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Populärvetenskaplig
Sammanfattning

The European Spallation Source (ESS) is the next generation neutron source
and it’s the fruit of the ongoing effort involving around 60 partner laborato-

ries around the world. The facility is being built in Lund and has the ambition
of being a sustainable research facility with net zero release of carbon diox-
ide. The ESS will produce the most intense neutron beam in the world. The
neutrons produced by the machine will be used for a wide range of scientific
applications that influence everyday life and they span physics, chemistry, ma-
terial science, biology, geology and medicine. Neutrons can be used to analyze
and engineer, new materials by studying their structure over a wide range of
length and time scales.

Curing Diseases. Materials have characterized the development of hu-
manity for ages. Nowadays biologists and chemists are developing molecules
that can tackle cancer growth by delivering a specific drug in the right place,
helping in curing diseases with minimal impact on the subject. The neutrons
produced at the ESS can help investigate how molecules react and function.

Energy Efficiency. Another important application concerns energy con-
servation. Batteries are ubiquitous nowadays, consider for example laptops and
mobile phones. Neutrons can help investigate more complex materials and also
monitor the charge and the discharge of batteries in order to improve their
efficiency. The same can be said about fuel cells. Fuel cells promise to be able
to produce energy in a sustainable way. Research in this sector is devoted to
finding better performing and less expensive materials for the membrane used
to activate the chemical process happening withing the cell. Neutron scattering
in this case can be used to study the dynamics of the hydrogen in the fuel cell
as well as its interaction with the electrodes.

How it works. The machine that produces the neutrons is a linear particle
accelerator. The linear accelerator is a 300 meter long sequence of devices used
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to produce, shape and accelerate protons towards a target.
Smashing a small rock.The acceleration process happens in devices called

cavities, and it can be compared to a surfer on the crest of a wave. Cavities
are shaped so as to form and sustain electromagnetic waves that are used for
acceleration. The particles gain velocity by staying on the crest of the wave
just like a surfer would do on a surfboard. Once the particles leave the linear
accelerator, they strike on a rotating helium cooled target that expels neutrons.
It is at the target station that the accelerated particles produce the neutrons
by a process called spallation. The process is similar to a hammer smashing a
small rock. The atoms of the bombarded target break up and expel neutrons
that are then channelled towards the experiments and are used for the investi-
gation of matter at an atomic scale.

Superconductivity. Particle acceleration is accomplished by both room-
temperature and superconducting cavities. Superconducting cavities (see fig. 1)
are made of Niobium, a rather rare and expensive metal, and are cooled down
to a temperature of -271 degrees Celsius, where they reach a particular state,
the superconducting state. When the metal becomes superconducting an elec-
tric current can flow through it without resistance, thus no energy is wasted in
heat. It is as if an old incandescent light bulb would emit light without warm-
ing up, quite an important save of energy. The first part of the accelerator, is
dominated by room-temperature cavities, made of copper. These are used to
give energy to the beam when extracted from the source and also to shape it,
so that it can be accepted by the following stage of the accelerator, dominated
by superconducting cavities.

This thesis is dedicated to the design and analysis of superconducting
elliptical cavities. Elliptical cavities play a central role in modern particle ac-
celerators due to their high efficiency. After an introduction to the European
Spallation Source project, the thesis goes through the design of the medium-β
cavity. The RF design of the inner cell and end cell are presented in sequence
in paper I . The design is completed by the chapter on the mechanical perfor-
mances of the cavity (paper II).

Papers III, IV and V are instead dedicated to the analysis of the cavity.
The necessary mathematical tools for the analysis are presented in paper III
which, after stating fundamental results on hollow cavities, presents a spec-
tral decomposition used in the following papers. In paper IV, a time-domain
model for the power dissipation induced by the excited higher-order-modes is
presented. Such modes are excited by the particle beam that passes through
the cavity and are detrimental to the performances of the accelerator. Paper
V presents a time-domain model of the cavity coupled to an externa circuit to
a coupler. The model is functional to the design of the cavity control system.
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Figure 1: Elliptical Superconducting Cavities.
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Preface

This thesis summarizes the research efforts conducted during my doctoral stud-
ies aimed at the design of the medium-β elliptical cavity for the European Spal-
lation Source (ESS). The research has been carried out at the Department of
Electrical and Information Technology at Lund University. The first part of the
thesis is an introduction on accelerators and the European Spallation Source
project. The second part of the thesis includes the papers that describe the
design and analysis of the medium-β elliptical cavity. Here follows a summary
of the structure of the thesis where I summarize the contents of the chapters
of the thesis. The summary is followed by the list of included papers with a
clarification on my contribution to those works. Additional papers participated
in by the author of the thesis, are listed thereafter.

Structure Of the Thesis

The thesis is divided in two parts.

• Part I

– The first part of the thesis is an introduction to accelerators and
cavities. The first chapter starts with the description of the ESS
accelerator followed by a brief historical survey on accelerators. The
second chapters describes some fundamental aspects of cavities and
general considerations on cavity design.

• Part II

– Paper I. This paper describes the RF design of the elliptical cav-
ity. After introducing the RF parameters necessary to quantify the
performances of the cavity and a list of specifications for the cavity
itself, the design of the cavity is carried out starting from the inner
cell. The RF design is concluded by the design of the end cell.

ix
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– Paper II. This paper describes the mechanical design of the cav-
ity. The main aspects of the mechanical design are first reviewed
and they are followed by the simulation results. The paper is con-
cluded by a table that summarizes the mechanical performances of
the cavity.

– Paper III. This paper reports a mathematical description of the
hollow cavity problem. The main result concerns the existence of
an orthonormal basis of eigenfields which can be used to express an
arbitrary field in a hollow cavity. This result is at the basis of papers
IV and V and it is thus fundamental.

– Paper IV. Starting from the results of paper III, this paper presents
the estimation of higher-order-modes (HOMs) induced power dissi-
pation in cavities. The excitation of HOMs can be detrimental to
the beam quality and efficiency of the cavity. The problem is solved
entirely in the time domain to include transient effects.

– Paper V. This paper presents the model of the cavity coupled to
an external circuit. The model is useful in the contex of the design
of the control system of the cavity.

List of Included Papers

1. Paper I. The RF design of the cavity has been carried out by the author
of the thesis in its entirety. The program used to organize and automatize
the design process has been written by the author of the thesis.

2. Paper II. The mechanical design of the cavity has been carried out by
the author of the thesis in its entirety.

3. Paper III. G. Costanza, A. D. Ioannidis,
“Remarks on the Mathematical Solution of the Hollow Cavity Eigenvalue
Problem”,
Progress In Electromagnetics Research Symposium Proceedings, Stock-
holm, Sweden, 2013.
Contribution. The author of the thesis contributed in giving a descrip-
tion of the electromagnetic problem and in the general production of the
paper.

4. Paper IV. G. Costanza, A. Karlsson
“Time Domain Analysis of Higher Order Modes Induced Power Dissipa-
tion in Accelerating Cavities”,
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Submitted to the Journal of Electromagnetic Waves and Applications.
Contribution. The paper has been written by the author of the thesis
except the appendix. All the simulations and the main results have been
derived by the author of the thesis. The program used to perform the
simulations has been written by the author of the thesis.

5. Paper V. G. Costanza
“The Coupled Cavity in the Time Domain”.
Contribution.The paper has been written by the author of the thesis
in its entirety.

Other Publications
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M. Luong, F. Peauger, J. Plouin, D. Roudier, G. Olivier, G. Costanza
“ESS Elliptical Cavities and Cryomodules”

• G. Costanza
“On the Optimal Design of Elliptical Superconducting Cavities”
Proceedings of IPAC2014, Dresden, Germany.
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The first part of the thesis is an introduction to accelerators and cavity
design. The first chapter starts with an overview of the ESS project and

its main features. The second section is a brief historical survey on accelerators
(section 1.2). The second chapter is an introduction to cavity design (section
2.2) which is followed by a comment on accelerator efficiency (section 2.3).

Overview of the ESS
project

The European Spallation Source is an international collaborative effort whose
goal is the design and operation of a neutron source of unparalleled power and
performance. The project itself has been conceived in the late 90’s and will
see the light in 2019, when the first neutrons will be produced. Sweden is the
main contributor to the project but the ESS is the result of an international
collaboration that sees Sweden and Denmark as co-hosts.

1.1 Main Features of the ESS

The accelerator can be divided in two parts, the warm section and the cold
section, see figure 1.1. The warm section is the normal-conducting section
of the accelerator and is in charge of generating and accelerating the proton
beam with room-temperature devices. Moreover the accelerator is composed

3
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Figure 1.1: Layout of the ESS. Warm colors indicate the normal-conducting
section of the accelerator, cold colors indicate the superconducting section.

of a series of interconnected subsystems that are explored in the following.

Normal-Conducting Section. The warm section is composed of several
devices:

• The Microwave Discharge Ion Source, it is where the acceleration begins.
It is a plasma based source designed not only to generate protons but
also to accelerate them to an energy of 75 KeV.

• The Low Energy Beam Transport (LEBT) line is a section designed to
shape and prepare the beam for the next stage, the RFQ. It is necessary
because accelerating structures require a particle beam with well-defined
characteristics in order to operate.

• The Radio-Frequency Quadrupole, it is the first RF accelerating struc-
ture, designed to accelerate particles from 75 KeV to 3.62 MeV. Moreover
the particular geometry of the RFQ helps in confining and shaping the
beam into bunches of particles.

• The Medium Energy Beam Transport (MEBT) line is another matching
section made of focusing magnets and cavities, designed to prepare the
beam for the Drift Tube Linac.

• The Drift Tube Linac (DTL), is a cavity type accelerating structure,
designed to accelerate the beam from 3.62 MeV to 90 MeV.

Superconducting Section. After the warm section, the beam enters the
cold section of the accelerator, which contains superconducting devices. Su-
perconducting technology is becoming the dominant technology in high power
particle accelerators, due to its efficiency. Most of the RF energy injected into
the cavities is transfered to the beam rather than being wasted in heating. This
section is composed of:

• Spoke Cavities. These cavities are located in the first stage of the super-
conducting (SC) section which takes the beam from 90 MeV to 216 MeV.
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Spoke cavities are SC resonators equipped with spokes that deliver an
accelerating gradient of 9 MV/m. In the ESS accelerator, double-spoke
cavities with an accelerating mode resonating at 352.21 MHz are used.
The cavity is covered by a Helium vessel and the space between the cavity
and the vessel is filled with liquid Helium.

• Elliptical Cavities. The elliptical cavity section of the accelerator is com-
posed of two different cavities, the medium-β and the high-β. This section
is designed to bring the energy of the particle to the final energy of 2 GeV.
There are 36, six-cell medium-β cavities and 84 five-cell high-β cavities
which operate at gradients of 16.7 and 19.9 MV/m respectively. Also
elliptical cavities are covered by the Helium vessel and cooled down to
approximately 2 K.

RF System. All the accelerating devices of the accelerator require a great
amount of RF power. The RF system is in charge of converting the AC line
power to RF power, at either 352 or 704 MHz. The main components of the
RF system are:

• Modulator. The modulator delivers high voltage DC power in pulses to
the power amplifier.

• RF Power Amplifiers. Klystrons will be used to convert the pulsed power
into RF power. Each elliptical cavity receives a peak power of 1 MW
from the Klystron.

• RF Distribution. An RF system based of waveguides, circulators and
directional couplers delivers the power to the accelerating devices.

• Low Level RF Control. This is the system that controls the interaction
between the power amplifiers and the cavities. Each cavity has a pickup
that picks up a signal that contains the information about phase and
amplitude of the accelerating mode.

Beam Instrumentation. Once the accelerator is turned on and the cavities
are filled with energy, the beam is ready to be accelerated towards the target.
In order to monitor the performance of the accelerator a set of diagnostic tools
is put in operation. Beam Instrumentation entails the design, production and
operation of instruments needed to measure the beam characteristics and allows
for a reliable operation of the accelerator within its performance requirements.
The main instruments used are:

• Beam Loss Monitors. They protect the machine from damage, trigger
the beam dump system and to assess the performance of the accelerator.
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• Beam Current Monitors. They measure the current, for example by mea-
suring the magnetic field generated by the beam with transformers or by
intercepting the beam with a Faraday cup.

• Beam Position Monitors. They measure the beam position along the
accelerator. These devices are often in form of pickups that measure the
charges induced by the electric field of the beam. With four pickups it
is possible to determine transverse position of the bunch. With multiple
sets of position monitors the time of flight is measured.

• Emittance Measurement Unit. The emittance describes the quality of a
beam and it is obtained by measuring its profile. For example, slit-grid
scanners can be used. The beam passes through a narrow slit and the
emerging particles are detected by a wire grid that measures the intensity
of the bunch charge. The slit is scanned and a profile of the bunch is
obtained.

• Longitudinal Bunch Profile Monitor. Longitudinal parameters are impor-
tant as well. The longitudinal spread of the bunch is measured in terms of
length, time or phase relative to the rf signal. The second measurement
is the momentum spread, that is the deviation of the momentum relative
to the reference particle.

Cryogenics. Another important subsystem is the cryogenic system that is
required to cool down different parts of the accelerator such as the spoke and
elliptical cavities, the target and some scientific instruments. The cryomodules
that host the superconducting cavities use liquid Helium at 2 K, 4.5 K and 40
K while the target will use liquid Helium at 16 K.

1.2 Overview on the History of Accelerators

Nowadays accelerators feature futuristic technologies and are based on com-
plex calculations, but the history of these machines started with simple ideas.
The first device that was intended to use a potential difference to accelerate
charged particle, is the Cockroft-Walton accelerator. It was build in England
at the Cavendish Laboratory in Cambridge by John D. Cockroft and Ernest
Walton. The accelerator operated thanks to a voltage multiplier that allowed
to generate a potential of 800 kV. It was sufficient to accelerate protons in an
evacuated tube and disintegrate a Lithium nucleus into two α−particles.

The second step in the history of accelerators was done by Robert Van de
Graaf [1]. The machine consisted in two insulated, hollow spheres of aluminum.
A belt of insulating material is spun by a motor, depositing an electrical charge
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on the spheres. One sphere was charged positively, while the other, negatively.
The potential difference between the spheres was of about 1.5 MV.

The history of modern RF accelerators starts in the 1930’s with the idea
of Rolf Wideröe. The only technology available at that time was based on
charged conductors, that is, on steady voltages. Such machines were limited
by the breakdown of vacuum, that is, an electric discharge would occur between
two points at high potential difference. Inspired by the work of Gustaf Ising,
Wideröe built the first linear accelerator, consisting of several gaps between
plates, charged by an RF generator. He could accelerate potassium ions to 50
kV at 1 MHz.

Due to the lack of high frequency power sources, the development of linear
accelerators slowed down in the 30’s and 40’s to leave space to the successful
Cyclotron of Ernest Lawrence. The Cyclotron is a device made of two “D”
shaped electrodes (see fig. 1.2). The electrodes are shaped like flat and hollow
half cylinders and an alternating potential is applied between them. The par-
ticles are accelerated first towards one electrode and then towards the other.
Magnets placed at the top and bottom of the electrodes provide the bending
force to make the particle follow a spiral. As the particles spiral out towards
the edge of the electrodes, they travel a longer and longer distance, acquiring
more and more energy. During the 30’s a number of improvements were made
on the original design, the source was optimized to increse the yield of protons
while the magnetic poles where shaped for a better confinement of the particles.

Cyclotrons are limited by the fact that the particles are no longer in syn-
chronism with the RF generator, once they have acquired a high energy. A
major advance in accelerator technology was obtained in the mid 40’s, when
the first electron synchrotron was built by E. M. McMillan. It is a circular
machine made of curved magnets and accelerating gaps. As in the case of the
Cyclotron, It also makes use of the idea of using the same accelerating “gap”
(or cavity), to repeatedly accelerate particles while using a magnetic field to
confine particles into a circular trajectory. As the particle energy increases,
the strength of the magnets is increased to mantain constant the radius of the
trajectory.

As the electrons move around the orbit they lose energy by emitting radi-
ation, thus slowing down. The energy lost is given back to the electrons when
they are accelerated by the fields in the cavities or “gaps”. The higher the
energy of the circulating electrons is, the higher the energy loss is. When the
energy lost approaches 10 GeV it becomes progressively impractical to replace
that energy with cavities. After the war, thanks to the invention of the mag-
netron and klystron, the research on linear accelerator was picked up again.
Before the war the RF linear accelerator was still fundamentally similar to the
Wideröe prototype. After the war instead a new type of accelerating structure
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Figure 1.2: Schematic of the Cyclotron from Lawrence’s Patent [2].

was proposed by L. Alvarez. It consisted on a sequence of drift tubes enclosed
by a cylindrical cavity. The first drift-tube-linac was born. The idea was to
excite a cavity mode with an RF amplifier, generating a uniform accelerating
field between the gaps. The particle experiences an accelerating field between
the gaps and is is shielded by the fields when passing through the small drift
tubes. The final step into the world of modern accelerators was made at Stan-
ford where the first iris-loaded waveguide was operated in the late 40’s. Devices
such as the Alvarez type drift-tube and the iris-loaded waveguides are still used
today.

We have to wait until the mid 60’s to find the first applicaiton of RF super-
conductivity. It was W. Fairbank, A. Schwettman and P. Wilson, that, for the
first time, accelerated an electron beam with a superconducting cavity coated
with lead. A few years later, in 1970, J. P. Turneaure and N. T. Viet success-
fully tested several superconducting Niobium cavities at 8.6 GHz demostrating
a peak surface electric field of 70 MV/m [4].



Design Aspects of Elliptical
Superconducting Cavities

2.1 Particle Acceleration in a Cavity

In modern particle accelerators, cavities are the devices that are used to ac-
celerate the particle beam. There are many different types of cavities, each of
which has its range of operation determined by the range of energies for which
the cavity accelerates particles efficiently (see energy acceptance in 2.2.2). In all
cases, cavities use an electric field, directed along the trajectory of the particles,
to increase the energy of the particles. Figures 2.3 and 2.4 show the accelerat-
ing field in an elliptical cavities. The field oscillates at a frequency such that
the particles passing through the center of the cavity always experience an
accelerating field in the direction of the particle motion.

Figure 2.3: Electric Field amplitude of the accelerating mode of an elliptical
cavity

9
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Figure 2.4: Electric Vector Field of the accelerating mode of an elliptical cavity

2.2 RF Design

A particle accelerator is made of many components such as the particle source,
magnets, control and measurement systems, cryomodules, cavities and many
others. Due to their efficiency and performance the devices used to impart the
energy to the particles in modern accelerators are the resonant cavities. We
can divide cavities into two groups, normal-conducting and superconducting.
RF superconductivity applied to accelerator technology has advanced over the
last decades, making superconducting cavities the technology of choice in many
modern accelerators. The key advantages of this technology compared to the
normal-conducting case, are the high accelerating gradient in both continuous
wave and long pulse regimes and the high quality factors achieved thanks to
the very low operating temperatures and the use of special materials such as
Niobium.

Achieving a high acceleration efficiency is not the only critical aspect of
cavity design, in fact, other aspects have to be taken into account at an early
design stage, such as the electric and magnetic peak fields and the cell-to-cell
coupling factor. Other aspects, such as the impact of the higher order modes
(HOMs), the mechanical performances and the external quailty factor of the
cavity, cannot be accounted for at the beginning of the design, because they
require the design of the complete cavity. All these aspects interfere with each
other, making the design of the cavity a matter of compromise.

Complex projects such as the ESS require years of gestation in order to
reach a finalized accelerator design. As the accelerator design evolves, also the
specification of its components change (see table 2.1), it is then advisable to
produce a design that can withstand those changes as much as possible in order
to avoid a complete redesign.
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2.2.1 Linac Parameters

The main design parameters of the superconducting elliptical section of the ESS
accelerator are chosen in order to reach the required neutron flux necessary to
run the experiments [5, 6]. In 2013 the final accelerator layout was developed
in order to meet the cost objectives. The accelerator will provide a 2.0 GeV
proton beam in pulses of 2.86 ms with an average current of 62.5 mA, giving
a 5 MW beam with a 4% duty cycle. Table 2.1 summarizes the accelerator
parameters and the difference between the 2012 and the 2013 baseline linac
called OptimusPlus.

Table 2.1: The main parameters of the elliptical section and the evolution of
the design

Accelerator Parameters Nov. 2011 Baseline OptimusPlus

Energy [GeV] 2.5 2

Beam Power [MW] 5 5

Repetition rate [Hz] 14 14

Beam current [mA] 50 62.5

Beam pulse [ms] 2.86 2.86

Duty cycle [%] 4 4

Cavity Parameters

Frequency [MHz] 704.42 704.42

Cells per Medium-β Cavity 5 6

Cells per High-β Cavity 5 5

Medium-β Cavities per Cryomodule 5 4

High-β Cavities per Cryomodule 8 4

Geometric-β, Medium-β Cavities 0.7 0.67

Geometric-β, High-β Cavities 0.86 0.92

Gradient, Medium-β Cavities [MV/m] 15 16.7

Gradient, High-β Cavities [MV/m] 18 19.9
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2.2.2 Elliptical Cavities

Designing a cavity means finding and optimizing a geometry in order to fulfill
the specifications. The design procedure starts by dividing the cavity in two
fundamental elements, the inner cell and the outer cell. Due to the fact that
the outer cells are attached to the beam pipes and couplers, such as the fun-
damental power coupler, HOM couplers and pickups, the end cells are usually
different from the inner cells and are thus designed separately. Moreover, the
inner cells have a more significant impact on the performances of the cavity
since there are more inner cells than end cells.

Among all the cavity parameters, the geometric β, βg, the frequency of the
accelerating mode and the number of cells per cavity are usually chosen first.
The choice of the frequency is not an issue related to the cavity technology
only, but it is influenced by all the systems of the accelerator and their cost.
In fact a considerable part of the total cost of the accelerator is given by the
RF power amplifiers such as tubes and klystrons.

A particle with a normalized velocity β = v/c1 ≈ βg, crosses a single cav-
ity cell in half an RF period, thus seeing an accelerating field while passing
through the cavity. The geometric β is in fact linked to the cell length L, by
the relation, L = βgλ/2, where λ is the wavelength of the accelerating mode.

Both βg and the number of cells have an impact on the acceleration effi-
ciency. In order to be accelerated with maximum efficiency, a particle should
have a speed within the energy acceptance interval where β ≈ βg. The en-
ergy acceptance is the range of energies (or velocities) a particle should have
in order to experience approximately the maximum of the accelerating field.
The boundary of the energy acceptance can be set for example at ±80% of the
maximum accelerating field. From figure 2.5 we see that

• the more the particle velocity β is different from βg, the lower the accel-
eration efficiency. This is also the reason why different types of cavities
are necessary along the accelerator in order to cover a broad range of
particle energies.

• The higher the geometric β of the cavity is, the higher is the energy
acceptance, and the efficiency of the cavity.

