qMq2

r∗ − 〈N, M〉 +
1
2
qNq2

F + �(M)
]
.

In summary, real-valued r can be considered as a regularization parameter,
similar to the regularization methods in Section 5.

4. Computability

This section is devoted to the computability aspects of the r∗-approach. We
show that the problems (A) and (B) can be formulated as SDPs if � is SDP-
representable. Moreover, we compute the proximal mappings of f ∗ and f ∗∗
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in Theorem 1. This allows us to solve (A) and (B) using a first order method
such as Douglas-Rachford splitting. Further, we apply Douglas-Rachford to
the original non-convex Problem 1. If Proposition 4 applies, then its iterates
coincide locally with the convex Douglas-Rachford.

4.1 SDP-representations
We start with an SDP-representation of the optimization problem

min
D∈Rn$m

qN + Dq2
r , (14)

where q · qr is defined as in (10) and r ∈ [1,min{m,n}]. Let T ∈ Rn$n be
such that

T 4 (N + D)(N + D)T .
Then σi(T) ≥ σ 2

i (N + D) for all i such that 1 ≤ i ≤ n (see [Horn and
Johnson, 2012, Corollary 7.7.4]) and trace(T) =

∑n
i=1 σi(T). Hence,

qN + Dq2
r ≤ trace(T) − (lrn − r)σlrn(T) −

n∑
i=lrn+1

σi(T)

≤ trace(T) − (n− r)σn(T),
which is equivalent to

qN + Dq2
r ≤ min

T4(N+D)(N+D)T
trace(T) − (n− r)σn(T). (15)

In particular, equality in (15) can be achieved with

Tv :=
lrn∑
i=1

σ 2
i (N + D)uiuTi + σ 2

lrn(N + D)
n∑

i=lrn+1

uiuTi ,

where N + D =
∑n

i=1 σi(N + D)uivTi is an SVD of N + D. Using the Schur-
complement condition for T−(N+D)(N+D)T 4 0 (see [Horn and Johnson,
2012, Theorem 7.7.7]) gives that (14) is SDP-representable as

minimize
D,T,γ

trace(T) −γ (n− r)

subject to
(

T N + D
(N + D)T I

)
4 0, T 4 γ I, D ∈ Rn$m.

Moreover, if � is SDP-representable, then an SDP-formulation of (B) can
be obtained by the dual of this optimization problem. We get

minimize
M,P,W

1
2
trace(W) − trace(NTM) + �(M)

subject to
(
I − P M
MT W

)
4 0, P 4 0,

trace(P) = n− r.
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Assuming that σr(N + Dv) ,= σr+1(N + Dv), the unique solution Mv to
Problem 1 can be found without computing the solution to (A).

4.2 Convex Douglas-Rachford
Many SDP-solvers are based on interior point methods (see [Toh et al., 1999;
Peaucelle et al., 2002]). These solvers have good convergence properties,
but the iteration complexity typically grows unfavorably with the problem
dimension. In order to deal with problems of higher dimensions, it is often
more desirable to look at first-order methods such as the Douglas-Rachford
splitting algorithm (see [Douglas and Rachford, 1956; Lions and Mercier,
1979; Eckstein and Bertsekas, 1992]). Let us recall the basic concept of this
method. We want to determine a solution to

minimize
X

f (X) + �(X), (16)

where f , � : Rn$m → R ∪ {∞} are closed and proper convex functions with
intersecting domains. Then the Douglas-Rachford iteration is given by

X k = proxγ f (Zk−1), (17a)
Y k = proxγ �(2X k − Zk−1), (17b)
Zk = Zk−1 + ρ(Y k − X k), (17c)

where γ > 0, ρ ∈ (0, 2), and the proximal mapping is defined as

proxγ f (Z) := argmin
X

(
f (X) + 1

2γ
qX − Zq2

F

)
. (18)

It is known that X k and Y k converge towards a minimizer of (16) (see [Dou-
glas and Rachford, 1956; Lions and Mercier, 1979; Eckstein and Bertsekas,
1992]). In fact, the well-known Alternating Direction Methods of Multipliers
(ADMM) is a special case of the Douglas-Rachford iteration (see [Glowin-
ski and Marroco, 1975; Gabay and Mercier, 1976; Boyd et al., 2011]). Note
that the Douglas-Rachford splitting algorithm can also be applied to sums
of more than two functions f and � by using a consensus formulation
(see [Combettes and Pesquet, 2011]).

Let � be as in (B), and assume that proxγ �(X) is easy to compute. In
order to apply the Douglas-Rachford algorithm to solve (B), it remains to
find proxγ f (Z) with

f (M) := 1
2
qMq2

r∗ − 〈N, M〉 +
1
2
qNq2

F
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for all M ∈ Rn$m. For Z ∈ Rn$m, we get

proxγ f (Z) = argmin
M∈Rn$m

(
1
2
qMq2

r∗ − 〈N, M〉 +
1
2
qNq2

F +
1

2γ
qM − Zq2

F

)
(19)

= argmin
M∈Rn$m

(
1
2
qMq2

r∗ +
1

2γ
qM − (γ N + Z)q2

F + 〈Z, N〉
)

= prox γ
2 q·q2

r∗(γ N + Z).

Using the extended Moreau-decomposition (see [Bauschke and Combettes,
2011, Theorem 14.3]) and Theorem 1, it holds that for all Z

prox γ
2 q·q2

r∗(Z) +γprox 1
2γ q·q2

r

(
γ−1Z

)
= Z.

In combination with (19), we arrive at

proxγ f (Z) = γ N + Z −γprox 1
2γ q·q2

r

(
γ N + Z

γ

)
. (20)

Note that
prox γ−1

2 q·q2
r
(Z) = prox 1

2γ (Z)q·q2
r
,

which is why it is sufficient to derive how to compute prox γ
2 q·q2

r
. This is done

in Algorithm 2 on page 126 for r ∈ [1,min{m,n}]. Explanatory derivations
can be found in Section A.5. Similar derivations based on the extended
Moreau-decomposition are presented in [Eriksson et al., 2015] for integer-
valued r.

Finally, observe that if r ∈ N and

σr(γ N + Z) >
(
1+γ−1)σr+1(γ N + Z), (21)

it follows from the derivations of prox γ
2 q·q2

r
(see Section A.5 and (51)) that

prox 1
2γ q·q2

r

(
γ N + Z

γ

)
=
γ N + Z

γ
−

1
1+γ

svdr
(
γ N + Z

γ

)
.

Therefore, (20) implies that

proxγ f (Z) =
1

1+γ
svdr (γ N + Z) . (22)

This fact is used in Section 4.4 to show a tight relationship to the non-convex
Douglas-Rachford algorithm.
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4.3 Douglas-Rachford limit point properties
A comparison between the Douglas-Rachford limit points and the optimal-
ity conditions for (A) and (B) (see Theorem 2) gives that all limit points
Zv = limk→∞ Zk of (17c) can be expressed as

Zv = Mv +γ Dv, (23)

where Dv and Mv are solutions to (A) and (B), respectively. Given Mv,
Zv and γ , this allows us to determine Dv. Moreover, by inspection of the
Douglas-Rachford iterations, it can be shown that several known properties
of the standard SVD-approximation remain true if they are preserved by
prox�(X).

Proposition 5
Let N and � be as in Problem 1. Then the following hold:

i. Let N ∈ S and prox�(X) ∈ S for all X ∈ S. Then (A) and (B) have
solutions Dv, Mv ∈ S.

ii. Let Nv = 0 and prox�(X)v = 0 for all X with Xv = 0. Then (B) has a
solution Mv such that Mvv = 0.

In particular, the solution to Problem 1 preserves these properties if (B)
has a unique solution and there is no duality gap in (C). 2

Proof Using [Watson, 1992, Theorem 2] it holds that prox γ
2 q·q2

r∗(X) has the
same singular vectors as X . Therefore, prox γ

2 q·q2
r∗(X) preserves these prop-

erties and i. and ii. are proven by starting the Douglas-Rachford iterations
for (B) with Z0 = 0. The last claim follows with Proposition 3. 2

There are numerous reasonable choices of � such that Proposition 5 applies,
a few examples will be discussed in Sections 6 to 8.

According to Proposition 4, σr(N + Dv) ,= σr+1(N + Dv) is a sufficient
condition for the uniqueness of a solution to (B). Note that without this
assumption, a solution to Problem 1 does not necessarily preserve the prop-
erties in Proposition 5. This can be used to construct non-trivial examples
where σr(N + Dv) = σr+1(N + Dv) (see Section 6.1).

4.4 Non-convex Douglas-Rachford (NDR)
Another approach to solve Problem 1 is to directly apply the Douglas-
Rachford method to the non-convex problem

min
M∈Rn$m

[
1
2
qN − Mq2

F + χrank(M)≤r(M) + �(M)
]
. (24)
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This has the advantage that we are guaranteed to get a solution of desired
rank, if the iterates converge. Recently, some local convergence guaran-
tees for the non-convex Douglas-Rachford have appeared in the literature
(see [Hesse and Luke, 2013; Hesse et al., 2014; Phan, 2016]). Here, we add
to these findings by showing that the non-convex Douglas-Rachford reduces
locally to its convex counterpart if Proposition 4 applies. To this end, we
start by deriving proxγ f̄ (Z) where

f̄ (M) := 1
2
qN − Mq2

F + χrank(M)≤r(M)

for all M ∈ Rn$m. For Z ∈ Rn$m, we get

proxγ f̄ (Z) = argmin
M∈Rn$m

rank(M)≤r

(
γ
2
qN − Mq2

F +
1
2
qM − Zq2

F

)

= argmin
M∈Rn$m

rank(M)≤r

(
γ + 1

2
qMq2

F − 〈γ N + Z, M〉
)

= argmin
M∈Rn$m

rank(M)≤r

∥∥∥∥γ N + Z
γ + 1

− M
∥∥∥∥2

F
.

Hence, by Proposition 1

1
1+γ

svdr (γ N + Z) ∈ proxγ f̄ (Z).

Next let Dv and Mv be solutions to (A) and (B), respectively. If the convex
Douglas-Rachford iterations are applied to (B), then it follows by (23) that
Zv = γ Dv + Mv is a limit point to (17c). Then, assuming that

σr(N + Dv) ,= σr+1(N + Dv),

it holds by Theorem 2 that Mv = svdr(N + Dv), i.e.

σr(Mv) = σr(N + Dv) and σr+1(Mv) = 0.

Therefore,

(1+γ−1)σr+1(γ N + Zv) = (1+γ−1)σr+1(γ (N + Dv) + Mv)

= (1+γ )σr+1(N + Dv)
< (1+γ )σr(N + Dv)
= σr(γ (N + Dv) + Mv)

= σr(γ N + Zv).

97



Paper III. Low-Rank Optimization with Convex Constraints

By the continuity of the singular values (see [Stewart and Sun, 1990, Corol-
lary 4.9]), this allows us to conclude that (21) applies in a sufficiently small
neighborhood of Zv. Thus, (22) implies that for all Z within this neighbor-
hood

proxγ f̄ (Z) = proxγ f (Z),

where f (M) := 1
2qMq

2
r∗ − 〈N, M〉 + 1

2qNq
2
r∗. As a result, the convex and

non-convex Douglas-Rachford iterations locally coincide. Furthermore, there
always exists a neighborhood that the Douglas-Rachford iterations cannot
escape from, because the sequence qZv − ZkqF of the convex Douglas-
Rachford is known to be non-increasing (see [Eckstein and Bertsekas,
1992]). This proves the local convergence of the non-convex Douglas-Rachford
if σr(N + Dv) ,= σr+1(N + Dv).

Notice that by Theorem 2 and (23) we can conclude that a zero duality-
gap in (C) implies that both the convex and non-convex Douglas-Rachford
have limit points corresponding to a solution to Problem 1 (even if σr(N +
Dv) = σr+1(N + Dv)). We will see in Sections 6 to 8 that the non-convex
Douglas-Rachford can converge to these solutions. However, this may not
be the case for all choices of Z0, since proxγ f̄ (Z) is not necessarily unique
(see Section 6.1). Moreover, Section 7.3 shows that the choice of γ can be
crucial for the existence of a limit-point of the non-convex Douglas-Rachford
if there is a duality-gap in (C).

Finally, observe that proxγ f̄ (Z) only requires the determination of the
dominant r singluar values and singluar vectors. Hence, sparse SVD solvers
such as in [Liu et al., 2013] can be used to determine a dominant SVD, and
to gain more computational speed with large-scale problems. The same
holds true for proxγ f (Z), where maybe a larger, but not full, SVD needs to
be determined.

5. Other Approaches

In the following we compare the r∗-approach to other methods for solv-
ing Problem 1. These methods will also be used for numerical comparisons
throughout the subsequent sections.

5.1 Nuclear Norm Regularization
One of the most widely used methods to approximate a solution to Prob-
lem 1 is the so-called nuclear norm regularization. It borrows techniques
from sparse regularized regression, commonly called Lasso (see [Tibshi-
rani, 1996]). This method estimates a sparse solution x̂ to a linear system
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of equations Ax̂ ( b by solving

min
x

1
2
qAx− bq2

2 + µqxq{1 ,

where q · q2 is the Euclidean norm, qxq{1 =
∑

i≥1 pxip, and µ ≥ 0 is a
regularization parameter. In our case, rather than having a sparse solution,
we are interested in having a small number of non-zero singular values.
Therefore, for given N ∈ Rn$m, a corresponding matrix version reads

min
M∈Rn$m

1
2
qN − Mq2

F + µqMq1∗ + �(M), (25)

where � : Rn$m → R ∪ {∞} is a given closed proper convex function. The
simplicity of this convexification, as well as the results in [Fazel et al.,
2001; Fazel, 2002; Recht et al., 2010], stimulated a large growth in the
application of this method in many different areas (see [Fazel et al., 2001;
Fazel, 2002; Olsson and Oskarsson, 2009; Recht et al., 2010]). However, it is
often challenging to choose µ a priori in order to obtain a solution of specific
rank. Commonly one assumes that the rank as a function of µ looks like
a staircase, i.e. a large µ decreases the rank too much, whereas a small µ
may leave it too large. In order to find the best possible approximation, one
usually tries to keep µ as small as possible, which can result in a costly
search.

In general, even with the best possible choice of µ, this heuristic does
not return an optimal solution to Problem 1. Even in the simple case � = 0,
one usually cannot choose µ such that the SVD-approximation is obtained.
Finally, there is no certificate for checking whether a solution is a minimizer
of Problem 1.

5.2 Rank Regularization
Similar to the nuclear norm regularization, it has been suggested in [Lars-
son et al., 2014; Larsson and Olsson, 2016] to directly regularize on the
rank, i.e. solve

min
M∈Rn$m

[
1
2
qN − Mq2

F + µrank(M) + �(M)
]
,

where µ ≥ 0 is a regularization parameter and � : Rn$m → R ∪ {∞} a
closed and proper convex function. Since this problem is still non-convex,
one needs to find a convex proxy of f (M) := 1

2qN − Mq2
F + µrank(M). As

shown in [Larsson et al., 2014; Larsson and Olsson, 2016], the conjugate
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and bi-conjugate functions of f are given by

f ∗(D) = 1
2
qN + Dq2

F −
1
2
qNq2

F −
1
2

min{m,n}∑
i=1

min{2µ,σ 2
i (N + D)},

f ∗∗(M) = 1
2
qM − Nq2

F +
1
2

min{m,n}∑
i=1

(
2µ−max{0,

√
2µ− σi(M)}2

)
. (26)

Hence, by Fenchel-duality (see Lemma A.1 and Proposition A.3) it holds
that

min
M∈Rn$m

[ f (M) + �(M)] ≥ − min
D∈Rn$m

[ f ∗(D) + �∗(−D)] (27)

= min
M∈Rn$m

[ f ∗∗(M) + �(M)] .

Assume that there is no duality gap in (C) with solutions Dv and Mv to
(A) and (B), respectively. Choosing σ 2

r (N+Dv)
2 ≥ µ ≥ σ 2

r+1(N+Dv)
2 , it can be seen

that

f ∗(Dv) = 1
2
qNq2

F −
1
2
qN + Dvq2

r + µr = 1
2
qN − Mvq2

F + µr+ �(Mv),

where the last equality follows by Propositions 2 and 3. Hence,

1
2
qN − Mvq2

F + µr+ �(Mv) ≥ − min
D∈Rn$m

[ f ∗(D) + �∗(−D)]

≥
1
2
qN − Mvq2

F + µr+ �(Mv),

yielding equality in (27). This shows that the method obtains the same guar-
anteed optimal solutions as previously discussed for (A) and (B). Evidently,
there is a strong relationship to Propositions 2 and 4. However, if there is
a duality-gap, then the solutions may differ from those with non-integer
valued r ∈ [1,min{m,n}], and it is unclear which method yields better
results. Moreover, even in the zero-duality gap case, a costly search for µ
is required. Finally note that despite the fact that the proximal operator of
f ∗∗ is computable (see [Larsson et al., 2014; Larsson and Olsson, 2016]),
it is currently unknown if (26) is SDP-representable. This has the disad-
vantage that first order methods can be used only. Moreover, even for small
dimensional examples, � is required to have a cheaply computable proximal
operator.
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5.3 Projection-based methods
In the following let �(M) = χC(M) be the indicator function of a closed
convex set C. If the projection onto C is computable, then there are several
other heuristics, of which a few are outlined next.

Lift-and-project Algorithm (LP) The idea of the so-called lift-and-
project algorithm (see [Chu et al., 2003]) is to interchangeably perform a
standard SVD-approximation of desired rank, and project the result orthog-
onally onto the convex set C, which again increases the rank. By starting
with N as the first iterate, one hopes to keep the distance to N small. Nat-
urally, this algorithm always returns the standard SVD-approximation of
N if it lies within C. Unfortunately, it is generally difficult to know whether
the algorithm converges, and if a possible limit point gives a satisfactory
error (see [Chu et al., 2003]). However, if C is closed and 0 ∈ C, one can
show that the Frobenius norm decreases in every step, and the convergence
is guaranteed (see [Hiriart-Urruty and Lemaréchal, 2013, p. 118]).

Alternating Least-Squares (ALS) All the approaches considered so far
share the drawback that when implemented, their iterates usually need to
converge in order to guarantee a feasible solution. The so-called alternating
least-squares method is a way of overcoming this drawback by working with
iterates that lie in C and are of desired rank.

Given V0 ∈ R
r$n \ {0} such that {U ∈ Rm$r : UV0 ∈ C} \ {0} ,= ;, one

interchangeably solves

Uk := argmin
UVk−1∈C

qN −UVk−1q
2
F ,

Vk := argmin
UkV∈C

qN −UkVq2
F ,

with k ≥ 1. Thus the rank constraint is explicitly taken into account by form-
ingUkVk. Note that alternating least-squares without constraints converges
for almost all V0 to a standard SVD-approximation (see [Srebro, Jaakkola, et
al., 2003]). The results in Section 6 indicate that for certain choices of C, this
method often converges to an optimal solution if σr(N+Dv) ,= σr+1(N+Dv).
Moreover, there are examples where its solution attains the lower-bound of
Proposition 2 even though σr(N + Dv) = σr+1(N + Dv). Nevertheless, in
many cases ALS may not be a good choice since it is often unclear how to
choose V0.
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6. Non-negative low-rank approximation

A particularly well studied low-rank approximation problem is the case of
preserving non-negativity constraints.

