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Popular summary in English

Modern computers have been steadily shrinking in size owing to the ever increas-
ing capability of fabricating transistors with a remarkable accuracy. Presently, the
state-of-the-art transistors are approaching the size of a handful of atoms. On this
scale, quantum physics dominates and presents a fundamental obstacle to tradi-
tional computer chips. However, this scale does not only imply a limitation - but
it also opens up new possibilities.

The idea of a computer which can harness the rich physics that emerges on the
microscopic scale has for a long time been a tantalising thought. The enthusiasm
has been spurred by several theoretical predictions which indicate that a quantum
computer for specific tasks would be exponentially faster than the traditional one.
A prime example is Shor’s algorithm, which can factorise large numbers in their
prime factors efficiently. This is a notoriously difficult task for classical computers,
so much so that modern cryptography relies on it being a practically impossible
task for very large numbers.

Much research has been devoted to realising a device which can process quantum
information on a chip, as an extension of the conventional computer. One com-
pelling proposal is to use single electrons, artificially confined in a cage of only hun-
dreds of atoms. Fabrication methods have grown sophisticated enough that these
structures, referred to as quantum dots, can be constructed routinely. Complete
control over how many electrons are in confinement has also been demonstrated,
together with the ability to encode information onto individual electrons.

With this success, it may then be perplexing why quantum computers as a techno-
logy, despite being theoretically investigated since the 1960s, remains in its infancy.
To understand this, it is necessary to understand the properties of quantum physics
which enable the remarkable improvement promised by quantum computation.

In contrast to the classical bit taking values 1 or o, a qubit, the basic unit of
quantum information, is allowed to take the values 1, 0 or an arbitrary combination
of them. This is referred to as the superposition principle. Moreover, quantum
algorithms require entanglement: a phenomenon exclusive to quantum physics
where two particles, which in the past have interacted, can no longer be described
as two separate entities. These properties serve as the backbone of a quantum
computer, and they share one detrimental feature - any measurement will cause

viii



the quantum properties to vanish.

Quantum information is therefore extremely sensitive. For electrons confined in
a quantum dot, the effects will typically vanish faster than a millionth of a second.
To make matters worse, the entanglement of an electron pair is an elusive prop-
erty that can only be revealed using a very complicated detector, which is hard to
achieve in a microscopic device. This presents an intriguing theoretical challenge:
to propose creative schemes which generate and detect entangled pairs of electrons,
and control them sufficiently fast without resorting to direct measurements.

The aim of our work has been to face this challenge.

With the works in Papers I, II, and III we have aimed to facilitate detection of
entanglement in devices comprising quantum dots. Our approach has been to
study how the electric current traversing the device fluctuates when a voltage is
applied. In contrast to the prevailing mindset that a noisy signal is bad, for us these
fluctuations are a source of information. These fluctuations are namely related to
how the constituent electrons of the current behave, by, e.g., showing if they arrive
one by one or in pairs. We have used this phenomenon, to devise schemes which
relate the measured fluctuations of spatially separated currents, to the existence of
entangled electron pairs. In Paper IV we have investigated the control of the state
of an electron in a quantum dot. In particular, we have investigated whether the
control of an electron can be improved by design, by changing the shape of the
quantum dot and placing a small magnet nearby.
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Populirvetenskaplig sammanfattning pa svenska

Dagens datorer har krympt i storlek i takt med den stindigt 6kande kompetensen
att tillverka transistorer med en anmirkningsvird noggrannhet. Storleksskalan av
nya transistorer borjar motsvara den av en handfull atomer. P4 denna skala domi-
nerar kvantfysik, vilket ir ett visentligt hinder for de traditionella datorkompo-
nenterna. Men detta innebir inte bara en begrinsning - det 6ppnar dven upp for
nya mojligheter.

Datorer som kan utnyttja den kvantfysik som framtrider pa mikroskopisk skala
har under lang tid varit en dtrovird tanke. Entusiasmen har drivits av flera teo-
retiska unders6kningar som tyder pé att en ’kvantdator’, for specifika uppgifter,
skulle vara exponentiellt snabbare 4n en vanlig (s& kallad klassisk) dator. Ett bra
exempel pé detta dr Shors algoritm, som kan snabbt faktorisera mycket stora tal
i deras primtalsfaktorer. Detta dr en notoriskt svar uppgift for klassiska datorer.
Sikerheten av dagens krypteringsalgoritmer bygger pd antagandet att detta r en
omdjlig uppgift for ett tillrickligt stort tal.