The number of cells has also an influence on the energy acceptance of the
cavity, in fact, the lower the number of cells, the wider the energy acceptance.
An example of this behavior is in fig. 2.6. The number of cells is not determined
only considering energy constraints but also considering the size of the cryostats
and costs. It is necessary to find an acceptable compromise between the energy
acceptance and the number of cells:

1c is the speed of light in vacuum



13

100 200 300 400 500 600 700 800 900
0

5

10

15

Proton Energy [MeV]

E
a
c
c
[M

V
/
m
]

β = 0.5
β = 0.65
β = 0.7

Figure 2.5: Accelerating field as function of the proton energy for three 5-cell
cavities of different βg.

• since every cavity is equipped with a power coupler and beam pipes which
take space and do not contribute to the acceleration, it is desirable to
increase the number of cells. On the other hand increasing the number
of cells leads to a narrow energy acceptance. Consider also that in order
to limit the number of sections of the accelerator the energy acceptance
cannot be too small.

• The maximum of the accelerating field is obtained for the optimum β
which is higher than βg.

2.3 A Comment on the Limits of Particle Ac-
celeration

In this section we want to analyze the efficiency of acceleration comparing
different scenarios. Our point of view is to measure acceleration efficiency as
the ratio between a real case and an ideal one, that is, considering ratios of the
type

realistic case

ideal case
. (2.1)

Consider the acceleration of a point bunch of charged particles in a single cell
cavity resonator. The longitudinal accelerating field experienced by the bunch
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Figure 2.6: Accelerating field normalized with respect to the peak surface elec-
tric (a) and magnetic (b) field as function of the proton energy for a βg = 0.5
cavity with different number of cells.

while passing along the axis of the cavity can be written as

Ez(r = 0, z, t) = E(0, z) cos

(
ω
z(t)

β(t)c
+ φ

)
(2.2)
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where ω is the resonant frequency of the accelerating mode, β(t) = v(t)/c is
the normalized particle velocity v at time t, and

z(t) =

t∫

0

β(t′)c dt′. (2.3)

As a realistic model of an accelerating cavity we consider a cylindrical cavity
resonator, also called pillbox. In this case, the field E(0, z) of the accelerating
mode is longitudinal, that is, it is directed along the axis, and it is independent
of z, that is E(0, z) = E(0, z)ẑ. The particle takes half an RF period to pass
through the cavity, so that it experiences E = 0 at z = ±L/2 and E0 at z = 0.
We choose φ = 0, so that when the point bunch is at the center of the cavity,
that is when z = 0, the field experienced by the bunch is its maximum value,
which we denote with E0 (see fig. 2.7). Since the RF field is oscillating in
time, the particle does not always experience the value E0, but all the values
between 0 and E0, as in the blue curve in fig, 2.7. This inefficiency is an
inherent limitation of RF accelerators, that is, it stems from the fact that the
fields are oscillating in the resonator. The energy gain of a point bunch passing
on the axis of such a cavity is

∆WRF = q

L/2∫

−L/2

E(0, z) cos

(
ω
z

βc

)
dz = 2qE0

L

π
. (2.4)

This is the energy gain in the case of an RF pillbox cavity. Even in the case of
a point bunch of infinite velocity, the field seen by the bunch during is passage
along the axis of the cavity, would still not be equal to its maximum and the
efficiency of acceleration would still not be the highest possible.

In a DC accelerator instead, the particle would experience a field of constant
amplitude. We can think of substituting the pillbox with two large parallel
plates, positioned at a distance L one from the other. We put a fixed potential
difference between such that the field between them is constant and equal to
E0 and we obtain

∆WDC = q

L/2∫

−L/2

E0 dz = qE0L. (2.5)

We can consider the DC acceleration method, an ideal method of acceleration
because then define the efficiency of the pillbox as the ratio

∆WRF

∆WDC
=

2

π
= 0.637, (2.6)
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Figure 2.7: Electric field experienced by a particle passing on the axis of a
cavity of length L=0.1426 m (blue) and the field experienced if the cavity was
substituted by a parallel plate gap with a fixed potential difference equal to
the maximum of the RF case (red). The value E0 = 1 has been chosen.

that is, the acceleration efficiency between a realistic RF acceleration method
and a DC acceleration method, is 63.7%.

In the literature it is customary to introduce the concept of transit time
effect, which is another type of inefficiency. As mentioned, the particles passing
through a cavity do not experience the maximum of the field at all times. If
the particles could travel at an infinite velocity though, it would be possible for
them to experience the same field along their trajectory. A new efficiency can be
defined comparing the acceleration of bunches with finite and infinite velocity
in an RF cavity [3]. The efficiency would then be 78.5%. It is impossible for
the bunches to travel at an infinite velocity though. The conclusion is that
the conventional RF acceleration methods have an inherent physical limitation
which comes from the fact that RF fields are used.
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RF Design

Gabriele Costanza.

Abstract

In this paper the RF design of the medium-β cavity for the ESS is pre-

sented. The final result is the complete design of a six-cell elliptical cav-

ity. The tests retults, presented in the last section, show that the cavity

satisfies the requirements of the ESS accelerator. The inner cell design is

carried out first and is followed by the end cell design. The design method

is based on a matlab script that organizes the simulations, tunes the cells

to the design frequency and presents the results in form of plots and tables

in order to facilitate the design.
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RF Design

1 Introduction

In this paper the design of the medium-β cavity for the ESS is presented [1].
First a description of the geometry is given in section 2 followed by the descrip-
tion of the quality factors that are necessary to assess the quality of the cavity
design in section 3. In section section 5 the design method is presented along
with the results of the simulations. The design is divided in two parts. The
first part of the design concerns the inner cell (section 5.1), while the second
part is about the end cell (section 5.2). Every cell is made with two cups (see
fig. 1) which are welded together with an electron beam. An infinite number
of modes exist in the cavity, but the design aims at optimizing the RF per-
formances of the accelerating mode. The fundamental mode, also called the π
mode, is axially symmetric and has a phase shift of π between adjacent cells
(see fig. 2.4). This is the accelerating mode. The RF-system excites this mode
through a coupler that is attached to cavity. In the first stage of the design of
the cavity the coupler is neglected.

The design method is based on a matlab script that organizes the sim-
ulations, tunes the cells to the design frequency and presents the results in
form of plots and tables in order to facilitate the design. After the RF design,
the mechanical design is presented. The design is not only complicated by the
stringent specifications but also by the fact that the cavity is symmetric and
only two cups are used.

2 Geometrical Parameters

Elliptical cavities consist in a series of so called elliptical cells. The name
comes from the fact that the profile of each cell is derived from two ellipses
and a tangent between them (see. fig. 1). The initial design of the accelerator
featured medium-β cavities with 5 cells, a number that was later increased to 6.
The geometry of an elliptical cell is decomposed in simple geometrical objects,
such as ellipses, a tangent between them and straight lines. The outline of an
elliptical half cell is in figure 1.
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Figure 1: Geometry and parameters of an elliptical half cell.

The geometrical parameters that characterize the ellipses are

• A, a: width of the ellipses,

• B, b: height of the ellipses.

Other geometrical parameters are

• L: length of the cell,

• Riris: radius of the iris aperture,

• D: radius of the cell,

• α: inclination of the side wall of the cell.
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3 Quality Factors and Performance

In this section we give the parameters that are necessary to measure the per-
formance of a cavity. Let us consider a cavity of volume Ω enclosed by a surface
S. The first quantity to be defined is the accelerating field :

Eacc =
1

Lacc

∣∣∣∣∣∣

Ltot∫

0

Ez(0, 0, z) e
iω0z/βc dz

∣∣∣∣∣∣
=
|V |
Lacc

, (1)

where Lacc is the active length of the cavity, that is, the length of the cavity
excluding the beam pipes, while Ltot is the total length of the cavity, including
the beam pipes. Ez(0, 0, z) is the component of the complex electric field along
the axis of the cavity, ω0 is the angular frequency of the mode considered.
Notice that

• We have assumed that the change in velocity of the particles is negligible,
so that t = z/(βc).

• The accelerating field depends on the normalized velocity β.

• The phase of the field with respect to the position of the particle is not
taken into account. Eacc is the maximum of the accelerating field that
can be obtained.

The intrinsic quality factor quantifies the performances of the cavity with re-
spect to the power dissipation and it is defined as

Q =
ωnU

Pd
, (2)

where U is the average electromagnetic energy stored in the cavity, defined as

U =
ε0
2

∫

Ω

|E|2 dΩ =
µ0

2

∫

Ω

|H|2 dΩ, (3)

and where Pd is the average power dissipated in the cavity walls:

Pd =
1

2

∫

S

Rs|H|2 dS. (4)

Rs being the surface resistance of the cavity. If Rs is constant along S we can
define the geometric factor G

G = RS Q =
ω0U∫

S

|H|2 dS = ω0µ0

∫
Ω

|H|2 dΩ

∫
S

|H|2 dS , (5)
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which is dependent only on the geometry of the cavity. Another important
quantity dependent only on the cavity geometry is the ratio R/Q:

R

Q
=
ω0|V |2
U

= ω0
(EaccLacc)

2

U
. (6)

A high quality cavity is able to produce a high accelerating gradient Eacc with-
out quenching [2] or excessive electron emission [3]. Quenching is the transition
of the cavity from the superconducting state to the normal-conducting state.
Typically this transition is initiated in a small area of the surface. If the local
dissipation is too strong, an avalanche effect is triggered and the normal con-
ducting zone spreads to the whole cavity with a corresponding sharp increase
in power dissipation. Electron emission is another problem that limits the
cavity performance. When the surface electric field is high, electron emission
occurs, especially if the surface roughness of the cavity is high and if there are
inclusion or impurities on the metal surface. Electrons emitted by the surface
find themselves in the oscillating RF field and, if the electrons are symcronzed
with the field, they can be accelerated towards the surface multiple times. If
the energy of the electrons impinging on the cavity surface is sufficient, more
electrons are emitted and an avalanche effect may occur leading to an electric
discharge in the cavity. This effect is called multipacting.

In terms of cavity design, it is necessary to keep both the surface peak
electric field and the surface peak magnetic field as low as possible to avoid
quenching and electron emission. The peak fields are usually normalized with
respect to the accelerating gradient of the cavity, giving the quantities

ηE =
Epk
Eacc

, ηH =
Hpk

Eacc

[
mT

MV/m

]
. (7)

By reducing these normalized peak fields one can increase the accelerating field
without risking quenching or electron emission.

The next parameter to be introduced is the field flatness, ff , as a measure
of the equalization of the field distribution of the accelerating mode in the
different cells. If the field flatness is small, it means that most of the energy of
the accelerating mode is concentrated in one cell of the cavity, thus, not only
the particles will experience a non-even acceleration passing through the cells,
but the cell which stores most of the energy will also have the highest peak
fields, which is dangerous for quenching and multipacting and will ultimately
limit the performance of the cavity. The field flattness is also expressed in
percent as

ff =
100(Emax − Emin)

1
N

N∑
i=1

Ec,i

(8)
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where Emax and Emin are the maximum and minimum value of the electric
field on the cavity axis while Ec,i is the maximum of the axial field in cell i.

4 Multi-Cell Cavities and Passband Order Modes

Elliptical cavities can be modeled as a periodic sequence of electrically cou-
pled single cell resonators, where each period consists of one cell. Each cell is
connected to the next through an aperture called “iris”, as shown in figure 2.
The gray area representing two cups joined together at the iris, is also called
“dumbbell”.

A periodic arrangement of cells, gives rise to a set of normal modes [4], each
of which is characterized by a specific field distribution and frequency. In gen-
eral, each cavity mode has a set of normal modes associated to it, spanning a
frequency band, called the passband. For example, the fundamental (or lowest
frequency) mode of an elliptical cavity is the TM010 mode which, in an N -cell
cavity, is characterized by N normal modes. The normal modes differ from
each other not only in frequency and for the field distribution, but also on the
so called phase advance per cell. The phase advance per cell is the difference
between the phase of the fields from one period to the next. Figure 3 shows
the field profiles and phase advances for the normal modes of the fundamental
passband of a six-cell elliptical cavity. We can make some remarks:

• at the top left of the figure we see the field profile of the accelerating
π mode. Its field is characterized by a phase shift of 180◦ degrees from
one period to the next. Moreover, the longitudinal electric field is evenly
distributed along the cavity in the sense that equal peaks in the electric
field are formed at the center of every cell.

• All the other normal modes are characterized by an uneven distribution
of the field along the cells, moreover the phase of the field from one cell
to the next does not change continuously. For example, the field of the
5π/6 mode, has the same phase in the two innermost cells, while the field
is stronger in the outermost cells, as seen in figures 3 and 4.

During the inner cell desing phase, it is customary to use the dumbbell as a
geometry prototype (see fig. 5), since it is possible to find both its normal
modes, the zero and the π (or accelerating) mode, with a single simulation,
using the perfect electric conductor boundary condition. The zero mode is not
present in the full cavity equipped with beam tubes, but the frequency of the
zero mode is useful later in the calculatiion of the cell-to-cell coupling.

The cell-to-cell coupling, Kcc, quantifies the coupling between the cells of
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Figure 2: Two cells joined together at the iris. The gray area, representing two
cups joined together, is also called “dumbbell”.

the cavity. For an N cell cavity, it can be shown [4] that the frequencies of the
normal modes are distributed according to the formula

fqπ/N = f0

√
1 +Kcc(1− cos(qπ/N)), φ = 1, 2, . . . , N, (9)

with

Kcc = 2
fπ − f0

fπ + f0
. (10)

where q = 0, 1, . . . , N , is the normal mode index and f0 and fπ are the fre-
quencies of the zero mode and of the π mode respectively. The cell-to-cell
coupling factor is often expressed in percent which amounts to multiplying the
last equation by 100.

5 Cavity Design

Designing the cavity means finding and optimizing its geometry in order to
fulfill the specifications. It is advisable to design the inner and the outer cells
separately since the outer cells are attached to the beam pipes and will then
have a different geometry. Moreover the full cavity has too many geometrical
parameters to optimize and that would make the design process impractical.
It is convenient to use a program that automatizes the design of the cavity,
for example by exploring the parameter space, tuning the cells, executing the
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Figure 3: Longitudinal field distributions (red) and phase advance per cell
(blue) of the normal modes of the first passband corresponding to the TM101

mode. A six-cell cavity (black) has been used.
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Figure 4: Amplitude of the electric field of the 5π/6 mode in a six-cell elliptical
cavity. Most of the electromagnetic energy is stored in the external cells.

Figure 5: Axisimmetric version of the “dumbbell”. It is customary to use this
geometry in the simulations.
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simulations and calculating the quality factors. In the design process, the
commercial software comsol multiphysics was used. It is possible to link
the simulator to matlab, through the comsol with matlab interface.

Much effort was spent in developing a matlab script that organizes the
simulations and tunes the cells through comsol by varying the parameter D.
The input to the script are the boundaries of the parameter space, that is the
maximum and minimum values for the parameters A, a, B and b, while Riris
is fixed. Riris has the strongest influence on the RF parameters, that is why it
can be kept fixed while varying all the other geometric parameters.

Concerning the inner cell design, it is convenient to simulate the dumbbell
made of two inner cells connected at the iris, in order to obtain the fields and
frequencies of both the zero and the π mode necessary to calculate the cell-to-
cell coupling.

The specifications of the cavity are listed in table 1 [1]. At the time of the
design of the cavity the electric peak field was defined to be 40 MV/m but
was later increased to 45 MV/m. Also the nominal accelerating gradient was
increased from 15 MV/m to 16.7 MV/m and the number of cells were increased
from 5 to 6, following the refinement of the overall accelerator design.

Table 1: Techical requirements for the medium-β cavity

Parameter Value

Freq. Acc. Mode [MHz] 704.42

Number of Cells 5

Geometric Beta 0.67

Acc. Gradient (Peak) [MV/m] 16.7

Acc. Gradient (Nominal) [MV/m] 15

Max. Surf. E field (Nominal) [MV/m] ≤ 40

Max. Surf. E field (Peak) [MV/m] ≤ 45

Max. Surf. H field (Nominal) [mT/MV/m] ≤ 80

Max. Surf. H field (Peak) [mT/MV/m] ≤ 90

External Q 5.9e5 ≤ Qext ≤ 8e5

Intrinsic Quality Factor Q ≥ 5e9
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5.1 Inner Cell Design

The first parameter to choose is the cell length L, which is determined by
L = βgλ/2. In our case, since the frequency of the accelerating mode is 704.42
MHz and βg = 0.67 (see table table 2.1) we have

L = βg
λ

2
= 0.1426 [m]. (11)

The geometric parameter that most influences the performances of the cavity
is the radius of the iris (Riris), it is then important to chose this parameter
first. One way to proceed is to make an initial guess and perform simulations
that span a wide section of the parameter space in order to understand if the
choice of Riris is satisfactory. The initial guess can be driven by existing cavity
designs with similar βg and frequency.

A small radius of the iris, Riris, leads to a higher accelerating field, which
in turn leads to

• lower normalized surface peak fields Epk/Eacc and Bpk/Eacc,

• higher R/Q,

• lower cell-to-cell coupling, kcc.

After exploring the parameter space with a large number of simulations, a
section of it has been selected for further analysis. The radius of the iris has
been chosen to be Riris = 47 mm. Moreover only the cells with a side wall
inclination α & 7◦ were considered. For smaller angles, the cleaning and drying
of the cavity after the chemical treatment becomes progressively harder. To
determine the other geometric parameters, a parametric sweep was done (see
table 2).

Table 2: Parametric sweep for the inner cell design.

Geometric Parameter [mm] start [mm] stop [mm] # steps

A 45 48 4

B 48 52 5

a 11.5 15.5 5

b 24 27 4

Figures 6 to 10 represent a typical scatter plot of the results. Every point
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Figure 6: R/Q as function of the geometric parameters A, B, a and b.

in those plots represent a simulated inner cell. Figures 11 to 15 are main effect
plots. These plots show the variation of a dependent variable averaging over
its different levels obtained when the other independent variables are varied.
These plots allow to draw general conclusions about each geometric parameter:

• the R/Q increases when the side wall angle α decreases, see fig. 11.

• The Normalized Surface Peak Electric Field is controlled almost entirely
by the parameter a, and it varies non linearly, see fig. 13.

• The cell-to-cell coupling is also mainly determined by a. There is then a
clear trade off between Kcc and the Surface Peak Electric Field.

Figures 16 to 20 are interaction plots. These plots explain the variation of the
RF parameters in more detail since the different levels obtained for the RF
parameters are not averaged. Among the ellipses paramers A, B, a and b, the
width of the ellipses A and a, are the most sensitive parameters, while B is the
least sensitive. Notice also that A and a control the inclination of the side wall
of the cell, α. In particular we notice that

• Increasing A and a (small inclination α) leads to an increase of R/Q (see
also the main effects plot 11) and a decrease of the electric peak field but
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Figure 7: G as function of the geometric parameters A, B, a and b.

it has a detrimental effect on the cell-to-cell coupling (figures 13 and 15).
The curves on top have a strong inclination, denoting that A and a have
a strong influence on R/Q. The curves on the bottom instead, are almost
horizontal, denoting that B and b have a small influence on R/Q.

• The geometric factor G is influenced mostly by A and a (see fig. 7 and
fig. 12). A small side wall inclination α (or a large A and a small a)
increases the geometric factor.

• The parameter a is important in determining the cell-to-cell coupling,
Kcc while A has a small effect. This is evident in figure 10 but also in
the main effects plot 15.

• Since the maximum of the peak electric field is at the intersection between
the side wall and the small ellipse, the normalized peak electric field is
mostly influenced by the dimensions of a and b of the small ellipse. See
the main effects plot 13 and the interaction plot 18. Notice also the
pronounced non linearity of Epk/Eacc with respect to a.

• Bpk/Eacc is mostly determined by the parameter A, and to a second order
by B and a, that is, the dome ellipse dimensions are relevant for the peak
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Figure 8: Epk/Eacc as function of the geometric parameters A, B, a and b.

magnetic field (see fig. 9, 14, 19). This effect is expected since the peak
surface magnetic field is at the intersection between the side wall and the
dome ellipse. Increasing A and decreasing a, decreases Bpk/Eacc. Notice
also the nonlinear dependence of Bpk with respect to a.

The plots in figures 16 to 20 show the variation of the RF quality factors
against the interaction between the geometric parameters and summarizes the
simulation results. In particular the plots in figure 18 confirm that the different
levels of a have a strong influence on the electric peak field, while the other
parameters have little influence. Similarly in fig. 19, the parameter A has
the strongest influence on the peak magnetic field. Observe also the tradeoff
between Epk/Eacc and Kcc in figures 18 and 20. A high value of a lowers the
cell-to-cell coupling as well as the peak electric field almost irregardless of the
value of A.

As we see from the plots of this section, a trade-off has to be made between
the geometric parameters in order to obtain satisfying performances. The final
dimensions of the inner cell as well as the RF performances are summarized in
table 3. All the design goals are met with a slight concession regarding the side
wall inclination α and considering the more stringent and safer requirement of
40 MV/m of electric peak field at the accelerating gradient of 16.7 MV/m.
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Table 3: Geometrical parameters and RF performances of the chosen inner cell

Parameter Value

L [mm] 142.6

Riris [mm] 47

α [deg] 6.4

D [mm] 185.109

A [mm] 48

B [mm] 48

a [mm] 15.5

b [mm] 26

R/Q [Ω] 66.04

G [Ω] 195.9

Epk/Eacc 2.385

Bpk/Eacc [mT/MV/m] 4.8

Kacc [%] 1.19
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5.2 End Cell Design

In the end cell design phase, the end cells and the beam tube are designed, the
end cell being made of half inner cell and half end cell (see figures 21 and 22 ).
To simplify the overall design of the cavity, the cell radius D determined in the
inner cell design phase is used also for the end cells. This makes it impossible
to tune the cell by varying D. As an alternative, the parameter B has been
chosen to tune the cells since it has the least influence on the RF performances.

The end cell is attached to the beam tube that has a radius of 68 mm which
is substantially larger than the iris radius, Riris. This is necessary in order to
satisfy the requirement on the Qext. In fact, a large beam tube improves the
coupling between the accelerating mode and the power coupler but decreases
the accelerating field, the R/Q and thus the other RF performances of the
end cells. The end cell can limit the performances of the whole cavity. The
present design features two identical end cells, that is, both the end cells are
the same despite the fact that the power coupler is only on one side of the
cavity. It is often convenient to use different end cells in order to steer the
frequencies of the higher-order-modes to a less dangerous part of the spectrum,
far from the beam line harmonics. Moreover, to mitigate the effect of the lower
performances of the end cells, one of them can be designed with a beam pipe
that has, for example, the same size of the inner cell iris aperture, which tends
to align the performances of the end cell with the inner cells.

To compensate for the lower end cell performances, a slight shortening of the
end cup has been applied, in fact the end cup has a length of L/2 = 137.6/2 =
68.8 mm. This allows a slight decrease of the electric and magnetic peak fields,
as shown in figure 23. As for the inner cell, after a broad exploration of the
parameter space, the analysis is focused over a small section summarized in
table 4.

As for the inner cell case, the parameters A and a are the most important.
Notice the tradeoff between the electric and magnetic peak fields involving the
parameter a (cfr figures 26 and 27). A high value of a leads to a lower electric
peak field but a higher magnetic peak field.