Problem 2

minimize qN − Mq2
F

subject to M ∈ Rn$m
≥0

where Rn$m
≥0 := {X ∈ Rn$m : xi j ≥ 0} and N ∈ Rn$m

≥0 . 2

Note that this is the same as Problem 1 with � = χRn$m
≥0 . Probably the most

well-known approach to solving this problem is the so-called non-negative
matrix factorization (see [Berry et al., 2007; Kim and Park, 2011]). Given
N ∈ Rn$m

≥0 , one intends to find a solution to

min
U∈Rn$r≥0 ,

V∈Rr$m
≥0

qN −UVq2
F .

Non-negative matrix factorization (NNMF) is often approximately solved
by applying alternating least-squares (see [Kim and Park, 2011] and Sec-
tion 5.3). However, to require both U and V to be non-negative might be
very conservative, since Problem 2 only requires that the product UV is
non-negative.

6.1 Examples
In the following we look at examples with a non-negativity constraint. The
purpose is to illustrate several results that have been discussed in the
previous sections.

Image compression A common example in the literature (see [Antoulas,
2005; Eldén, 2007]) is to use the SVD for image compression. Given a grey-
scale picture, one maps the pixels to a matrix of corresponding grey-scale
values, typically integer values in {0, . . . , 255}, and performs a low-rank
approximation of rank r. If r is sufficiently small, then the factors of the
low-rank approximation are cheaper to store than the original matrix. Since
the matrix is non-negative, it is very natural to keep this constraint intact.

We apply all the methods that have been discussed so far to the Baboon-
image in Figure 3(a). A comparison among the relative errors of the methods,
as well as the normalized lower-bound obtained from (B), is shown in Fig-
ure 3(b). By the Perron-Frobenius Theorem (see [Horn and Johnson, 2012,
Theorem 8.4.4]) the rank-1 standard SVD-approximation is always non-
negative. This reveals a major drawback of the nuclear norm heuristic for
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Figure 3. Non-negative Baboon-image approximation.

this problem, since it usually cannot recover standard SVD-approximations.
Moreover, all the SVD-based methods produce results of similar quality. In
fact, alternating least-squares (ALS), non-convex Douglas-Rachford (NDR)
and the r∗-approach give solutions that coincide numerically with the lower-
bound, i.e. there is a zero duality gap for all ranks. The errors of the lift-
and-project method are only slightly larger, and therefore not visible in this
plot. Non-negative matrix factorization (based on alternating least-squares),
however, tends to produce larger errors with increasing rank. Overall, the
nuclear norm heuristic performs significantly worse than any of the other
methods.

Asymmetric optimal approximations Let N ∈ S∩Rn$n
≥0 and Dv be a so-

lution of (A) corresponding to Problem 2. By Proposition 4 and Proposition 5,
we know that σr(N + Dv) ,= σr+1(N + Dv) implies that svdr(N + Dv) ∈ S
is the unique solution to (B) and Problem 2. In the following it is shown
that preservation of symmetry may no longer be valid for an optimal non-
negative approximation if σr(N + Dv) = σr+1(N + Dv).

Consider Problem 2 with r = 2 and

N =


√

5− 1
2

1 3
1 4 1

3 1
√

5− 1
2

 .
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A non-symmetric solution is

Mv =


0

√
5+ 1
2

√
5+ 3
2

2 3
√

5+ 1
2

2 2 0

 .

Indeed, since N is symmetric, its singular values are given by the absolute
value of its eigenvalues

{
± 7−

√
5

2 , 3+
√

5
}
. Then since qN − MvqF =

7−
√

5
2 ,

and by Proposition 1, we conclude that Mv and MvT are optimal non-
negative rank-2 approximations of N. By Corollary 1 it follows that Dv = 0
and σ2(N+ Dv) = σ3(N+ Dv). Therefore, Mv and MvT are solutions to (B).

Since the solution set of a convex problem is convex, all points

αMv + (1−α)MvT withα ∈ [0, 1]

are solutions to (B). However,

rank
(
αMv + (1−α)MvT

)
= 3 for all α ∈ (0, 1)

This shows that we cannot expect to numerically find the rank-2 solutions
by solving (B) (see Figure 2(c)). In particular, let either of the discussed
Douglas-Rachford algorithms (see Sections 4.2 and 4.4) be initialized with
Z0 ∈ S. Then Proposition 5 implies that they may converge to a symmetric
solution, which can be shown to be non-optimal for Problem 2. Nevertheless,
it is interesting that NDR and ALS often converge to an optimal solution
under random initialization.

7. Matrix Completion

Assuming that the entries of a matrix are only partially known, the so-called
matrix completion problem asks when and how the unknown elements can
be recovered. The low-rank assumption turned out to be suitable for theoret-
ical developments, as well as for many practical applications (see [Candès
and Recht, 2009; Candès and Plan, 2010; Candès and Tao, 2010; Recht
et al., 2010; Zare et al., 2016a]). This leads to the following problem.

Problem 3

minimize rank(M)
subject to mi j = zi j, (i, j) ∈ I

(28)

where I is an index set. 2
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One of the most popular methods for solving Problem 3 is the technique
introduced in [Candès and Recht, 2009]. It states that if Z ∈ Rn$n, then
with high probability it is a solution to

minimize qMq1∗
subject to mi j = zi j, (i, j) ∈ I ,

(29)

under the additional assumption that card(I) ≥ Cn1.2rank(Z) log(n), where
card(I) denotes the cardinality of I and C is a constant. Similar to that,
it has been shown in [Recht et al., 2010] that (29) is able to detect a lowest
rank solution. This means that one does not expect any other matrix of
lower rank than Z having those partially known entries. Note that this
formulation can be considered as a special case of Proposition 2 with r = 1,
because

min
M∈Rn$m

rank(M)≤r

[
1
2
qMq2

F + �(M)
]
≥ − min

D∈Rn$m

[
�∗(−D) + 1

2
qDq2

r

]

= min
M∈Rn$m

[
1
2
qMq2

r∗ + �(M)
]
, (30)

where �(M) = χM(M) and M := {M ∈ Rn$n : mi j = zi j, (i, j) ∈ I}.
We suggest to utilize the flexibility in r and to consider instead

minimize qMqr∗
subject to mi j = zi j, (i, j) ∈ I ,

(31)

where it is possible to sweep over real-valued r ≥ 1. In Sections 7.1 to 7.4
it is seen that this may significantly improve the quality of completion.
Finally, let us determine when Z ∈ Rn$m is a solution to (31).

Theorem 3
Let Z ∈ Rn$m with r = rank(Z) and I ⊂ [1, . . . , n] $ [1, . . . , m]. Then Z is
a solution to (31) if and only if there exists Dv ∈ Rn$m with Z = svdr(Dv)
and dvi j = 0 for all (i, j) /∈ I . 2

Proof Let �(M) = χM(M) and M := {M ∈ Rn$m : mi j = zi j, (i, j) ∈ I}.
Then

�∗(D) = sup
M∈M

〈D, M〉 < ∞ \ ∀(i, j) /∈ I : di j = 0.

Hence, by Theorem 2, the existence of Dv such that Z = svdr(Dv) is neces-
sary for Z to be a solution to (31).

Assume that there exists Dv ∈ Rn$m such that Z = svdr(Dv) and dvi j = 0
for all (i, j) /∈ I . Then, by Theorem 2 it follows that Z ∈ � 1

2qD
vq2

r . According
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to Proposition A.4 this is equivalent to Dv ∈ � 1
2qZq

2
r∗ and therefore for all

Z̃ ∈ M it holds that

1
2
q Z̃q2

r∗ ≥
1
2
qZq2

r∗ + 〈Dv, Z̃ − Z〉 = 1
2
qZq2

r∗.

This shows the sufficiency, and concludes the proof. 2

7.1 Some motivational examples
Next we want to demonstrate that r > 1 may help to complete matrices
when r = 1 fails. To this end, consider the rank-2 matrices

Z1 =

0 1 1
1 1 1
1 1 1

 , Z2 =

2 0 1
0 2 1
1 1 1

 , Z3 =

0 1 1
1 2 3
1 3 4

 .

We would like to recover these matrices under the assumption that the zero
entries are the only unknown ones. By Theorem 3 we know that this is
possible with (31) and r = 2. By Proposition 5, it can shown that solving
(29) is equivalent to determining

min
t∈R

qZi(t)q1∗, i = 1, 2, 3 (32)

where

Z1(t) :=

 t 1 1
1 1 1
1 1 1

 , Z2(t) =

2 t 1
t 2 1
1 1 1

 , Z3(t) =

 t 1 1
1 2 3
1 3 4

 .

First we show that finding the lowest rank solution may not be sufficient
to recover the true matrix. In case of Z1 we get that rank(Z1(t)) = 1
if and only if t = 1. Moreover, for u :=

(
−1 0.5 0.5

)T it holds that
quuTqF < qZ1(1)qF and Z1(1)u = 0. Hence, as required by Theorem 3,
Dv = Z1(1) − uuT guarantees that Z1(1) is the unique solution to (29) and
therefore the nuclear norm heuristic does not recover Z1.

Next we show that non-uniqueness in (29) is another issue that can be
avoided with the proposed approach in (31). Since Z2(t) is symmetric, it
holds that

qZ2(t)q1∗ ≥ trace(Z2(t)) " 5,

with equality if and only if Z2(t) 4 0. It is readily seen that Z2(t) 4 0 if
and only if t ∈ [0, 2], which implies that all of these points are solutions to
the nuclear norm heuristic (29). However, a numerical solver for (29) does
not necessarily determine Z2. Instead, it is more likely to obtain a convex
combination of these solutions.
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Finally, observe that the nuclear norm heuristic does not always de-
termine the lowest rank solution. It holds that rank(Z3(t)) ≥ 2 with
equality if and only if t = 0. However, it can be numerically verified that
qZ3q1∗ > qZ3(0.1)q1∗ and thus Z3 is not a solution to (29).

These examples show that additional knowledge about the true rank,
as well as the minimality in the Frobenius norm (see (30)), can be utilized
with q · qr∗ to possibly gain a better completion. The following subsections
will demonstrate the same behavior for a larger example, and a practical
application.

To conclude this subsection, note that in view of (25) one may also
consider

minimize 1
2
qMq2

F + µqMq1∗

subject to mi j = zi j, (i, j) ∈ I ,
(33)

where one sweeps over µ ≥ 0. This is a strategy that has been discussed
earlier in [Cai et al., 2010]. Applied to the previous examples, this approach
is also able to recover Z1, Z2 and Z3 with µ = 0. Nevertheless, the following
example shows that there may not be any µ that leads to a low-rank solution.

7.2 Numerical Example
This example intends to show a numerical comparison among (31) and (33).
Let Z = svd5(H) where H ∈ R10$10 is a Hankel matrix with the following
structure

H =

1 1 1 1
1 0

1 0
1 0 0 0



 .

Moreover, let the index-set of the known entries be I = {(i, j) : zi j > 0}.
Figure 4 shows the relative completion errors, as well as the obtained

ranks of the solutions to (31), for different integer-valued r. The corre-
sponding results obtained by sweeping over µ ≥ 0 in (33) are presented
in Figure 5.

The solution to the nuclear norm heuristic (r = 1) gives the worst
completion error, and full rank. Notice that

n1.2rank(Z) log(n) ≫ card(I) = 78,

which is why one cannot expect exact recovery. In contrast, r = 5 recovers
the true matrix and is a sweet spot among all solutions. In fact, this is
guaranteed by Theorem 3 because I ⊂ {(i, j) : hi j = 0}. Finally note that
there is no µ such that rank(Mv

µ) < 10.
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Figure 4. Relative completion error and ranks of the solutions to (31)
depending on r.
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Figure 5. Relative completion error and ranks of the solution to (33) de-
pending on µ.

7.3 Example: Non-convex Douglas-Rachford
In the following we use Theorem 3 to construct examples where the nu-
clear norm heuristic, as well as the r∗-approach, fail to determine a solu-
tion to Problem 3. This helps to understand why the non-convex Douglas-
Rachford (see Section 4.4) may still be able to find those solutions and that,
unlike in the convex Douglas-Rachford, the choice of γ is crucial.

First note that the existence of Dv in Theorem 3 is equivalent to having
an R ∈ Rn$m such that

RT Z = 0, ZRT = 0, σ1(R) ≤ σr(Z), (34a)
zi j + ri j = 0 for all (i, j) /∈ I . (34b)
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Let us define for t ∈ [−1, 1] the following unitary rank-1 matrix

Z :=
(

t√
1− t2

)(
t
√

1− t2
)
=

(
t2 t

√
1− t2

t
√

1− t2 1− t2

)
.

Correspondingly, all R ∈ R2$2 that fulfill (34a) are given by

R = k
(√

1− t2
−t

)(√
1− t2 −t

)
=

(
1− t2 −t

√
1− t2

−t
√

1− t2 t2

)
,

where k ∈ [−1, 1]. If I = {(1, 2), (2, 1), (2, 2)}, it follows that (34b) can be
satisfied if and only if t2 ≤ 1

2 . Hence, despite the fact that the solution to
Problem 3 is unique, neither the nuclear norm heuristic nor the r∗-approach
is able to determine it if t2 > 1

2 .
Next let us look at the limit-points of the non-convex Douglas-Rachford.

Assume Xv, Y v and Zv are limit-points to the iterations (17a) – (17c) of the
non-convex Douglas-Rachford applied to

min
M∈Rn$m

rank(M)≤r

[
1
2
qMq2

F + �(M)
]
,

with �(M) = χM(M) and M := {M ∈ Rn$n : mi j = zi j, (i, j) ∈ I}.
By (17a) and (17c) it follows that Xv = 1

1+γ svdr(Z
v) = Y v, and (17b)

implies that

xvi j − zvi j = 0 for all (i, j) /∈ I .

Equivalently, if Rv := Zv − svdr(Zv) = Zv − (1+γ )Xv, then

γ xvi j + rvi j = 0 for all (i, j) /∈ I .

Therefore, the non-convex Douglas-Rachford has a limit-point at Xv ∈ M
if and only if there exists R ∈ Rn$m such that

RTXv = 0, XvRT = 0, σ1(R) ≤ (1+γ−1)σr(Xv),
xvi j + ri j = 0 for all (i, j) /∈ I .

The inequality in the above follows from

(1+γ )σr(Xv) = σr(Zv) ≥ σ1(Rv) = γσ1(γ−1Rv).

Thus, in the non-convex Douglas-Rachford, R is allowed to be (1 + γ−1)-
times as large as in (34a). This means that for sufficiently small γ > 0, all
rank-r elements in M are limit-points to the non-convex Douglas-Rachford.
Applied to Z and I from above, we conclude that for all t ∈ [−1, 1] there
exists γ > 0 such that the non-convex Douglas-Rachford has a limit-point
in Z. Indeed, in numerical computations, the algorithm also converges to Z.
Just as in the convex Douglas-Rachford, a poor choice of γ may also prevent
the existence of such a limit-point.
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7.4 Covariance completion
Consider

ẋ(t) = Ax(t) + Bu(t),

where A ∈ Rn$n, B ∈ Rn$m, m ≤ n, and u(t) is a zero-mean stationary
stochastic process. For Hurwitz A and reachable (A, B), it has been shown
(see [Georgiou, 2002a; Georgiou, 2002b]) that the following are equivalent:

i. X := limt→∞ E
(
x(t) xT(t)

)
4 0 is the steady-state covariance matrix of

x(t), where E(·) denotes the expected value.

ii. ∃H ∈ Rm$n : AX + X AT = −(BH + HTBT).

iii. rank
(
AX + X AT B

BT 0

)
= rank

(
0 B
BT 0

)
.

In particular, rank(BH−HTBT) is an upper bound on the number of input
channels, and H = 1

2 E
(
u(t)uT(t)

)
BT when u is white noise.

In [Chen et al., 2013; Lin et al., 2013; Zare et al., 2016a; Zare et al., 2015;
Zare et al., 2016b] the problem of unknown B and only partially known X
has been addressed by considering the following problem.

Problem 4

minimize rank(M)
subject to x̂i j = xi j, (i, j) ∈ I

AX̂ + X̂ AT = −M
X̂ 4 0.

(35)

2

The problem has been tackled by convexifying the rank with the nuclear
norm. However, since some practical examples only supply up to 2n known
entries of specific structure (see [Zare et al., 2016a; Zare et al., 2015; Zare
et al., 2016b]), it is not surprising that the quality of completion is often not
satisfactory.

Instead, in [Grussler et al., 2016] its generalization as in (31) is consid-
ered, i.e.

minimize qMqr∗
subject to x̂i j = xi j, (i, j) ∈ I

AX̂ + X̂ AT = −M
X̂ 4 0,

(36)
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Figure 6. Discretized grid on the unit square with inputs ξ1, . . . , ξ4.

where it is possible to sweep over r ≥ 1. Again, one may also consider

minimize 1
2
qMq2

F + µqMq1∗

subject to x̂i j = xi j, (i, j) ∈ I
AX̂ + X̂ AT = −M
X̂ 4 0,

(37)

while sweeping over µ ≥ 0.

Example: Discretized Heat-Equation Let us illustrate these ap-
proaches by a numerical comparison. Consider the two-dimensional heat-
equation

Ṫ = ∆ T =
�2

�x2 T +
�2

�y2 T

on the unit-square. Finite difference discretization on a uniform grid with
step size h = 1

N+1 gives

∆Ti j ( −
1
h2 (4Ti j − Ti+1, j − Ti, j+1 − Ti−1, j − Ti, j−1),

where Ti j are the temperatures of the inner grid points as indicated in
Figure 6. By letting the boundaries of the unit-square be the inputs, we
obtain a linear system

ẋ(t) = 1
h2 Ax(t) +

1
h2 Bξ (t), (38)

111



Paper III. Low-Rank Optimization with Convex Constraints

where A ∈ RN2$N2 is the Poisson-matrix, and B = [bi j] ∈ RN2$4. The
entries of B are all zeros, except:

bi1 := 1, for i = 1, 2, . . . , N

bi2 := 1, for i = N, 2N, . . . , N2

bi3 := 1, for i = N (N − 1) + 1, N (N − 1) + 2, . . . , N2

bi4 := 1, for i = 1, N + 1, . . . , N (N − 1) + 1.

Moreover, let ξ (t) be generated by a low-pass filtered white-noise signal
w(t) with unit covariance E

(
w(t)w(t)T

)
= I, and

ξ̇ (t) = −ξ (t) + w(t).

The extended covariance matrix

X e := E
(
xexTe

)
=

(
X X xξ
Xξ x Xξ

)
with xe :=

(
x(t)
ξ (t)

)

is then determined by

AeX e + X eATe = −BeBT
e ,

where

Ae :=
(
A B
0 −I

)
, Be :=

(
0
I

)
,

and X is the steady-state covariance matrix of x(t).
In the following we assume that only the first and third input channels

are used, i.e. we remove the second and fourth columns from B and adjust
Ae, Be and ξ (t), accordingly. An interpolated colormap of X is shown in
Figure 7(a), where the black lines indicate the known entries. Figure 7(b)
displays the relative completion error of the solutions obtained by (36) and
(37) with dependency on r and µ. We observe that the error obtained by (36)
in r = 2 is the smallest, and in fact it is of rank 2. This implies that there is
no duality-gap. In contrast, the best solution that originates from (37) (with
µ = 4.23) is of rank 3 and has an error that is about 1.5 times as large.
Figure 8 illustrates these differences through the interpolated colormaps.
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Figure 7. Interpolated colormap of the true steady-state covariance matrix
X and plot of the relative errors depending on r and µ obtained by (36) and
(37).
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Figure 8. Interpolated colormaps of the completed covariance matrices
obtained by (36) and (37).
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8. Hankel matrices

In the field of system and control, the rank of a Hankel operator/matrix
is crucial, because it determines the complexity (order) of a linear system.
This determines how costly it is to simulate a system, or to implement
controllers designed by a number of standard methods (see [Zhou et al.,
1996; Antoulas, 2005]). For these reasons, much focus is put into model
order reduction. Even though the celebrated Adamyan-Arov-Krein theorem
(see [Partington, 1989; Antoulas, 2005]) answers the question of optimal low-
rank approximation of infinite dimensional Hankel operators, the following
finite dimensional case is still an open problem.