Mycket forskning har bedrivits med mélet att férverkliga en anordning, som kan
bearbeta kvantinformation och utféra kvantalgoritmer pa ett chip, likt den klas-
siska datorn. Ett tilltalande forslag dr att anvinda enstaka elektroner, artificiellt
instingda i en bur av endast hundratals atomer. Metoderna att tillverka dessa
mikroskopiska burar har blivit sd pass sofistikerade, att dessa strukturer, som kal-
las kvantprickar, kan idag tillverkas rutinmissigt. Precis kontroll 6ver hur manga
elektroner dr i fingenskap har dven demonstrerats, tillsammans med férmagan att
koda information pa enskilda elektroner.

Med dessa framsteg, kan det dé verka forbryllande att kvantdatorer, trots teoretiska
undersokningar sedan 1960-talet, fortfarande inte har forverkligats. For att forsta
detta, dr det nodvindigt att forstd de egenskaper av kvantfysik som mojliggor den
anmirkningsvirda forbittring som utlovats av kvantdatorernas foresprakare.

Till skillnad fran den klassiska enheten foér information, en #:t, som kan anta vir-
det 1 eller o, sa kan motsvarande enhet f6r kvantinformation, en kvantbit, bira pa
1, 0 eller en kombination av dessa - ett si kallat superpositionstillstind. Dessutom
kraver kvantalgoritmer sammanflitning (entanglement pd engelska): ett exklusivt
kvantfysikikaliskt fenomen dir tva partiklar, som tidigare har samverkat, inte ling-
re kan beskrivas som tvd separata enheter, utan de delar varandras egenskaper.



Dessa effekter utgoér fundamentet f6r en kvantdator, och de delar en gemensam
svaghet - en mitning far bida effekterna att forsvinna.

Av den anledningen 4r kvantinformation extremt kinslig. Kvanteffekterna for elektro-
ner i en kvantprick forsvinner vanligtvis snabbare in en miljarddels sekund. Detta
forsvaras ytterligare av att sammanfldtning hos ett par av elektroner ir en svarfang-
ad egenskap, som endast avslojas med hjilp av en mycket komplicerad detekeor.
Dessa detektorer 4r svira att implementera pa ett mikroskopisk chip. Detta ir
en spinnande teoretisk utmaning; att foresla kreativa tillvigagangssite att generera
och uppticka sammanflitade elektronpar, samt kontrollera dem tillrickligt snabbt
utan att tillgripa direkta mitningar.

Malet med vért arbete har varit att beméta denna utmaning,.

Med arbetet i artikel I, IT och III har vi haft som mal att underlitta detektion
av sammanfldtning i chip med kvantprickar. Var strategi har varit att studera hur
den elektriska strommen som flddar genom chippet fluktuerar da en spinning ir
palagd. I motsats till det vanliga tankesittet att brus i mitningen ar dalig, s& ir
dessa fluktuationer for oss en killa till information. Dessa variationer i strémmen
ir nimligen relaterade till hur de individuella elektronerna som utgér stréommen
beter sig, om de exempelvis kommer en efter en, eller om de transporteras parvis.
Vi har anvint detta fenomen, for att utforma ett test som kan detektera forekoms-
ten av elektronpar som 4r sammanflitade. I artikel IV har vi studerat styrningen
av en elektrons tillstaind som befinner sig i en kvantprick. Specifikt har vi fokuse-
rat pd om det dr mojligt att forbittra styrningen genom att indra formen pd den
kvantprick som fingar elektronen, samt placera sma magneter i nirheten.
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Chapter 1

Introduction

The topic to which this thesis aims to contribute is quantum information pro-
cessing in nanoscale devices. The original ideas date back to the early 1980s, with
the novel suggestion of R. P. Feynman [1], of realising a type of quantum analogue
to the classical computer. Aside from the gains that come with using a quantum
unit of information (later termed qubit), which also allows for superposition of
logical states, he recognised that quantum physics is essential when attempting
to, with a computer, simulate physics where quantum phenomena are prevalent.
These ideas motivated future investigations into realising a type of ‘quantum com-
puter’, which is believed to efficiently, not only simulate quantum physics but also
solve computational problems that classical computers can not. Here the notions
of efficient and inefficient solutions refer to the time complexity. An efhicient solu-
tion will have an increasing computation time which is at most polynomial in the
problem size [2].

Spurred by the idea of harnessing the computational power of quantum phys-
ics, the subject of quantum computation has developed into an active research
field, with prolific studies in the 1980s and 1990s, resulting in the development of
quantum algorithms. For some tasks, it was found, that the quantum algorithms
would excel in comparison to their classical counterpart. A notable example is
Shor’s algorithm, which can find the prime factors of an integer /V on a time scale
which is polynomial in log IV [3], a task the fastest classical algorithm solves on a
time which scales almost exponentially in log /V [4].