Figures 28 to 31 are the interaciton plots of the end cells. We observe that

• contrary to the inner cell case a larger value of a leads to a lower R/Q,
see fig 28.

• The nonlinear behavior of Epk/Eacc versus a is present also in the end
cell case, see fig. 30.

Table 5 summarizes the geometrical parameters of the chosen end cell and its
RF perfomances.
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Figure 21: 2D model of the end cell made of half an inner cell cup and half an
end cell cup.

Figure 22: 3D model of the end cell with coaxial power coupler.
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Table 4: Parametric sweep for the end cell design with D = 185.109 mm.

Geometric Parameter [mm] start [mm] stop [mm] # steps

A 48 52 5

a 9 13 4

b 24 27 4

Table 5: Geometrical parameters and RF performances of the chosen end cell

Parameter Value

L [mm] 137.2

Riris [mm] 68

α [deg] 7.4

D [mm] 185.109

A [mm] 48

B [mm] 27.29

a [mm] 12

b [mm] 27

R/Q [Ω] 57.89

G [Ω] 200.37

Epk/Eacc 2.433

Bpk/Eacc [mT/MV/m] 4.97
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RF Design 55

2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8

1

2

3

4

5

Epk/Eacc

A
,
a
,
b
[m

m
]

Figure 26: Epk/Eacc as function of the geometric parameters A, a and b.

4.86 4.88 4.9 4.92 4.94 4.96 4.98 5

1

2

3

4

5

Bpk/Eacc [mT/MV/m]

A
,
a
,
b
[m

m
]

Figure 27: Bpk/Eacc as function of the geometric parameters A, a and b.
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5.3 Coupler and External Quality Factor

In this section a preliminary study on the cavity coupling is presented. The
main quantity used to quantify the coupling between an external circuit and
the cavity is the external quality factor. The external quality factor is an
important parameter since it determines how much of the power sent through
the coupler is effectively used to generate an accelerating field. Its definition is
the following:

Qext =
ωU

Pext
=

ωU
1

2

∫
Σ

(E ×H∗)× n̂ dS
(12)

where, Pext is the power flowing through the coupler port of cross section Σ
and normal n̂ external to the cavity, ω is the mode considered and U its energy
as defined in 3.

The geometry of the coupler is in figure 32 and it has been designed at
the CEA laboratories, in Saclay, Paris. The quantity to be optimized is the
antenna penetration p, while the parameter Lc is kept equal to 35 mm in order
to have the best coupling possible leaving enough space for the helium vessel
to be installed. When p = 0 the antenna does not protrude into the beam pipe
and the antenna tip is at 68 mm from the symmetry axis. A plot of the results
is in figure 33. In order to have an external quality factor that satisfies the
specification, the antenna penetration p has to be set between 6mm to 10 mm.

5.4 The Complete Cavity

In this section the results concerning the complete six-cell cavity are summa-
rized. All the main RF parameters are calculated for the accelerating mode,
and are reported in table 6. Moreover figure 35 represents the R/Q of the
fundamental passband modes as function of the normalized velocity β.

The beam passing through the cavity excites a large number of modes. The
oscillations of such modes can grow strong enough to deteriorate the dynamics
of the beam. To make sure that none of the higher-order-modes is a threat,
it is necessary to verify that none of them resonates at a frequency close to
one of the harmonics of the beam line frequency (352.21 MHz). Figure 34
and table 7 report the frequencies and R/Q’s of the monopolar modes up to
3 GHz. None of the higher order modes is closer than 5 MHz to any of the
harmonics of the beam line frequency. A more detailed study of the effect of
the higher-order-modes and their power dissipation is deferred to paper III.



RF Design 61

35mm

p

Figure 32: Coaxial coupler used in the simulations

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
0

0.5

1

p [mm]

Q
e
x
t
×
10

6

Figure 33: Variation of Qext against the antenna penetration.
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Table 6: RF parameters of the six-cell cavity

Parameter Value

Frequency [MHz] 704.424

G [Ω] 197.4

Field Flattness [%] 99

Kcc [%] 1.21

@ βopt = 0.705 @βg = 0.67

R/Q [Ω] 397.74 367.22

Epk/Eacc 2.35 2.45

Bpk/Eacc [mT/MV/m] 4.78 4.98
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0

5

10

15

mode number

R
/Q

[Ω
]

Figure 34: R/Q of the monopolar modes below 3 GHz.
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Table 7: Frequencies and R/Q’s of the monopolar modes below 3 GHz.

Frequency [MHz] R/Q @βg [Ω] Frequency [MHz] R/Q @βg [Ω]

696.651 0.036 2271.087 1.906·10−15

698.232 0.364 2271.087 1.097·10−13

700.347 0.244 2281.829 0.323
702.411 1.211 2319.606 0.025
703.889 0.434 2326.480 1.379·10−12

704.423 3672210 2328.594 0.190
1515.651 1.171 2328.609 1.509·10−12

1517.186 0.012 2331.268 7.329·10−12

1524.349 0.065 2333.443 1.004·10−13

1534.232 0.057 2342.743 3.59·010−3

1544.856 0.132 2354.492 2.357·10−2

1553.281 6.729·10−4 2361.884 4.22·10−2

1681.031 4.052 2463.292 2.556
1681.050 0.972 2463.292 2.555
1695.762 1.891·10−13 2675.873 4.302·10−13

1695.761 2.369·10−12 2675.873 4.899·10−13

1727.305 0.692 2786.846 1.741
1731.288 16.975 2786.953 0.439
1732.029 15.215 2797.279 2.903·10−12

1736.092 0.226 2797.279 5.510·10−12

1743.905 2.679 2808.352 0.644
1744.021 7.897·10−13 2812.680 4.674·10−3

1744.705 2.149·10−14 2825.224 0.253
1745.545 4.390·10−14 2847.158 3.910·10−2

1746.222 4.203·10−12 2872.516 1.917·10−2

1749.588 0.375 2888.448 1.025·10−13

1949.356 9.305 2897.655 2.618·10−13

1949.356 9.482 2909.788 7.238·10−13

2183.424 2.640 2920.880 8.751·10−17

2183.537 0.460 2955.779 1.411·10−12

2218.565 0.325 2955.859 2.273·10−12

2235.026 1.230 2995.211 5.385·10−4

2253.930 0.031 3001.075 6.185·10−2

2269.807 1.555
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6 Test Results

The cavity (see fig. 37) was tested at the CEA laboratories in Saclay, in July
2016. The measurement process involves cooling down the cavity at cryogenic
temperatures (≈ 2◦ Kelvin) in a vertical cryostat. Two antennas are attached
to the beam pipes of the cavity, the first antenna is used to send power into
the cavity while the second is passive and it’s used to measure the transmitted
power. The difference between the measured incident, reflected and transmit-
ted powers is the average power stored in the cavity. Using the factor R/Q
calculated with the simulator it is then possible to calculate the accelerating
gradient Eacc.

The cavity presented in this thesis has passed the test reaching an acceler-
ating gradient of 17 MV/m with an intrinsic quality factor of ≈ 7.5e9, see fig.
36, both quantities are beyond the specifications. Tests on the second cavity
prototype will be done in January 2017 on a cavity dressed with the helium
vessel.
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Figure 36: Test results for the first medium-β prototype obtained at the CEA
research center in Saclay, Paris.

Figure 37: 3D model of the full cavity.
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Mechanical Design

Gabriele Costanza.

Abstract

In this paper the mechanical design and its influence on the electromag-

netic properties of the medium-β cavity for the ESS is presented. First a

description of the relevant mechanical parameters is given along with the

description of the quality factors that are necessary to assess the quality of

the cavity design. The simulations show that the thickness of the cavity

walls is the main factor in determining the mechanical performances of

the cavity while the stiffening rings contribute to a lower degree. In the

end the results are presented.
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Mechanical Design

1 Introduction

In this paper we focus on the mechanical study of the cavity. Before giving the
main results an explaination is necessary regarding the quantities of interest
and the simulations set up.

Elliptical cavities are made of thin Niobium sheets welded together and, for
this reason, they are susceptible to geometric deformations. There are several
causes of detuning, such as vibrations and radiation pressure. Considering that
the intrinsic quality factor of the accelerating mode is in the range of ≈ 109

even a small deformation can shift the frequency of the modes significantly. If
the cavity is driven off resonance, more power would be needed to maintain
the nominal accelerating gradient in the cavity and a considerable ammount of
power would be refrlected back to the RF system. The mechanical parameters
that we consider are:

• Lorentz Force Detuning.

• Tuning Sensitibity.

• Cavity Stiffness.

• Pressure Sensitivity.

• Maximum von Mises Stress.

We now give an explaination of the mentioned quantities.

1.1 Lorentz Force Detuning

The RF power injected in the cavity exerts a pressure on the cavity walls that
leads to the so called Lorentz Force Detuning (LFD) [5]. Consider the magnetic
field strength of the accelerating mode (fig. 1) and the surface currents (red
arrows in 1). The magnetic field and the surface current are strongest in the
dome region. The magnetic field is directed along the azimuthal direction while
the surface currents are tangential to the cavity surface. An application of the
Lorentz force formula produces a force on the cavity walls directed towards the
outside of the cavity. Moreover, in the iris region, the electromagnetic field
interacts with the induced surface charges, producing a force directed towards
the inside of the cavity. The resulting force on the cavity surface is in figure 2.
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Together the electric E and the magentic field H produce a radiation pressure,
which is defined as

Prad =
1

4

(
µ0|H|2 − ε0|E|2

)
, (1)

where, E and H are the electric and magnetic field on the walls of the cavity.
The cells are deformed by the radiation pressure producing a frequency shift
which can be evaluated to a first approximation with Slater’s formula [1]:

δf

f
≈ 1

4U

∫

Ω

(
µ0|E|2 − ε0|H|2

)
dΩ. (2)

where, Ω is the difference in the volume between the deformed cavity, with the
radiation pressure, and the unperturbed cavity, without radiation pressure.
The quantity U is the time average of the electromagnetic energy stored in the
unperturbed cavity. An increase of volume in a part of the cavity where the
magnetic energy density of the accelerating mode is larger than the electric
energy density leads to a decrease of the frequency of the accelerating mode.

If the deformation is small, it is possible to link the steady state frequency
shift of the resonant frequency and the accelerating field with KL, the Lorentz
Force Detuning Coefficient (LFD), with the relation:

∆f = −KLE
2
acc ⇒ |KL| =

∆f

E2
acc

[
Hz

(MV/m)2

]
. (3)

The LFD coefficient depends on the stiffness of the cavity, on its tuning sen-
sitivity, on the accelerating field and on the external stiffening mechanism. In
our case the accelerating field is calculated only at β = βg = 0.67. With a
coupled mechanical-EM simulation it is possible to evaluate the frequency of
the accelerating mode before and after applying the radiation pressure, so that
∆f can be evaluated. In order to stiffen the cavity, stiffening rings between the
cells are added and the deformation of the cell can be partially compensated.
Consider that

• the stiffening rings are placed close to the iris rather than close to the
dome in order not to stiffen the cavity to the point where it would be too
hard to tune.

• The effect of the rings is evident in the iris region and less important in
the dome region. The thickness of the metal has a primary importance
on the mechanical characteristics of the cavity.

• The LFD is strongly dependent on the external stiffness. It is necessary
to consider a realistic scenario where the boundaries of the cavity are not
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fixed but are connected to the Helium vessel and the tuner which have
both ha finite stiffness and allow the cavity to shrink in the longitudinal
direction.

Figure 1: Contour plot of the magnetic field of the accelerating mode and arrow
plot of the surface current density. Green represents zero intensity.

Figure 2: Stress on the cavity walls produced by the electromagnetic pressure.
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1.2 Stiffness

The stiffness of the cavity is simulated by applying a total force of 1 KN on one
end of the cavity, the other being fixed, and by measuring the displacement. In
figure 3 we can see an example of such a simulation, where the displacement has
been enhanced to ease its visualization. The stiffness is evaluated in kN/mm.

Figure 3: Von Mises Stress due to the application of 1 KN on the left flange of
the cavity. The right flange is fixed.

1.3 Tuning Sensitivity

The tuning sensitivity, df/dz, is measured in KHz/mm and it is calculated by
imposing a displacement of 1 mm and by measuring the frequency shift of the
accelerating mode. The tuning sensitivity quantifies the frequency variation of
the fundamental mode when an external force acts on one of its ends.

1.4 Pressure Sensitivity

One of the main sources of detuning is the variation of the Helium pressure sur-
rounding the cavity [6]. It is then necessary to evaluate the pressure sensitivity,
Kp [Hz/mbar]. In this simulation a uniform pressure of 1 mbar is applied to the
external boundary. One of the cavity ends is connected to a mechanical ground
while the other is left free. Otherwise both the cavity ends can be grounded.

1.5 Von Mises Stress

Another important quantity is the maximum Von Mises Stress. It allows to
judge if the stress in the cavity walls are greater than the yield strength. If
that happens, the cavity would deform plastically, and as a consequence, the
frequency of the resonant modes would change. Moreover the cavity has to
pass safety tests to be certified and used in an accelerator, in such tests a fixed
pressure is applied to the cavity which does not have to reach its yield strength.
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1.6 Cavity Detuning

It has been mentioned in the previous sections that the cavity is subject to
deformations which produce a frequency shift of the resonant frequency of the
modes. Frequency detuning is originated by different sources, such as, LFD,
microphonic detuning, that is the effect of mechanical vibrations generated
by devices surrounding the cavity, and pressure fluctuations of the Helium
surrounding the cavity [7]. A detuned cavity requires more power to mantain
the specified accelerating gradient, thus increasing the operating costs of the
accelerator, and decreasing its efficiency.

For both the LFD and the pressure variation it is possible to devise a
model that quantifies the frequency detuning considering the superposition of
two effects [8, 9]:

1. the modification of the shape of the cavity when its ends are fixed, that
is, when a fixed constraint boundary condition is imposed at the ends of
the cavity. Under this constraint the shape of the cell changes, producing
a frequency detuning, moreover, the cavity exerts a reaction force F∞ on
the constraint because it tends to contract.

2. The shortening of the cavity.

The resulting model allows the calculation of the frequency detuning of the
accelerating mode in both the static LFD and Pressure variation cases, consid-
ering the stiffness of tank and the tuner (Kext) and the stiffness of the cavity
(Kcav):

∆f = ∆f∞ +
df

dz

Freac.∞
Kext +Kcav

,

where the ∞ subscript refers to quantities calculated with fixed ends, Freac
is the reaction force which can be calculated with a simulator and df/dz is
the tuning sensitivity. We then have for the LFD coefficient and the pressure
sensitivity:

KL(Kext) = KL∞ +
df

dz

Freac.L∞
Kext +Kcav

, (4)

Kp(Kext) = Kp∞ +
df

dz

Freac.p∞
Kext +Kcav

, (5)

where Freac.L∞ ∝ E2
acc. An example of the use of (4) and (5) is in figures 10

and 11 respectively.
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1.7 Helium Vessel

The cavity has to pass pressure tests in order to verify that the cavity meets
minimum safety criteria and to make sure that the cavity would not deform
plastically. The Maximum Von Mises Stress has been simulated both with
and without the Helium vessel. To be able to make the computations with
an axially symmetric 2D geometry, a simplified vessel has been modeled (fig.
4). The 2D model is substantially simpler than the real Helium vessel but in
absence of the real model it allows to estimate the mechanical performances of
the dressed cavity. There are two diagonal elements connecting the flanges at
the end of the beam pipes, to the top of the vessel. The left element at the
tuner side, is assumed to be infinitely stiff, since during the pressure tests the
tuner is removed and substituted with a fixed element. The stiffness of the right
element is chosen in order to obtain a stiffness of 75 KN/mm between points
A and B (see fig. 5), that is, point A is connected to a mechanical ground
and 1 KN is applied to the flange at the point B. The stiffness of the cavity
is calculated and the Young’s modulus of the element is changed in order to
obtain the specified stiffness. The Helium vessel is made of Titanium and has
the following parameters:

• Young’s modulus = 105 GPa,

• Poissons’s ratio = 0.33,

• Density = 4940 Kg/m3.

Figure 4: Cavity dressed with the Helium vessel.

Once the stiffness of the dressed cavity is set to 75 KN/mm, a pressure is applied
to the external surface of the cavity (in blue in fig. 6) and the Maximum Von
Mises stress is obtained with a simulator.

2 Results

The results of the mechanical simulations are summarized in table 1. Moreover
the LFD coefficient and the pressure sensitivity as function of the external
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A

B

Figure 5: Cavity dressed with the Helium vessel.

stiffness are plotted in figures 10 and 11. The following quantities have been
calculated:

• Tuning Sensitivity

• Cavity Stiffness

• Lorentz Force Detuning with fixed ends, free ends and with vessel and
tuner

• Pressure Sensitivity with fixed and free ends

• Maximum Von Mises Stress with and without vessel and tuner

In the case of “free ends” simulations, one of the flanges is not constrained,
while the other is connected to a mechanical ground. In the “fixed ends” case,
both flanges are connected to a mechanical ground.

The thickness of the metal used for the cavity model is of 4 mm which is the
thickness of choice, but also cavities 3.8 mm and 4.2 mm have been simulated.
The simulations show that the thickness of the metal is of primary importance
in determining the mechanical performances of the cavity, while the stiffening
ring radius has a smaller influence. The Niobium used in the simulations has
the following characteristics:

• Young’s modulus = 105E9 Pa,

• Poissons’s ratio = 0.4,

• Density = 8570 Kg/m3.
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Figure 6: In the Maximum Von Mises Stress the pressure is applied on the
surface marked in blue.

The Von Mises Stress is calculated both with a simplified model of the Helium
vessel with stiffness equal to 75 KN/mm, and without vessel. Since the stiffness
of the tuner is of about 30 KN/mm, the total stiffness of the tank plus the
tuner is about 21 KN/mm. The results of the Maximum Von Mises Stress
simulations (in table 1) are followed by a letter, b, i or d and they indicate
where the maximum of the stress occurs.

• b. The maximum of the stress is on the external surface, between the
beam tube and the last cell, fig. 7.

• i. The maximum of the stress is on the internal surface close to the
stiffening rings, fig. 9.

• d. The maximum of the stress is on the internal surface at the dome, fig 9.
A radius of the stiffening rings of 70 mm has been chosen to compromise
between the LFD, which grows with by increasing the stiffening ring
radius, and the cavity stiffness.
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Figure 7: Position of the maximum of the Von Mises Stress on the external
surface.

Figure 8: Position of the maximum of the Von Mises Stress on the internal
surface at the stiffening ring position.
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Figure 9: Position of the maximum of the Von Mises Stress on the internal
surface on the dome.
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Figure 10: Variation of the LFD coefficient with respect to the external stiffness.
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0.6677 Hz/mbar at
Kext = 21 KN/mm

10−5 10−4 10−3 10−2 10−1 100 101 102 103 104 105
−400

−300

−200

−100

0

Kext [KN/mm]

K
p
[H

z/
m
b
a
r]

Figure 11: Variation of the pressure sensitivity coefficient with respect to the
external stiffness.
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Abstract— We discuss the eigenvalue problem for a perfectly conducting hollow cavity under
a strict functional analytic point of view. We make use of a variant of the classical spectral
theorem for compact selfadjoint operators and we pay extra attention on the null space of the
Maxwell operator. We also discuss the corresponding inhomogeneous problem, where currents
are present, even when they may depend on the fields.

1. NOTATION AND PRELIMINARIES

The purpose of this paper is to provide an efficient mathematical framework for the classical eigen-
value problem for a hollow, perfectly conducting cavity. Our motivation emerged from the re-
cent research concerning the ESS accelerator project [3, 7]. The study of the cavity problem has
been started as early as the 40’s [10] and reconsidered many times then, even since our days,
see [1, 4, 6, 11]. Nevertheless, there are still some dark points concerning mainly existence issues
and the so-called completeness of the modes. Our aim is to give a clear and concise picture of
the relevant mathematical problem and suggest the appropriate tools for its solution, in the spirit
of [2].

The notation we use in this paper is as follows. Let (X, 〈·, ·〉) be an infinite dimensional separable
Hilbert space. For a set U ⊂ X, we denote by Ū the closure, by U⊥ the orthogonal complement
and by [U ] the linear span of U ; the closed linear span is then [U ]. B(X) stands for the Banach
algebra of bounded operators in X and K(X) for the ideal of compact operators. Given a linear
operator A : X ⊃ D(A) → X, we denote by R(A) the range and by kerA the null space (kernel)
of A. The graph norm on D(A) is defined as

‖x‖A :=

√
‖x‖2 + ‖Ax‖2.

When equipped with the graph norm, D(A) will be denoted as [D(A)] (not to be confused with
the linear span notation). A∗ stands for the adjoint operator. A is called selfadjoint if A∗ = A,
skew-adjoint if A∗ = −A.

The resolvent set ρ(A) consists of all λ ∈ C for which R(λ;A) := (λI −A)−1 ∈ B(X) (resolvent
operator). If ρ(A) 6= ∅ then A is closed. The spectrum of A is defined as σ(A) := C\ρ(A). λ ∈ σ(A)
is called an eigenvalue if λI −A is not injective and non-zero vectors of ker(λI −A) are called the
coresponding eigenvectors. The set of eigenvalues is denoted by σp(A) (point spectrum).

Proposition 1. The following are equivalent:
a) R(λ;A) ∈ K(X) for some λ ∈ ρ(A).
b) R(λ;A) ∈ K(X) for all λ ∈ ρ(A).
c) ρ(A) 6= ∅ and [D(A)] ↪→ X with a compact injection.

Definition 1. If A satisfies one of the equivalent conditions of Prop. 1, then it is called a discrete
operator.

The following theorem provides the main tool for our exposition.

Proposition 2 (Spectral Theorem). Let A be a discrete selfadjoint operator. Then σ(A) = σp(A)
and σp(A) is a finite or unbounded countable set without accumulation point. The corresponding
eigenspaces are finite dimensional and mutually orthogonal. Eigenvalues of A can be set as an
increasing sequence (λn), diverging at infinity if countable. Each non-zero eigenvalue is counted
according to its multlipicity and the sequence (en) of the corresponding eigenvectors can be chosen
as an orthonormal sequence. Moreover,
a) (en) is an orthonormal basis for R(A) and X = kerA⊕ [(en)].
b) Ax =

∑
n λn 〈x, en〉 en, x ∈ D(A).
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2. THE MAXWELL SYSTEM

As it is well known, every electromagnetic phenomenon is specified by four vector quantities: the
electric field E, the magnetic field H, the electric flux density D and the magnetic flux density B, in
the presence of electric and magnetic currents Je, Jm, respectively. These quantities are considered
as time–dependent vector fields on a domain Ω ⊂ R3, so they are functions of the spatial variable
r ∈ Ω and the time variable t ∈ R. All these fields are connected via the Maxwell system

∂D

∂t
= curlH− Je,

∂B

∂t
= −curlE+ Jm. (1)

We have allowed existence of magnetic currents here because apertures in a cavity can be modeled
this way [9]. The above are supplemented with the two Gauss laws

divD = ρe , divB = ρm. (2)

where ρe, ρm are the densities of the electric and magnetic charge, respectively. Currents and
charges are not independent and obey equation of continuity

∂ρe
∂t

+ div Je = 0 ,
∂ρm
∂t

+ div Jm = 0. (3)

If one accepts (3) as part of the modeling, (2) become redundant and can be absorbed in the initial
conditions.