Problem 5

minimize
M

qN − Mq2
F

subject to rank(M) ≤ r
M ∈ H

where N ∈ H := {H : H is Hankel}. 2

The only solved variant of Problem 5 is the case where r = 1, and the
Frobenius norm is replaced by the spectral norm (see [Antoulas, 1997]).
Moreover, for so-called linear externally positive systems the problem of non-
negativity preserving Hankel-operator approximation has been considered
in [Grussler and Rantzer, 2014].

8.1 Numerical Example
In the following we compare the r∗-approach with the regularization meth-
ods in Sections 5.1 and 5.2, as well as the lift-and-project algorithm from
Section 5.3. To this end, let N ∈ R10$10 be the following Hankel matrix

N =

1 2 9 10
2 9

9 2
10 9 2 1



 .

The relative errors together with the relative lower bound are shown in
Figure 9(a), where for each method and rank the solution with lowest
possible error has been chosen. In case of r = 1, . . . , 4 there is a zero duality
gap, and therefore the lower bound is achieved by the rank-regularization
method (see Section 5.2) as well as the non-convex Douglas-Rachford and
the r∗-norm. Moreover, even when Proposition 4 cannot guarantee a zero
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Figure 9. Hankel matrix preservation – relative error and rank depen-
dency on r and µ

duality gap, it appears that those methods and the lift-and-project algorithm
are close to the lower bound, and outperform the nuclear norm heuristic.
Nonetheless, in order to get these (sub-optimal) solutions, we had to sweep
over real-valued r and µ, respectively. The dependency of the rank on these
parameters is displayed in Figure 9(b). All regularization methods show the
expected staircase behavior.

9. Multivariate Reduced-Rank Regression

In multivariate linear regression one wants to estimate a regression matrix
C ∈ Rn$m in an underlying linear model

Y = CX + E,

where Y ∈ Rn$K is a matrix with K measurements of n response variables,
X ∈ Rm$K are the corresponding predictor variables, and E ∈ Rm$K is
Gaussian white-noise. Assuming that rank(X) = m < T one can determine
the well-known least-squares estimator

Ĉ = Y XT(X XT)−1,

which is a minimizer of minC qY − CXq2
F . Let ĉk and yk denote the k-th

row of Ĉ and Y , respectively. Then

ĉk = ykXT(X XT)−1,

115



Paper III. Low-Rank Optimization with Convex Constraints

and therefore ĉk only depends on the k-th response variable yk. Hence, the
estimator does not account for possible correlations among the response
variables.

In order to get estimators that include these correlations, one may re-
strict oneself to rank(C) = r < min{m,n} (see [Izenman, 1975; Rein-
sel and Velu, 1998]). Assuming that C = AB, where A ∈ Rn$r and
B ∈ Rr$m, a physical interpretation of this assumption on C can be given
(see [Reinsel and Velu, 1998]) as follows. If X consists of information that
is used to send T messages Y over r channels, then BX can be considered
as a code for the information, and ABX the decoded messages which are
intended to be close to Y . Hence, given X , Y and r one would like to solve
the problem

Problem 6

minimize
C

qY − CXq2
F

subject to rank(C) ≤ r.
2

Assuming that rank(X) = m < K , an explicit solution can be determined
as follows. Let X = U

(
Σ 0

) (
V1 V2

)T be an SVD of X with Σ ∈ Rm$m.
Then

qY − CXq2
F = qY

(
V1 V2

)
−
(
CUΣ 0

)
q2
F = qYV1 − CUΣq2

F + qYV2q
2
F .

Hence, Problem 6 reduces to

minimize
C̃

qYV1 − C̃q2
F

subject to rank(C̃) ≤ r.
(39)

By Proposition 1 we know that a minimizer of (39) is given by svdr(YV1),
and therefore Ĉ = svdr(YV1)Σ−1UT is a solution to Problem 6. Observe
that Problem 6 can also be stated as

minimize
M

1
2
qY − Mq2

F + χL(M)

subject to rank(M) ≤ r,

where L = {M : M = CX for some C ∈ Rn$m} and thus fits into the scope
of Proposition 2. Indeed, if rank(X) = m, then rank(M) = rank(C), and
solving

minimize
M

1
2
qMq2

r∗ − 〈Y, M〉 + χL(M) (40)
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leads to the same solution as above if svdr(YV1) is unique. This can be
shown by considering the dual of (40). By Proposition 2 we get

maximize
D

1
2
qY + Dq2

r

subject to DXT = 0,

where Dv = Y (VT
1 V1 − I) is a feasible maximizer such that

svdr(Y + Dv) = svdr(YV1VT
1 ) = ĈX

is a solution to (40).
Finally notice that further convex constraints on C can be added to (40),

and by that more classes of regressors can be defined and computed.

10. Discussion and Future Developments

In this work, a method to determine optimal low-rank approximations with
convex constraints has been studied. The main benefits of the r∗-approach
are that it is essentially regularization parameter free, gives a certificate
of optimality, and does not depend on a particular initialization. This com-
bines the benefits of both factor and regularization based methods. More-
over, we have seen that the r∗ approach can be turned into a regular-
ization dependent method, where, unlike other approaches, the parameter
has a clear relationship to the desired rank (see Section 3.2). As a re-
sult, a generalization of (29) to solve the matrix completion problem has
been suggested. Furthermore, we have linked this approach to the rank-
regularization method (see Section 5.2). The principal advantage here is
that the r∗-norm, in contrast to the rank-regularization method, is known
to have an SDP-representation.

Since standard interior-point methods for SDPs are known to have itera-
tions that grow unfavorably with dimension, the Douglas-Rachford splitting
algorithm is used to gain computability for problems of larger dimensions.
In this setting, it was possible to show that several other useful prop-
erties known from the SVD-solution may be preserved (see Proposition 5).
Moreover, it allowed us to show local convergence of the non-convex Douglas-
Rachford if Proposition 4 applies. This motivates the overall usefulness of
the non-convex Douglas-Rachford for solving Problem 1. This work is merely
a starting point to investigating its power for the problems considered here.
Further developments in this direction are likely to contribute to a better
understanding of the duality-gap cases. One could start by linking the re-
sults in Section 4.4 to the known local convergence results in the vector
case (see [Hesse et al., 2014]).
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The numerical examples presented in this paper indicate the superiority
of the r∗-approach and others over the nuclear-norm heuristic. Since the
r∗-approach is as general as the nuclear-norm heuristic, we suggest to use
the r∗-norm heuristic instead. In fact, several other authors (see [Argyriou
et al., 2012; Lai et al., 2014; McDonald et al., 2015; Doan and Vavasis,
2016]) have recently used the r∗-norm to replace the nuclear-norm as a
regularizer in (33). However, this neither takes advantage of its own regu-
larization character nor its optimality guarantees. Notice that despite the
nice geometric interpretation (see Section 3.1), we were only able to guar-
antee a zero duality gap in simple cases such as Theorem 3. Investigating
this further may lead to more deterministic guarantees.

A. Appendix

A.1 Unitarily invariant norms
The following results can be found e.g. in [Horn and Johnson, 2012].
Proposition A.1
Let A, B ∈ Rn$m, then

〈A, B〉 ≤
min{m,n}∑

i=1
σi(A)σi(B). 2

Corollary A.1
Let A, B ∈ Rn$m then

min{m,n}∑
i=1

σi(A)σi(B) = max{〈A,UBV〉 : U and V are unitary}. 2

In the following we say that � : Rn → R≥0 is a symmetric gauge function if
and only if

i. � is a norm.

ii. ∀x ∈ Rn : �(pxp) = �(x), where pxp denotes the element-wise absolute
value.

iii. �(Px) = �(x) for all permutation matrices P and all x.
Proposition A.2
q · q is a unitarily invariant norm on Rn$m if and only if

qXq = �(σ1(X), . . . , σmin{m,n}(X)),

where � is a symmetric gauge function. 2
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A.2 Convex Optimization
The following definitions and results from convex optimization (see [Lu-
enberger, 1968; Rockafellar, 1970; Hiriart-Urruty and Lemaréchal, 1996;
Bauschke and Combettes, 2011]) are used throughout the paper. In the fol-
lowing we assume that all functions are defined on a real finite-dimensional
Hilbert space X with inner product 〈·, ·〉. The domain of a function f on X
is defined as dom f := {x ∈ X : f (x) < ∞}.

Definition A.1
Let f : H → R ∪ {∞} be a function with dom f ,= ;, minorized by an affine
function i.e. ∃(x∗, b) ∈ X $R : f (x) ≥ 〈x, x∗〉 − b for all x ∈ X . Then,

f ∗(x∗) := sup
x∈X

[〈x, x∗〉 − f (x)]

is called its conjugate (dual) function. Further, the bi-conjugate function of
f is defined as f ∗∗ := ( f ∗)∗. 2

Definition A.2
A convex function f : H → R ∪ {∞} with dom f ,= ; is

• proper if dom f ,= ;.

• closed if the epigraph {(t, x) : f (x) ≤ (x, t) ∈ dom f } is a closed set. 2

It is known that f ∗∗ = f if only if f is a closed and proper convex function.

Lemma A.1
Let f , � : H → R ∪ {∞} be functions as in Definition A.1. Then

inf
x∈X

[ f (x) + �(x)] ≥ − inf
x∈X

[ f ∗(x) + �∗(−x)] . (41)
2

Proposition A.3
Let f , � : H → R ∪ {∞} be closed and proper convex functions. Assume
that ri(dom f ) ∩ ri(dom�) ,= ; and ri(dom f ∗) ∩ ri(dom�∗) ,= ;, where
ri(·) denotes the relative interior. Then,

min
x∈X

[ f (x) + �(x)] = − min
x∗∈X

[ f ∗(x∗) + �∗(−x∗)].

Moreover, if the minimum on the left is attained at some x0 and the mini-
mum on the right by some x∗0 , then

f ∗(x∗0 ) = 〈x0, x∗0 〉 − f (x0),
�∗(−x∗0 ) = 〈x0,−x∗0 〉 − �(x0). 2
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Definition A.3
Let f : H → R ∪ {∞} be a function. Then

� f (x0) := {x∗0 ∈ X : f (x) ≥ f (x0) + 〈x− x0, x∗0 〉 for all x ∈ X}

is called the subdifferential of f at x0. 2

Proposition A.4
Let f : H → R ∪ {∞} be a closed and proper convex function. Then the
following statements are equivalent:

i. x∗0 ∈ � f (x0).

ii. f ∗(x∗0 ) = 〈x0, x∗0 〉 − f (x0).

iii. x0 ∈ � f ∗(x∗0 ).

iv. f (x0) = 〈x0, x∗0 〉 − f ∗(x∗0 ). 2

Lemma A.2
Let C1,C2 ⊂ X be closed convex sets. Then, C1 = C2 if and only if

sup
y∈C1

〈x, y〉 = sup
y∈C2

〈x, y〉 for all x ∈ X.

For x ∈ Rn and r ∈ [1, n] we define qxqr :=
√
�r(x) with

�r(x) := max{x2
i1 + · · ·+ x2

ilrn−1
+ (r− mro)xilrn : 1 ≤ i1 < i2 < · · · < ilrn ≤ n}.

The following Lemma on the subgradients of q · qr has been shown in [Doan
and Vavasis, 2016] for r ∈ N. We simply extend it to the real-valued case.

Lemma A.3
Let r ∈ [1, n], r̄ := lrn and σ ∈ Rn

≥0 with σ ,= 0 and

σ1 ≥ · · · > σr̄−t+1 = · · · = σr̄ = · · · = σr̄+s > · · · ≥ σn, (42)

where t = r̄ and s = n − r̄ if σ1 = σr̄ and σn = σr̄, respectively. Then
v ∈ �qσqr if and only if

i. 1 ≤ i ≤ r̄− t: vi = σi
qσqr .

ii. r̄− t+ 1 ≤ i ≤ r̄+ s: vi = τi σr̄
qσqr with 0 ≤ τi ≤ 1,

∑r̄+s
i=r̄−t+1τi = t− r̄+ r.

iii. r̄+ s+ 1 ≤ i ≤ n: vi = 0.

Moreover, let qxqr∗ be the dual norm to qσqr. Then

�q0qr = {x ∈ Rn : qxqr∗ ≤ 1}. 2
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Proof Let r ∈ [1, n] and σ ∈ Rn
≥0 as in (42). Then

qσqr = max
I⊂{1,...,n}

card(I)=r̄

�I(σ ),

where �I(σ ) :=
√∑

i∈I\max(I) σ 2
i + (r− mro)σ 2

max(I) and card(I) denotes
the cardinality of I . Since qσqr ,= 0 it follows (see [Hiriart-Urruty and
Lemaréchal, 2013, Corollary VI.4.4.4]) that the sub-differentials of q · qr
evaluated at σ are given by

�qσqr = conv {∇�I(σ ) : I ⊂ {1, . . . , n}, card(I) = r̄, �I(σ ) = qσqr} ,
(43)

where∇ denotes the gradient operator with respect to σ . Next we determine
the gradient at these points where qσqr = �I(σ ). Then, by assumption (42)
it holds that {1, . . . , r̄− t} ⊂ I and therefore

• 1 ≤ i ≤ r̄− t: ��I (σ )
�σi = σi

qσqr .

• i ∈ I ∩ {r̄− t+ 1, . . . , r̄+ s} \max(I): ��I (σ )
�σi = σi

qσqr .

• i = max(I): ��I (σ )
�σr̄ =

(r− mro)σi
qσqr

.

• r̄+ s+ 1 ≤ i ≤ n: ��I (σ )
�σi = 0.

Thus, by (43) we get that v ∈ �qσqr if and only if

i. 1 ≤ i ≤ r̄− t: vi = σi
qσqr ,

ii. r̄−t+1 ≤ i ≤ r̄+s : vi = τi σr̄
qσqr with 0 ≤ τi ≤ 1 and

∑r̄+s
i=r̄−t+1τi = t−r̄+r,

iii. r̄+ s+ 1 ≤ i ≤ n: vi = 0,

where the last part of the second condition follows from∑
i∈I

��I(σ )
�σi

= (t− r̄+ r) σr̄
qσqr

.

The last claim simply follows by the definition of the dual norm as

�q0qr = {x0 ∈ R
n : 〈x, x0〉 ≤ qxqr} = {x0 ∈ R

n : sup
qxqr≤1

〈x, x0〉 ≤ 1}

= {x0 ∈ R
n : qx0qr∗ ≤ 1}. 2
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From Lemma A.3 and [Watson, 1992, Theorem 2] the following Proposition
follows in the same way as in [Doan and Vavasis, 2016] for r ∈ N.

Proposition A.5
Let A ∈ Rn$m \ {0}, r ∈ [1,min{m,n}] and r̄ := lrn. Further, let an SVD
of A be given by A =

∑min{m,n}
i=1 σiuivTi with

σr̄−t ,= σr̄−t+1 = · · · = σr̄ = · · · = σr̄+s ,= σr̄+s+1,

where t = r̄ and s = min{m,n}− r̄ if σ1 = σr̄ and σmin{m,n} = σr̄, respectively.
Then M ∈ �qAqr if and only if

M =
1

qAqr

( r̄−t∑
i=1

σiuivTi + σr̄
(
ur̄−t+1 . . . ur̄+s

)
T
(
vr̄−t+1 . . . vr̄+s

)T) ,
where

T 4 0, qTq1∗ = t+ r̄− r, and qTq1 ≤ 1.

In particular, if σr̄ ,= σr̄+1 or σr̄ = 0 then rank(M) ≤ r̄. Moreover,

q0qr = {M ∈ Rn$m : qMqr∗}. 2

A.3 Proof of Lemma 1
Proof Let 1 ≤ r ≤ q := min{m,n}, M ∈ Rn$m and the � : Rq → R≥0 be
defined by

�(x1, . . . , xq) := qdiag(x1, . . . , xq)qr.
The unitary invariance of q · qr follows by Proposition A.2, because � is a
symmetric gauge function. By Corollary A.1 it holds that

sup
qXqF=1

rank(X)≤r

〈X, M〉 = sup∑r
i=1 σi(X)=1

r∑
i=1

σ 2
i (X)σi(M) = qMqr.

Then the r∗-norm inherits the unitary invariance of the r-norm and with
Σ := diag(σ1(M), . . . , σq(M)) it follows that

qMqr∗ = qΣqr∗ = max
qXqr≤1

〈Σ, X〉

= max∑r
i=1 σ 2

i (X)=1

q∑
i=1

σi(M)σi(X)

= max∑r
i=1 σ 2

i (X)≤1

[ r∑
i=1

σi(M)σi(X) + σr(X)
q∑

i=r+1
σi(M)

]
.
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The third equality follows by Corollary A.1. Hence,

qMq1∗ = max∑1
i=1 s2

i=1

q∑
i=1

σi(M)si ≥ · · · ≥ max∑q
i=1 s2

i=1

q∑
i=1

σi(M)si = qMqq∗ = qMqF .

Moreover, by the definition of the r-norm

qMqF = qMqq ≥ · · · ≥ qMq1

and therefore (2) is shown. In particular,

qMqr∗ = max∑r
i=1 s2

i=1

q∑
i=1

σi(M)si ≥ qMqF ≥ max∑r
i=1 s2

i=1

r∑
i=1

σi(M)si = qMqr. (44)

Obviously, qMqF = qMqr if and only rank(M) ≤ r, and therefore equality
in (44) holds if and only if rank(M) ≤ r. Thus the last claim is proven. 2

A.4 Proof of Theorem 2
Proof If Dv and Mv are solutions to (A) and (B), respectively, then by
Proposition A.3 it holds that

f ∗∗(Mv) = 〈Dv, Mv〉 − f ∗(Dv),

where f ∗ and f ∗∗ are given by (5) and (6). Hence, by Proposition A.4 it
follows that

Mv ∈ �D
1
2
qN + Dq2

r

∣∣∣∣
D=Dv

= qN + Dvqr�DqN + DqrpD=Dv

and invoking Proposition A.5 proves the result. 2

A.5 Derivation of proxγ
2 q·q2r(·)

prox γ
2 q·q2

r
(Z) = argmin

X

(
γ
2
qXq2

r +
1
2
qX − Zq2

F

)
.

which is equivalent to

Xv = prox γ
2 q·q2

r
(Z) \ 0 ∈ �X

(
γ
2
qXq2

r +
1
2
qX − Zq2

F

)∣∣∣∣
X=Xv

\ Z − Xv ∈ γqXvqr �XqXqrpX=Xv .

Let r̄ := lrn and an SVD of Xv be given by Xv =
∑min{m,n}

i=1 σi(Xv)uivTi with

σr̄−t(Xv) > σr̄−t+1(Xv) = · · · = σr̄(Xv) = · · · = σr̄+s(Xv) > σr̄+s+1(Xv),
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where we say that t = r̄ and s = min{m,n} − r̄ if σ1(Xv) = σr̄(Xv) and
σmin{m,n}(Xv) = σr̄(Xv), respectively. Further, let

U2 :=
(
ur̄−t+1, . . . , ur̄+s

)
and V2 :=

(
vr̄−t+1, . . . , vr̄+s

)
.