We now assume that the domain Ω is a hollow cavity, i.e., a vacuous bounded domain:

D = ε0E , B = µ0H. (4)

Without loss of generality, we assume ε0 = µ0 = 1. We further assume that the boundary Γ of Ω
is Lipschitz and therefore an exterior normal n̂ is almost everywhere defined on it and the perfect
electric conductor boundary condition applies

n̂×E = 0, on Γ. (5)

The above implies that n̂ ·H = 0 on Γ. In the six vector notation, (1) are read as follows:

∂

∂t

(
E

H

)
=

[
0 curl

−curl 0

](
E

H

)
+

(−Je

Jm

)
. (6)

To make things more precise, let us denote by e := (E,H)T the electromagnetic (EM) field, by
j := (−Je ,Jm)T the EM current and by

M :=

[
0 curl

−curl 0

]
(7)

the formal Maxwell operator. Then (6) is written

∂e

∂t
= Me+ j. (8)

We now assume j = 0 (homogeneous problem) and apply a separation-of-variables technique, that
is, we ask for a solution of (8) of the form e(r, t) := e(r)T (t) and thus

Me =
T ′(t)
T (t)

e.

Since the left hand side depends only on r, the ratio T ′(t)/T (t) has to be a constant, say λ, and
we conclude to the formal eigenvalue problem

Me = λe, (9)

with e := (E,H)T . Note that although we use the same notation, E, H now do not depend on
time. We also have apparently T (t) = eλt.
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3. REALIZATION OF THE EIGENVALUE PROBLEM

The exposition and notation in this section follows [2, 8]. Due to energy considerations, the fields
E, H are taken to be square integrable, i.e., they are vectors of the Hilbert space L2(Ω;C3) with
inner product

〈U,V〉0 :=
∫

Ω
U(r) ·V(r)dr.

The curl operator is naturally realized in its weak sense in L2(Ω;C3). More precisely, let U ∈
L2(Ω;C3). We say that V is the (weak) rotation of U, and we write V = curlU, if

〈V,φ〉0 = 〈U, curlφ〉0

for every test function φ ∈ C∞
0 (Ω;C3). The maximal domain of definition of curl in X is then the

Sobolev space H(curl; Ω) and is a densely defined closed operator. Moreover, curl can be realized
as a maximal selfadjoint operator in the subspace H0(curl; Ω), which contains exactly the fields
that satisfy (5) in a weak sense. The null spaces of these operators are denoted by H(curl0; Ω),
H0(curl ; Ω) respectively. Analogous definitions apply for the weak divergence operator div, see the
aforementioned references for details.

Consequently, the EM field e is a vector of the product Hilbert space X := L2(Ω;C3)×L2(Ω;C3)
with inner product, for u := (U1,U2)

T , v := (V1,V2)
T ,

〈u, v〉 := 〈U1,V1〉0 + 〈U2,V2〉0 .

The Maxwell operator is realized in a weak sense in X as follows: e ∈ X is in the domain D(M) of
M if there exists a (unique) vector u ∈ X such that

〈
u, (φ1,φ2)

T
〉
=
〈
e, (−curlφ2, curlφ1)

T
〉
, (10)

for every choice of test functions φ1, φ2 ∈ C∞
0 (Ω;C3). In this case, we set u := Me. After this,

problem (3) can be realized as an eigenvalue problem for such defined operator M.

Proposition 3. D(M) = H0(curl; Ω) × H(curl; Ω) and M is a densely defined, closed linear
operator, represented by the operator matrix (7). Moreover, M is skew-adjoint, i.e., M∗ = −M.
Consequently, the spectrum of M is purely imaginary.

That is to say, (3) has imaginary eigenvalues, if any. Following the usual practice, we let
λ := −iω, ω ∈ R, and the problem is rewritten as

Qe = ωe, (?)

where Q := iM is the selfadjoint Maxwell operator. So we are mainly interested in properties of
operator Q; in view of the above proposition, D(Q) = D(M) and Q is a selfadjoint operator with
real spectrum.

Definition 2. Let (ω, e) be a non-trivial solution of (?), i.e., ω ∈ R is an eigenvalue of Q with
corresponding eigenvector e. ω is called an eigenfrequency of the cavity and e the corresponding
mode.

Proposition 4. The null space of Q is kerQ = H0(curl 0; Ω)×H(curl 0; Ω). For the range R(Q)
of Q, we have R(Q) ⊂ H(div 0; Ω)×H0(div 0; Ω) := H.

We now consider the restriction QH of Q on H, defined by D(QH) = D(Q)∩H and QHe = Qe.
Incidentally, QH coincides with the part of Q on H.

Proposition 5. QH is selfadjoint and [D(QH)] is compactly injected into H. Consequently, QH is
discrete and its spectrum is an unbounded sequence of real eigenvalues with no accumulation point.
The corresponding eigenspaces are finite dimensional and mutually orthogonal.
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4. PROPERTIES OF EIGENFREQUENCIES AND MODES

Proposition 6. Let ω 6= 0 be an eigenvalue of QH with corresponding eigenvector (E,H)T. Then
a) E, H satisfy the system { − curlH = iωE

curlE = iωH
(11)

b) ‖E‖0 = ‖H‖0.
c) −ω is an eigenvalue as well, with corresponding eigenvector (E,−H)T.

That is, the eigenvalues of QH can be ordered as a bilateral sequence (ωn)n∈Z, with ωn > 0 for
n > 0, ωn < 0 for n < 0, ω0 = 0 and ω−n = −ωn. For n 6= 0, we count each eigenvalue ωn as
many times as its multiplicity, so we can assume that to each ωn there corresponds exactly one
normalized eigenvector epn := (Ep

n ,H
p
n)T . The zero eigenvalue is counted once and we will discuss

about it later. Namely, the eigenvalues are ordered as follows:

−∞ ← . . . 6 ω−n 6 . . . 6 ω−1 < ω0 = 0 < ω1 6 . . . 6 ωn 6 . . . → ∞.

The sequence of eigenvectors (en) is assumed to be orthonormal.

Proposition 7. Let n, m ∈ N∗, ωn 6= ωm. Then 〈Ep
n ,E

p
m〉0 = 〈Hp

n ,H
p
m〉0 = 0, i.e., both (Ep

n)n∈N∗ ,
(Hp

n)n∈N∗ define orthogonal sequences in L2(Ω;C3).

Proposition 8. (epn)n∈Z∗ is an orthonormal basis for R(QH) and we have the decomposition

H = kerQH ⊕ [. . . , ep−n, . . . , e
p
−1, e

p
1, . . . , e

p
n, . . .]

The closed subspace kerQH is finite dimensional. Moreover, for e ∈ D(QH),

QHe =
∑

n∈Z∗

ωn 〈e, epn〉 epn.

For a detailed description of kerQH we refer to [2, 8]. Let N0 be the dimension of kerQH
(a number depending on the geometry of Ω) and consider an orthonormal basis {e01, . . . , e0N0

} for
kerQH. Note that kerQH describes the source-free, static electromagnetism on Ω.

Proposition 9. {e01, . . . , e0N0
} ∪ (epn)n∈Z∗ is an orthonormal basis for H. {e01, . . . , e0N0

} can be
completed to an orthonormal basis for kerQ, that is, there exist an orthonormal sequence (esn)n∈As

⊂
X such that {e01, . . . , e0N0

} ∪ (esn)n∈As
is an orthonormal basis for kerQ. Moreover, {e01, . . . , e0N0

} ∪
(epn)n∈Z∗ ∪ (esn)n∈As

is an orthonormal basis for X .

Note that As is an infinite countable set, serving as the index set for (esn). This analysis suggests
the following classification for the cavity modes, see also [4]:

• Primary modes (epn)n∈Z∗ (solenoidal, non-irrotational).

• Static modes {e01, . . . , e0N0
} (solenoidal, irrotational).

• Secondary modes (esn)n∈As
(non-solenoidal, irrotational).

We also have that an arbitrary field e ∈ X can be represented as

e =
∑

i=s,0,p

∑

n∈Ai

〈
e, ein

〉
ein, (12)

where A0 := {1, 2, . . . , N0}, Ap := Z∗. If, in addition, e ∈ D(Q), then

Qe =
∑

n∈Ap

ωn 〈e, epn〉 epn. (13)
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5. THE INHOMOGENEOUS PROBLEM

We now allow the presence of EM currents. In the frequency domain, this is modeled with the
equation

Qe = ωe+ j, (14)

where j = j(ω, r) ∈ X . In the view of representations (4), (13), (14) reads
∑

n∈Ap

ωn 〈e, epn〉 epn = ω
∑

i=s,0,p

∑

n∈Ai

〈
e, ein

〉
ein +

∑

i=s,0,p

∑

n∈Ai

〈
j, ein

〉
ein,

which lead to the equations

(ωn − ω) 〈e, epn〉 = 〈j, epn〉 , n ∈ Ap, (15)

ω
〈
e, ein

〉
= −

〈
j, ein

〉
, i = s, 0, n ∈ Ai. (16)

Equations (15), (16) lead to the following result, a variant of the Fredholm Alternative:

Proposition 10. a) Let ω 6= ωn, n ∈ Z. Then (14) has a unique solution given by

e = − 1

ω

∑

i=s,0

∑

n∈Ai

〈
j, ein

〉
ein +

∑

n∈Ap

1

ωn − ω
〈j, epn〉 epn. (17)

b) Let ω = ωm for some m ∈ Z∗. Then (14) has a solution if and only if j is orthogonal to eigenspace
ker(ωmI −QH). In this case, a solution of (14) is of the form

e = − 1

ωm

∑

i=s,0

∑

n∈Ai

〈
j, ein

〉
ein +

∑

n∈Ap

ωn 6=ωm

1

ωn − ωm
〈j, epn〉 epn + u (18)

for some u ∈ ker (ωmI −QH).
c) Let ω = 0. Then (14) has a solution if and only if j is orthogonal to the kernel kerQ. In this
case, a solution of (14) is of the form

e = u+
∑

n∈Ap

1

ωn
〈j, epn〉 epn (19)

for some u ∈ kerQ.
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Time Domain Analysis of Higher Order

Modes Induced Power Dissipation in

Accelerating Cavities

Gabriele Costanza and Anders Karlsson.

Abstract

We give a semi-analytical method for the calculation of the transient power

and energy dissipatedin the cavity walls of an accelerating structure, due

to the excitation of the higher order modes (HOMs) by a sequence of

accelerating bunches. We treat the case where more than one bunch is

present in the structure at the same time. The dissipated power is evalu-

ated by using the Lagrangian formalism and the dissipation function. Both

the dissipated power from the transient fields, present when the bunch is

inside the cavity, and from the time harmonic fields, present, when the

bunch has left the cavity, are included in the evaluations. This method is

applied to the six cell elliptic medium beta cavities for the LINAC of the

European Spallation Source (ESS). The simulations constitute a thorough

test of the dissipated power of the design.
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1 Introduction

Microwave cavities are ubiquitous in the microwave engineering world, in par-
ticular they are the workhorses of particle accelerators such as the European
Spallation Source (ESS) [1,2]. The interaction between the beam and the cav-
ity fields can be detrimental for the dissipation in the structure and for the
stability of the beam [3–5]. Thus, an evaluation of the power dissipated and of
the induced electric and magnetic field strengths, is necessary to validate the
cavity design.

We propose a semi-analythical method for the calculation of the power and
energy dissipated in the cavity walls induced by multiple accelerating bunches,
with more than one bunch present in the cavity at the same time. The problem
is interpreted in the framework of the Lagrangian formalism and, in particular,
it makes use of the dissipation function. The main advantage of using the La-
grangian dissipation function compared to the customary approaches like [6–8]
is that it is enables the evaluation, not only the average, but also the transient
power and energy dissipated in the walls of the cavity due to the HOM excited
by a sequence of bunches. Well established methods like [10–13] calculate wake
potentials and the energy deposited in the HOMs, but do not include the eval-
uation of energy dissipated in the cavity walls in the case here treated.

A customary approach to the evaluation of the dissipated power is to de-
termine the complex voltage excited by a charge (or a point bunch) passing
through the cavity, see for example [6–8]. That method allows to determine
the envelope of the R/Q-normalized HOM induced voltage and power in the
steady state. The R/Q is then only evaluated at the mode frequencies and not
at neighbouring frequencies. Our approach differs in that we in addition to the
average dissipated power at the fixed resonance frequencies also evaluate the
transient power that is dissipated while the bunch is inside the cavity. By that
we include the dissipated power at all frequencies.

The characteristics of the pulsed beam in our model are depicted in figure
1. The pulse length is σp and each pulse is made of N point-like bunches, at
the arrows in figure 1, separated a time Tb in time. The bunches travel along
the symmetry axis of the cavity and are accelerated by the electric field in the
cavity. Part of the energy delivered by the bunches is stored in the cavity and
interacts with succeeding bunches, while part of it is dissipated. In our nu-
merical examples we study a worst-case scenario where we omit the power loss
through couplers. It is from such evaluations one can decide if the design of
the cavity needs to be adjusted or if an HOM coupler is needed for dampening
the HOM. Our simulations are made for six cell medium beta elliptic cavities
for proton accelerators. The specific cavity used in the simulations operates at
the frequency 704.42 MHz and is intended for the ESS LINAC [9]. We con-
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sider the interaction between the beam and the axially symmetric (monopolar)
modes with resonant frequency less than 3 GHz (see figure 2). The average
electromagnetic power dissipation of the modes above 3 GHz is negligible (see
fig 3). The 3 GHz limit is in accordance with the study [5] of the SPL cav-
ities [14]. Multipolar modes are not considered since their influence on the
beam and their dissipated power are negligible in axially symmetric cavities
for proton accelerators, see [5,15]. The power coupler causes a perturbation of
the fundamental mode. In appendix 6 we present a 3D calculation that shows
that this perturbation is small and confined to a narrow region close to the
coupler. The conclusion is that the perturbation has a negligible influence on
the dissipated power.. The problem of determining the HOM and their power
in the six cell elliptic cavities is complicated by the fact that there is more than
one bunch in the cavity at the same time. The excited fields of the HOM are
much weaker than the accelerating field and their influence on the acceleration
of the bunch can be neglected. The excitation of the accelerating mode is in
general not small compared to the RF-field fed to the cavity and it will affect
the amplitude and phase of the accelerating mode. Such effects are handled by
the control system and are not in the scope of this paper.

In section 2 we formulate the problem, give the basic equations for the time
evolution of the HOM and introduce the Lagrangian formalism and dissipa-
tion function. Section 3 presents the numerical simulations. All of these are
relevant for the medium beta elliptic cavities of the linear accelerator of ESS.
A derivation of the expressions for the amplitudes and phases of the HOM is
given in the Appendix 5. We consider this derivation to be somewhat shorter
and easier to follow than the derivations found in other papers. Throughout
the paper we use the time dependence eiωt when necessary.

2 The Time Domain Cavity Problem

For convenience we devote subsections 2.1 and 2.2 for the basic theory of the
beam excitation of the monopolar HOM of a microwave cavity. The theory
is well known but comes in a number of different shapes in the literature,
see [10–13,16]. Our analysis is general and holds for most types of cavities and
pulsed beams. Subsection 2.3 contains a non-standard analysis of the dissipated
power based upon the dissipation function in a Lagrangian formalism. Together
with the numerical examples in subsection 3, section 2.3 constitutes our main
contribution to the community of accelerator technology.
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Figure 1: Time Structure of the bunched beam. The bunches are distant Tb
seconds and one pulse is σp seconds long.

2.1 Basic equations

The cavity is a linear, causal and time invariant system, defined by the domain
Ω ⊂ R3 enclosed by a surface, S ⊂ R3, and filled with vacuum. The conductiv-
ity of the walls at S ⊂ R3 is very high and we use the approximation that the
walls are perfectly conducting (PEC) in the evaluation of the eigenfields. We
then take a finite conductivity into account in the evaluation of the dissipation.
By comparing evaluations of the dissipated power using fields obtained with
impedance boundary conditions we have confirmed that this approximation
does not jeopardise the accuracy of the dissipated power.

The subjects of the time-domain analysis are the electric field E(r, t), with
units V

m , the magnetic field H(r, t), with units A
m and the electric current den-

sity, Je(r, t), with units A
m2 . These vector fields are functions of the space

variable r ∈ Ω of the time variable t ∈ R and they satisfy Maxwell’s equations:





∇× E = −µ0
∂H
∂t

∇×H = ε0
∂E
∂t

+Je

(1a)

(1b)

for r ∈ Ω. with the PEC boundary condition:

n̂× E(r, t) = 0, for r ∈ S, t ∈ R+. (2)
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At t = 0 the first bunch arrives at the cavity and the electromagnetic fields
in the cavity are identically zero for t ≤ 0, in accordance with the principle of
causality. We further require that all the vector fields in (1a) and (1b) belong
to the real space of functions that for every time are square integrable in space,
that is, all the fields in the cavity have finite energy.

The first step in the solution of the problem is to obtain the set of eigenvalues
and eigenfields of the cavity eigenvalue problem. In [19] it was shown that the
cavity eigenfields can be classified in primary, secondary and static eigenfields
(see also [17]) and the decomposition is valid also in the time domain, see for
example [18]. In this paper we follow [19] and classify the modes in only two
groups, primary and secondary modes, but since we restrict the analysis to
simply connected cavities the secondary modes can be ignored (see [20,21]).

In the second step the excited fields are expanded in series of the eigenfields
with time dependent amplitudes:

E =
∑

n

En

∫

Ω

E ·En dΩ =
∑

n

en(t)En(r), (3)

H =
∑

n

Hn

∫

Ω

H ·Hn dΩ =
∑

n

hn(t)Hn(r), (4)

The eigenfields are normalized according to:
∫

Ω

|En(r)|2 dΩ = 1,

∫

Ω

|Hn(r)|2 dΩ = 1,

By introducing the wavenumber κn = ωn
√
µ0ε0 and the wave impedance η0 =√

µ0/ε0, we find that the primary modes satisfy [16,21]:

{∇×En = κnHn

∇×Hn = κnEn

(5)

(6)

We also use the following notation:

(A,B) =

∫

Ω

A ·B∗ dΩ,

〈A,B〉 =

∫

S

A ·B∗ dS,
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for A, B ∈ L2
(
Ω;C3

)
and where the asterisk denotes the complex conjugate.

The induction law and the orthogonality of the primary modes give:

(∇× E,Hm) = −µ0
dhn
dt

(7)

We rewrite the left hand side of (7) using (5), the expansion (4) and the or-
thogonality of the modes:

(∇× E,Hn) =
∑

n,m

en(t) (∇×Em,Hn) =
∑

n,m

κn en(t) (Hm,Hn) = κn en(t).

(8)
Substituting (8) in the left hand side of (7), leads to:

κn en = −µ0
dhn
dt

(9)

Applying the same arguments to the Ampère law (1b) gives

κn hn = ε0
den
dt

+ (Je,En) (10)

We see that (10) and (10) form a system of equations that can be solved for
the mode amplitudes. We rewrite the system of equations as:





den
dt
− ωnη0hn = − 1

ε0
(Je,En)

dhn
dt

+
ωn
η0
en = 0

en(0) = hn(0) = 0

t ∈ R+

(11a)

(11b)

(11c)

(11d)

where n is the mode index. The dissipation now needs to be added to these
equations. The standard way of doing this is to use the Q−factor. It is seen
that a finite, but high, intrinsic quality factor for the mode n, Q0,n, gives rise
to a mode dependent dissipation term in the equations, with a loss coefficient
2γn = ωn/Q0,n. The system of equations (11a)-(11b) in matrix form is:

d

dt

(
en(t)

hn(t)

)
+

(
2γn −ωnη0

ωn/η0 0

)(
en(t)

hn(t)

)
= −




1

ε0
(Je,En)

0


 ,

If we only consider ohmic losses in the walls, the intrinsic quality factor for the
mode n is defined as

Q0,n =
ωnWn

Pd,n
=

ωnµ0

∫
Ω

|Hn|2 dΩ

Rs
∫
S

|Hn|2 ds
(12)
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Here Rs is the surface resistance of the cavity, see for example [8]. Equations
(11) or (12) describe the state of the system, that is, the amplitudes of the
electric and magnetic fields, at every instant t.

With this procedure the problem is divided into an eigenvalue problem,
which can be solved with great accuracy (see [22]) and an evolution problem
that can be solved semi-analytically, for example, with the procedure outlined
in the following. Modern commercial electromagnetic simulation programs such
as Comsol [23] allow efficient calculations of both monopolar and multipolar
eigenfields with a 2D simulator.

In the third step, treated in 2.2, an explicit solution to (11) is given. A formal
treatment of the problem can be found for example in [24, 25]. In section 2.3
we apply the Lagrangian formalism for the calculation of the power dissipated
in the cavity walls.

2.2 Cavity Driven by a Beam

Equation (12) allows us to calculate the electric and magnetic fields excited by
electric current distributions located in Ω. In particular, we are interested in
evaluating the mode excitations due to a beam made of N bunches traveling
along the symmetry axis of an axially symmetric cavity. Due to the linearity
of Maxwell’s equations it is possible to evaluate the electric and magnetic field
excited by a single bunch for 0 ≤ t <∞, and then superimpose these fields to
take into account the effect of N bunches.

A bunch of charged particles corresponds to an electric current density.
We assume that the spread in both the longitudinal and radial directions is
negligible and that the bunch can be treated as a point charge. In cylindrical
coordinates (r, φ, z) we have:

Je(r, z, t) = q0β(t)c
δ(r)

2πr
δ (z − z(t)) ẑ, (13)

where z(t) = β(t)ct is the position of the particle at the instant t, β(t) = v(t)/c
is the speed of the bunches normalized with the speed of light in vacuum c and
q0 is the bunch charge.