By Proposition A.5,

Z = (1+γ )
r̄−t∑
i=1

σi(Xv)uivTi + σr̄(Xv)U2(I +γT)VT
2 +

min{m,n}∑
i=r̄+s+1

σi(Xv)uivTi

with qTq1 ≤ 1, qTq1∗ = t− r̄+ r, T 4 0. Using [Watson, 1992, Theorem 2] it
follows that Z has the same singular vectors as Xv and therefore a diagonal
T = diag(Tr̄−t+1, . . . , Tr̄+s) can be chosen. This gives

i. 1 ≤ i ≤ r̄− t : σi(Xv) =
σi(Z)
1+γ

.

ii. r̄− t+ 1 ≤ i ≤ r̄+ s : σr̄(Xv) =
σi(Z)

1+γTi
.

iii. r̄+ s+ 1 ≤ i ≤ min{m,n} : σi(Xv) = σi(Z).

Hence, the main task is to determine s ≥ 0, t ≥ 1 and T 4 0 such that

σr̄(Xv) =
σr̄−t+1(Z)

1+γTr̄−t+1
= · · · = σr̄+s(Z)

1+γTr̄+s
, (45)

where
s∑
i=1

Tr̄−t+i = t− r̄+ r and Tr̄−t+i ≤ 1 for alli ∈ {1, ..., t+ s} (46)

and

σr̄−t(Z)
1+γ

> σr̄(Xv) > σr̄+s+1(Z). (47)

Next it is shown how s, t and T can be determined inductively. Clearly,
there exists Tr̄, . . . , Tr̄+s0 for some s0 ≥ 0, fulfilling (45) and (46) with t = 1
and s = s0. However, if

σr̄−1(Z)
1+γ

≤
σr̄(Z)

1+γTr̄
,

then requirement (47) is violated. Hence, t = 0 is not a feasible choice and
we want to find the smallest possible t for which this requirement is met
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after constructing T. Let us assume that with t = t̃− 1 and s = s̃ t̃−1, there
is no solution that satisfies all three conditions (45) – 47.

Then one can construct Tr̄−t̃+1, . . . , Tr̄+s̃ t̃ fulfilling (45) and (46) with t = t̃
and s = s̃ t̃, as follows: Let i ≥ 2 and T(i−1)

r̄−t̃+1, . . . , T
(i−1)
r̄−t̃+i−1 ≤ 1 be determined

such that

σr̄−t̃+1(Z)
1+γT(i−1)

r̄−t̃+1

= · · · = σr̄−t̃+i−1(Z)
1+γT(i−1)

r̄−t̃+i−1

= σr̄−t̃+i(Z) and
i−1∑
j=1

T(i−1)
r̄−t̃+ j < t̃− r̄+ r.

Case 1: Assume that there exists T(i)r̄−t̃+i such that for all j ∈ {1, ..., i− 1}

σr̄−t̃+i+1(Z) =
σr̄−t̃+i(Z)

1+γT(i)r̄−t̃+i
=

σr̄−t̃+ j(Z)(
1+γT(i−1)

r̄−t̃+ j

) (
1+γT(i)r̄−t̃+i

) = σr̄−t̃+ j(Z)
1+γT(i)r̄−t̃+ j

.

Then i < t̃+ s̃ t̃ and we get

T(i)r̄−t̃+i = γ−1
(
σr̄−t̃+i(Z)
σr̄−t̃+i+1(Z)

− 1
)
. (48)

Thus,

T(i)r̄−t̃+ j = γ−1
(
(1+γT(i−1)

r̄−t̃+ j)(1+γT
(i)
r̄−t̃+i) − 1

)
for all j ∈ {1, ..., i − 1}. Since (48) is valid for all i < t̃ + s̃ t̃, it is readily
shown that the previous equation can also be written as

T(i)r̄−t̃+ j = γ−1
(
σr̄−t̃+ j(Z)
σr̄−t̃+i+1(Z)

− 1
)
. (49)

Case 2: Assume T(i)r̄−t̃+i is such that
∑i

j=1 T
(i)
r̄−t̃+ j = t̃− r̄+ r and

σr̄−t̃+i+1(Z) <
σr̄−t̃+i(Z)

1+γT(i)r̄−t̃+i
=

σr̄−t̃+ j(Z)(
1+γT(i−1)

r̄−t̃+ j

) (
1+γT(i)r̄−t̃+i

) = σr̄−t̃+ j(Z)
1+γT(i)r̄−t̃+ j

,

for all j ∈ {1, ..., i− 1}. Then i = t̃+ s̃ t̃ and it follows as in (49) that for all
j ∈ {1, ..., i− 1}

T(i)r̄−t̃+ j = γ−1
(
(1+γT(i−1)

r̄−t̃+ j)(1+γT
(i)
r̄−t̃+i) − 1

)
= γ−1

(
σr̄−t̃+ j(Z)
σr̄−t̃+i(Z)

(1+γT(i)r̄−t̃+i) − 1
)

(50)
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Algorithm 2 Determine X = prox γ
2 q·q2

r
(Z)

1: Input: Let γ, r > 0 and Z ∈ Rn$m be given and set r̄ = lrn and
s = t = 0.

2: Let Z =
∑min{m,n}

i=1 σi(Z)uivTi be an SVD of Z.
3: while

(
r̄ > t AND σr̄−t(Z) ≤ (1+γ )σr̄−t+1(Z)

1+γTr̄−t+1

)
or t = 0 do

4: t = t+ 1
5: k = r̄− t
6: while s ,= k do
7: k = k+ 1

8: Tk =
t−r̄+r−γ−1∑t+k−1

j=1

( σr̄−t+ j (Z)
σr̄+k(Z)

−1
)

t+k+
∑t+k−1

j=1

( σr̄−t+ j (Z)
σr̄+k(Z)

−1
)

9: if σk(Z)
1+γTk ≥ σk+1(Z) then

10: s = k
11: end if
12: end while
13: end while
14: Output:

X = 1
1+γ

r̄−t∑
i=1

σi(Z)uivTi +
σs(Z)

1+γTs

r̄+s∑
i=r̄−t+1

uivTi +
min{m,n}∑
i=r̄+s+1

σi(Z)uivTi .

Thus T(i)r̄−t̃+i is left to be determined. To this end, notice that

(1+γT(i−1)
r̄−t̃+i−1)(1+γT

(i)
r̄−t̃+i) = 1+γT(i)r̄−t̃+i−1

= 1+γ

t̃− r̄+ r− T(i)r̄−t̃+i −
i−2∑
j=1

T(i)r̄−t̃+ j

 .

In conjunction with (50), this yields

T(i)r̄−t̃+i =
t̃− r̄+ r−

∑i−1
j=1 T

(i−1)
r̄−t̃+ j

i+γ
∑i−1

j=1 T
(i−1)
r̄−t̃+ j

=
t̃− r̄+ r−γ−1∑i−1

j=1

(
σr̄−t̃+ j(Z)
σr̄−t̃+i(Z) − 1

)
i+
∑i−1

j=1

(
σr̄−t̃+ j(Z)
σr̄−t̃+i(Z) − 1

) .

Thus, Tr̄−t̃+ j = T(i)r̄−t̃+ j for all j ∈ {1, ..., i− 1}.
By the injectivity of the proximal mapping, this procedure eventually

finds t, s and T that satisfy (45) – (47). Moreover, since (45) – (47) can
be checked efficiently, one can perform a binary search over s and t of
complexity O(n) (see [Eriksson et al., 2015]). Hence, the bottle neck of the
prox computation is the cost for the SVD. In practice t and s are rather
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small, which can be seen by the fact that

σr̄(Z)
1+γ

> σr̄+1(Z) [ s = 0, (51)

In this case rank(Xv) = r̄ and only t has to be determined. If additionally
r̄ = r, then T is the identity matrix and finding t is redundant. In case
of high dimensional matrices, a linear search as outlined in Algorithm 2
may advisable, since that allows us to incorporate sparse SVD solvers by
computing one singular value at a time it is needed.
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Paper IV

Low-Rank Inducing Norms with
Optimality Interpretations

Christian Grussler Pontus Giselsson

Abstract

Optimization problems with rank constraints appear in many di-
verse fields such as control, machine learning and image analysis. Since
the rank constraint is non-convex, these problems are often approxi-
mately solved via convex relaxations. Nuclear norm regularization is
the prevailing convexifying technique for dealing with these types of
problem. This paper introduces a family of low-rank inducing norms
and regularizers which includes the nuclear norm as a special case. A
posteriori guarantees on solving an underlying rank constrained opti-
mization problem with these convex relaxations are provided. We eval-
uate the performance of the low-rank inducing norms on three matrix
completion problems. In all examples, the nuclear norm heuristic is
outperformed by convex relaxations based on other low-rank inducing
norms. For two of the problems there exist low-rank inducing norms
that succeed in recovering the partially unknown matrix, while the nu-
clear norm fails. These low-rank inducing norms are shown to be rep-
resentable as semi-definite programs and to have cheaply computable
proximal mappings. The latter makes it possible to also solve problems
of large size with the help of scalable first-order methods. Finally, it
is proven that our findings extend to the more general class of atomic
norms. In particular, this allows us to solve corresponding vector-valued
problems, as well as problems with other non-convex constraints.

Preprint.
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1. Introduction

Many problems in machine learning, image analysis, model order reduc-
tion, multivariate linear regression, etc. (see [Izenman, 1975; Antoulas,
2005; Candès and Recht, 2009; Candès and Plan, 2010; Recht et al., 2010;
Chandrasekaran et al., 2011; Reinsel and Velu, 1998; Hastie et al., 2015;
Larsson and Olsson, 2016; Vidal et al., 2016]), can be posed as a low-rank
estimation problems based on measurements and prior information about
a data matrix. These estimation problems often take the form

minimize
M

f0(M)

subject to rank(M) ≤ r,
(1)

where f0 is a proper closed convex function and r is a positive integer that
specifies the desired or expected rank. Due to non-convexity of the rank
constraint a solution to (1) is known only in a few special cases (see e.g. [An-
toulas, 1997; Antoulas, 2005; Reinsel and Velu, 1998]).

A common approach to deal with the rank constraint is to use the nuclear
norm heuristic (see [Fazel et al., 2001; Recht et al., 2010]). The idea is to
convexify the problem by replacing the non-convex rank constraint with
a nuclear norm regularization term. For matrix completion problems, this
approach is shown to recover the true low-rank matrix with high probability,
provided that enough random measurements are available (see [Candès
and Recht, 2009; Recht et al., 2010; Chandrasekaran et al., 2012]). If these
assumption are not met, however, the nuclear norm heuristic may fail in
producing satisfactory estimates (see [Grussler et al., 2016a; Grussler et al.,
2016b]).

This paper introduces a family of low-rank inducing norms as alterna-
tives to the nuclear norm. These norms can be interpreted as the largest
convex minorizers of non-convex functions f of the form

f := q · q + χrank(·)≤r, (2)

where q · q is an arbitrary unitarily invariant norm, and χrank(·)≤r is the
indicator function for matrices with rank less than or equal to r. This
interpretation motivates the use of low-rank inducing norms in convex re-
laxations to (1). In particular, assume that f0 in (1) can be split into the
sum of a convex function and unitarily invariant norm, and the solution
to the corresponding convex relaxation has rank r. Then this solution also
solves the non-convex problem, and thus provides an a posteriori optimality
guarantee. Furthermore, the choice of norms and target ranks r can be
considered as regularization parameters when used in convex relaxations
of (1). Compared to the nuclear norm approach, it is shown that this gives
additional flexibility which can be exploited to improve the quality of the
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estimate. Specifically, the nuclear norm is the largest convex minorizer of
f in (2) with r = 1, making it a less natural choice than other low-rank
inducing norms, because it convexifies constraints that allow for matrices
of rank 1, only.

This work particularly focuses on low-rank inducing norms, where the
norm in (2) is the Frobenius norm or the spectral norm. We refer to
these norms as low-rank inducing Frobenius norms and low-rank induc-
ing spectral norms, respectively. The low-rank inducing Frobenius norms,
also called r∗ norms, have been previously discussed in the literature (see
[Bach et al., 2012; Eriksson et al., 2015; McDonald et al., 2015; Grussler
and Rantzer, 2015; Doan and Vavasis, 2016; Grussler et al., 2016a; Grus-
sler et al., 2016b]). In [Bach et al., 2012; Eriksson et al., 2015; McDonald
et al., 2015; Doan and Vavasis, 2016], no optimality interpretations are
considered, but in previous work we have presented such interpretations
for the squared r∗ norms (see [Grussler and Rantzer, 2015; Grussler et al.,
2016a; Grussler et al., 2016b]). In this paper these findings are shown to
extend to any function of low-rank inducing norms that is increasing on
the nonnegative real numbers. Most importantly, our results hold for linear
increasing functions, i.e. the low-rank inducing norm itself. To the best of
our knowledge, no other low-rank inducing norms from the proposed fam-
ily, including low-rank inducing spectral norms, have been proposed in the
literature.

For the family of low-rank inducing norms to be useful in practice,
they must be suitable for numerical optimization. We show that low-rank
inducing Frobenius norms and spectral norms are representable as semi-
definite programs (SDP). This allows us to readily formulate and solve
small to medium scale problems using standard SDP-solvers (see [Peaucelle
et al., 2002; Toh et al., 2004]). Moreover, it is demonstrated that these
norms have cheaply computable proximal mappings, comparable with the
computational cost for the proximal mapping of the nuclear norm. This
allows us to solve large-scale problems involving low-rank inducing norms
by means of proximal splitting methods (see [Combettes and Pesquet, 2011;
Parikh and Boyd, 2014]). To enable formulations with increasing convex
functions, the projection onto their epi-graphs is computed. This extends
the proximal mapping computations of the squared r∗ norm in [Argyriou
et al., 2012; Eriksson et al., 2015; Grussler et al., 2016a] to the non-squared
case.

The performance of different low-rank inducing norms is evaluated on
three matrix completion problems. The evaluation reveals that the choice
of low-rank inducing norms has tremendous impact on the ability to com-
plete the covariance matrix. In particular, the nuclear norm is significantly
outperformed by the low-rank inducing Frobenius norm, as well as the
low-rank inducing spectral norm.
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The findings in this work are also valid for the corresponding vector-
valued problems by replacing rank with cardinality. This gives rise to op-
timality interpretations of, e.g., lasso-type and inverse problems (see [Tib-
shirani, 1996; Hastie et al., 2015; Vidal et al., 2016]). More generally, all
low-rank inducing norms lie within the class of so-called atomic norms
(see [Chandrasekaran et al., 2012]). It is shown that our optimality in-
terpretations also hold for atomic norms under very mild assumptions.
Therefore, these findings provide optimality interpretations for many other
problems, such as those listed in [Chandrasekaran et al., 2012, Section 2.2].

The paper is organized as follows. We start by introducing some prelimi-
naries in Section 2. In Section 3, we introduce the class of low-rank inducing
norms, and provide optimality interpretations of these in Section 4. In Sec-
tion 5, computability of low-rank inducing Frobenius and spectral norms
is addressed. To support the usefulness of having more low-rank inducing
regularizers at our supply, numerical examples are presented in Section 6.
The optimality results are extended to the vector case and to atomic norms
in Section 7 and conclusions are drawn in Section 8.

2. Preliminaries

The set of reals is denoted by R, the set of real vectors by Rn, and the set
of real matrices by Rn$m. Element-wise nonnegative matrices X ∈ Rn$m

are denoted by X ∈ Rn$m
≥0 . If symmetric X ∈ Rn$n is positive definite

(semi-definite), we write X 0 0 (X 4 0). These notations are also used
to describe relations between matrices, e.g., A 4 B means A − B 4 0.
The non-increasingly ordered singular values of X ∈ Rn$m, counted with
multiplicity, are denoted by σ1(X) ≥ · · · ≥ σmin{m,n}(X). Furthermore,

〈X, Y 〉 :=
m∑
i=1

n∑
j=n

xi jyi j = trace(XTY )

defines the Frobennius inner-product for X, Y ∈ Rn$m. This inner-product
gives the Frobenius norm

qXqF :=
√

trace(XTX) =

√√√√ n∑
i=1

m∑
j=1

x2
i j =

√√√√min{m,n}∑
i=1

σ 2
i (X),

which is a unitarily invariant norm, i.e., qUXVqF = qXqF for all unitary
matrices U, V ∈ Rn$m. For all x = (x1, . . . , xq) ∈ Rq, we define

{1(x) :=
q∑
i=1
pxip, {2(x) :=

√√√√ q∑
i=1

x2
i , {∞(x) := max

i
pxip, (3)
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Then the Frobenius norm satisfies qXqF = {2(σ (X)), where

σ (X) := (σ1(X), . . . , σq(X)).

The functions {1 and {∞ define the nuclear norm qXq{1 := {1(σ (X)) and
the spectral norm qXq{∞ := {∞(σ (X)) = σ1(X).

For a set C ⊂ Rn$m,

χC(X) :=
{

0, X ∈ C
∞, X /∈ C

denotes the so-called indicator function. We also use χrank(·)≤r to denote the
indicator function of the set of matrices which have at most rank r.

The following function properties will be used in this paper. The effective
domain of a function f : Rn$m → R ∪ {∞} is defined as

dom f := {X ∈ Rn$m : f (X) < ∞}

and the epigraph is defined as

epi( f ) := {(X, t) : f (X) ≤ t, X ∈ dom f , t ∈ R}.

Further, f is said to be:

• proper if dom f ,= ;.

• closed if the epigraph is a closed set.

• positively homogeneous (of degree 1) if for all X ∈ dom( f ) and t > 0 it
holds that f (tX) = t f (X).

• nonnegative if f (X) ≥ 0 for all X ∈ dom( f ).

• coercive if limqXqF→∞ f (X) = ∞.

A function f : R ∪ {∞} → R ∪ {∞} is called increasing if

x ≤ y [ f (x) ≤ f (y) for all x, y ∈ dom( f )

and if there exist x, y ∈ R such that x < y and f (x) < f (y).
The conjugate (dual) function f ∗ of f is defined as

f ∗(Y ) := sup
X∈Rn$m

[〈X, Y 〉 − f (X)]

for all Y ∈ Rn$m. As long as f is proper and minorized by an affine
function, the conjugate f ∗ is proper, closed and convex (see [Hiriart-Urruty
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and Lemaréchal, 2013]). The function f ∗∗ := ( f ∗)∗ is called the biconjugate
function of f and can be shown to be a convex minorizer of f , i.e.

f (X) ≥ f ∗∗(X) for all X ∈ Rn$m.

In fact, f ∗∗ is the point-wise supremum of all affine functions majorized
by f and therefore the largest convex minorizer of f . This can equiv-
alently be stated as follows (see [Hiriart-Urruty and Lemaréchal, 1996,
Theorem X.1.3.5,Corollary X.1.3.6]).

Lemma 2.1
Let f : Rn$m → R ∪ {∞} be such that f ∗∗ is proper. Then

epi( f ∗∗) = cl(conv(epi f )),

where cl(·) denotes the topological closure of a set and conv(·) the convex
hull. Further, f ∗∗ = f if and only if f is proper closed and convex. 2

Lemma 2.1 implies that for a closed proper, but possibly non-convex function
f , it holds that

inf
X∈Rn$m

f (X) = inf
X∈Rn$m

f ∗∗(X).