We now proceed with the solution of (12) for the cavity mode n. We use
the assumption that before the bunch enters the cavity there are no fields or
charges in Ω:

en(t) = 0, t < 0. (14)

For convenience we introduce

x(t) =

(
en(t)

hn(t)

)
, An =

(
2γn −ωnη0

ωn/η0 0

)
, (15)
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and

f = −
(

1
ε0

(Je,En)

0

)
. (16)

For 0 ≤ t < T0 we have f 6= 0. Problem (12), with homogeneous initial
conditions, has a solution x(t) given by [26]:





xn(t) =

t∫

0

e(t−τ)An fn(τ) dτ

fn(t) = −
(
q0

ε0
β(t)cEz,n(0, 0, βct), 0

)T
(17)

where T denotes transpose.
The matrix operator An can be diagonalized by An = PnΛnP

−1
n , where the

diagonal elements of Λ are the eigenvalues:

Λn =




−γn − iωn

√
1− 1

4Q2
0,n

0

0 −γn + iωn

√
1− 1

4Q2
0,n



,

If we define θn = ωn
√

1− 1
4Q2

0,n
, we have:

Pn =




1 1

−
−γn + iθn − iωn

η20

−iωnη2
0 + γn − iθn

−
−γn − iθn − iωn

η2o

−iωη2
0 + γn − iθn


 .

and e−Ant = Pne
−ΛntP−1

n (see Lemma 2.6 in [25]).
When the bunch has left the cavity, that is, for t ≥ L/v, the modes evolve

according to:

xn(t) = xn(L/v) e−At =
(
|Ae,n| e−γn(t−L/v) cos [θn(t− L/v) + φe,n]

|Ah,n| e−γn(t−L/v) sin [θn(t− L/v) + φh,n]

)
, (18)

With the preceding equation it is possible to calculate the free oscillations,
either numerically with the matrix exponential (second member), or explicitly
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(last member). The derivation of Ae,n and φe,n (see appendix A), gives:

|Ae,n| =
q0

ε0

∣∣∣∣∣∣

L∫

0

eγnz/v e−iωnz/vEz,n(0, 0, z) dz

∣∣∣∣∣∣
,

|Ah,n| = η0|Ae,n|, (19a)

φe,n = arg




L∫

0

eγnz/ve−iωnz/vEz,n(0, 0, z) dz


+

+ π + arctan

(
γn
ωn

)
(19b)

φh,n = φe,n. (19c)

A second order equation for en(t) can be obtained from (11). By using (13),
the right hand side of (11a) becomes

∂

∂t
(Je, En) = ω2

nFn(t) (20)

where

Fn(t) =
q0

ω2
n

(β(t)c)2 ∂Ez,n(0, 0, z)

∂z
+
q0

ω2
n

β(t)c2
dβ(t)

dz
Ez,n(0, 0, z), (21)

and, z = tβ(t)c. By substituting (11b) into (11a) differentiated with respect to
time, and using (20), we obtain:

d2en(t)

dt2
+ 2γn

den(t)

dt
+ ω2

nen(t) = −ω
2
n

ε0
Fn(t) (22)

where the electric field En,z is evaluated at the position of the particle

z(t) = c

∫ t

0

β(t′) dt′

The increase in speed in each cavity is often small enough such that β can be
considered to be constant and then z = βct.

2.3 Lagrangian formalism and the dissipation function

Equation (22) is the driven-damped harmonic oscillator equation, which can
be studied in a simple way by using the Lagrangian formalism. Such formalism
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allows us to define, in a simple and compact way, a dissipation function. The
function gives the power dissipated due to a frictional force proportional to the
velocity of the generalized coordinate (see [27, 28]), and an equation for the
energy balance of the whole system. We introduce the generalized coordinates
Q (column vector) as

Q = (q1, . . . , qN )T =(e(t)1, . . . , e(t)N )
T
,

and the generalized velocities

Q̇ = (q̇1, . . . , q̇N )T ,

In our case the Lagrangian that describes the eigenmode dynamic has the form:

L (t, q, q̇) =
1

2
Q̇T$ Q̇− ε

2
QTQ+ F T ·Q,

where, F = (F1(t), . . . , FN (t))T and $ is the diagonal matrix

$ =



ε0/ω

2
1 · · · 0

...
. . .

...
0 · · · ε0/ω

2
N


 .

The first term on the right hand side

T =
1

2
Q̇T $ Q̇,

is the kinetic energy, while

V =
ε0
2
QTQ− F T ·Q

is the (generalized) potential energy. With the previous definitions, T and V
are measured in Joules and they represent the magnetic and the electric energy,
respectively, while F , represents the driving force. The picture is completed by
the introduction of dissipative forces, which are not conservative and cannnot
be derived from a potential. To see how these forces come into play we introduce
the Rayleigh’s dissipation function, R , and write the Euler - Lagrange equations
for the mode n as:

d

dt

(
∂L
∂q̇n

)
− ∂L
∂qn

+
∂R
∂q̇n

=
ε0
ω2
n

(
q̈n + 2γnq̇n + ω2

nqn
)

= −Fn(t)
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which is identical to (22). R is the quadratic function of the velocity

R =
1

2
Q̇Td Q̇. (23)

where

d = 2



γ1ε0/ω

2
1 · · · 0

...
. . .

...
0 · · · γN ε0/ω

2
N


 .

We can show that the generalized dissipative forces D that cause the dissipation,
are obtained from the dissipation function by means of the formulas:

D = −∇Q̇R .

We also underline that other choices for the Lagrangian function are possible.
The physical interpretation of the dissipation function is the following: 2R is
the rate of energy (power) dissipated by the dissipative, non-potential forces,
see [28,29].

The Hamiltonian H , is associated with the Lagrangian by the transform:

H (t, Q,Q) = Q̇ · ∇Q̇L − L , where ∇Q̇L = $ Q̇+ F ,

so that

H (t, Q, Q̇) =
1

2
Q̇T $ Q̇+

ε0
2
QTQ = T + V

The energy balance equation is:

−F T · Q̇ =
∂H
∂t

+ 2R , (24)

which means that the power given by the source (left hand side) is partially
converted into electric and magnetic power of the fields confined in the cavity
(first term of the right hand side) and partially dissipated (second term of the
right hand side). The Hamiltonian can be interpreted as the electromagnetic
energy stored in the cavity at time t. This interpretation is in agreement with
Poynting’s theorem [30].

3 Results and Discussion

In this section we apply (17) and (23) to calculate the power dissipated in a
specific cavity due to the excitation of the higher order modes. The cavity is
a six cell elliptic medium beta cavity that was designed for the ESS LINAC.
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Our intention is to present simulations that give a comprehensive picture of the
dissipation of power in accelerator cavities. The results indicate which HOM
are the main contributers to the dissipated power and if the design of the cavity
needs to be adjusted in order to shift the frequency of modes that dissipate too
much power. In the case of the specific cavities for ESS the conclusion is that
the dissipated power is under control and the frequency gap between the fre-
quencies of the HOM and harmonics of the fundamental mode is large enough
such that no HOM will grow very strong and affect the beam or dissipate large
powers. No HOM couplers are needed and a redesign is not needed for the sake
of dissipated power.

A sequence of point bunches passes through a six cell elliptical cavity (pre-
sented in [9], see fig. 19) with a bunch frequency fb = 352.21 MHz (bunch
period Tb = 2.83 ns) and with an initial velocity of 0.67c. The bunches are
accelerated by the accelerating (π) mode resonating at 704.42 MHz. The list
of the monopolar modes used in the simulation is in figure 2. The red bars
indicate the modes within ±20 MHz from an harmonic of the bunch frequency.
We expect these modes to be strongly excited. A total of 66 monopolar modes
have been used, which are sufficient to reconstruct causal fields E and H since
the interaction with modes beyond 3 GHz is negligible (see for example [5]).
This is emphasized by the negligible average electromagnetic energy and power
dissipation of the modes after the 25th mode resonating at 1771.5 MHz, see
figure 3. An animation of Ez(z, t) that clearly shows the causality of the field,
can be visualized by visiting [31]. For the calculation of stored electromagnetic
energies and of the dissipated power it is not necessary to use a very large num-
ber of bunches, in fact a few hundred bunches are sufficient to reach a state of
equilibrium between the power supplied by the beam and the dissipated power
(see figure 11). The results refer to a simulation with 1000 bunches of 1 nC of
charge each and a surface resistivity of 40 nΩ, but it has been verified that 300
bunches are sufficient to obtain the same results.

First, evolutions of the amplitudes en(t) and hn(t) of the eigenfields are
presented. Some examples are in figures 4, 5 and 6. Figure 4 represents the
evolution of the electric field amplitude of the accelerating cavity mode, while
figures 5 and 6 depict the electric (red) and magnetic (blue) fields evolutions
for the mode 24 (resonating at 1749.556 MHz) for one and 1000 bunches re-
spectively. In figure 5, the curve ca be explained as follows: First the bunch is
in the beam pipe where the fields are evanescent and the interaction with the
bunch is weak. The beam then passes through the cells, where the interaction
between the mode and the bunch is strong due to the strong electric field of the
mode along the symmetry axis. When the bunch leaves the cavity the mode
continue to oscillate with its resonance frequency and with an amplitude that
decays very slowly due to the high Q-factor of the mode. It is interesting to
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compare figures 4, for the accelerating mode (pi-mode), and 6, for mode 24.
Mode 24 is a candidate of being dangerous since its frequency is close to the
5th harmonic. The π-mode continues to grow to very large amplitudes since
its frequency is exactly twice the frequency of the bunch train. First it grows
linearly with time, but as the amplitude increases the dissipation increases.
Eventually an equilibrium will be reached where the amplitude is constant and
the power delivered by the bunches equals the dissipated power. Mode 24 also
grows strong to begin with. However, due to the frequency difference between
the 5th harmonic and mode 24, the evolution of the fields accumulates a phase
shift that results in the periodic pattern of figure 6. The high frequency os-
cillations are due to the ringing of the mode at 1749.556 MHz. If the gap in
frequency between the 5th harmonic and mode 24 decreases, the period and
amplitude of the envelope increases. If the frequency gap is small, the field
becomes so strong that it can affect the beam. This is why it is important to
design the cavity such that the frequency gaps to the harmonics are not too
small. Notice that when the RF source is present, the accelerating mode is the
sum of the field generated by the source and the beam.

Figures 7 and 8 show the electromagnetic energy of the mode resonating at
1749.556 MHz and its zoomed in version. The transient, anharmonic character
of the response en(t), is evident in the energy evolution as well as in the evo-
lution of the dissipation function (figure 9).

Figure 10 represents the integral of the dissipation function for the three
most dangerous modes for a single bunch passing through the cavity. Such
integral represents the evolution of the dissipated energy De(t), in the cavity
walls and is defined as:

De(t) =

t∫

0

2R (τ) dτ 0 ≤ t ≤ Ttot [J ], (25)

where Ttot is the total simulation time. The dissipated energy is a mono-
tonically increasing function of time. Figure 11 represents the time average
dissipated power for 1000 bunches, defined as:

Pdiss(t) =
1

t
De(t) 0 ≤ t ≤ Ttot [W ]. (26)

Figures 10 - 15 represent the average power dissipated for all the monopolar
modes up to 3 GHz in dBW, obtained by taking the time average of 2R . The
modes not close to a bunch frequency harmonic, are just slightly excited and
contribute very little to the dissipation. The three most dangerous modes (see
table 1) modes dissipate 93% of the total power dissipated (see figure 18).
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Notice also that the mode resonating at 1743.759 MHz (mode 19) has the
highest R/Q (linac definition).

4 Conclusions

A method for the calculation of the dissipated power in the cavity walls due
to the excitation of the higher order modes by a bunched beam has been pre-
sented. This method takes into account the acceleration of the bunches and
the transient fields excited by the beam itself. The method allows to calculate
average and transient power and energies dissipated in the HOMs. An example
involving the medium-β elliptical cavity for the ESS has been presented. The
example is an evaluation of the dissipated power in the cavity. It concludes
that five monopolar modes below 3 GHz dissipate 93% of the total power dis-
sipated due to the HOMs excitation. The dissipated powers of the HOM are
small enough to be handled without an HOM-coupler.

5 Appendix A

We here derive the expressions for the amplitude Ae,n and phase φh,n for the
mode n. We differentiate (11a), substitute it in (11b) to obtain:

d2en
dt2

+
ωn
Qn,0

den
dt

+ ω2
nen = − 1

ε0

∂

∂t
(Je,En), (27)

where the right hand side of (11a) has been evaluated using (13). We now
rewrite (27) in the frequency domain:

(
ω2 − ω2

n − 2iωγn
)
en(ω)

= iω
q

ε0

∫ L

0

e−iωz/v Ez,n(0, 0, z) dz. (28)

This gives:

en(ω) = iω
q

ε0

1

(ω2 − ω2
n − 2iωγn)

×
∫ L

0

e−iωz/v Ez,n(0, 0, z) dz. (29)

The time domain expression for en(t) is obtained by the inverse Fourier trans-
form:

en(t) =
1

2π

∫ +∞

−∞
ep(ω)eiωtdω, (30)
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where en(ω) is given by (29). A straightforward way to calculate the inverse
Fourier Transform of (29) is by using Cauchy’s integral formula: we first de-
compose the term depending on ω in partial fractions to obtain:

en(t) =
1

2π
i
q

ε0

∫ +∞

−∞

ω

ω1 − ω2

(
1

ω − ω1
− 1

ω − ω2

)

×
∫ L

0

e−iωz/v Ez,p(0, z) dz eiωt dt, (31)

where ω1 = iγn +
√
ω2
n − γ2

n and ω2 = iγn −
√
ω2
n − γ2

n. We use the integral
formula ∮

C

f(ω)

ω − ω0
dz = 2iπf(ω0). (32)

For t ≥ L/v we close the curve C by a half circle witn infinite radius and circles
with infinitesimal radius around the poles in the upper half of the complex
plane. To simplify the notation we use

g(ω) =

∫ L

0

e−iωz/v Ez,p(0, z) dz, (33)

so that
f(ω) = ω g(ω) eiωt. (34)

The result is:

en(t) =
q

ε0

1

ω1 − ω2

(
ω2 g(ω2)eiω2t − ω1 g(ω1)eiω1t

)
. (35)

for t ≥ L/v. To simplify the calculation we now make the approximation:

ωn � γn ⇒
{
ω1 ' iγn + ωn

ω2 ' iγn − ωn
(36)

then also ω1 − ω2 = 2ωn. We rewrite the term in the parentheses at the right
hand side of (35) as:

ω2

∫ L

0

e−iω2z/vEz,n(0, 0, z) dz eiω2t − ω1

∫ L

0

e−iω1z/vEz,n(0, 0, z) dz eiω1t

= (iγn − ωn)

∫ L

0

eγnz/veiωnz/vEz,n(0, 0, z) dz e−γnte−iωnt

− (iγn + ωn)

∫ L

0

eγnz/ve−iωnz/vEz,n(0, 0, z) dz e−γnteiωnt

= −2<
{

(iγn + ωn)

∫ L

0

eγnz/ve−iωnz/vEz,n(0, 0, z) dz e−γnteiωnt

}
,
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where < denotes the real part and having recognized that the two terms in the
second member of the last equation are complex conjugates. Thus

en(t) = − q

ε0ωn
<
{

(iγn + ωn)

∫ L

0

eγnz/ve−iωnz/vEz,n(0, 0, z) dz e−γnteiωnt

}

(37)

= <
{
−|Ae,n| eiφe,n e−γnt eiωnt

}
. (38)

Using the approximation (36) and (38) we have the formulas (19).

6 Appendix B

All of the evaluations of the cavity modes in this paper are done with an ax-
isymmetric model of the cavity. The power coupler is not present. This gives
reliable and fast simulations of the HOMs evolution. To justify the axisym-
metric model we now analyse the perturbations of the modes, caused by the
power coupler, and show that these have a negligible effect on the dissipated
power. Figure 19 shows the end cell of the cavity with the coupler. The coupler
is penetrating the beam pipe by 20 mm, positioning the tip of the antenna at
the same distance from the cavity axis as the cell iris. We use a scattering
boundary condition at the coaxial waveguide aperture (in blue in figure 19).
Inside the cells the cavity fields are not affected by the coupler. It is only in
the vicinity of the coupler where the cavity modes of the 3D and axisymmetric
models differ. In figure 20 we show the transverse electric and magnetic fields
of the fundamental mode from the 3D calculation taken along the black line
that goes from the end of the beam pipe, to the end of the first cell. In contrast
to the axisymmetric model the coupler intoduces local transverse fields in the
fundamental mode, which are absent in the axisymmetric model. The trans-
verse fields are normalized with the maximum electric field along the symmetry
axis. As seen in the figure, the fields are very small and exist only in the close
vicinity of the coupler. The perturbation of the longitudinal fields are of the
same order as the perturbation of the transverse fields. The conclusion from
these simulations is that the perturbation in the dissipated power caused by the
coupler is negligible. The influence the perturbed modes have on the dynamics
of the beam is out of the scope of this paper.
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Figure 4: Evolution of the electric field excited by 32 bunches for the acceler-
ating mode resonating at 704.42 MHz. The curve is taken from a simulation
done with 1000 bunches, but only the first part of the evolution is shown.
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Figure 5: Evolution of electric and magnetic field of the mode resonating at
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izes the field excitation as well as the behavior of the stored energy.
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Figure 6: Evolution of the electric field excited by 40 bunches for the mode
resonating at 1749.556 MHz. The curve is the first part of a simulation with
1000 bunches. The pattern repeats itself as long as there are bunches in the
cavity.
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Figure 7: Total electromagnetic energy of the mode number 24 resonating at
1749.556 MHz excited by 40 bunches. The pattern repeats itself as long as
there are bunches in the cavity.
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Figure 14: Average Power Dissipated for the modes 27 - 36 in dBW.
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Figure 15: Average Power Dissipated for the modes 37 - 46 in dBW.
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Figure 16: Average Power Dissipated for the modes 47 - 56 in dBW.
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Figure 17: Average Power Dissipated for the modes 57 - 66 in dBW.
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Figure 20: Transverse electric (curve with higher amplitude) and magnetic
fields on the axis of the cavity normalized with respect to the maximum of the
longitudinal electric field. The transverse fields are ≈ 1e3 times weaker than
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The Coupled Cavity in the Time

Domain

Gabriele Costanza.

Abstract

The problem of finding the transfer function between two couplers at-

tached to a microwave cavity is proposed in the time domain. An exam-

ple involving an elliptical cavity is presented and solved. This includes

the calculation of the evolution of the modes of the cavity and the voltage

waves in the waveguides of the copulers.
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1 The Coupled Cavity in the Time Domain

The coupled cavity, constituted by the cavity itself, the couplers, waveguides
and waveguide terminations, is a complex system, but it can be simplified if
separated in several parts. A convenient way to separate such systems, is to
consider the cavity and the short sections of the waveguides connected to it as
being one unit, called the coupled-cavity, and the external circuits as another
unit (see figure 1 for a sketch of the coupled-cavity).

The analysis is carried out starting from Maxwell’s equations in the time
domain and imposing as an excitation a wave going from the generator towards
the cavity. The model is completed considering that the reflected wave going
from the cavity back to the generator has to be absorbed by the matched load
after a circulator and thus is not reflected back into the cavity. This is embodied
in the formulation of the boundary condition at the port surface. The problem
is simplified by considering two special cases, where the open circuit and the
short circuit port terminations are used.

1.1 Description of the Problem

Consider a cavity coupled to a generator and a pickup port. Both the generator
and the pickup port are connected to the cavity through a waveguide.

The coupled-cavity is defined by the cavity itself plus a small section of the
waveguides up to the surface Sg. Its domain is the open and bounded domain
Ω which is a subset of R3. Ω is entirely inside its regular boundary S = Sc∪Sg
which is at least Lipschitz and with external normal n̂. Sc denotes the surface
of the metal and Sg and Spk are the cross sections of the generator and pickup
waveguides respectively. We let Ω′ be the complement of Ω.

In this section we propose a derivation of the equations that model the
electric and magnetic evolutions of the fields E and H in the cavity, for t ∈
[0, T ], that satisfy





∇× E = −µ0
∂H
∂t

∇×H = ε0
∂E
∂t

in Ω, t ∈ [0, T ]. (1)

with homogeneous initial conditions,

E(r, t = 0) = 0; H(r, t = 0) = 0 in Ω. (2)

The cavity fields are expanded in terms of cavity orthogonal modes [1]:

E =

∞∑

n=0

en(t)En(r) =
∑

n

En, H =

∞∑

n=0

hn(t)Hn(r) =
∑

n

Hn. (3)
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Ω

Ω′

Sg

Sc

n̂

Figure 1: Schematic representation of the coupled-cavity. It features the res-
onator and a short section of waveguide that couples the generator to the cavity
itself.

Moreover the cavity modes satisfy the equations

{
∇×En = −iωnµ0 Hn

∇×Hn = iωnε0 En

in Ω (4)

with either perfect electric conductor (PEC) boundary condition

n̂×En = 0, on S (5)

or PEC boundary condition on Sc and perfect magnetic conductor boundary
condition on Sg:

n̂×Hn = 0, on Sg. (6)

Substituting the expansions (3) in the first of (1) and taking the scalar
product with H∗m(r) we obtain:

∑

m

em(t) (∇×Em,H
∗
n) = −µ0

∑

n

dhn
dt

(Hn,H
∗
m) . (7)

By integration by parts we have

(∇× u,v) := (u,∇× v) + 〈n̂× u,v〉S , (8)
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so that we can rewrite the left hand side of (7) as:
∑

m

em(t) (∇×Em,H
∗
n) =

∑

m

em(t) (Em,∇×H∗n)Ω +
∑

n

〈n̂× EmH∗n〉S

=
∑

n

iωn ε0 en(t) +
∑

m

〈n̂× Em,H∗n〉S . (9)

where 〈·, ·〉 indicates the flux integral. Equation (7) then becomes

−µ0
dhn
dt

= iωn ε0 en +
∑

m

〈n̂× Em,H∗n〉S . (10)

We proceed with the derivation of the second independent equation. Pro-
ceeding in a similar way as for the derivation of (10), we take the inner product
of the second of (1) with the cavity mode E∗n and obtain
∑

m

hm(t) (∇×Hm,E
∗
n) =

∑

m

hm(t) (Hm,∇×E∗n)Ω +
∑

m

〈n̂×Hm,E
∗
n〉S

= −iωn µ0 hn(t) +
∑

m

〈n̂×Hm,E
∗
n〉S . (11)

With (11), the second of (1) becomes

ε0
den
dt

= −iωn µ0 hn +
∑

m

〈n̂×Hm,E
∗
n〉S , (12)

From (10) and (12), introducing η0 =
√
µ0/ε0, we obtain:

den(t)

dt
= −iωnη

2
0hn(t) +

1

ε0

∑

m

〈n̂×Hm,E
∗
n〉S (13)

dhn(t)

dt
= −i

ωn
η2

0

en(t)− 1

µ0

∑

m

〈n̂× Em,H∗n〉S (14)

which allow to calculate the evolution of the electric and magnetic fields in
a cavity coupled to the generator waveguide and the pickup waveguide. The
generalization to an arbitrary number of couplers is immediate and amounts to
adding the terms corresponding to every aperture in the cavity, to the surface
integrals in (10) and (12). We also underline that the boundary conditions are
embedded in the surface integrals in equations (13) and (14).

We now turn to the study of the boundary condition by transforming the
mentioned surface integrals into quantities that typically characterize the per-
formance of a cavity, such as the quality factors. Thanks to the field equiva-
lence principle [2] we define equivalent electric and magnetic sources Js and
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Ms in terms of which we expand the tangential component of the electric and
magnetic field on Sg. These surface currents radiate into the coupled-cavity
producing the same fields that would be produced by the generator. The fields
in Ω′ are not of interest at this step of the analysis, and the volume Ω′ can be
replaced with a perfect electric conductor (short circuit case), or with a perfect
magnetic conductor (open circuit case).

Open circuit case. We examine first the case in which we impose the
open circuit condition n̂×H = 0 on Sg.