However, determining the convex function f ∗∗ is as difficult as minimizing
the non-convex function f . Instead, it is common to convexify the problem
by splitting the function into f = f1+ f2, such that f ∗∗1 and f ∗∗2 can be easily
computed. If f1 is proper, closed and convex, then f1 = f ∗∗1 and f1 + f ∗∗2 is
the largest convex minorizer of f that keeps f1 as a summand. In particular,

inf
X∈Rn$m

[ f1(X) + f2(X)] ≥ inf
X∈Rn$m

[ f1(X) + f ∗∗2 (X)] , (4)

which holds with equality if the solution Xv to the right-hand side problem
satisfies f ∗∗2 (Xv) = f2(Xv). Then Xv also solves the non-convex problem on
the left-hand side. This motivates the use of our terminology that f1+ f ∗∗2 is
the optimal convex relaxation of a given splitting f1 + f2, when f1 is proper
closed and convex.

Finally, if f : R ∪ {∞} → R ∪ {∞}, then the monotone conjugate is
defined as

f +(y) := sup
x≥0
[〈x, y〉 − f (x)] for all y ∈ R.

3. Low-Rank Inducing Norms

This section introduces the family of low-rank inducing norms, which in-
cludes the nuclear norm as a special case. These can be used as regularizers
in optimization problems to promote low-rank solutions. To define them, we
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need to characterize the class of unitarily invariant norms in terms of sym-
metric gauge functions. This characterization can be found in, e.g. [Horn
and Johnson, 2012, Theorem 7.4.7.2].
Definition 3.1
A function � : Rq → R≥0 is a symmetric gauge function if

i. � is a norm.

ii. ∀x ∈ Rq : �(pxp) = �(x), where pxp denotes the element-wise absolute
value.

iii. �(Px) = �(x) for all permutation matrices P ∈ Rq$q and all x ∈ Rq.
2

Proposition 3.1
The norm q · q : Rn$m → R is unitarily invariant if and only if

qXq = �(σ1(X), . . . , σmin{m,n}(X))

for all X ∈ Rn$m, where � is a symmetric gauge function. 2

As noted in Section 2, the gauge functions for the Frobenius norm, spectral
norm, and nuclear norm are � = {2, � = {∞, and � = {1, respectively, where
{1, {2, and {∞, are defined in (3).

The dual norm of a unitarily invariant norm is also unitarily invariant
(see [Horn and Johnson, 2012, Theorem 5.6.39]. Therefore, it has an associ-
ated symmetric gauge function. This will be denoted by �D if the symmetric
gauge function of the original norm is denoted by �. More specifically, let
M ∈ Rn$m, q := min{m,n}, and � : Rq → R≥0 be a symmetric gauge
function associated with a unitarily invariant norm

qMq� := �(σ1(M), . . . , σq(M)).

The dual of this norm is defined as

qYq�D := max
qMq�≤1

〈Y, M〉 = �D(σ1(Y ), . . . , σq(Y )), (5)

where the dual gauge function �D satisfies

�D(σ1(Y ), . . . , σq(Y )) = max
�(σ1(M),...,σq(M))≤1

q∑
i=1

σi(M)σi(Y ). (6)

The low-rank inducing norms will be defined as the dual norm of a rank
constrained dual norm in (5). This rank constrained dual norm is defined
as

qYq�D ,r := max
rank(M)≤r
qMq�≤1

〈M, Y 〉 (7)
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and the corresponding low-rank inducing norm as

qMq�,r∗ := max
qYq�D,r≤1

〈Y, M〉. (8)

For q = min{m,n}, the rank constraint in (7) is redundant and the dual of
the dual becomes the norm itself.

For symmetric gauge functions � : Rq → R≥0, we denote their truncated
symmetric gauge functions by �(σ1, . . . , σr) := �(σ1, . . . , σr, 0, . . . , 0) for any
r ∈ {1, . . . , q}. With this notation in mind, some properties of low-rank
inducing norms and their duals are stated in the following lemma. A proof
is given in Section A.1.

Lemma 3.1
Let M, Y ∈ Rn$m, r ∈ N be such that 1 ≤ r ≤ q := min{m,n}, and
� : Rq → R≥0 be a symmetric gauge function. Then q · q�D ,r is a unitarily
invariant norm that satisfies

qYq�D ,r = �D(σ1(Y ), . . . , σr(Y )) (9)

Its dual norm q · q�,r∗ satisfies

qMq�,r∗ = max
�D(σ1(Y ),...,σr(Y ))≤1

[ r∑
i=1

σi(M)σi(Y ) + σr(Y )
q∑

i=r+1
σi(M)

]
, (10)

and

qMq� = qMq�,q∗ ≤ · · · ≤ qMq�,1∗, (11)
rank(M) ≤ r [ qMq� = qMq�,r∗. (12)

2

This paper particularly focuses on low-rank inducing norms originating
from the Frobenius norm and the spectral norm. When the original norm
is the Frobenius norm, then � = {2. Since the norm is self dual, it satisfies
�D = {D2 = {2. The truncated version in (9) (which is denote by q · qr to
comply with notation used, e.g., in [Grussler et al., 2016a]) becomes

qYqr := qYq{D2 ,r =

√√√√ r∑
i=1

σ 2
i (Y ).

The corresponding low-rank inducing norm is referred to as the low-rank
inducing Frobenius norm, and is denoted by

qMqr∗ := qMq{2,r∗ = max
qYqr≤1

〈Y, M〉.
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In [Grussler et al., 2016a], this norm is referred to as the r∗ norm.
If the original norm, instead, is the spectral norm, we have � = {∞.

The dual norm is the nuclear (trace) norm (see [Horn and Johnson, 2012,
Theorem 5.6.42]), with gauge function �D = {1. The truncated version
becomes

qYq{1,r :=
r∑
i=1

σi(Y ),

and its dual, which we refer to as the low-rank inducing spectral norm, is
denoted by

qMq{∞,r∗ := max
qYq{1 ,r≤1

〈Y, M〉.

The nuclear norm is a special case of these low-rank inducing norms, cor-
responding to r = 1.

Proposition 3.2
The nuclear norm satisfies q · q{1 = q · q�,1∗, where q · q� is any unitarily
invariant norm with �(σ1) = pσ1p.

A proof to this proposition is found in Section A.1.
Next, we state a result that is the key to our optimality interpretations

for low-rank inducing norms in the next section.

Lemma 3.2
Let B1

�,r∗ := {X ∈ Rn$m : qXq�,r∗ ≤ 1} be the unit low-rank inducing norm
ball and let

E�,r := {X ∈ Rn$m : qXq� = 1, rank(X) ≤ r}. (13)

Then B1
�,r∗ = conv(E�,r), i.e. all M ∈ Rn$m can be decomposed as

M =
∑

iαiMi with
∑

iαi = 1, αi ≥ 0,

where Mi satisfies rank(Mi) ≤ r and

qMiq� = qMiq�,r∗ = qMq�,r∗. 2

A proof to this lemma is given in Section A.1. The result is a direct conse-
quence of Lemma 3.1 and extends what is known about the nuclear norm,
and the results on low-rank inducing Frobenius norms in [Grussler et al.,
2016a].

In many cases, the set E�,r is the set of extreme points to the unit ball
B1
�,r∗. The following result is proven in Section A.1.
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Proposition 3.3
Suppose that q · q� satisfies

q
∑

iαiMiq� <
∑

iαiqMiq�

for all αi ∈ (0, 1) such that
∑

iαi = 1, and all Mi ∈ R
n$m with qMiq� = 1.

Then E�,r in (13) is the set of extreme points to B1
�,r∗. 2

All {p norms with 1 < p < ∞ satisfy these assumptions, and therefore the
unit balls of their low-rank inducing norms have E�,r as their extreme point
sets.

The extreme point sets for the unit balls of the low-rank inducing spectral
norms are characterized next.

Corollary 3.1
The extreme point set of the unit ball to the low-rank inducing spectral
norm B1

{∞,r∗ is given by

Er := {X ∈ Rn$m : σ1(X) = · · · = σr(X) = 1 and rank(X) = r}.

2

This result is proven in Section A.1.
We could also use the nuclear norm as a basis for the low-rank inducing

norm. By Proposition 3.2, we know that q · q{1,1∗ = q · q{1 . Therefore (11)
implies that any low-rank inducing nuclear norm is just the nuclear norm,
i.e.,

q · q{1 = q · q{1,q∗ = · · · = q · q{1,1∗.
Compared to using the low-rank inducing Frobenius and spectral norms,
this does not provide us with a richer family of low-rank inducing norms.

4. Optimality Interpretations

In this section, we shown that low-rank inducing norms can be interpreted
as the largest convex minorizers, i.e., the biconjugates of non-convex func-
tions of the form (2), where the norm is arbitrary but unitarily invariant.
Using this interpretation, we show how to create optimal convex relaxations
of rank constrained optimization problems. This yields a posteriori guaran-
tees on when a convex relaxation involving a low-rank inducing norm solves
the corresponding rank constrained problem.

The interpretation of low-rank inducing norms follows as a special case
of the following more general result.
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Theorem 1
Assume f : R≥0 → R∪{∞} is an increasing closed convex function, and let
freg := f (q · q�) + χrank(·)≤r with r ∈ N such that 1 ≤ r ≤ min{m,n}. Then,

f ∗reg = f +(q · q�D ,r), (14)
f ∗∗reg = f (q · q�,r∗). (15)

2

Proof Since epi( f (q · q�,r∗)) is closed by [Hiriart-Urruty and Lemaréchal,
2013, Proposition IV.2.1.8], it follows by Lemma 2.1 that if

epi( f (q · q�,r∗)) = conv(epi( freg)),

then (15) follows.
Let us start by showing that epi( f (q · q�,r∗)) ⊂ conv(epi( freg)). Assume

that (M, t) ∈ epi( f (q · q�,r∗)). By Lemma 3.2,

M =
∑

iαiMi with
∑

iαi = 1, αi ≥ 0

where Mi satisfies

rank(Mi) ≤ r, and qMiq�,r∗ = qMq�,r∗.

Hence, (M, t) =
∑

iαi (Mi, t), where

t ≥ f (qMq�,r∗) = f (qMiq�,r∗) and rank(Mi) ≤ r.

This shows that (Mi, t) ∈ epi( freg), and therefore (M, t) ∈ conv(epi( freg)).
Conversely, if (M, t) ∈ conv(epi( freg)), then

(M, t) =
∑

iαi (Mi, ti) with
∑

iαi = 1, αi ≥ 0,

where Mi satisfies

rank(Mi) ≤ r, and ti ≥ f (qMiq�) = f (qMiq�,r∗),

where the equality is due to (12) in Lemma 3.1. Since f is convex and
increasing, it holds that the composition f (q · q�,r∗) is convex (see [Hiriart-
Urruty and Lemaréchal, 2013, Proposition IV.2.1.8]). Thus,

t :=
∑

iαiti ≥
∑

iαi f (qMiq�,r∗) ≥ f (q
∑

iαiMiq�,r∗) = f (qMq�,r∗) ,

which implies that (M, t) ∈ epi( f (q · q�,r∗)), and (15) follows. Applying
[Rockafellar, 1970, Theorem 15.3] to f (q · q�,r∗) shows (14). 2
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This result generalizes the corresponding result in [Grussler et al., 2016a],
in which the special case f (x) " x2 and q · q� being the Frobenius norm is
shown. For linear f (x) " x, the biconjugate in (15) reduces to the low-rank
inducing norms of Section 3. Therefore, they can be characterized as follows.

Corollary 4.1
Let r ∈ N be such that 1 ≤ r ≤ q := min{m,n}. Then

q · qr∗ = (q · qF + χrank(·)≤r)∗∗,
q · q{∞,r∗ = (q · q{∞ + χrank(·)≤r)∗∗,

and the nuclear norm satisfies

q · q{1 = (q · q� + χrank(·)≤1)
∗∗,

where q · q� is an arbitrary unitarily invariant norm that satisfies qMq� =
σ1(M) for all rank-1 matrices M. 2

Proof This follows immediately from Theorem 1, since q · qr∗ = q · q{2,r∗,
where q · q{2 = q · qF is the Frobenius norm, and from Proposition 3.2. 2

Remark 1
This nuclear norm representation differs from the one in [Fazel et al., 2001;
Fazel, 2002], where it is shown that q · q{1 = (rank + χB1

{∞
)∗∗, i.e., it is the

convex hull of the rank function restricted to the unit spectral norm ball.2

Using Theorem 1, optimal convex relaxations of rank constrained problems

minimize
M

f0(M) + f (qMq�)

subject to rank(M) ≤ r,
(16)

can be provided, where f0 : Rn$m → R ∪ {∞} is a proper and closed convex
function and f : R≥0 → R∪{∞} is an increasing and closed convex function.
The problem in (16) is equivalent to minimizing f0+ freg with the non-convex
freg defined in Theorem 1. Therefore, the optimal convex relaxation of (16)
is given by

minimize
M

f0(M) + f (qMq�,r∗). (17)

Including an additional regularization parameter θ ≥ 0 (that can be in-
cluded in f ) yields the following proposition.

Proposition 4.1
Assume that f0 : Rn$m → R ∪ {∞} is a proper closed convex function, and
that r ∈ N is such that 1 ≤ r ≤ min{m,n}. Let f : R≥0 → R ∪ {∞} be an
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increasing, proper closed convex function, and let θ ≥ 0. Then

inf
M∈Rn$m

rank(M)≤r

[ f0(M) + θ f (qMq�)] ≥ inf
M∈Rn$m

[ f0(M) + θ f (qMq�,r∗)] . (18)

If Mv solves the problem on the right such that rank(Mv) ≤ r, then equality
holds, and Mv is also a solution to the problem on the left. 2

Proof The inequality holds since f (q · q�,r∗) = f ∗∗reg ≤ freg. From Lemma 3.1
it follows that if rank(Mv) ≤ r then

f ∗∗reg (Mv) = f (qMvq�,r∗) = f (qMvq�) = freg(Mv),

which implies that the lower bound is attained with Mv and equality holds.2

Since the nuclear norm is obtained by creating a low-rank inducing
norm with r = 1, it follows that any nuclear norm regularized problem can
be interpreted as an optimal convex relaxation to a non-convex problem of
the form (16), with the constraint rank(M) ≤ 1.

Proposition 4.1 also covers the results in our previous work [Grussler
et al., 2016a], where the matrix approximation problem

min
M∈Rn$m

rank(M)≤r

[ 1
2qN − Mq2

F + h(M)
]

= min
M∈Rn$m

rank(M)≤r

[ 1
2qNq

2
F − 〈N, M〉 + 1

2qMq
2
F + h(M)

]
,

is considered. Letting

f0(·) = 1
2qNq

2
F − 〈N, ·〉 + h(·), f (x) = 1

2 x
2, and q · q� = q · qF ,

the results in [Grussler et al., 2016a] are a special cases of Theorem 1.

5. Computability

This section addresses the computability of convex optimization problems
involving low-rank inducing regularizers of the form f (q · q�,r∗). We restrict
ourselves to low-rank inducing Frobenius and spectral norm regularizers. A
requirement for the optimal convex relaxation problem in (17) to be solved
efficiently, is that these regularizers are suitable for numerical optimization.

Assuming that f0 and f are SDP representable, it is shown that (17) can
be solved via semi-definite programming. To be able to solve larger problems
using first-order proximal splitting methods (see [Combettes and Pesquet,
2011; Parikh and Boyd, 2014] and references therein), we show how to effi-
ciently compute the proximal mappings of the considered regularizers. The
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computational cost of computing these proximal mappings is comparable to
the cost of computing the proximal mapping for the nuclear norm, since the
cost in all cases is dominated by the singular value decomposition.

In order to deal with increasing convex functions f in (17), the problem
is rewritten into the equivalent epigraph form

minimize
M,v

f0(M) + f (v) + χepi(q·q�,r∗)(M, v). (19)

5.1 SDP representation
The low-rank inducing Frobenius norm and spectral norm

qMqr∗ := max
qYqr≤1

〈M, Y 〉 = max
qYq2

r≤1
〈M, Y 〉, (20)

qMq{∞,r∗ := max
qYq{1 ,r≤1

〈M, Y 〉, (21)

are SDP representable via qYq2
r and qYq{1,r. From [Grussler and Rantzer,

2015; Grussler et al., 2016a], it is known that

qYq2
r = min

T,γ
trace(T) −γ (n− r)

s.t.
(
T Y
Y T I

)
4 0, T 4 γ I.

Similarly, one can verify that

qYq{1,r = min
T1,T2,γ

1
2
[trace(T1) + trace(T2) − (n+m− 2r)γ ]

s.t.
(
T1 Y
Y T T2

)
4 0, T1, T2 4 γ I,

which generalizes the SDP representation of qYq{1,min{m,n} in [Recht et al.,
2010]. This implies that

qMqr∗ = max
Y,T,γ

〈M, Y 〉

s.t.
(
T Y
Y T I

)
4 0, T 4 γ I,

trace(T) −γ (n− r) ≤ 1,

qMq{∞,r∗ = max
Y,T1,T2,γ

〈M, Y 〉

s.t.
(
T1 Y
Y T T2

)
4 0, T1, T2 4 γ I,

1
2
[trace(T1) + trace(T2) − (n+m− 2r)γ ] ≤ 1,
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However, these formulations cannot be used in convex optimization problems
with M as a decision variable due to the inner product 〈M, Y 〉. Therefore,
we use duality to arrive at

qMqr∗ = min
W1,W2,k

1
2
(trace(W2) + k)

s.t.
(
kI − W1 M
MT W2

)
4 0, W1 4 0,

trace(W1) = (n− r)k;

qMq{∞,r∗ = min
W1,W2,k

k

s.t.
(
kI − W1 M
MT kI − W2

)
4 0, W1, W2 4 0,

trace(W1) + trace(W2) = [(n− r) + (m− r)]k.

These formulations can be used to, e.g. solve problems on the epigraph form
(19) by enforcing the respective costs to be smaller than or equal to v ∈ R.
This gives constraints of the form qMq�,r∗ ≤ v, i.e., (M, v) ∈ epi(q · q�,r∗).
If f and f0 are SDP representable, then (19) can be solved via semi-definite
programming.

5.2 Splitting algorithms
Conventional SDP solvers are often based on interior point methods
(see [Toh et al., 1999; Peaucelle et al., 2002]). These have good convergence
properties, but the iteration complexity typically grows unfavorably with the
problem dimension. This limits their application to small or medium scale
problems. First order proximal splitting methods (see e.g. [Combettes and
Pesquet, 2011; Parikh and Boyd, 2014]) typically have a lower complexity
per iteration, and are thus more suitable for large problems.

These methods require the proximal mapping for all non-smooth parts
of the problem to be available. The proximal mapping for a proper closed
and convex functions h : Rn$m → R ∪ {∞} is defined as

proxγ h(Z) := argmin
X

(
h(X) + 1

2γ
qX − Zq2

F

)
. (22)

Applying proximal splitting methods to (19) therefore requires that the
proximal mapping of χepi(q·q�,r∗) is readily computable. Since χepi(q·q�,r∗) is an
indicator function of the epigraph set, the proximal mapping becomes a
projection, which is denoted by Πepi(q·q�,r∗).

The epigraph of a norm is a cone (see [Bauschke and Combettes, 2011,
Proposition 10.2]). Appealing to the Moreau-decomposition (see [Bauschke
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and Combettes, 2011, Theorem 6.29]), we compute the projection Πepi(q·q�,r∗)
via

Πepi(q·q�,r∗)(Z, zv) = (Z, zv) − Π(epi(q·q�,r∗)○(Z, zv), (23)

where Z ∈ Rn$m, zv ∈ R, and Π(epi(q·q�,r∗)○ is projection onto the polar cone
(which is the negative dual cone of epi(q · q�,r∗) by definition).

Algorithms for projecting onto the polar cones of the low-rank inducing
Frobenius and spectral norms are derived in Section A.2. In these algo-
rithms, the first step is to perform a singular value decomposition of the
prox argument Z ∈ Rn$m. Then a vector optimization problem of dimension
q := min{m,n} needs to be solved. To this end, a nested binary search is
applied that only requires the solutions to simple optimization problems
with at most r+ 1 decision variables.

In case of the low-rank inducing Frobenius norm, these problems can
be solved explicitly, and results in an overall worst-case complexity of
O(log(r) log(q − r)) with an additional O(q) to set up the inner problems
and to return the full solution. The cost of the prox computation is therefore
dominated by the cost of computing the SVD. For large q one may consider
sparse SVD algorithms such as [Liu et al., 2013].

The projection onto the epigraph of the low-rank inducing spectral norm
is performed via the projection onto the epigraph of the truncated nuclear
norm (modulo a sign flip). Since this requires a third layer in the nested
binary search, the worst-case complexity is given by O(log2(r) log(q−r)+q).
In [Wu et al., 2014], another algorithm to project onto the truncated nuclear
norm is presented. It uses similar techniques, but performs a linear search
for finding the parameters and thus has a higher worst case computational
cost.

Finally, note that the detour over the epigraph projection is not needed
for all increasing functions. The proximal mapping for the low-rank in-
ducing Frobenius and spectral norms can be derived very similarly to the
epigraph case in Section A.2. The proximal mapping for the squared low-
rank inducing Frobenius norm is derived in [Eriksson et al., 2015; Grussler
et al., 2016a]. Details are omitted for brevity.

6. Examples: Matrix Completion

The matrix completion problem seeks to complete a low-rank matrix based
on limited knowledge about its entries. The problem is often posed as

minimize rank(X)
subject to x̂i j = xi j, (i, j) ∈ I ,

(24)
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where I denotes the index set of the known entries. Another formulation
that fits with the low-rank inducing norms proposed in this paper is

minimize qXq�
subject to rank(X) ≤ r

x̂i j = xi j, (i, j) ∈ I ,
(25)

where r is the target rank of the matrix to be completed. In the following, two
examples of this form will be convexified using different low-rank inducing
norms. That is,

minimize qXq�,r∗
subject to x̂i j = xi j, (i, j) ∈ I ,

(26)

is solved for different low-rank inducing norms q · q�,r∗.
Further, we discuss a covariance completion problem which is a general-

ization of the problem above. In all problems it will be observed that there
are convex relaxations with low-rank inducing norms whose solutions give
better completion than the nuclear norm approach, without increasing the
rank.

6.1 Example 1
In the first problem, which is taken from [Grussler et al., 2016a], the matrix
X̂ to be completed is a low-rank approximation of the Hankel matrix

H =

1 1 1 1
1 0

1 0
1 0 0 0



 ∈ R10$10. (27)

Let the singular value decomposition of H be given by H =
∑10

i=1 σi(H)uiuTi
and

X̂ :=
5∑
i=1

σi(H)uiuTi and I := {(i, j) : x̂i j > 0},

where I is the index set of known entries. The cardinality of I is 78, i.e. 22
out of 100 entries are unknown. Figure 1 shows the completion errors and
ranks of the completed matrices for different value of r. The nuclear norm
(r = 1) returns a full rank matrix and gives a worse completion error than
all other low-rank inducing Frobenius norms. For r = 5, the solution with
the low-rank inducing Frobenius norm has rank 5. Given the known entries,
this is the matrix of smallest Frobenius norm which has at most rank 5,
by Proposition 4.1. As indicated by the small relative error, this matrix
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(a) Relative completion errors of:
(26) with q · q�,r∗ = q · qr∗
(26) with q · q�,r∗ = q · q{∞ ,r∗

(b) Rank of the solutions to:
(26) with q · q�,r∗ = q · qr∗
(26) with q · q�,r∗ = q · q{∞ ,r∗

Figure 1. Example 1: Relative completion error and ranks of the solution
to (26) with q · q�,r∗ = q · qr∗ and q · q�,r∗ = q · q{∞ ,r∗.

coincides with X̂ . In fact, this is also verified analytically in [Grussler et al.,
2016a, Theorem 3].

Notice that

101.2rank(X̂) log(10) ≫ card(I) = 78,

which is why exact completion results for the nuclear norm (see [Candès
and Recht, 2009]) do not apply. Furthermore, the low-rank inducing spectral
norm shows no improvement in comparison with the nuclear norm.

6.2 Example 2
In the this second example, it as assumed that

X̂ :=
5∑
j=1

σ j
5∑
i=1
(H)uivTi and I := {(i, j) : x̂i j > 0},

where H is given in (27) with the singular value decomposition H =∑10
i=1 σi(H)uivTi . The cardinality of I is 67, that is, 33 out of 100 entries

are unknown. Figure 2 shows the completion errors and ranks of the com-
pleted matrices with different value of r. The nuclear norm (r = 1) returns
a close to full rank matrix with a relative completion error that is among
the largest for all r. In this example, the low-rank inducing spectral norms
perform significantly better than the low-rank inducing Frobenius norms.
In particular, for r = 5, the low-rank inducing spectral norm returns a rank
5 solution. Given the known entries, this solution is the matrix of smallest
spectral norm of rank at most 5 (see Proposition 4.1). As indicated by the
zero completion error, this matrix coincides with X̂ . Just as in the exact
recovery result for the low-rank inducing Frobenius norm in [Grussler et
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(a) Relative completion errors of:
(26) with q · q�,r∗ = q · qr∗
(26) with q · q�,r∗ = q · q{∞ ,r∗

(b) Rank of the solutions to:
(26) with q · q�,r∗ = q · qr∗
(26) with q · q�,r∗ = q · q{∞ ,r∗

Figure 2. Example 2: Relative completion error and ranks of the solution
to (26) with q · q�,r∗ = q · qr∗ and q · q�,r∗ = q · q{∞ ,r∗.

al., 2016a, Theorem 3], it can be analytically guaranteed that the low-rank
inducing spectral norm with r = 5 recovers the true matrix. Analogous to
the previous example,

101.2rank(X̂) log(10) ≫ card(I) = 67,

which is why exact completion with the nuclear norm cannot be expected.
In both examples, the nuclear norm neither produces the lowest rank

solution, nor recovers the true matrix. In contrast, other low-rank inducing
norms succeed in both aspects. This indicates that the richness in the fam-
ily of low-rank inducing norms should be exploited to achieve satisfactory
performance in rank constrained problems. In practical applications, the
’true’ matrix is not known, and this comparison cannot be made. However,
cross validation techniques can often be used to assess the performance.

6.3 Covariance Completion
In this section, the performance of the low-rank inducing Frobenius and
spectral norms is evaluated by means of a covariance completion problem.
This is a variation of the matrix completion problems above.

Consider the linear state-space system

ẋ(t) = Ax(t) + Bu(t),

with A ∈ Rn$n, B ∈ Rn$m, m ≤ n and u(t) is a zero-mean stationary
stochastic process. For Hurwitz A and reachable (A, B), it has been shown
(see [Georgiou, 2002a; Georgiou, 2002b]) that the following are equivalent:
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i. X := limt→∞ E
(
x(t) xT(t)

)
4 0 is the steady-state covariance matrix of

x(t), where E(·) denotes the expected value.

ii. ∃H ∈ Rm$n : AX + X AT = −(BH + HTBT).

iii. rank
(
AX + X AT B

BT 0

)
= rank

(
0 B
BT 0

)
.

In particular, H = 1
2 E

(
u(t)uT(t)

)
BT if u is white noise. The problem

considered in [Chen et al., 2013; Lin et al., 2013; Zare et al., 2016a; Zare et
al., 2015; Zare et al., 2016b] is to reconstruct the partially known covariance
matrix X and the input matrix B, via M = −(BH + HTBT), where the
rank of M sets an upper bound on the rank of B, i.e., the number of inputs.
The objective is to keep the rank of M low, while achieving satisfactory
completion of X . In [Chen et al., 2013; Lin et al., 2013; Zare et al., 2016a;
Zare et al., 2015; Zare et al., 2016b] the problem is addressed by searching
for the lowest rank solution:

minimize rank(M)
subject to x̂i j = xi j, (i, j) ∈ I

AX̂ + X̂ AT = −M
X̂ 4 0,

(28)

where I denotes set of pairs of indices of known entries. Another option is to
search for a low-rank solution, while minimizing the norm of M measured
by some unitarily invariant norm. This helps to avoid overfitting, and gives

minimize qMq�
subject to rank(M) ≤ r

x̂i j = xi j, (i, j) ∈ I
AX̂ + X̂ AT = −M
X̂ 4 0.

(29)

The authors in [Chen et al., 2013; Lin et al., 2013; Zare et al., 2016a;
Zare et al., 2015; Zare et al., 2016b] convexify the problem by using the
nuclear norm. In [Grussler et al., 2016b], a similar problem is instead
convexified with the low-rank inducing Frobenius norm. We will also make
a comparison with convex relaxations based on low-rank inducing spectral
norms. All these convex relaxations are of the form

minimize qMq�,r∗
subject to x̂i j = xi j, (i, j) ∈ I

AX̂ + X̂ AT = −M
X̂ 4 0,

(30)
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Figure 3. Mass-spring-damper system with n masses and input forces
u1, . . . , un.

with the appropriate low-rank inducing norm in the cost.

Mass-spring-damper system The system considered in our example is
the so-called mass-spring-damper system (MSD) (see [Zare et al., 2015;
Grussler et al., 2016b]) with n masses (see Figure 3).

Assuming that the stochastic forcing affects all masses, this yields the
following state-space representation

ẋ(t) = Ax(t) + Bξ (t)

with

A =
(

0 I
−S −I

)
∈ R2n$2n, B =

(
0
I

)
∈ R2n$n.

Here, S is a symmetric tridiagonal Toeplitz matrix with 2 on the main
diagonal, −1 on the first upper and lower sub-diagonals, and I and 0
stand for the identity and zero matrices of appropriate size. The state
vector x consists of the positions and velocities of the masses, x = (p, v).
Furthermore, ξ (t) is generated via a low-pass filtered white noise signal
w(t) with unit covariance E

(
w(t)w(t)T

)
= I as

ξ̇ (t) = −ξ (t) + w(t).

The extended covariance matrix

X e := E
(
xexTe

)
=

(
X X xξ
Xξ x Xξ

)
with xe :=

(
x(t)
ξ (t)

)

is then determined by

AeX e + X eATe = −BeBT
e ,

where X is the steady-state covariance matrix of x(t) and

Ae :=
(
A B
0 −I

)
, Be :=

(
0
I

)
.
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Figure 4. Interpolated colormap of the steady-state covariance matrices
Xpp and Xvv of the positions and the velocities in the MSD system with
n = 20. indicates the available one-point correlations.

In our numerical experiments, we choose n = 20 masses and assume
that only one-point correlations are available, i.e. the known entries are
given by the diagonal of X . The steady-state covariance matrix can be
partitioned as

X =
(
Xpp Xpv
Xvp Xvv

)
,

where Xpp and Xvv are the covariance matrices of the positions and the
velocities, respectively. To visualize the effects of using different low-rank
inducing norms in (30), an interpolated colormap of the reconstructed X̂pp
and X̂vv is used (see Figure 6). The interpolated colormap of the true
covariance matrices is shown in Figure 4, where the black lines indicate
the known measured entries.

Figure 5 displays the relative errors and the ranks of the estimates
obtained by (30) for different low-rank inducing norms as functions of r.
The nuclear norm minimization (r = 1), as shown in Figures 6(a) and 6(b),
gives the same rank as both the low-rank inducing Frobenius and spectral
norms for r = 2. However, the latter approaches give better completions.
The low-rank inducing spectral norm outperforms the low-rank inducing
Frobenius norm for all r ≥ 2. In particular, r = 9 gives the best completion,
with a solution of rank 10 (see Figures 6(e) and 6(f)). It is interesting that
the solutions to (30) with r = 10 for both the low-rank inducing Frobenius
and spectral norms are of rank 10. By Proposition 4.1, there are no better
feasible rank-10 solutions that minimize the Frobenius and spectral norms
respectively. The solution to (30) with the low-rank inducing Frobenius norm
and r = 10, is shown in Figure 6(c) and 6(d). The solution to the low-rank
inducing spectral norm with r = 10 looks identical to Figures 6(e) and 6(f).
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Figure 5. Relative errors and ranks of solutions to (30) with q·q�,r∗ = q·qr∗
and q · q�,r∗ = q · q{∞ ,r∗.

7. Extensions

7.1 The Vector Case
The results in Section 4 translate to the corresponding vector-valued prob-
lem, by replacing rank with cardinality, and qMq� with qxq� := qdia�(x)q�.
Therefore, our optimality interpretations, as well as the variety of regular-
izers, can be applied to problems such as sparse linear regression (see [Tib-
shirani, 1996; Candès et al., 2006; Argyriou et al., 2012]). The SDP repre-
sentation and the proximal mapping computations in Section 5 carry over,
though here they have lower computational cost. For instance, the required
SVD in the prox computations turns into a sorting, which reduces the total
complexity.

7.2 Atomic Norms
In [Chandrasekaran et al., 2012], the concept of an atomic norm is intro-
duced. An atomic norm is defined as the gauge function or the Minkowski
functional of the convex hull of a set of atoms A (see [Chandrasekaran
et al., 2012])

qxqA := inf{t > 0 : t−1x ∈ conv(A)}. (31)

Despite its name, the atomic norm is not necessarily a norm, but always
defines a distance measure. The atoms are used to model properties of a
quantity that is to be estimated. The atomic norm is a way of imposing these
properties on the solution of an optimization problem. In [Chandrasekaran
et al., 2012], examples of atomic sets that naturally appear in different
applications are listed. For instance, if A is the set of rank 1 matrices with
unit Frobenius norm, then the resulting atomic norm is the nuclear norm.
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X̂pp X̂vv

Figure 6. Recovered covariance matrices of positions (X̂pp to the left), and
velocities (X̂vv to the right), in the MSD system with n = 20 masses resulting
from problem (30), with different low-rank inducing norms.
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More generally, all low-rank inducing norms in Section 3 can be considered
as atomic norms, because Lemma 3.2 implies that

qXq�,r∗ = inf
{
t > 0 : t−1X ∈ conv(E�,r)

}
,

with E�,r := {X ∈ Rn$m : qXq� = 1, rank(X) ≤ r}.
As presented for the low-rank inducing norms and regularizers in Sec-

tion 4, this section provides similar optimality interpretations for general
atomic norms. It is assumed that the atoms lie within a finite-dimensional
real Hilbert space H with inner product 〈·, ·〉, i.e. A ⊂ H. In the following,
the definitions of the conic hull of A ⊂ H

cone(A) := {αx : x ∈ A, α ≥ 0},

and the polar gauge function to (31)

qyq○A := inf{µ ≥ 0 : 〈x, y〉 ≤ µqxqA for all x ∈ H},

are needed. Note that, if the atomic norm in (31) is a norm, then the polar
gauge function is equal to the corresponding dual norm Our optimality
interpretations will hold if the atomic set denoted by AG can be represented
as

AG := {a ∈ cone(A) : G(a) = 1}, (32)

where A ⊂ H, and G : H → R ∪ {∞}, satisfy the following assumptions.

Assumption 1
The set A ⊂ H is nonempty such that cone(A) is closed. The function
G : H → R ∪ {∞} is positively homogeneous (of degree 1), proper, closed,
convex and nonnegative with G(a) > 0 for all a ∈ A \ {0}.

Many atomic sets from [Chandrasekaran et al., 2012] satisfy these assump-
tions. For example, if A is the set of all permutation matrices, then

q · qA = q · qAG with G(·) = q · q{∞ .
Similar constructions apply to the atomic norms that are induced, e.g. by
binary vectors, sparse vectors, low-rank matrices, vectors from lists, and
many more (see [Chandrasekaran et al., 2012])

Using the definition of atomic norms in (31), an explicit expression of
the atomic norm associated with AG is

qxqAG = inf{t > 0 : t−1x ∈ conv({a ∈ cone(A) : G(a) = 1})}. (33)

The next theorem gives optimality interpretations of these atomic norms,
and generalizes Theorem 1 in the following two aspects:
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I. The rank-constraint is generalized to other non-convex constraints.

II. The norms are replaced by more general functions G.

To prove the result, the following lemma is needed.

Lemma 7.1
Let A ⊂ H and G : H → R ∪ {∞} satisfy Assumption 1, and let AG and
q · qAG be defined as in (32) and (33). Then,

i. conv(AG) is closed and bounded.

ii. qxqAG = 0 if and only if x = 0.

iii. qxqAG ≥ G(x) for all x ∈ H, and qxqAG = G(x) for all x ∈ cone(A).

iv. For all x ∈ dom(q · qAG) there exist xi ∈ cone(A) such that

x =
∑

iαixi,
∑

iαi = 1, αi ≥ 0, and G(xi) = qxqAG .

2

Proof Item i: Since G + χcone(A) is coercive, it follows from [Bauschke and
Combettes, 2011, Proposition 11.11] that the sub-level set

{a ∈ cone(A) : G(a) ≤ 1}

is bounded. Thus the same applies to AG. Further, convexity of G implies
that

{x ∈ H : G(x) = 1}

is closed, because, by [Hiriart-Urruty and Lemaréchal, 2013, Proposi-
tion VI.1.3.3], it is the boundary of

{x ∈ H : G(x) ≤ 1}.

Thus, as the intersection of two closed sets is closed,

AG = cone(A) ∩ {x ∈ H : G(x) = 1}

is closed. Applying [Hiriart-Urruty and Lemaréchal, 2013, Theo-
rem III.1.4.3] shows that conv(AG) is closed and bounded.

Item ii: This claim follows by [Hiriart-Urruty and Lemaréchal, 2013,
Corollary V.1.2.6].
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Item iii: Let us introduce the sub-levelset

SsG := {x ∈ H : G(x) ≤ s},

which by the positive homogeneity of G satisfies

SsG = {sx ∈ H : G(x) ≤ 1}

for all s ≥ 0. By the definition of AG, it holds that

conv(AG) = conv({a ∈ cone(A) : G(a) = 1})
⊂ conv({a ∈ cone(A) : G(a) ≤ 1})
⊂ conv({a ∈ H : G(a) ≤ 1})
= {a ∈ H : G(a) ≤ 1}) = S1

G.

This yields that

qxqAG
= inf{t > 0 : x ∈ tconv(AG)}

≥ inf{t > 0 : x ∈ tS1
G}

= inf{t > 0 : G(x) ≤ t} = G(x)

for all x ∈ H, and the first claim of this item is proven.
To prove the second claim, let x ∈ cone(A). If x ,∈ dom(G), the above

implies that
qxqAG = G(x) = ∞.

Further, Item ii shows that

x = 0 [ q0qAG = G(0) = 0.

It remains to show the claim for x ∈ dom(G) \ {0}. In this case, we can
define x̄ := G(x)−1x, which satisfies

x̄ ∈ cone(A) and G(x̄) = 1,

i.e. x̄ ∈ AG ⊂ conv(AG), and therefore

qx̄qAG
= inf{t > 0 : x̄ ∈ tconv(AG)} ≤ inf{t > 0 : x̄ ∈ tx̄} = 1.

That is, qxqAG ≤ G(x), which in conjunction with qxqAG ≥ G(x) proves that

qxqAG = G(x) for all x ∈ cone(A).

Item iv: Since the claim holds trivially if x = 0, it is enough to assume that

x ∈ dom(q · qAG) \ {0}.
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By Item ii it follows that∞ > qxqAG > 0. Further, Item i and the definition
of qxqAG in (31) imply that

qxq−1
AG
x ∈ conv(AG).

Thus,

qxq−1
AG
x =

∑
iαi x̄i with

∑
iαi = 1, αi ≥ 0,

where x̄i satisfies

x̄i ∈ cone(A) and G(x̄i) = 1.