First, if the cavity walls are not a perfect conductor, we have that the power
flowing in the walls of the cavity is

∑

m

〈n̂×Hm,E
∗
n〉Sc

= i
2ωnUe,n
Q0,n

hn(t). (15)

where Ue,n is the electric energy of mode n stored in the cavity defined as

Ue,n =
1

4
ε0

∫

Ω

|En|2 dΩ (16)

and Q0,n is the intrinsic quality factor of mode n. We also define the magnetic
energy

Uh,n =
1

4
µ0

∫

Ω

|Hn|2 dΩ = Ue,n. (17)

The eigenfields are normalized so that
∫

Ω

|En|2 dΩ = η2
0

∫

Ω

|Hn|2 dΩ =
4Ue,n
ε0

=
4Uh,n
ε0

= 1. (18)

Second, we examine the surface integral in (14) which can be rewritten as:
∑

m

〈n̂× Em,H∗n〉S =
∑

m

〈Mm,H
∗+
n 〉Sg +

∑

m

〈Mm,H
∗−
n 〉Sg (19)

The last expression represents the modal energy flowing through the generator
port. That energy can be divided in two parts. The first part represents the
power leaking from the coupled-cavity towards the generator and the second
represents the energy entering the cavity from the generator. The second con-
tribution represents the known term that drives the mode evolution equations.
In our case we only consider the interaction of the coupled-cavity modes with
the fundamental mode of the waveguide, characterized by the field {Eg,Hg}.
Concerning the first contribution, we can write

∑

m

〈Mm,H
∗+
n 〉Sg =

∑

m

em(t)〈Mm,H
∗+
n 〉Sg = i

2ωnUe,n
Qext,n

en(t), ∀n. (20)
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Concerning the second contribution we have

∑

m

〈Mm,H
∗−
n 〉Sg

= 〈Mg,H
∗−
n 〉Sg

= i〈Mg,H
∗−
n 〉Sg

V (g)(t) ∀n (21)

whereMg = V (g)(t)Mg is the impressed magnetic current. The surface inte-
grals (19) then become:

∑

m

〈n̂× Em,H∗n〉S =
2ωnUe,n
Qext,n

en(t) + i〈Mg,H
∗−
n 〉Sg

1

Ng
V (cav)(t), ∀n,

(22)

where Qext,n is the external quality factor of the mode n, which will be defined
in the following. In (22) we have used the fact that V (g) = V (cav) 1

Ng
where

V (g) is the equivalent voltage at the waveguide side and V (cav) is the equivalent
cavity voltage at the cavity side. With (15), (18) and (22), equations (13) and
(14) become





den(t)

dt
= −iωnη

2
0hn(t) + i

ωn
2Q0,n

hn(t)

dhn(t)

dt
= −i

ωn
η2

0

en(t)− i

η2
0

ωn
2Qext,n

en(t)− i

µ0
〈Mg,H

∗−
n 〉Sg

1

Ng
V (cav)(t)

(23)

or

d

dt



en(t)

hn(t)


 =




0 i
ωn

2Q0,n
− iωnη

2
0

− iωn
η2

0

− i

η2
0

ωn
2Qext,n

0






en(t)

hn(t)


 (24)

−




0

i

µ0
〈Mg,H

∗−
n 〉Sg

1

Ng
V (t)(cav)


 . (25)

In the open circuit case, the external Q is calculated with

Qopenext,n =

ωnε0
∫
Ω

|E|2 dΩ

η−1
0

∫
Sg

|E|2 dS
=

4ωnUe,n
Pext,n

, (26)



142 PAPER V

where Un is the electromagnetic energy stored in the cavity and Pext,n is the

power leaving through the coupler and η0 =
√
µ0/ε0.

Short Circuit case. We impose the condition n̂ × E = 0 on Sg. Con-
cerning the surface integral in (12) we have:

〈n̂×Hn,E
∗
m〉S = 〈n̂×Hn,E

∗
m〉Sg

+ 〈n̂×Hn,E
∗
m〉Sc

. (27)

As in the open circuit case, the integral over Sc represents the modal resistive
losses. Using the same arguments as in the open circuit case, we can rewrite
the surface integral over Sg of (27) as:

〈n̂×Hm,E
∗
n〉Sg

= 〈Jn,E∗+m 〉Sg
+ 〈Jn,E∗−m 〉Sg

(28)

where the first integral at the right hand side of (28) represents the power
leaving the coupled-cavity, while the second contribution represents the energy
entering the cavity coming from the power generator. With n̂×Hn = Jn the
first integral of (28) becomes

〈Jm,E∗+n 〉Sg
=

2ωnUh,n
Qext,n

hn(t). (29)

while the second integral can be rewritten as

〈Jm,E∗−n 〉Sg = 〈Jg,E∗−m 〉I(g)(t). (30)

where we have made the approximation that the power entering the cavity is
entirely delivered by the fundamental waveguide mode. This implies that the
driving term be rewritten as Jm = Jg I

(g)(t). Using (29), (30) we rewrite (28)
as:

∑

m

〈n̂×Hm,E
∗
n〉Sg =

2ωnUh,n
Qext

hn(t) + 〈Jg,E∗−n 〉NgI(cav)(t) +
2ωnUe,n
Q0

en(t),

(31)
where we have used the fact that I(g) = NgI

(cav). We can rewrite (13) and
(14) as

d

dt



en(t)

hn(t)


 = (32)




ωn
2Q0,n

−iωnη
2
0 +

ωn
2Qext,n

− iωn
η2

0

0






en(t)

hn(t)


+



〈Jg,E∗−n 〉NgI(cav)(t)

0


 . (33)
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In the short circuit case, the external Q is calculated with

Qshortext,n =

ωnε0
∫
Ω

|H|2 dΩ

η0

∫
Sg

|H|2 dS
=

4ωnUh,n
Pext,n

. (34)

Transformer Ratio. The transformer ratio Ng can be calculated as fol-
lows. The power flowing in the waveguide, is equal to the power that leaves
the cavity, moreover, the oscillations in the cavity are Ng times stronger than
the voltage wave in the waveguides, that is

en(t) = Ng V
(g)(t), (35)

where Ng is the transformer ratio. In a similar way we put

hn(t) =
1

Ng
I(g)(t). (36)

The average forward power in the waveguide and the average power leaving the
cavity are

Pn =
|Vn|2
2Zc

=
|en|2

2N2
g Zc

, (37)

Pext,n =
ε0ωn
Qext,n

. (38)

where Zc is the characteristic impedance of the waveguide and we have used
the normalization (18). Equating the last two equations we have

N2
g =

|en|2Qext,n
2ωnZc

=
R

Q

Qext,n
Zc

=
R

Zc

1

β
, (39)

where we have introduced the coupling factor β1, which is in general defined
as

β =
Q0

Qext
=

R

Zc

1

N2
=

R

Zt
, (40)

with Zt = N2
gZc being the impedance of the external circuit connected to the

cavity, transformed to the cavity side.



144 PAPER V

Progress In Electromagnetics Research Symposium Proceedings, Stockholm, Sweden, Aug. 12-15, 2013 79

Remarks on the Mathematical Solution of the Hollow Cavity
Eigenvalue Problem

G. Costanza1 and A. D. Ioannidis2

1Lund University, Sweden
2Linnæus University, Sweden

Abstract— We discuss the eigenvalue problem for a perfectly conducting hollow cavity under
a strict functional analytic point of view. We make use of a variant of the classical spectral
theorem for compact selfadjoint operators and we pay extra attention on the null space of the
Maxwell operator. We also discuss the corresponding inhomogeneous problem, where currents
are present, even when they may depend on the fields.

1. NOTATION AND PRELIMINARIES

The purpose of this paper is to provide an efficient mathematical framework for the classical eigen-
value problem for a hollow, perfectly conducting cavity. Our motivation emerged from the re-
cent research concerning the ESS accelerator project [3, 7]. The study of the cavity problem has
been started as early as the 40’s [10] and reconsidered many times then, even since our days,
see [1, 4, 6, 11]. Nevertheless, there are still some dark points concerning mainly existence issues
and the so-called completeness of the modes. Our aim is to give a clear and concise picture of
the relevant mathematical problem and suggest the appropriate tools for its solution, in the spirit
of [2].

The notation we use in this paper is as follows. Let (X, 〈·, ·〉) be an infinite dimensional separable
Hilbert space. For a set U ⊂ X, we denote by Ū the closure, by U⊥ the orthogonal complement
and by [U ] the linear span of U ; the closed linear span is then [U ]. B(X) stands for the Banach
algebra of bounded operators in X and K(X) for the ideal of compact operators. Given a linear
operator A : X ⊃ D(A) → X, we denote by R(A) the range and by kerA the null space (kernel)
of A. The graph norm on D(A) is defined as

‖x‖A :=

√
‖x‖2 + ‖Ax‖2.

When equipped with the graph norm, D(A) will be denoted as [D(A)] (not to be confused with
the linear span notation). A∗ stands for the adjoint operator. A is called selfadjoint if A∗ = A,
skew-adjoint if A∗ = −A.

The resolvent set ρ(A) consists of all λ ∈ C for which R(λ;A) := (λI −A)−1 ∈ B(X) (resolvent
operator). If ρ(A) 6= ∅ then A is closed. The spectrum of A is defined as σ(A) := C\ρ(A). λ ∈ σ(A)
is called an eigenvalue if λI −A is not injective and non-zero vectors of ker(λI −A) are called the
coresponding eigenvectors. The set of eigenvalues is denoted by σp(A) (point spectrum).

Proposition 1. The following are equivalent:
a) R(λ;A) ∈ K(X) for some λ ∈ ρ(A).
b) R(λ;A) ∈ K(X) for all λ ∈ ρ(A).
c) ρ(A) 6= ∅ and [D(A)] ↪→ X with a compact injection.

Definition 1. If A satisfies one of the equivalent conditions of Prop. 1, then it is called a discrete
operator.

The following theorem provides the main tool for our exposition.

Proposition 2 (Spectral Theorem). Let A be a discrete selfadjoint operator. Then σ(A) = σp(A)
and σp(A) is a finite or unbounded countable set without accumulation point. The corresponding
eigenspaces are finite dimensional and mutually orthogonal. Eigenvalues of A can be set as an
increasing sequence (λn), diverging at infinity if countable. Each non-zero eigenvalue is counted
according to its multlipicity and the sequence (en) of the corresponding eigenvectors can be chosen
as an orthonormal sequence. Moreover,
a) (en) is an orthonormal basis for R(A) and X = kerA⊕ [(en)].
b) Ax =

∑
n λn 〈x, en〉 en, x ∈ D(A).
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2. THE MAXWELL SYSTEM

As it is well known, every electromagnetic phenomenon is specified by four vector quantities: the
electric field E, the magnetic field H, the electric flux density D and the magnetic flux density B, in
the presence of electric and magnetic currents Je, Jm, respectively. These quantities are considered
as time–dependent vector fields on a domain Ω ⊂ R3, so they are functions of the spatial variable
r ∈ Ω and the time variable t ∈ R. All these fields are connected via the Maxwell system

∂D

∂t
= curlH− Je,

∂B

∂t
= −curlE+ Jm. (1)

We have allowed existence of magnetic currents here because apertures in a cavity can be modeled
this way [9]. The above are supplemented with the two Gauss laws

divD = ρe , divB = ρm. (2)

where ρe, ρm are the densities of the electric and magnetic charge, respectively. Currents and
charges are not independent and obey equation of continuity

∂ρe
∂t

+ div Je = 0 ,
∂ρm
∂t

+ div Jm = 0. (3)

If one accepts (3) as part of the modeling, (2) become redundant and can be absorbed in the initial
conditions.

We now assume that the domain Ω is a hollow cavity, i.e., a vacuous bounded domain:

D = ε0E , B = µ0H. (4)

Without loss of generality, we assume ε0 = µ0 = 1. We further assume that the boundary Γ of Ω
is Lipschitz and therefore an exterior normal n̂ is almost everywhere defined on it and the perfect
electric conductor boundary condition applies

n̂×E = 0, on Γ. (5)

The above implies that n̂ ·H = 0 on Γ. In the six vector notation, (1) are read as follows:

∂

∂t

(
E

H

)
=

[
0 curl

−curl 0

](
E

H

)
+

(−Je

Jm

)
. (6)

To make things more precise, let us denote by e := (E,H)T the electromagnetic (EM) field, by
j := (−Je ,Jm)T the EM current and by

M :=

[
0 curl

−curl 0

]
(7)

the formal Maxwell operator. Then (6) is written

∂e

∂t
= Me+ j. (8)

We now assume j = 0 (homogeneous problem) and apply a separation-of-variables technique, that
is, we ask for a solution of (8) of the form e(r, t) := e(r)T (t) and thus

Me =
T ′(t)
T (t)

e.

Since the left hand side depends only on r, the ratio T ′(t)/T (t) has to be a constant, say λ, and
we conclude to the formal eigenvalue problem

Me = λe, (9)

with e := (E,H)T . Note that although we use the same notation, E, H now do not depend on
time. We also have apparently T (t) = eλt.
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3. REALIZATION OF THE EIGENVALUE PROBLEM

The exposition and notation in this section follows [2, 8]. Due to energy considerations, the fields
E, H are taken to be square integrable, i.e., they are vectors of the Hilbert space L2(Ω;C3) with
inner product

〈U,V〉0 :=
∫

Ω
U(r) ·V(r)dr.

The curl operator is naturally realized in its weak sense in L2(Ω;C3). More precisely, let U ∈
L2(Ω;C3). We say that V is the (weak) rotation of U, and we write V = curlU, if

〈V,φ〉0 = 〈U, curlφ〉0

for every test function φ ∈ C∞
0 (Ω;C3). The maximal domain of definition of curl in X is then the

Sobolev space H(curl; Ω) and is a densely defined closed operator. Moreover, curl can be realized
as a maximal selfadjoint operator in the subspace H0(curl; Ω), which contains exactly the fields
that satisfy (5) in a weak sense. The null spaces of these operators are denoted by H(curl0; Ω),
H0(curl ; Ω) respectively. Analogous definitions apply for the weak divergence operator div, see the
aforementioned references for details.

Consequently, the EM field e is a vector of the product Hilbert space X := L2(Ω;C3)×L2(Ω;C3)
with inner product, for u := (U1,U2)

T , v := (V1,V2)
T ,

〈u, v〉 := 〈U1,V1〉0 + 〈U2,V2〉0 .

The Maxwell operator is realized in a weak sense in X as follows: e ∈ X is in the domain D(M) of
M if there exists a (unique) vector u ∈ X such that

〈
u, (φ1,φ2)

T
〉
=

〈
e, (−curlφ2, curlφ1)

T
〉
, (10)

for every choice of test functions φ1, φ2 ∈ C∞
0 (Ω;C3). In this case, we set u := Me. After this,

problem (3) can be realized as an eigenvalue problem for such defined operator M.

Proposition 3. D(M) = H0(curl; Ω) × H(curl; Ω) and M is a densely defined, closed linear
operator, represented by the operator matrix (7). Moreover, M is skew-adjoint, i.e., M∗ = −M.
Consequently, the spectrum of M is purely imaginary.

That is to say, (3) has imaginary eigenvalues, if any. Following the usual practice, we let
λ := −iω, ω ∈ R, and the problem is rewritten as

Qe = ωe, (?)

where Q := iM is the selfadjoint Maxwell operator. So we are mainly interested in properties of
operator Q; in view of the above proposition, D(Q) = D(M) and Q is a selfadjoint operator with
real spectrum.

Definition 2. Let (ω, e) be a non-trivial solution of (?), i.e., ω ∈ R is an eigenvalue of Q with
corresponding eigenvector e. ω is called an eigenfrequency of the cavity and e the corresponding
mode.

Proposition 4. The null space of Q is kerQ = H0(curl 0; Ω)×H(curl 0; Ω). For the range R(Q)
of Q, we have R(Q) ⊂ H(div 0; Ω)×H0(div 0; Ω) := H.

We now consider the restriction QH of Q on H, defined by D(QH) = D(Q)∩H and QHe = Qe.
Incidentally, QH coincides with the part of Q on H.

Proposition 5. QH is selfadjoint and [D(QH)] is compactly injected into H. Consequently, QH is
discrete and its spectrum is an unbounded sequence of real eigenvalues with no accumulation point.
The corresponding eigenspaces are finite dimensional and mutually orthogonal.
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4. PROPERTIES OF EIGENFREQUENCIES AND MODES

Proposition 6. Let ω 6= 0 be an eigenvalue of QH with corresponding eigenvector (E,H)T. Then
a) E, H satisfy the system { − curlH = iωE

curlE = iωH
(11)

b) ‖E‖0 = ‖H‖0.
c) −ω is an eigenvalue as well, with corresponding eigenvector (E,−H)T.

That is, the eigenvalues of QH can be ordered as a bilateral sequence (ωn)n∈Z, with ωn > 0 for
n > 0, ωn < 0 for n < 0, ω0 = 0 and ω−n = −ωn. For n 6= 0, we count each eigenvalue ωn as
many times as its multiplicity, so we can assume that to each ωn there corresponds exactly one
normalized eigenvector epn := (Ep

n ,H
p
n)T . The zero eigenvalue is counted once and we will discuss

about it later. Namely, the eigenvalues are ordered as follows:

−∞ ← . . . 6 ω−n 6 . . . 6 ω−1 < ω0 = 0 < ω1 6 . . . 6 ωn 6 . . . → ∞.

The sequence of eigenvectors (en) is assumed to be orthonormal.

Proposition 7. Let n, m ∈ N∗, ωn 6= ωm. Then 〈Ep
n ,E

p
m〉0 = 〈Hp

n ,H
p
m〉0 = 0, i.e., both (Ep

n)n∈N∗ ,
(Hp

n)n∈N∗ define orthogonal sequences in L2(Ω;C3).

Proposition 8. (epn)n∈Z∗ is an orthonormal basis for R(QH) and we have the decomposition

H = kerQH ⊕ [. . . , ep−n, . . . , e
p
−1, e

p
1, . . . , e

p
n, . . .]

The closed subspace kerQH is finite dimensional. Moreover, for e ∈ D(QH),

QHe =
∑

n∈Z∗

ωn 〈e, epn〉 epn.

For a detailed description of kerQH we refer to [2, 8]. Let N0 be the dimension of kerQH
(a number depending on the geometry of Ω) and consider an orthonormal basis {e01, . . . , e0N0

} for
kerQH. Note that kerQH describes the source-free, static electromagnetism on Ω.

Proposition 9. {e01, . . . , e0N0
} ∪ (epn)n∈Z∗ is an orthonormal basis for H. {e01, . . . , e0N0

} can be
completed to an orthonormal basis for kerQ, that is, there exist an orthonormal sequence (esn)n∈As

⊂
X such that {e01, . . . , e0N0

} ∪ (esn)n∈As
is an orthonormal basis for kerQ. Moreover, {e01, . . . , e0N0

} ∪
(epn)n∈Z∗ ∪ (esn)n∈As

is an orthonormal basis for X .

Note that As is an infinite countable set, serving as the index set for (esn). This analysis suggests
the following classification for the cavity modes, see also [4]:

• Primary modes (epn)n∈Z∗ (solenoidal, non-irrotational).

• Static modes {e01, . . . , e0N0
} (solenoidal, irrotational).

• Secondary modes (esn)n∈As
(non-solenoidal, irrotational).

We also have that an arbitrary field e ∈ X can be represented as

e =
∑

i=s,0,p

∑

n∈Ai

〈
e, ein

〉
ein, (12)

where A0 := {1, 2, . . . , N0}, Ap := Z∗. If, in addition, e ∈ D(Q), then

Qe =
∑

n∈Ap

ωn 〈e, epn〉 epn. (13)
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5. THE INHOMOGENEOUS PROBLEM

We now allow the presence of EM currents. In the frequency domain, this is modeled with the
equation

Qe = ωe+ j, (14)

where j = j(ω, r) ∈ X . In the view of representations (4), (13), (14) reads
∑

n∈Ap

ωn 〈e, epn〉 epn = ω
∑

i=s,0,p

∑

n∈Ai

〈
e, ein

〉
ein +

∑

i=s,0,p

∑

n∈Ai

〈
j, ein

〉
ein,

which lead to the equations

(ωn − ω) 〈e, epn〉 = 〈j, epn〉 , n ∈ Ap, (15)

ω
〈
e, ein

〉
= −

〈
j, ein

〉
, i = s, 0, n ∈ Ai. (16)

Equations (15), (16) lead to the following result, a variant of the Fredholm Alternative:

Proposition 10. a) Let ω 6= ωn, n ∈ Z. Then (14) has a unique solution given by

e = − 1

ω

∑

i=s,0

∑

n∈Ai

〈
j, ein

〉
ein +

∑

n∈Ap

1

ωn − ω
〈j, epn〉 epn. (17)

b) Let ω = ωm for some m ∈ Z∗. Then (14) has a solution if and only if j is orthogonal to eigenspace
ker(ωmI −QH). In this case, a solution of (14) is of the form

e = − 1

ωm

∑

i=s,0

∑

n∈Ai

〈
j, ein

〉
ein +

∑

n∈Ap

ωn 6=ωm

1

ωn − ωm
〈j, epn〉 epn + u (18)

for some u ∈ ker (ωmI −QH).
c) Let ω = 0. Then (14) has a solution if and only if j is orthogonal to the kernel kerQ. In this
case, a solution of (14) is of the form

e = u+
∑

n∈Ap

1

ωn
〈j, epn〉 epn (19)

for some u ∈ kerQ.
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a strict functional analytic point of view. We make use of a variant of the classical spectral
theorem for compact selfadjoint operators and we pay extra attention on the null space of the
Maxwell operator. We also discuss the corresponding inhomogeneous problem, where currents
are present, even when they may depend on the fields.

1. NOTATION AND PRELIMINARIES

The purpose of this paper is to provide an efficient mathematical framework for the classical eigen-
value problem for a hollow, perfectly conducting cavity. Our motivation emerged from the re-
cent research concerning the ESS accelerator project [3, 7]. The study of the cavity problem has
been started as early as the 40’s [10] and reconsidered many times then, even since our days,
see [1, 4, 6, 11]. Nevertheless, there are still some dark points concerning mainly existence issues
and the so-called completeness of the modes. Our aim is to give a clear and concise picture of
the relevant mathematical problem and suggest the appropriate tools for its solution, in the spirit
of [2].

The notation we use in this paper is as follows. Let (X, 〈·, ·〉) be an infinite dimensional separable
Hilbert space. For a set U ⊂ X, we denote by Ū the closure, by U⊥ the orthogonal complement
and by [U ] the linear span of U ; the closed linear span is then [U ]. B(X) stands for the Banach
algebra of bounded operators in X and K(X) for the ideal of compact operators. Given a linear
operator A : X ⊃ D(A) → X, we denote by R(A) the range and by kerA the null space (kernel)
of A. The graph norm on D(A) is defined as

‖x‖A :=

√
‖x‖2 + ‖Ax‖2.