Defining xi := x̄iqxqAG , it follows that

x =
∑
i
αixi with xi ∈ cone(A).

Finally, the positive homogeneity of G ensures that

G(xi) = G(qxqAG x̄i) = qxqAGG(x̄i) = qxqAG . 2

Theorem 2
Assume A ⊂ H and G : H → R∪{∞} satisfy Assumption 1, and let AG and
q · qAG be defined as in (32) and (33). Further, let freg := f (G(·)) + χcone(A),
where f : R ∪ {∞} → R ∪ {∞} is an increasing, proper closed convex
function. Then,

f ∗reg = f +(q · q○AG
), (34)

f ∗∗reg = f (q · qAG). (35)
2

Proof Since q ·qAG is a Minkowski functional, it is closed function (see [Lu-
enberger, 1968, Lemma 1 in 5.12]). Thus, epi( f (q · qAG) is a closed set, and
by Lemma 2.1,

epi( f (q · qAG)) = conv(epi( freg)) (36)

implies (35).
We start with conv(epi( freg)) ⊂ epi( f (q ·qAG)). If (x, t) ∈ conv(epi( freg)),

then
(x, t) =

∑
i
αi (xi, ti) with

∑
i
αi = 1, αi ≥ 0,

where xi satisfies

xi ∈ cone(A), and ti ≥ f (G(xi)) = f (qxiqAG),
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and the equality follows by Lemma 7.1(Item iii). Since f is convex and
increasing, it holds that the composition f (q · qAG) is convex (see [Hiriart-
Urruty and Lemaréchal, 2013, Proposition IV.2.1.8]). Therefore,

t :=
∑

iαiti ≥
∑

iαi f (qxiqAG) ≥ f (q
∑

iαixiqAG) = f (qxqAG),

and (x, t) ∈ epi( f (q · qAG)).
Conversely, let (x, t) ∈ epi( f (q·qAG))with qxqAG ,= 0. Lemma 7.1(Item iv)

implies that
x =

∑
iαixi with

∑
iαi = 1, αi ≥ 0,

where xi satisfies

xi ∈ cone(A) and G(xi) = qxqAG .

Thus, (x, t) =
∑

iαi (xi, t) such that

t ≥ f (qxqAG) = f (G(xi)), and xi ∈ cone(A).

Consequently,

(xi, t) ∈ epi( freg), and therefore (x, t) ∈ conv(epi( freg)).

Lemma 7.1 (Item ii) shows that (x, t) ∈ conv(epi( freg)) is trivially fulfilled
if qxqAG = 0. Finally, (34) can be proven by applying [Rockafellar, 1970,
Theorem 15.3] to f (q · qAG). 2

Similarly to Section 4, this result gives rise to optimal convex relaxations
for atomic norms.

Proposition 7.1
Assume A ⊂ H and G : H → R ∪ {∞} satisfy Assumption 1, and let AG
and q·qAG be defined as in (32) and (33). Further, let f : R∪{∞} → R∪{∞}
be an increasing, closed convex function, and let f0 : H → R∪{∞} be closed,
proper, and convex. For θ ≥ 0, it holds that

inf
x∈A

[ f0(x) + θ f (G(x))] ≥ inf
x∈conv(A)

[ f0(x) + θ f (qxqAG)] . (37)

If the right-hand side of the inequality is solved by xv ∈ A, then xv is a
solution to the left-hand side. 2

Proof By (4) and Theorem 2 it follows that

inf
x∈cone(A)

[
f̃0(x) + θ f (G(x))

]
≥ inf

x∈H

[
f̃0(x) + θ f (qxqAG)

]
, (38)
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for any closed and proper convex function f̃0 : H → R ∪ {∞}. In particular,
let f̃0 = f0 + χconv(A), which is closed by Assumption 1. Then the left-hand
side of (38) satisfies

inf
x∈cone(A)

[
f̃0(x) + θ f (G(x))

]
= inf

x∈cone(A)
x∈conv(A)

[ f0(x) + θ f (G(x))]

≤ inf
x∈A

[ f0(x) + θ f (G(x))] ,

because A ⊂ cone(A) ∩ conv(A). The right-hand side of (38) satisfies

inf
x∈H

[
f̃0(x) + θ f (qxqAG)

]
= inf

x∈conv(A)
[ f0(x) + θ f (qxqAG)] ,

and (37) is proven. The last claim follows by Lemma 7.1 (Item iii). 2

In [Chandrasekaran et al., 2012] exact recovery results are presented for
the cases when f0 is an indicator of an affine set that contains measurement
of an observed quantity x0 ∈ H. Let Q := {x ∈ H : Ax = Ax0} denote that
affine set and let f0 = χQ. Then the recovery problem becomes

minimize
x∈Q

qxqAG .

Assume that this problem has a unique solution xv. In [Chandrasekaran
et al., 2012], conditions on the measurement set Q are stated under which
exact recovery xv = x0 is guaranteed. The underlying assumption in [Chan-
drasekaran et al., 2012], is that for small k it holds that

x0 =
k∑
i=1

ciai with ci ≥ 0 and ai ∈ AG.

That is, the observed quantity is assumed to be a conic combination of a few
atoms. For many examples in [Chandrasekaran et al., 2012, Section 2.2], the
assumption holds with k = 1 and c1 = 1, i.e., x0 = a for some a ∈ A. A no-
table exception is the case of low rank matrix recovery. In [Chandrasekaran
et al., 2012], rank one matrices of unit norm are used as atoms, which
yields the nuclear norm as the corresponding atomic norm. Therefore, a
conic combination of r atoms is needed to recover a rank-r matrix x0. By
using a low-rank inducing norm q · q�,r∗ instead, the matrix x0 satisfies
x0 = a for some a ∈ A, where A is the set of matrices with rank less than
or equal to r. With this atomic set, the problem in [Chandrasekaran et al.,
2012] reduces to recover x0 = a, where a ∈ A. Upon successful recovery,
the convex atomic norm minimization problem on the right-hand side of
(37) solves the corresponding non-convex problem on its left-hand side.
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8 Conclusion

8. Conclusion

We have proposed a family of low-rank inducing norms and regularizers.
These norms are interpreted as the largest convex minorizers of a unitarily
invariant norm that is restricted to matrices of at most rank r. One feature
of these norms is that optimality interpretations in the form of a posteriori
guarantees can be provided. In particular, it can be checked if the solu-
tions to a convex relaxation involving low-rank inducing norms, also solve
an underlying rank constrained problem. Our numerical examples indicate
that this is useful for, e.g. the so-called matrix completion problem. A suit-
ably chosen low-rank inducing norm yields significantly better completion
and/or lower rank than the commonly used nuclear norm approach. This
has been demonstrated on the basis of what we called low-rank inducing
Frobenius and spectral norms. Both norms have been shown to have cheaply
computable proximal mappings, as well as simple SDP representations. As
a result, this extends proximal mapping computations that are found, in
e.g. [Wu et al., 2014; Eriksson et al., 2015; Grussler et al., 2016a]. More-
over, The class of low-rank inducing norms can be further broadened by
using continuous r as discussed in [Grussler et al., 2016a] for the low-rank
inducing Frobenius norm. Finally, it has been highlighted that our findings
also generalize to atomic norms, and to other non-convex problems.

A. Appendix

A.1 Proofs to Results in Section 3
Proof to Lemma 3.1

Proof Let 1 ≤ r ≤ q := min{m,n}, � : Rq → R≥0 be a symmetric gauge
function, Σ j(M) := diag(σ1(M), . . . , σ j(M)) for M ∈ Rn$m, and 1 ≤ j ≤ q.
Then for all Y ∈ Rn$m,

qYq�D ,r = max
rank(M)≤r
qMq�≤1

〈M, Y 〉 = max
rank(Σq(M))≤r
qΣq(M)q�≤1

〈Σq(Y ), Σq(M)〉

= max
qΣr(M)q�≤1

〈Σr(Y ), Σr(M)〉 = qΣr(Y )q�D ,

where the second equality follows by [Horn and Johnson, 2012, Corol-
lary 7.4.1.3(c)]. Further, q · q�D ,r is unitarily invariant, since

qΣr(Y )q�D = �D(σ1(Y ), . . . , σr(Y ))

defines a symmetric gauge function (see Proposition 3.1). Similarly to the
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above, this implies that

qMq�,r∗ = max
qYq�D,r≤1

〈M, Y 〉 = max
�D(σ1(Y ),...,σr(Y ))≤1

q∑
i=1

σi(M)σi(Y )

= max
�D(σ1(Y ),...,σr(Y ))≤1

[ r∑
i=1

σi(M)σi(Y ) + σr(Y )
q∑

i=r+1
σi(M)

]
.

It remains to prove (11) and (12). The constraint set for r+ 1 is a superset
of the constraint set for r and by the definition of q · q�D ,r in (9) it follows
that qYq�D ,r ≤ qYq�D ,r+1. Therefore,

qMq�,r∗ = max
qYq�D,r≤1

〈M, Y 〉 ≥ max
qYq�D,r+1≤1

〈M, Y 〉 = qMq�,(r+1)∗.

Note that q · q�D = q · q�D ,q, which implies that q · q�,q∗ = q · q� and thus (11)
is proven. The implication in (12) follows from the derived expression for
q · q�,r∗, since for rank-r matrices M, σi(M) = 0 for all i ∈ {r+ 1, . . . , q}. 2

Proof to Proposition 3.2 By [Horn and Johnson, 2012, Corol-
lary 7.4.1.3(c)] it holds that �D(σ1) = σ1 if and only if �(σ1) = σ1.
Thus, (10) yields for all M ∈ Rn$m that

qMq�,1∗ = max
σ1(Y )≤1

σr(Y )
min{m,n}∑

i=1
σi(M) = qMq{D∞ = qMq{1 ,

where we use the fact that the dual norm of the spectral norm is the nuclear
norm (see [Horn and Johnson, 2012, Theorem 5.6.42]).

Proof to Lemma 3.2

Proof By definition of q · q�D ,r in (9) in Lemma 3.1, it holds that for all
Y ∈ Rn$m,

max
X∈conv(E�,r)

〈X, Y 〉 = max
rank(X)≤r
qXq�D≤1

〈X, Y 〉 = qYq�D ,r = max
qXq�,r∗≤1

〈X, Y 〉 = max
X∈B1

�,r∗
〈X, Y 〉.

Since conv(E�,r) and B1
�,r∗ are closed convex sets, this equality can only be

fulfilled if the sets are equal (see [Hiriart-Urruty and Lemaréchal, 2013,
Theorem V.3.3.1]).

Next, we prove the decomposition. Since the decomposition trivially holds
for M = 0, we assume that M ∈ Rn$m \ {0} and define M̄ := qMq−1

�,r∗M.
Then M̄ ∈ B1

�,r∗ = conv(E) and therefore be decomposed as

M̄ =
∑

iαiM̃i with
∑

iαi = 1, αi ≥ 0
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where all M̃i satisfy

qM̃iq� = qM̃iq�,r∗ = 1 and rank(M̃i) ≤ r,

where the first equality is from (12) in Lemma 3.1. Defining Mi :=
M̃iqMq�,r∗ gives

M =
∑

iαiMi with rank(Mi) ≤ r

and

qMiq� = qMiq�,r∗ = qqMq�,r∗M̃iq�,r∗ = qMq�,r∗qM̃iq�,r∗ = qMq�,r∗.

This concludes the proof. 2

Proof to Proposition 3.3

Proof Let M̄ =
∑

iαiMi with Mi ∈ E�,r and αi ∈ (0, 1),
∑

iαi = 1 be a
convex combination of points in E�,r. Then, by assumption,

qM̄q� = q
∑

iαiMiq� <
∑

iαiqMiq� =
∑

iαi = 1

and thus M̄ ,∈ E�,r. Since conv(E�,r) = B1
�,r∗, this implies that E�,r is the

set of extreme points of B1
�,r∗. 2

Proof to Corollary 3.1

Proof Let us start by showing that conv(Er) = B1
{∞,r∗. Since q · q{1,r and

q · q{∞,r are dual norms to each other, it follows by Lemma 3.2 that

qYq{1,r = max
X∈B1

{∞ ,r∗
〈X, Y 〉 = max

rank(X)=r
1=σ1(X)=...=σr(X)

r∑
i=1

σi(X)σi(Y ) = max
X∈conv(Er)

〈X, Y 〉,

where the last two equalities are a result of [Horn and Johnson, 2012,
Corollary 7.4.1.3(c)]. However, conv(Er) and B1

{∞,r∗ are closed convex sets and
therefore this equation can only hold if the sets are identical (see [Hiriart-
Urruty and Lemaréchal, 2013, Proposition V.3.3.1]).

It remains to show that no point in Er can be constructed as a con-
vex combination of other points in Er. To this end, note that a necessary
condition for M ∈ Er is that

qMq2
F =

min{m,n}∑
i=1

σ 2
i (M) =

r∑
i=1

σ 2
i (M) = r.

Let M̄ =
∑

iαiMi be an arbitrary convex combination with αi > 0 and∑
iαi = 1, of distinct points Mi ∈ Er. By the strict convexity of q · q2

F , it
holds that

qM̄q2
F = q

∑
iαiMiq

2
F <

∑
iαiqMiq

2
F = r

∑
iαi = r.

Hence, M̄ ,∈ Er and this concludes the proof. 2
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A.2 Derivations to Πepi(q·q�,r∗)
Utilizing the Moreau decomposition in (23), we determine the projection onto
epi(q·q�,r∗), by computing a projecting onto the polar cone (epi(q·q�,r∗))○. The
latter is by definition (see [Bauschke and Combettes, 2011, Definition 6.21])
the negative of the dual cone to epi(q · q�,r∗), i.e.
(epi(q · q�,r∗))○ = −epi(q · q�D ,r)

= {(−Y,−w) : qYq�D ,r ≤ w} = {(Y,w) : qYq�D ,r ≤ −w}.

Thus, the projection onto the polar cone becomes

Π(epi(q·q�,r∗))○(Z, zv) = argmin
w∈R, Y∈Rn$m
w+qYq�D,r≤0

1
2
[
(w− zv)2 + qY − Zq2

F
]

and we need to solve

minimize
Y,w

1
2
[
(w− zv)2 + qY − Zq2

F
]

subject to − w ≥ qYq�D ,r, Y ∈ Rn$m.
(39)

Since the cost and the constraint in (39) are unitarily invariant, it can be
shown (see [Watson, 1992; Lewis, 1995]) that Y v and Z have a simultaneous
SVD, i.e. if Z =

∑q
i=1 σi(Z)uivTi is an SVD of Z then Y v =

∑q
i=1 σi(Y v)uivTi

where we define q := min{m,n}. Consequently, it is equivalent to consider
the vector-valued problem

minimize
y,w

1
2

[
(w− zv)2 +

q∑
i=1
(yi − zi)2

]

subject to − w ≥ qdiag(y)q�D ,r, y ∈ Rq,
y1 ≥ · · · ≥ yq,

(40)

with z1 ≥ · · · ≥ zq ≥ 0, zi = σi(Z) and yi = σi(Y ) for 1 ≤ i ≤ q.

Remark 2
The unique solution (yv, wv) fulfills 0 ≤ yvi ≤ zi for 1 ≤ i ≤ q. The upper
bound holds, because otherwise ȳv with ȳvi = min{zi, yvi } is a feasible solu-
tion with smaller cost. Similarly, the lower bound holds, because otherwise
ȳv with ȳvi = max{0, yvi } is a feasible solution with smaller cost. Thus, it is
not necessary to explicitly restrict y to be nonnegative. 2

To solve (40), note that there exists a tv ∈ {1, . . . , r} such that

yvr−tv > yvr−tv+1 = · · · = yvr , (41)
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where tv = r if yv1 = yvr . This assumption implies that yr−tv ≥ yr−tv+1 is
assumed to be inactive and therefore can be removed from (40). Then also
the constraints y1 ≥ · · · ≥ yr−tv can be removed, because the cost function
and the sorting of z ensures that the solution will always fulfill them. This
yields the following problem

minimize
y,w

1
2

[
(w− zv)2 +

q∑
i=1
(yi − zi)2

]

subject to − w ≥ qdiag(y)q�D ,r, y ∈ Rq,
yr−t+1 = · · · = yr ≥ · · · ≥ yq.

(42)

Thus, solving (40) reduces to finding tv such that (42) solves (40). As it is
shown later, solving (42) can be done efficiently for the low-rank inducing
norms that are considered in this paper. The following lemma shows that
tv can be found by a binary search over t, where the decision to increase or
decrease t is based on the solution of (42).
Lemma A.1
Let

(
y(t), w(t)

)
denote the solution to (42) depending on t such that 1 ≤ t ≤ r.

Further let
(
y(tv), w(tv)

)
be the solution to (40) such that y(t

v)
r−tv > y(t

v)
r−tv+1 and

y(t
v)

r−tv = y(t
v)

r−tv+1 if tv = r. Then,

i. tv = min{{t : y(t)r−t > y(t)r−t+1} ∪ {r}}.

ii. If y(t
′)

r−t′ ≥ y(t
′)

r−t′+1 then y(t)r−t ≥ y(t)r−t+1 for all t ≥ t′.

iii. If y(t
′)

r−t′ < y(t
′)

r−t′+1 then y(t)r−t < y(t)r−t+1 for all t ≤ t′.

In particular,

I. y(t)r−t ≥ y(t)r−t+1 for all t ≥ tv.

II. y(t)r−t ≤ y(t)r−t+1 for all t < tv

III. If t < tv and y(t)r−t ≤ y(t)r−t+1 then
(
y(t), w(t)

)
=

(
y(tv), w(tv)

)
. 2

Proof Throughout this proof, we let p(t) denote the optimal cost of (42) as
a function of t. Since adding constraints cannot reduce the optimal cost, p
is a nondecreasing function.

Item i: By the same reasoning that led to (42), it holds that

y(t)1 ≥ · · · ≥ y(t)r−t for 1 ≤ t ≤ r. (43)
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Using (43), the set min{{t : y(t)r−t > y(t)r−t+1}∪{r}} contains all t for which the
solution of (42) is feasible for (40). Since p is nondecreasing and

(
y(tv), w(tv)

)
is unique, the first claim follows.

Item ii: The second claim is proven by contradiction. Let (y(t′), w(t′)) be
such that y(t

′)
r−t′ ≥ y(t

′)
r−t′+1. Further assume that y(t

′+1)
r−t′−1 < y(t

′+1)
r−t′ . In the fol-

lowing, we construct another solution (ỹ, w̃) ∈ Rq+1 to (42) with t = t′ + 1,
which has a cost that is no larger than p(t′+1). However, (42) has a unique
solution due to strong convexity of the cost function. This yields the desired
contradiction.

The contradicting solution is constructed as a convex combination
w̃ = (1−α)w(t′+1)+αw(t′) with α ∈ (0, 1] and a partially sorted convex com-
bination of y(t′) and y(t′+1) with the same α. Let ŷ := (1−α)y(t′+1) +αy(t′)
and let

ỹ := (sort(ŷ1, . . . , ŷr−t′−2, ŷr−t′), ŷr−t′−1, ŷr−t′+1, . . . , ŷq),

be the partially sorted convex combination, where sort(·) denotes sorting in
descending order.

To select α, we note that by assumption,

y(t
′)

r−t′−1 ≥ y(t
′)

r−t′ ≥ y(t
′)

r−t′+1 and y(t
′+1)

r−t′−1 < y(t
′+1)

r−t′ = y(t
′+1)

r−t′+1.