When equipped with the graph norm, D(A) will be denoted as [D(A)] (not to be confused with
the linear span notation). A∗ stands for the adjoint operator. A is called selfadjoint if A∗ = A,
skew-adjoint if A∗ = −A.

The resolvent set ρ(A) consists of all λ ∈ C for which R(λ;A) := (λI −A)−1 ∈ B(X) (resolvent
operator). If ρ(A) 6= ∅ then A is closed. The spectrum of A is defined as σ(A) := C\ρ(A). λ ∈ σ(A)
is called an eigenvalue if λI −A is not injective and non-zero vectors of ker(λI −A) are called the
coresponding eigenvectors. The set of eigenvalues is denoted by σp(A) (point spectrum).

Proposition 1. The following are equivalent:
a) R(λ;A) ∈ K(X) for some λ ∈ ρ(A).
b) R(λ;A) ∈ K(X) for all λ ∈ ρ(A).
c) ρ(A) 6= ∅ and [D(A)] ↪→ X with a compact injection.

Definition 1. If A satisfies one of the equivalent conditions of Prop. 1, then it is called a discrete
operator.

The following theorem provides the main tool for our exposition.

Proposition 2 (Spectral Theorem). Let A be a discrete selfadjoint operator. Then σ(A) = σp(A)
and σp(A) is a finite or unbounded countable set without accumulation point. The corresponding
eigenspaces are finite dimensional and mutually orthogonal. Eigenvalues of A can be set as an
increasing sequence (λn), diverging at infinity if countable. Each non-zero eigenvalue is counted
according to its multlipicity and the sequence (en) of the corresponding eigenvectors can be chosen
as an orthonormal sequence. Moreover,
a) (en) is an orthonormal basis for R(A) and X = kerA⊕ [(en)].
b) Ax =

∑
n λn 〈x, en〉 en, x ∈ D(A).
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2. THE MAXWELL SYSTEM

As it is well known, every electromagnetic phenomenon is specified by four vector quantities: the
electric field E, the magnetic field H, the electric flux density D and the magnetic flux density B, in
the presence of electric and magnetic currents Je, Jm, respectively. These quantities are considered
as time–dependent vector fields on a domain Ω ⊂ R3, so they are functions of the spatial variable
r ∈ Ω and the time variable t ∈ R. All these fields are connected via the Maxwell system

∂D

∂t
= curlH− Je,

∂B

∂t
= −curlE+ Jm. (1)

We have allowed existence of magnetic currents here because apertures in a cavity can be modeled
this way [9]. The above are supplemented with the two Gauss laws

divD = ρe , divB = ρm. (2)

where ρe, ρm are the densities of the electric and magnetic charge, respectively. Currents and
charges are not independent and obey equation of continuity

∂ρe
∂t

+ div Je = 0 ,
∂ρm
∂t

+ div Jm = 0. (3)

If one accepts (3) as part of the modeling, (2) become redundant and can be absorbed in the initial
conditions.

We now assume that the domain Ω is a hollow cavity, i.e., a vacuous bounded domain:

D = ε0E , B = µ0H. (4)

Without loss of generality, we assume ε0 = µ0 = 1. We further assume that the boundary Γ of Ω
is Lipschitz and therefore an exterior normal n̂ is almost everywhere defined on it and the perfect
electric conductor boundary condition applies

n̂×E = 0, on Γ. (5)

The above implies that n̂ ·H = 0 on Γ. In the six vector notation, (1) are read as follows:

∂

∂t

(
E

H

)
=

[
0 curl

−curl 0

](
E

H

)
+

(−Je

Jm

)
. (6)

To make things more precise, let us denote by e := (E,H)T the electromagnetic (EM) field, by
j := (−Je ,Jm)T the EM current and by

M :=

[
0 curl

−curl 0

]
(7)

the formal Maxwell operator. Then (6) is written

∂e

∂t
= Me+ j. (8)

We now assume j = 0 (homogeneous problem) and apply a separation-of-variables technique, that
is, we ask for a solution of (8) of the form e(r, t) := e(r)T (t) and thus

Me =
T ′(t)
T (t)

e.

Since the left hand side depends only on r, the ratio T ′(t)/T (t) has to be a constant, say λ, and
we conclude to the formal eigenvalue problem

Me = λe, (9)

with e := (E,H)T . Note that although we use the same notation, E, H now do not depend on
time. We also have apparently T (t) = eλt.
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3. REALIZATION OF THE EIGENVALUE PROBLEM

The exposition and notation in this section follows [2, 8]. Due to energy considerations, the fields
E, H are taken to be square integrable, i.e., they are vectors of the Hilbert space L2(Ω;C3) with
inner product

〈U,V〉0 :=
∫

Ω
U(r) ·V(r)dr.

The curl operator is naturally realized in its weak sense in L2(Ω;C3). More precisely, let U ∈
L2(Ω;C3). We say that V is the (weak) rotation of U, and we write V = curlU, if

〈V,φ〉0 = 〈U, curlφ〉0

for every test function φ ∈ C∞
0 (Ω;C3). The maximal domain of definition of curl in X is then the

Sobolev space H(curl; Ω) and is a densely defined closed operator. Moreover, curl can be realized
as a maximal selfadjoint operator in the subspace H0(curl; Ω), which contains exactly the fields
that satisfy (5) in a weak sense. The null spaces of these operators are denoted by H(curl0; Ω),
H0(curl ; Ω) respectively. Analogous definitions apply for the weak divergence operator div, see the
aforementioned references for details.

Consequently, the EM field e is a vector of the product Hilbert space X := L2(Ω;C3)×L2(Ω;C3)
with inner product, for u := (U1,U2)

T , v := (V1,V2)
T ,

〈u, v〉 := 〈U1,V1〉0 + 〈U2,V2〉0 .

The Maxwell operator is realized in a weak sense in X as follows: e ∈ X is in the domain D(M) of
M if there exists a (unique) vector u ∈ X such that

〈
u, (φ1,φ2)

T
〉
=

〈
e, (−curlφ2, curlφ1)

T
〉
, (10)

for every choice of test functions φ1, φ2 ∈ C∞
0 (Ω;C3). In this case, we set u := Me. After this,

problem (3) can be realized as an eigenvalue problem for such defined operator M.

Proposition 3. D(M) = H0(curl; Ω) × H(curl; Ω) and M is a densely defined, closed linear
operator, represented by the operator matrix (7). Moreover, M is skew-adjoint, i.e., M∗ = −M.
Consequently, the spectrum of M is purely imaginary.

That is to say, (3) has imaginary eigenvalues, if any. Following the usual practice, we let
λ := −iω, ω ∈ R, and the problem is rewritten as

Qe = ωe, (?)

where Q := iM is the selfadjoint Maxwell operator. So we are mainly interested in properties of
operator Q; in view of the above proposition, D(Q) = D(M) and Q is a selfadjoint operator with
real spectrum.

Definition 2. Let (ω, e) be a non-trivial solution of (?), i.e., ω ∈ R is an eigenvalue of Q with
corresponding eigenvector e. ω is called an eigenfrequency of the cavity and e the corresponding
mode.

Proposition 4. The null space of Q is kerQ = H0(curl 0; Ω)×H(curl 0; Ω). For the range R(Q)
of Q, we have R(Q) ⊂ H(div 0; Ω)×H0(div 0; Ω) := H.

We now consider the restriction QH of Q on H, defined by D(QH) = D(Q)∩H and QHe = Qe.
Incidentally, QH coincides with the part of Q on H.

Proposition 5. QH is selfadjoint and [D(QH)] is compactly injected into H. Consequently, QH is
discrete and its spectrum is an unbounded sequence of real eigenvalues with no accumulation point.
The corresponding eigenspaces are finite dimensional and mutually orthogonal.
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Proposition 6. Let ω 6= 0 be an eigenvalue of QH with corresponding eigenvector (E,H)T. Then
a) E, H satisfy the system { − curlH = iωE

curlE = iωH
(11)

b) ‖E‖0 = ‖H‖0.
c) −ω is an eigenvalue as well, with corresponding eigenvector (E,−H)T.

That is, the eigenvalues of QH can be ordered as a bilateral sequence (ωn)n∈Z, with ωn > 0 for
n > 0, ωn < 0 for n < 0, ω0 = 0 and ω−n = −ωn. For n 6= 0, we count each eigenvalue ωn as
many times as its multiplicity, so we can assume that to each ωn there corresponds exactly one
normalized eigenvector epn := (Ep

n ,H
p
n)T . The zero eigenvalue is counted once and we will discuss

about it later. Namely, the eigenvalues are ordered as follows:

−∞ ← . . . 6 ω−n 6 . . . 6 ω−1 < ω0 = 0 < ω1 6 . . . 6 ωn 6 . . . → ∞.

The sequence of eigenvectors (en) is assumed to be orthonormal.

Proposition 7. Let n, m ∈ N∗, ωn 6= ωm. Then 〈Ep
n ,E

p
m〉0 = 〈Hp

n ,H
p
m〉0 = 0, i.e., both (Ep

n)n∈N∗ ,
(Hp

n)n∈N∗ define orthogonal sequences in L2(Ω;C3).

Proposition 8. (epn)n∈Z∗ is an orthonormal basis for R(QH) and we have the decomposition

H = kerQH ⊕ [. . . , ep−n, . . . , e
p
−1, e

p
1, . . . , e

p
n, . . .]

The closed subspace kerQH is finite dimensional. Moreover, for e ∈ D(QH),

QHe =
∑

n∈Z∗

ωn 〈e, epn〉 epn.

For a detailed description of kerQH we refer to [2, 8]. Let N0 be the dimension of kerQH
(a number depending on the geometry of Ω) and consider an orthonormal basis {e01, . . . , e0N0

} for
kerQH. Note that kerQH describes the source-free, static electromagnetism on Ω.

Proposition 9. {e01, . . . , e0N0
} ∪ (epn)n∈Z∗ is an orthonormal basis for H. {e01, . . . , e0N0

} can be
completed to an orthonormal basis for kerQ, that is, there exist an orthonormal sequence (esn)n∈As

⊂
X such that {e01, . . . , e0N0

} ∪ (esn)n∈As
is an orthonormal basis for kerQ. Moreover, {e01, . . . , e0N0

} ∪
(epn)n∈Z∗ ∪ (esn)n∈As

is an orthonormal basis for X .

Note that As is an infinite countable set, serving as the index set for (esn). This analysis suggests
the following classification for the cavity modes, see also [4]:

• Primary modes (epn)n∈Z∗ (solenoidal, non-irrotational).

• Static modes {e01, . . . , e0N0
} (solenoidal, irrotational).

• Secondary modes (esn)n∈As
(non-solenoidal, irrotational).

We also have that an arbitrary field e ∈ X can be represented as

e =
∑

i=s,0,p

∑

n∈Ai

〈
e, ein

〉
ein, (12)

where A0 := {1, 2, . . . , N0}, Ap := Z∗. If, in addition, e ∈ D(Q), then

Qe =
∑

n∈Ap

ωn 〈e, epn〉 epn. (13)
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We now allow the presence of EM currents. In the frequency domain, this is modeled with the
equation

Qe = ωe+ j, (14)

where j = j(ω, r) ∈ X . In the view of representations (4), (13), (14) reads
∑

n∈Ap

ωn 〈e, epn〉 epn = ω
∑

i=s,0,p

∑

n∈Ai

〈
e, ein

〉
ein +

∑

i=s,0,p

∑

n∈Ai

〈
j, ein

〉
ein,

which lead to the equations

(ωn − ω) 〈e, epn〉 = 〈j, epn〉 , n ∈ Ap, (15)

ω
〈
e, ein

〉
= −

〈
j, ein

〉
, i = s, 0, n ∈ Ai. (16)

Equations (15), (16) lead to the following result, a variant of the Fredholm Alternative:

Proposition 10. a) Let ω 6= ωn, n ∈ Z. Then (14) has a unique solution given by

e = − 1

ω

∑

i=s,0

∑

n∈Ai

〈
j, ein

〉
ein +

∑

n∈Ap

1

ωn − ω
〈j, epn〉 epn. (17)

b) Let ω = ωm for some m ∈ Z∗. Then (14) has a solution if and only if j is orthogonal to eigenspace
ker(ωmI −QH). In this case, a solution of (14) is of the form

e = − 1

ωm

∑

i=s,0

∑

n∈Ai

〈
j, ein

〉
ein +

∑

n∈Ap

ωn 6=ωm

1

ωn − ωm
〈j, epn〉 epn + u (18)

for some u ∈ ker (ωmI −QH).
c) Let ω = 0. Then (14) has a solution if and only if j is orthogonal to the kernel kerQ. In this
case, a solution of (14) is of the form

e = u+
∑

n∈Ap

1

ωn
〈j, epn〉 epn (19)

for some u ∈ kerQ.
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Abstract— We discuss the eigenvalue problem for a perfectly conducting hollow cavity under
a strict functional analytic point of view. We make use of a variant of the classical spectral
theorem for compact selfadjoint operators and we pay extra attention on the null space of the
Maxwell operator. We also discuss the corresponding inhomogeneous problem, where currents
are present, even when they may depend on the fields.

1. NOTATION AND PRELIMINARIES

The purpose of this paper is to provide an efficient mathematical framework for the classical eigen-
value problem for a hollow, perfectly conducting cavity. Our motivation emerged from the re-
cent research concerning the ESS accelerator project [3, 7]. The study of the cavity problem has
been started as early as the 40’s [10] and reconsidered many times then, even since our days,
see [1, 4, 6, 11]. Nevertheless, there are still some dark points concerning mainly existence issues
and the so-called completeness of the modes. Our aim is to give a clear and concise picture of
the relevant mathematical problem and suggest the appropriate tools for its solution, in the spirit
of [2].

The notation we use in this paper is as follows. Let (X, 〈·, ·〉) be an infinite dimensional separable
Hilbert space. For a set U ⊂ X, we denote by Ū the closure, by U⊥ the orthogonal complement
and by [U ] the linear span of U ; the closed linear span is then [U ]. B(X) stands for the Banach
algebra of bounded operators in X and K(X) for the ideal of compact operators. Given a linear
operator A : X ⊃ D(A) → X, we denote by R(A) the range and by kerA the null space (kernel)
of A. The graph norm on D(A) is defined as

‖x‖A :=

√
‖x‖2 + ‖Ax‖2.

When equipped with the graph norm, D(A) will be denoted as [D(A)] (not to be confused with
the linear span notation). A∗ stands for the adjoint operator. A is called selfadjoint if A∗ = A,
skew-adjoint if A∗ = −A.

The resolvent set ρ(A) consists of all λ ∈ C for which R(λ;A) := (λI −A)−1 ∈ B(X) (resolvent
operator). If ρ(A) 6= ∅ then A is closed. The spectrum of A is defined as σ(A) := C\ρ(A). λ ∈ σ(A)
is called an eigenvalue if λI −A is not injective and non-zero vectors of ker(λI −A) are called the
coresponding eigenvectors. The set of eigenvalues is denoted by σp(A) (point spectrum).

Proposition 1. The following are equivalent:
a) R(λ;A) ∈ K(X) for some λ ∈ ρ(A).
b) R(λ;A) ∈ K(X) for all λ ∈ ρ(A).
c) ρ(A) 6= ∅ and [D(A)] ↪→ X with a compact injection.

Definition 1. If A satisfies one of the equivalent conditions of Prop. 1, then it is called a discrete
operator.

The following theorem provides the main tool for our exposition.

Proposition 2 (Spectral Theorem). Let A be a discrete selfadjoint operator. Then σ(A) = σp(A)
and σp(A) is a finite or unbounded countable set without accumulation point. The corresponding
eigenspaces are finite dimensional and mutually orthogonal. Eigenvalues of A can be set as an
increasing sequence (λn), diverging at infinity if countable. Each non-zero eigenvalue is counted
according to its multlipicity and the sequence (en) of the corresponding eigenvectors can be chosen
as an orthonormal sequence. Moreover,
a) (en) is an orthonormal basis for R(A) and X = kerA⊕ [(en)].
b) Ax =

∑
n λn 〈x, en〉 en, x ∈ D(A).
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2. THE MAXWELL SYSTEM

As it is well known, every electromagnetic phenomenon is specified by four vector quantities: the
electric field E, the magnetic field H, the electric flux density D and the magnetic flux density B, in
the presence of electric and magnetic currents Je, Jm, respectively. These quantities are considered
as time–dependent vector fields on a domain Ω ⊂ R3, so they are functions of the spatial variable
r ∈ Ω and the time variable t ∈ R. All these fields are connected via the Maxwell system

∂D

∂t
= curlH− Je,

∂B

∂t
= −curlE+ Jm. (1)

We have allowed existence of magnetic currents here because apertures in a cavity can be modeled
this way [9]. The above are supplemented with the two Gauss laws

divD = ρe , divB = ρm. (2)

where ρe, ρm are the densities of the electric and magnetic charge, respectively. Currents and
charges are not independent and obey equation of continuity

∂ρe
∂t

+ div Je = 0 ,
∂ρm
∂t

+ div Jm = 0. (3)

If one accepts (3) as part of the modeling, (2) become redundant and can be absorbed in the initial
conditions.

We now assume that the domain Ω is a hollow cavity, i.e., a vacuous bounded domain:

D = ε0E , B = µ0H. (4)

Without loss of generality, we assume ε0 = µ0 = 1. We further assume that the boundary Γ of Ω
is Lipschitz and therefore an exterior normal n̂ is almost everywhere defined on it and the perfect
electric conductor boundary condition applies

n̂×E = 0, on Γ. (5)

The above implies that n̂ ·H = 0 on Γ. In the six vector notation, (1) are read as follows:

∂

∂t

(
E

H

)
=

[
0 curl

−curl 0

](
E

H

)
+

(−Je

Jm

)
. (6)

To make things more precise, let us denote by e := (E,H)T the electromagnetic (EM) field, by
j := (−Je ,Jm)T the EM current and by

M :=

[
0 curl

−curl 0

]
(7)

the formal Maxwell operator. Then (6) is written

∂e

∂t
= Me+ j. (8)

We now assume j = 0 (homogeneous problem) and apply a separation-of-variables technique, that
is, we ask for a solution of (8) of the form e(r, t) := e(r)T (t) and thus

Me =
T ′(t)
T (t)

e.

Since the left hand side depends only on r, the ratio T ′(t)/T (t) has to be a constant, say λ, and
we conclude to the formal eigenvalue problem

Me = λe, (9)

with e := (E,H)T . Note that although we use the same notation, E, H now do not depend on
time. We also have apparently T (t) = eλt.
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3. REALIZATION OF THE EIGENVALUE PROBLEM

The exposition and notation in this section follows [2, 8]. Due to energy considerations, the fields
E, H are taken to be square integrable, i.e., they are vectors of the Hilbert space L2(Ω;C3) with
inner product

〈U,V〉0 :=
∫

Ω
U(r) ·V(r)dr.

The curl operator is naturally realized in its weak sense in L2(Ω;C3). More precisely, let U ∈
L2(Ω;C3). We say that V is the (weak) rotation of U, and we write V = curlU, if

〈V,φ〉0 = 〈U, curlφ〉0

for every test function φ ∈ C∞
0 (Ω;C3). The maximal domain of definition of curl in X is then the

Sobolev space H(curl; Ω) and is a densely defined closed operator. Moreover, curl can be realized
as a maximal selfadjoint operator in the subspace H0(curl; Ω), which contains exactly the fields
that satisfy (5) in a weak sense. The null spaces of these operators are denoted by H(curl0; Ω),
H0(curl ; Ω) respectively. Analogous definitions apply for the weak divergence operator div, see the
aforementioned references for details.

Consequently, the EM field e is a vector of the product Hilbert space X := L2(Ω;C3)×L2(Ω;C3)
with inner product, for u := (U1,U2)

T , v := (V1,V2)
T ,

〈u, v〉 := 〈U1,V1〉0 + 〈U2,V2〉0 .

The Maxwell operator is realized in a weak sense in X as follows: e ∈ X is in the domain D(M) of
M if there exists a (unique) vector u ∈ X such that

〈
u, (φ1,φ2)

T
〉
=

〈
e, (−curlφ2, curlφ1)

T
〉
, (10)

for every choice of test functions φ1, φ2 ∈ C∞
0 (Ω;C3). In this case, we set u := Me. After this,

problem (3) can be realized as an eigenvalue problem for such defined operator M.

Proposition 3. D(M) = H0(curl; Ω) × H(curl; Ω) and M is a densely defined, closed linear
operator, represented by the operator matrix (7). Moreover, M is skew-adjoint, i.e., M∗ = −M.
Consequently, the spectrum of M is purely imaginary.

That is to say, (3) has imaginary eigenvalues, if any. Following the usual practice, we let
λ := −iω, ω ∈ R, and the problem is rewritten as

Qe = ωe, (?)

where Q := iM is the selfadjoint Maxwell operator. So we are mainly interested in properties of
operator Q; in view of the above proposition, D(Q) = D(M) and Q is a selfadjoint operator with
real spectrum.

Definition 2. Let (ω, e) be a non-trivial solution of (?), i.e., ω ∈ R is an eigenvalue of Q with
corresponding eigenvector e. ω is called an eigenfrequency of the cavity and e the corresponding
mode.

Proposition 4. The null space of Q is kerQ = H0(curl 0; Ω)×H(curl 0; Ω). For the range R(Q)
of Q, we have R(Q) ⊂ H(div 0; Ω)×H0(div 0; Ω) := H.

We now consider the restriction QH of Q on H, defined by D(QH) = D(Q)∩H and QHe = Qe.
Incidentally, QH coincides with the part of Q on H.

Proposition 5. QH is selfadjoint and [D(QH)] is compactly injected into H. Consequently, QH is
discrete and its spectrum is an unbounded sequence of real eigenvalues with no accumulation point.
The corresponding eigenspaces are finite dimensional and mutually orthogonal.
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Proposition 6. Let ω 6= 0 be an eigenvalue of QH with corresponding eigenvector (E,H)T. Then
a) E, H satisfy the system { − curlH = iωE

curlE = iωH
(11)

b) ‖E‖0 = ‖H‖0.
c) −ω is an eigenvalue as well, with corresponding eigenvector (E,−H)T.

That is, the eigenvalues of QH can be ordered as a bilateral sequence (ωn)n∈Z, with ωn > 0 for
n > 0, ωn < 0 for n < 0, ω0 = 0 and ω−n = −ωn. For n 6= 0, we count each eigenvalue ωn as
many times as its multiplicity, so we can assume that to each ωn there corresponds exactly one
normalized eigenvector epn := (Ep

n ,H
p
n)T . The zero eigenvalue is counted once and we will discuss

about it later. Namely, the eigenvalues are ordered as follows:

−∞ ← . . . 6 ω−n 6 . . . 6 ω−1 < ω0 = 0 < ω1 6 . . . 6 ωn 6 . . . → ∞.

The sequence of eigenvectors (en) is assumed to be orthonormal.

Proposition 7. Let n, m ∈ N∗, ωn 6= ωm. Then 〈Ep
n ,E

p
m〉0 = 〈Hp

n ,H
p
m〉0 = 0, i.e., both (Ep

n)n∈N∗ ,
(Hp

n)n∈N∗ define orthogonal sequences in L2(Ω;C3).

Proposition 8. (epn)n∈Z∗ is an orthonormal basis for R(QH) and we have the decomposition

H = kerQH ⊕ [. . . , ep−n, . . . , e
p
−1, e

p
1, . . . , e

p
n, . . .]

The closed subspace kerQH is finite dimensional. Moreover, for e ∈ D(QH),

QHe =
∑

n∈Z∗

ωn 〈e, epn〉 epn.

For a detailed description of kerQH we refer to [2, 8]. Let N0 be the dimension of kerQH
(a number depending on the geometry of Ω) and consider an orthonormal basis {e01, . . . , e0N0

} for
kerQH. Note that kerQH describes the source-free, static electromagnetism on Ω.

Proposition 9. {e01, . . . , e0N0
} ∪ (epn)n∈Z∗ is an orthonormal basis for H. {e01, . . . , e0N0

} can be
completed to an orthonormal basis for kerQ, that is, there exist an orthonormal sequence (esn)n∈As

⊂
X such that {e01, . . . , e0N0

} ∪ (esn)n∈As
is an orthonormal basis for kerQ. Moreover, {e01, . . . , e0N0

} ∪
(epn)n∈Z∗ ∪ (esn)n∈As

is an orthonormal basis for X .

Note that As is an infinite countable set, serving as the index set for (esn). This analysis suggests
the following classification for the cavity modes, see also [4]:

• Primary modes (epn)n∈Z∗ (solenoidal, non-irrotational).

• Static modes {e01, . . . , e0N0
} (solenoidal, irrotational).

• Secondary modes (esn)n∈As
(non-solenoidal, irrotational).

We also have that an arbitrary field e ∈ X can be represented as

e =
∑

i=s,0,p

∑

n∈Ai

〈
e, ein

〉
ein, (12)

where A0 := {1, 2, . . . , N0}, Ap := Z∗. If, in addition, e ∈ D(Q), then

Qe =
∑

n∈Ap

ωn 〈e, epn〉 epn. (13)
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5. THE INHOMOGENEOUS PROBLEM

We now allow the presence of EM currents. In the frequency domain, this is modeled with the
equation

Qe = ωe+ j, (14)

where j = j(ω, r) ∈ X . In the view of representations (4), (13), (14) reads
∑

n∈Ap

ωn 〈e, epn〉 epn = ω
∑

i=s,0,p

∑

n∈Ai

〈
e, ein

〉
ein +

∑

i=s,0,p

∑

n∈Ai

〈
j, ein

〉
ein,

which lead to the equations

(ωn − ω) 〈e, epn〉 = 〈j, epn〉 , n ∈ Ap, (15)

ω
〈
e, ein

〉
= −

〈
j, ein

〉
, i = s, 0, n ∈ Ai. (16)

Equations (15), (16) lead to the following result, a variant of the Fredholm Alternative:

Proposition 10. a) Let ω 6= ωn, n ∈ Z. Then (14) has a unique solution given by

e = − 1

ω

∑

i=s,0

∑

n∈Ai

〈
j, ein

〉
ein +

∑

n∈Ap

1

ωn − ω
〈j, epn〉 epn. (17)

b) Let ω = ωm for some m ∈ Z∗. Then (14) has a solution if and only if j is orthogonal to eigenspace
ker(ωmI −QH). In this case, a solution of (14) is of the form

e = − 1

ωm

∑

i=s,0

∑

n∈Ai

〈
j, ein

〉
ein +

∑

n∈Ap

ωn 6=ωm

1

ωn − ωm
〈j, epn〉 epn + u (18)

for some u ∈ ker (ωmI −QH).
c) Let ω = 0. Then (14) has a solution if and only if j is orthogonal to the kernel kerQ. In this
case, a solution of (14) is of the form

e = u+
∑

n∈Ap

1

ωn
〈j, epn〉 epn (19)

for some u ∈ kerQ.
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modes excited in the cavity (blue) after 5 µs from the beginning of the input
signal. The π mode is starting to emerge above the other modes but it’s still
significantly corrupted.
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Remarks on the Mathematical Solution of the Hollow Cavity
Eigenvalue Problem
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Abstract— We discuss the eigenvalue problem for a perfectly conducting hollow cavity under
a strict functional analytic point of view. We make use of a variant of the classical spectral
theorem for compact selfadjoint operators and we pay extra attention on the null space of the
Maxwell operator. We also discuss the corresponding inhomogeneous problem, where currents
are present, even when they may depend on the fields.

1. NOTATION AND PRELIMINARIES

The purpose of this paper is to provide an efficient mathematical framework for the classical eigen-
value problem for a hollow, perfectly conducting cavity. Our motivation emerged from the re-
cent research concerning the ESS accelerator project [3, 7]. The study of the cavity problem has
been started as early as the 40’s [10] and reconsidered many times then, even since our days,
see [1, 4, 6, 11]. Nevertheless, there are still some dark points concerning mainly existence issues
and the so-called completeness of the modes. Our aim is to give a clear and concise picture of
the relevant mathematical problem and suggest the appropriate tools for its solution, in the spirit
of [2].

The notation we use in this paper is as follows. Let (X, 〈·, ·〉) be an infinite dimensional separable
Hilbert space. For a set U ⊂ X, we denote by Ū the closure, by U⊥ the orthogonal complement
and by [U ] the linear span of U ; the closed linear span is then [U ]. B(X) stands for the Banach
algebra of bounded operators in X and K(X) for the ideal of compact operators. Given a linear
operator A : X ⊃ D(A) → X, we denote by R(A) the range and by kerA the null space (kernel)
of A. The graph norm on D(A) is defined as

‖x‖A :=

√
‖x‖2 + ‖Ax‖2.

When equipped with the graph norm, D(A) will be denoted as [D(A)] (not to be confused with
the linear span notation). A∗ stands for the adjoint operator. A is called selfadjoint if A∗ = A,
skew-adjoint if A∗ = −A.

The resolvent set ρ(A) consists of all λ ∈ C for which R(λ;A) := (λI −A)−1 ∈ B(X) (resolvent
operator). If ρ(A) 6= ∅ then A is closed. The spectrum of A is defined as σ(A) := C\ρ(A). λ ∈ σ(A)
is called an eigenvalue if λI −A is not injective and non-zero vectors of ker(λI −A) are called the
coresponding eigenvectors. The set of eigenvalues is denoted by σp(A) (point spectrum).

Proposition 1. The following are equivalent:
a) R(λ;A) ∈ K(X) for some λ ∈ ρ(A).
b) R(λ;A) ∈ K(X) for all λ ∈ ρ(A).
c) ρ(A) 6= ∅ and [D(A)] ↪→ X with a compact injection.

Definition 1. If A satisfies one of the equivalent conditions of Prop. 1, then it is called a discrete
operator.

The following theorem provides the main tool for our exposition.

Proposition 2 (Spectral Theorem). Let A be a discrete selfadjoint operator. Then σ(A) = σp(A)
and σp(A) is a finite or unbounded countable set without accumulation point. The corresponding
eigenspaces are finite dimensional and mutually orthogonal. Eigenvalues of A can be set as an
increasing sequence (λn), diverging at infinity if countable. Each non-zero eigenvalue is counted
according to its multlipicity and the sequence (en) of the corresponding eigenvectors can be chosen
as an orthonormal sequence. Moreover,
a) (en) is an orthonormal basis for R(A) and X = kerA⊕ [(en)].
b) Ax =

∑
n λn 〈x, en〉 en, x ∈ D(A).
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2. THE MAXWELL SYSTEM

As it is well known, every electromagnetic phenomenon is specified by four vector quantities: the
electric field E, the magnetic field H, the electric flux density D and the magnetic flux density B, in
the presence of electric and magnetic currents Je, Jm, respectively. These quantities are considered
as time–dependent vector fields on a domain Ω ⊂ R3, so they are functions of the spatial variable
r ∈ Ω and the time variable t ∈ R. All these fields are connected via the Maxwell system

∂D

∂t
= curlH− Je,

∂B

∂t
= −curlE+ Jm. (1)

We have allowed existence of magnetic currents here because apertures in a cavity can be modeled
this way [9]. The above are supplemented with the two Gauss laws

divD = ρe , divB = ρm. (2)

where ρe, ρm are the densities of the electric and magnetic charge, respectively. Currents and
charges are not independent and obey equation of continuity

∂ρe
∂t

+ div Je = 0 ,
∂ρm
∂t

+ div Jm = 0. (3)

If one accepts (3) as part of the modeling, (2) become redundant and can be absorbed in the initial
conditions.

We now assume that the domain Ω is a hollow cavity, i.e., a vacuous bounded domain:

D = ε0E , B = µ0H. (4)

Without loss of generality, we assume ε0 = µ0 = 1. We further assume that the boundary Γ of Ω
is Lipschitz and therefore an exterior normal n̂ is almost everywhere defined on it and the perfect
electric conductor boundary condition applies

n̂×E = 0, on Γ. (5)

The above implies that n̂ ·H = 0 on Γ. In the six vector notation, (1) are read as follows:

∂

∂t

(
E

H

)
=

[
0 curl

−curl 0

](
E

H

)
+

(−Je

Jm

)
. (6)

To make things more precise, let us denote by e := (E,H)T the electromagnetic (EM) field, by
j := (−Je ,Jm)T the EM current and by

M :=

[
0 curl

−curl 0

]
(7)

the formal Maxwell operator. Then (6) is written

∂e

∂t
= Me+ j. (8)

We now assume j = 0 (homogeneous problem) and apply a separation-of-variables technique, that
is, we ask for a solution of (8) of the form e(r, t) := e(r)T (t) and thus

Me =
T ′(t)
T (t)

e.

Since the left hand side depends only on r, the ratio T ′(t)/T (t) has to be a constant, say λ, and
we conclude to the formal eigenvalue problem

Me = λe, (9)

with e := (E,H)T . Note that although we use the same notation, E, H now do not depend on
time. We also have apparently T (t) = eλt.
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3. REALIZATION OF THE EIGENVALUE PROBLEM

The exposition and notation in this section follows [2, 8]. Due to energy considerations, the fields
E, H are taken to be square integrable, i.e., they are vectors of the Hilbert space L2(Ω;C3) with
inner product

〈U,V〉0 :=
∫

Ω
U(r) ·V(r)dr.

The curl operator is naturally realized in its weak sense in L2(Ω;C3). More precisely, let U ∈
L2(Ω;C3). We say that V is the (weak) rotation of U, and we write V = curlU, if

〈V,φ〉0 = 〈U, curlφ〉0

for every test function φ ∈ C∞
0 (Ω;C3). The maximal domain of definition of curl in X is then the

Sobolev space H(curl; Ω) and is a densely defined closed operator. Moreover, curl can be realized
as a maximal selfadjoint operator in the subspace H0(curl; Ω), which contains exactly the fields
that satisfy (5) in a weak sense. The null spaces of these operators are denoted by H(curl0; Ω),
H0(curl ; Ω) respectively. Analogous definitions apply for the weak divergence operator div, see the
aforementioned references for details.

Consequently, the EM field e is a vector of the product Hilbert space X := L2(Ω;C3)×L2(Ω;C3)
with inner product, for u := (U1,U2)

T , v := (V1,V2)
T ,

〈u, v〉 := 〈U1,V1〉0 + 〈U2,V2〉0 .

The Maxwell operator is realized in a weak sense in X as follows: e ∈ X is in the domain D(M) of
M if there exists a (unique) vector u ∈ X such that

〈
u, (φ1,φ2)

T
〉
=

〈
e, (−curlφ2, curlφ1)

T
〉
, (10)

for every choice of test functions φ1, φ2 ∈ C∞
0 (Ω;C3). In this case, we set u := Me. After this,

problem (3) can be realized as an eigenvalue problem for such defined operator M.

Proposition 3. D(M) = H0(curl; Ω) × H(curl; Ω) and M is a densely defined, closed linear
operator, represented by the operator matrix (7). Moreover, M is skew-adjoint, i.e., M∗ = −M.
Consequently, the spectrum of M is purely imaginary.

That is to say, (3) has imaginary eigenvalues, if any. Following the usual practice, we let
λ := −iω, ω ∈ R, and the problem is rewritten as

Qe = ωe, (?)

where Q := iM is the selfadjoint Maxwell operator. So we are mainly interested in properties of
operator Q; in view of the above proposition, D(Q) = D(M) and Q is a selfadjoint operator with
real spectrum.

Definition 2. Let (ω, e) be a non-trivial solution of (?), i.e., ω ∈ R is an eigenvalue of Q with
corresponding eigenvector e. ω is called an eigenfrequency of the cavity and e the corresponding
mode.

Proposition 4. The null space of Q is kerQ = H0(curl 0; Ω)×H(curl 0; Ω). For the range R(Q)
of Q, we have R(Q) ⊂ H(div 0; Ω)×H0(div 0; Ω) := H.

We now consider the restriction QH of Q on H, defined by D(QH) = D(Q)∩H and QHe = Qe.
Incidentally, QH coincides with the part of Q on H.

Proposition 5. QH is selfadjoint and [D(QH)] is compactly injected into H. Consequently, QH is
discrete and its spectrum is an unbounded sequence of real eigenvalues with no accumulation point.
The corresponding eigenspaces are finite dimensional and mutually orthogonal.
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4. PROPERTIES OF EIGENFREQUENCIES AND MODES

Proposition 6. Let ω 6= 0 be an eigenvalue of QH with corresponding eigenvector (E,H)T. Then
a) E, H satisfy the system { − curlH = iωE

curlE = iωH
(11)

b) ‖E‖0 = ‖H‖0.
c) −ω is an eigenvalue as well, with corresponding eigenvector (E,−H)T.

That is, the eigenvalues of QH can be ordered as a bilateral sequence (ωn)n∈Z, with ωn > 0 for
n > 0, ωn < 0 for n < 0, ω0 = 0 and ω−n = −ωn. For n 6= 0, we count each eigenvalue ωn as
many times as its multiplicity, so we can assume that to each ωn there corresponds exactly one
normalized eigenvector epn := (Ep

n ,H
p
n)T . The zero eigenvalue is counted once and we will discuss

about it later. Namely, the eigenvalues are ordered as follows:

−∞ ← . . . 6 ω−n 6 . . . 6 ω−1 < ω0 = 0 < ω1 6 . . . 6 ωn 6 . . . → ∞.

The sequence of eigenvectors (en) is assumed to be orthonormal.

Proposition 7. Let n, m ∈ N∗, ωn 6= ωm. Then 〈Ep
n ,E

p
m〉0 = 〈Hp

n ,H
p
m〉0 = 0, i.e., both (Ep

n)n∈N∗ ,
(Hp

n)n∈N∗ define orthogonal sequences in L2(Ω;C3).

Proposition 8. (epn)n∈Z∗ is an orthonormal basis for R(QH) and we have the decomposition

H = kerQH ⊕ [. . . , ep−n, . . . , e
p
−1, e

p
1, . . . , e

p
n, . . .]

The closed subspace kerQH is finite dimensional. Moreover, for e ∈ D(QH),

QHe =
∑

n∈Z∗

ωn 〈e, epn〉 epn.

For a detailed description of kerQH we refer to [2, 8]. Let N0 be the dimension of kerQH
(a number depending on the geometry of Ω) and consider an orthonormal basis {e01, . . . , e0N0

} for
kerQH. Note that kerQH describes the source-free, static electromagnetism on Ω.

Proposition 9. {e01, . . . , e0N0
} ∪ (epn)n∈Z∗ is an orthonormal basis for H. {e01, . . . , e0N0

} can be
completed to an orthonormal basis for kerQ, that is, there exist an orthonormal sequence (esn)n∈As

⊂
X such that {e01, . . . , e0N0

} ∪ (esn)n∈As
is an orthonormal basis for kerQ. Moreover, {e01, . . . , e0N0

} ∪
(epn)n∈Z∗ ∪ (esn)n∈As

is an orthonormal basis for X .

Note that As is an infinite countable set, serving as the index set for (esn). This analysis suggests
the following classification for the cavity modes, see also [4]:

• Primary modes (epn)n∈Z∗ (solenoidal, non-irrotational).

• Static modes {e01, . . . , e0N0
} (solenoidal, irrotational).

• Secondary modes (esn)n∈As
(non-solenoidal, irrotational).

We also have that an arbitrary field e ∈ X can be represented as

e =
∑

i=s,0,p

∑

n∈Ai

〈
e, ein

〉
ein, (12)

where A0 := {1, 2, . . . , N0}, Ap := Z∗. If, in addition, e ∈ D(Q), then

Qe =
∑

n∈Ap

ωn 〈e, epn〉 epn. (13)
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5. THE INHOMOGENEOUS PROBLEM

We now allow the presence of EM currents. In the frequency domain, this is modeled with the
equation

Qe = ωe+ j, (14)

where j = j(ω, r) ∈ X . In the view of representations (4), (13), (14) reads
∑

n∈Ap

ωn 〈e, epn〉 epn = ω
∑

i=s,0,p

∑

n∈Ai

〈
e, ein

〉
ein +

∑

i=s,0,p

∑

n∈Ai

〈
j, ein

〉
ein,

which lead to the equations

(ωn − ω) 〈e, epn〉 = 〈j, epn〉 , n ∈ Ap, (15)

ω
〈
e, ein

〉
= −

〈
j, ein

〉
, i = s, 0, n ∈ Ai. (16)

Equations (15), (16) lead to the following result, a variant of the Fredholm Alternative:

Proposition 10. a) Let ω 6= ωn, n ∈ Z. Then (14) has a unique solution given by

e = − 1

ω

∑

i=s,0

∑

n∈Ai

〈
j, ein

〉
ein +

∑

n∈Ap

1

ωn − ω
〈j, epn〉 epn. (17)

b) Let ω = ωm for some m ∈ Z∗. Then (14) has a solution if and only if j is orthogonal to eigenspace
ker(ωmI −QH). In this case, a solution of (14) is of the form

e = − 1

ωm

∑

i=s,0

∑

n∈Ai

〈
j, ein

〉
ein +

∑

n∈Ap

ωn 6=ωm

1

ωn − ωm
〈j, epn〉 epn + u (18)

for some u ∈ ker (ωmI −QH).
c) Let ω = 0. Then (14) has a solution if and only if j is orthogonal to the kernel kerQ. In this
case, a solution of (14) is of the form

e = u+
∑

n∈Ap

1

ωn
〈j, epn〉 epn (19)

for some u ∈ kerQ.

REFERENCES

1. Aksoy, S. and O. A. Tretyakov, “The evolution equations in study of the cavity oscillations
excited by a digital signal,” IEEE Trans. Antennas Prop., Vol. 52, No. 1, 2004.

2. Dautray, R. and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and
Technology, Vol. 3: Spectral Theory, Springer, Berlin, 1990.

3. Devanz, G. and J. Plouin, “Conceptual design of the beta = 0.86 cavities for the supercon-
ducting Linac of the ESS,” Proceedings of SRF, Chicago, Illinois, USA, July 2011.

4. Geyi, W., “Time-domain theory of metal cavity resonator,” Progress In Electromagnetics Re-
search, Vol. 78, 219–253, 2008.

5. Helmberg, G., Introduction to Spectral Theory in Hilbert Spaces, North Holland, Amsterdam,
1969.

6. Kurokawa, K., “The expansions of electromagnetic fields in cavities,” IRE Trans. Microwave
Theory Techniques, Vol. 6, No. 2, 178–187, 1957.

7. Lindroos, M., S. Molloy, D. McGinnis, C. Darve, and H. Danared, “The ESS Linac design,”
Proceedings of LINAC, Tel-Aviv, Israel, December 2012.

8. Monk, P., Finite Elements Method for Maxwell’s Equations, Clarendon Press, Oxford, 2003.
9. Omar, A., Electromagnetic Scattering and Material Characterization, Artech House, Boston,

2011.
10. Slater, J. C., “Microwave electronics,” Review Modern Physics, Vol. 18, 441–512, 1946.
11. Teichmann, T. and E. P. Winger, “Electromagnetic field expansions in loss free cavities excited

through holes,” J. Applied Physics, Vol. 24, 262–267, 1953.

0 0.2 0.4 0.6 0.8 1 1.2

−1

−0.5

0

0.5

1

z [m]

E
z
/m

a
x
(E

z
,π
)

π mode
all modes

Figure 5: After 8 µ s the accelerating mode is much stronger than all the other
modes and the mode corruption is almost absent.



146 PAPER V

2 Results

2.1 Open Circuit Model

In this section we use the model (25) to calculate the evolution of the modes in
a six-cell superconducting elliptical cavity. First the eigenmodes of the cavity
are calculated performing an eigenvalue simulation with the perfect magnetic
conductor (PMC) boundary condition applied to the port surface (in light
blue in fig. 6) and a perfect electric conductor (PEC) applied to the rest of the
surface of the cavity. The Joule losses are considered to be a small perturbation
so that the fields obtained using a PEC cavity surface are still valid. A surface
resistance (Rs) of 40 nΩ is used to calculate the intrinsic quality factor using
the formula

Q0,n =
Gn
Rs

, (41)

where Gn is the geometric factor of the mode n defined as

Gn =

ωnµ0

∫
Ω

|Hn|2 dΩ

∫
S

|Hn|2 dS
=

2ωnUn∫
S

|Hn|2 dS
. (42)

These boundary conditions constitute an approximation and some of the modes
thus calculated are “fictitious” in the sense that they exist only thanks to the
approximate boundary condition.

The modes with very low external quality factor, that is, the modes with
Qext < 1e3, are modes whose energy is confined in the waveguide coupler itself.
Those modes are strongly dependent on the boundary conditions and disappear
when the boundary condition at the waveguide port is changed. To distinguish
waveguide modes from the cavity modes it is possible to perform a simulation
of the cavity with the port boundary condition.

The input signal chosen to excite the cavity, is a sine oscillating at the
frequency of the accelerating mode, modulated by a square window:

V (cav)(t) = sin(wgt) rectT(t), (43)

where wg is the angular frequency of the accelerating mode and rectT(t) is a
square pulse of width T = 5 µs that starts at zero. To make the input signal
more realistic the rectangular window is ramped up and down, the ramp being
5 ns long. Figure 2 represents the signal at the end of the rectangular window.

Once the waveguide modes have been excluded, the evolution of the en(t)
and hn(t) is calculated with (25) and the time domain electric and magnetic

1not to be confused with the normalized velocity β = v/c, where c is the speed of light.
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Figure 6: six-cell elliptical cavity used for the simulations.

fields (3) can be calculated. Figure 3 represents the evolution of the amplitude
of the accelerating mode and of the 5π/6 mode. The 5π/6 mode reaches a
maximum before decaying, this is because the input signal is at the frequency
of the accelerating π mode. Figure 4 shows the comparison between the nor-
malized longitudinal electric field of the π mode only and when all the modes
are present. After ≈ 10µs the accelerating mode is much stronger than the
other modes and the mode corruption disappears, see fig. 5.

3 Conclusions

A model for the cavity coupled to a coupler has been presented. The model
allows to calculate the time-domain evolution of the electric and magnetic field
in the cavity. The model is easily extended to accomodate any number of ports
and it is useful in the development of the control loop of the cavity.
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