Therefore, there exists an α ∈ (0, 1] such that

ỹr−t′ = ŷr−t′−1 = (1−α)y(t
′+1)

r−t′−1 +αy(t
′)

r−t′−1

= (1−α)y(t
′+1)

r−t′+1 +αy(t
′)

r−t′+1 = ŷr−t′+1 = ỹr−t′+1.

Since
y(t

′)
r−t′+1 = · · · = y(t′)r and y(t

′+1)
r−t′−1 = · · · = y(t′+1)

r ,

it follows that
ỹr−t′ = · · · = ỹr.

Furthermore, the construction of ỹ as well as the sorting give that

ỹr ≥ · · · ≥ ỹq and ỹ1 ≥ · · · ≥ ỹr−t′−1.

Hence, ỹ satisfies the chain of inequalities in (42) for t = t′ + 1.
It remains to show that ỹ satisfies the epigraph constraint and that the

cost is not higher than p(t′ + 1). These properties are already fulfilled for
ŷ being a convex combination of two feasible points with costs p(t′) and
p(t′ + 1), respectively, where p(t′) ≤ p(t′ + 1). Therefore, it is left to show
that the sorting involved in ỹ maintains these properties. First, we show
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that sorting of any sub-vector in y does not increase the cost. Suppose that
zi ≥ z j, yi ≤ yj, i.e., y is not sorted the same way as z. Then

1
2
(
(zi − yi)2 + (z j − yj)2

)
= (zi − z j)(yj − yi) + 1

2
(
(zi − yj)2 + (z j − yi)2

)
≥

(
(zi − yj)2 + (z j − yi)2

)
,

and thus the cost is not increased by sorting y or any sub-vector of it. Fur-
ther, note that the permutation caused by the sorting of the first r elements
of y does not influence the epigraph constraint, because qdiag(y)q�D ,r is
permutation invariant by definition.

Next notice that ỹ is obtained from ŷ by first swapping ŷr−t′−1 and ŷr−t′ .
From the choice of α, we conclude that

ŷr−t′ = (1−α)y(t
′+1)

r−t′ +αy(t
′)

r−t′ ≥ (1−α)y(t
′+1)

r−t′+1 +αy(t
′)

r−t′+1 = ŷr−t′+1 = ŷr−t′−1.

Thus, this swap is a sorting which does neither increase the cost, nor does it
violate the epigraph constraint. Analogously, sorting the first r− t′ elements
of the resulting vector to obtain ỹ has the same effect and therefore we
receive the desired contradiction.

Item iii: Suppose that there exist t and t′ with t′ > t such that y(t
′)

r−t′ < y(t
′)

r−t′+1

and y(t)r−t ≥ y(t)r−t+1. Then Item ii shows that y(t
′)

r−t′ ≥ y(t
′)

r−t′+1, which is a con-
tradiction.

Items I to III: The statements follow immediately from Items i to iii. 2

In order to solve (42), one can proceed similarly to solving (40). There always
exists sv ≥ 0 such that the solution (y(t), w(t)) of (42) satisfies

y(t)r−t+1 = · · · = y(t)r+sv > y(t)r+sv+1,

where sv = q − r if y(t)r = y(t)q . As before, this allows us to remove the
inactive constraint yr+s ≥ yr+s+1. Then the constraints yr+s+1 ≥ · · · ≥ yq
become redundant, because any solution fulfills yj = z j, j ≥ r + s + 1.
Finally, we are left with the following reduced optimization problem

minimize
y,w

1
2

[
(w− zv)2 +

r+s∑
i=1
(yi − zi)2

]

subject to − w ≥ qdiag(y)q�D ,r, y ∈ Rq,
yr−t+1 = · · · = yr+s.

(44)

For given t, one can perform a binary search on s in (44) in order find sv.
This can be done with the help of the following lemma.
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Algorithm A.1 Determine (Y v, wv) = Π(epi(q·q�,r∗))○(Z, zv), i.e., solve (39)
1: Input: Let Z ∈ Rn$m, zv ∈ R and r ∈ N such that 1 ≤ r ≤ q :=

min{m,n} be given.
2: Let Z =

∑q
i=1 σi(Z)uivTi be an SVD of Z.

// Solve (39) via the vector problem (40)with data z = (σ1(Z), . . . , σq(Z))
and zv

3: Set tmin = 1, tmax = r, and t = l tmin+tmax
2 n

// Solve (40) via (42) and binary search over t
4: while tmin ,= tmax do
5: Set smin = 0, smax = q− r, and s = l smin+smax

2 n
// Solve (42) via (44) and binary search over s

6: while smin ,= smax do
7: Solve (44)
8: Update smin, smax, and s using the binary search rules in Lemma A.2
9: end while

10: Update tmin, tmax, and t using the binary search rules in Lemma A.1
11: end while
12: Output: (Y v, wv) = (

∑q
i=1 yiuivTi , w) with (y, w) being the last solution

to (44).

Lemma A.2
For fixed t with 1 ≤ t ≤ r, let

(
y(t,s), w(t,s)

)
denote the solution to (44) for

different s satisfying 0 ≤ s ≤ r−q. Further let
(
y(t,sv), w(t,sv)

)
be the solution

to (42) such that y(t,s
v)

r+sv > y(t,s
v)

r+sv+1 and y(t,s
v)

r+sv = y(t)r+sv+1 if sv = q− r. Then,

i. sv = min{{s : y(t,s
v)

r+sv > y(t,s
v)

r+sv } ∪ {q− r}}.

ii. If y(t,s
′)

r+s′ ≥ y(t,s
′)

r+s′+1 then y(t,s)r+s ≥ y(t,s)r+s+1 for all s ≥ s′.

iii. If y(t,s
′)

r+s′ < y(t,s
′)

r+s′+1 then y(t,s)r+s < y(t,s)r+s+1 for all s ≤ s′.

In particular,

I. y(t,s)r+s ≥ y(t,s)r+s+1 for all s ≥ sv.

II. y(t,s)r+s ≤ y(t,s)r+s+1 for all s < sv.

III. If s < sv and y(t,s)r+s ≥ y(t,s)r+s+1 then
(
y(t,s), w(t)

)
=

(
y(t,sv), w(t,sv)

)
. 2

Proof The proof goes analogously to the proof of Lemma A.1 and is therefore
omitted. 2
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The nested binary search algorithm to solve (39) via (40) is summarized
in Algorithm A.1. The problem that decides how to update the parameters
in the nested binary search is (44). In order to solve (44) explicitly, we
introduce new variables ỹ, z̃ ∈ Rr−t+1 as

ỹi =
{
yi, if 1 ≤ i ≤ r− t
√
t+ syr, if i = r− t+ 1

z̃i =
{
zi, if 1 ≤ i ≤ r− t

1√
t+s
∑r+s

i=r−t+1 zi, if i = r− t+ 1
(45)

This gives

r+s∑
i=r−t+1

(yr − zi)2 = (ỹr−t+1 − z̃r−t+1)
2 +

r+s∑
i=r−t+1

z2
i −

(
1

√
t+ s

r+s∑
i=r−t+1

zi

)2

.

Since we can ignore the constant terms, we are left with the following
projection problem of reduced dimension

minimize
ỹ,w

1
2

[
(w− zv)2 +

r−t+1∑
i=1

(ỹi − z̃i)2
]

subject to − w ≥ qdiag(ỹ1, . . . , ỹr−t, ỹr−t+1√
s+t , . . . ,

ỹr−t+1√
s+t︸ ︷︷ ︸

t times

)q�D ,r, ỹ ∈ Rr−t+1.

Below, it is shown how to explicitly solve this projection problem for �D = {2
and �D = {1 in order to arrive at the epigraph projections of the low-rank
inducing Frobenius and spectral norms.

The case q · q�D ,r = q · qr In this case, �D = {2 and the projection problem
becomes

minimize
ỹ,w

1
2

[
(w− zv)2 +

r−t+1∑
i=1

(ỹi − z̃i)2
]

subject to − w ≥

√√√√ r−t∑
i=1

ỹ2
i +

t
s+ t

ỹ2
r−t+1, y ∈ Rr−t+1.

Consequently, the solution (ỹv, wv) is the orthogonal projection of (z̃, zv)
onto the second-order cone

K :=

(ỹ, w) ∈ Rr−t+2 :

√√√√ r−t∑
i=1

ỹ2
i +

t
s+ t

ỹ2
r−t+1 ≤ −w

 . (46)
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The associated polar cone K○ := {y : 〈y, x〉 ≤ 0 for all x ∈ K} is then given
by (see e.g. [Grussler and Rantzer, 2014])

K○ :=

(y, p) ∈ Rr−t+2 :

√√√√ r−t∑
i=1

ỹ2
i +

s+ t
t

ỹ2
r−t+1 ≤ p

 .

This allows us to summarize the following two simple cases:

i. (ỹv, wv) = (z̃, zv) if and only if (z̃, zv) ∈ K , i.e.√√√√ r−t∑
i=1

z̃2
i +

t
s+ t

z̃2
r−t+1 ≤ −zv,

ii. (ỹv, wv) = (0, 0) if and only if (z̃, zv) ∈ K○, i.e.√√√√ r−t∑
i=1

z̃2
i +

s+ t
t

z̃2
r−t+1 ≤ zv,

where the last statement follows by [Hiriart-Urruty and Lemaréchal, 2013,
Proposition III.3.2.3].

Next, it is shown how to compute the projection if (z̃, zv) does not be-
long to either of these cones. By [Bauschke and Combettes, 2011, Proposi-
tion 6.46] it holds that (z̃− ỹv, zv −wv) is an element of the normal cone to
the cone K at (ỹv, wv). Using the normal cone description in [Hiriart-Urruty
and Lemaréchal, 2013, Theorem VI.1.3.5], this implies that

(z̃− ỹv, zv − wv) = µ ∇(ỹ,w)

√√√√ r−t∑
i=1

ỹ2
i +

t
s+ t

ỹ2
r−t+1 + w

∣∣∣∣∣∣
(ỹ,w)=(ỹv,wv)

(47)

for some µ ≥ 0. Since (z̃, zv) ,∈ K we conclude that the optimal point is on
the boundary of the cone K , i.e.

−wv =

√√√√ r−t∑
i=1

ỹv2i +
t

s+ t
ỹv2r−t+1. (48)

Solving the equations in (47) and using (48) give

ỹvi =
z̃i

1− µ
wv
, 1 ≤ i ≤ r− t,

ỹvr−t+1 =
z̃r−t+1

1− µt
wv(s+t)

,

wv = zv − µ.
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To characterize the solution, it is left to compute µ. By plugging the solution
into (48), diving by wv and taking the square, we arrive at

1 =
∑r−t

i=1 z̃2
i

(2µ− zv)2
+

t
s+ t

z̃2
r−t+1(

µ− zv + µt
s+t

)2 .

Defining c1 :=
∑r−t

i=1 z̃2
i =

∑r−t
i=1 z2

i and c2 :=
√
t+ sz̃r−t+1 =

∑r+s
i=r−t+1 zi this

can rewritten as the fourth order polynomial equation

[(2µ− zv)2 − c1][(t+ s)(µ− zv) + µt]2 − tc2
2(2µ− zv)2 = 0, (49)

which can be solved explicitly for µ ≥ 0. Resubstitution in (45) gives that
the solution

(
y(t,s), w(t,s)

)
to (44) can be expressed as

i. 1 ≤ j ≤ r− t : y(t,s)j =
zi(µ− zv)
2µ− zv

,

ii. r− t+ 1 ≤ j ≤ r+ s : y(t,s)j =
(µ− zv)

∑r+s
i=r−t+1 zi

(s+ t)(µ− zv) + µt
,

iii. r+ s+ 1 ≤ j ≤ q : y(t,s)j = z j,

iv. w(t,s) = zv − µ,

if (z, zv) /∈ K ∪ K○.

The case q · q�D ,r = q · q{1,r The second case is analog to the first case. We
would like to solve

minimize
ỹ,w

1
2

[
(w− zv)2 +

r−t+1∑
i=1

(ỹi − z̃i)2
]

subject to 0 ≥
r−t∑
i=1
pỹip +

t
√
t+ s

pỹr−t+1p + w, y ∈ Rr−t+1.

(50)

Consequently, the solution (ỹv, wv) is the orthogonal projection of (z̃, zv)
onto

K :=
{
(ỹ, w) ∈ Rr−t+2 :

r−t∑
i=1
pỹip +

t
√
t+ s

pỹr−t+1p ≤ −w
}
. (51)

The polar cone K○ := {y : 〈y, x〉 ≤ 0 for all x ∈ K} is then given by

K○ :=
{
(y, p) ∈ Rr−t+2 : max

(
py1p, . . . , pyr−t−2p,

√
t+ s
t

pyr−t+1p

)
≤ p

}
.
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Similarly to before, we get the following two simple cases:

i. (ỹv, wv) = (z̃, zv) if and only if (z̃, zv) ∈ K , i.e.

r−t∑
i=1

z̃i +
t

√
t+ s

z̃r−t+1 ≤ −zv,

ii. (ỹv, wv) = (0, 0) if and only if (z̃, zv) ∈ K○, i.e.

max
(
z̃1,
√
t+ s
t

z̃r−t+1

)
≤ zv,

where it is used that the z̃i are nonnegative and decreasingly sorted.
It remains to show how to compute the projection if (z̃, zv) does not

belong to either of these cones. By [Bauschke and Combettes, 2011, Propo-
sition 6.46] it holds that (z̃− ỹv, zv−wv) is an element of the normal cone to
the cone K at (ỹv, wv). Using the normal cone description in [Hiriart-Urruty
and Lemaréchal, 2013, Theorem VI.1.3.5], we get

(z̃− ỹv, zv − wv) ∈ µ �(ỹ,w)

( r−t∑
i=1
pỹip +

t
√
s+ t

pỹr−t+1p + w
)∣∣∣∣∣
(ỹ,w)=(ỹv,wv)

(52)

for some µ ≥ 0. First note that any solution to (50) satisfies ỹv ≥ 0. The
optimality conditions for yvi = 0 and yvi > 0 become

ỹvi = 0 \ z̃i ∈ [0, µ], ỹvi > 0 \ ỹvi = z̃i − µ

for all i ∈ {1, . . . , r − t}. These equivalences also hold for ỹr−t+1 with µ
multiplied by t/

√
s+ t. Therefore,

ỹvi = max(z̃i − µ, 0), 1 ≤ i ≤ r− t,

ỹvr−t+1 = max
(
z̃r−t+1 −

tµ
√
t+ s

, 0
)
,

wv = zv − µ.

In order to determine µ, notice that (ỹv, wv) lies on the boundary of the
cone K in (51), which implies

0 =
r−t∑
i=1
pỹvi p +

t
√
t+ s

pỹvr−t+1p + wv

=
r−t∑
i=1

max
(
z̃i − µ, 0) + t

√
t+ s

max(z̃r−t+1 −
tµ√
t+s , 0

)
+ zv − µ.
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We denote the solution to this equation by µv, and solve it using a so-called
break point searching algorithm, as it has been done for similar problems
in [Held et al., 1974; Duchi et al., 2008; Condat, 2016]. To this end, let

ẑ =
(
z̃1, . . . , z̃ j,

t
√
t+ s

z̃r−t+1, z̃ j+1, . . . , z̃r−t
)
,

be the vector that sorts z̃ according to the break points of the max expres-
sions, i.e., the index j satisfies z̃ j >

√
t+s
t z̃r−t+1 ≥ z̃ j+1. Defining

α =
(

1, . . . , 1, t2

t+ s
, 1, . . . , 1

)

gives that µv can be found by solving

r−t+1∑
i=1

max(ẑi −αiµ, 0) + zv − µ = 0. (53)

Assuming that we know an index k = kv such that

ẑkv+1 −αkv+1µv ≤ 0 and ẑkv −αkv µv ≥ 0, (54)

then µv can be determined from (53) as

µv =
∑kv

i=1 ẑi + zv
1+

∑kv
i=1 αi

. (55)

Thus, computing µv reduces to searching for kv ∈ {1, . . . , r − t} for which
(55) satisfies (54). This can be done using a binary search, with rules from
the following proposition.

Lemma A.3
Let µv be the solution to (53), let µk be the solution to

(r−t+1∑
i=1

ẑi −αiµ
)
+ zv − µ = 0, i.e., µ̂k =

∑k
i=1 ẑi + zv

1+
∑k

i=1 αi
, (56)

and let kv be such that µ̂kv = µv. Then,

i. kv = max({k : ẑk −αk µ̂k ≥ 0}).

ii. If ẑk −αk µ̂k ≥ 0, then ẑi −αi µ̂i ≥ 0 for all i ∈ {1, . . . , k}.

iii. If ẑk −αk µ̂k < 0, then ẑi −αi µ̂i < 0 for all i ∈ {k, . . . , r− t}.
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In particular,

I. ẑk −αk µ̂k ≥ 0 for all k ∈ {1, . . . , kv}.

II. ẑk −αk µ̂k < 0, for all k ∈ {kv + 1, . . . , r− t}. 2

Proof We first show some results needed to prove Items i and ii. Let

�k(µ) :=
k∑
i=1

max(ẑi −αiµ, 0) + zv − µ,

which is strictly decreasing in µ. Let µk be the unique solution to the
equation

�k(µ) = 0.

For all µ ∈ R, we have

�k−1(µ) = �k(µ) −max(ẑk −αkµ, 0) ≤ �k(µ).

Since all �i are strictly decreasing in µ, we conclude the following facts:

a. µk−1 ≤ µk.

b. If ẑk −αkµk ≤ 0, then �k−1(µk) = �k(µk) = 0, hence µk−1 = µk.

Because ẑ is sorted according to break points, we conclude that if l and µ
are such that ẑl − αlµ ≥ 0, then also ẑi − αiµ ≥ 0 for all i ∈ {1, . . . , l}.
Therefore, if µ is such that ẑk −αkµ ≥ 0, we get

k∑
i=1

max(ẑk −αkµ, 0) + zv − µ =
( k∑
i=1

ẑk −αkµ
)
+ zv − µ.

Hence,

c. If ẑk −αkµk ≥ 0 or ẑk −αk µ̂k ≥ 0, then µ̂k = µk.

Item i: Using Items b and c, we conclude that

µ̂kv = µkv = µkv+1 = µr−t+1 = µv.

Item ii: Now, assume that ẑk − αk µ̂k ≥ 0. Then, by break point sorting, it
holds that ẑk−1 −αk−1 µ̂k ≥ 0. Using Items a and c, we conclude that

0 ≤ ẑk−1 −αk−1 µ̂k = ẑk−1 −αk−1µk ≤ ẑk−1 −αk−1µk−1 = ẑk−1 −αk−1 µ̂k−1.
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Using induction proves the result.
Item iii: Assume, on the contrary, that k is such that ẑk − αk µ̂k < 0 but
that there exists i ∈ {k, . . . , r− t} such that ẑi−αi µ̂i ≥ 0. Then, by Item ii,
ẑk −αk µ̂k ≥ 0 and we have reached the desired contradition.
Items I and II: Follow immediately from Items i to iii. 2

Now, that we know how to compute the dual variable µ = µv, we go back
to the original variables in (45), to conclude that the solution

(
y(t,s), w(t,s)

)
to (44) can be expressed as

i. 1 ≤ j ≤ r− t : y(t,s)j = max(z j − µ, 0),

ii. r− t+ 1 ≤ j ≤ r+ s : y(t,s)j =
1

√
t+ s

max(
∑r+s

i=r−t+1 zi − tµ, 0),

iii. r+ s+ 1 ≤ j ≤ q : y(t,s)j = z j,

iv. w(t,s) = zv − µ.

if (z, zv) /∈ K ∪ K○.
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