Despite a notable enthusiasm, these ideas, however, remain to a large extent theor-
etical, owing to the difficulty of preparing enough robust, connected qubits which
can at the same time be coherently controlled. Various architectures are actively
being pursued in the hopes of realising quantum computers [s]. Qubits have been
realised in different physical systems, ranging from superconducting circuits [6]
and vibrational states of trapped ions [7, 8] to the spin states of electrons in a solid
state device [9, 10].

In this thesis, we focus on using the state of electrons trapped in quantum dots as
logical qubit states (to be discussed in Chapter 3) [11, 12]. This is a compelling plat-
form, owing to its potential for scalability where, e.g., an array of electrostatically
defined quantum dots can be controlled by applying a varying voltage to nearby
electrodes. Another advantage is the compatibility of these, in particular, silicon
based, qubits with modern semiconductor electronics. However, there is a critical
downside.

The major culprits for quantum dot based qubits are the Coulomb-, and hyperfine
interactions. Inside a solid, electrons are surrounded by a perturbing environment
of, e.g., vibrating ions of the crystal lattice and fluctuating nuclear spins. As a
consequence, the qubit is highly susceptible to decoherence, the process by which
the qubit retreats to a classical state. Asan example, if the charge state of quantum
dots is used to encode information, the fluctuating background charge will result
in loosing the quantum information on the order of nanoseconds [13, 14].

While the above discussion paints a dire picture, recent advances in the fabrica-
tion of semiconductor devices have made the prospects of solid state qubit devices
promising. Several groups have demonstrated a remarkable precision, allowing the
limit of few trapped electrons to be explored [15] together with targeted coherent
spin manipulation [16, 17]. The fabrication has become precise enough to routinely
define qubits in quantum dots and to explore the idea of multiple quantum dots
on the same chip [18]. However, for these systems to be viable, the errors induced
by the background noise have to be accounted for and corrected. To this end,
special protocols for error correction have been devised [2], which introduces a
threshold that the coherence time has to surpass. With this, prolonging the co-
herence time of qubits, or, increasing the speed of coherent control, has become
an active area of research [19, 20]. In Paper IV we explore ways of addressing this
issue. In particular, we study a qubit defined by the spin of an electron residing
on a quantum dot, which is controlled by an on-chip electric field. We investigate



if dot geometry and orientation of an applied magnetic field could improve the
ratio of time required for coherent manipulation to the decoherence rate due to
background charge noise.

Physically realising robust qubits is, however, not enough for quantum computa-
tion. Another essential component is entanglement, a type of correlations between
particles which is only permitted in quantum physics. These quantum correlations
are an indispensable resource for quantum algorithms. Experiments on detecting
and generating the entanglement of electron pairs in solid state devices have, how-
ever, met limited success up to now. In particular, owing to the inherent problems
described above, it remains a theoretical challenge to propose a feasible scheme
that can unambiguously detect entanglement in pairs of transport electrons. Con-
ventional entanglement detection schemes also present a significant engineering
obstacle, as they typically require a versatile detector and many measurements.

With our work in the appended Papers I, II and III we have aimed to facilitate
detection of entanglement in electron pairs in a transport setup. We present an
entanglement detection model which relates the measured current noise to the
presence of spin-entangled (Paper I) and orbitally entangled (Paper II) electron
pairs. Additionally, we propose in Paper II a quantum dot based solid state device
which both generates and detects entangled electron pairs, on a time scale much
smaller than the reported decoherence time. With the work in Paper I1I, we further
address the issue of a demanding detector. Here we propose a minimal detection
scheme, which unambiguously detects entanglement in electrical conductors with
only two current correlation measurements.

We return to the results of these works in Chapters 6 through 9, followed by an
outlook in Chapter 10, with the preceding chapters dedicated to describing the
theoretical methods we have employed.

Structure of the thesis

This thesis is naturally divided into two parts. The first part, chapters 2 through s,
introduces the basic theory which has been employed to obtain the results of the
appended papers.

In Chapter 2, we present the preliminaries for the work on entanglement detection



in quantum dot devices. This chapter introduces the notion of entanglement,
before describing methods for discerning whether two particles are entangled or
not.

A lateral quantum dot structure in semiconductor heterostructures is introduced
in Chapter 3, which will serve as common ground for the work we have conducted
on quantum dot devices. We further present the technical preliminaries of Paper
IV. In particular, we discuss the intrinsic spin-orbit interaction present in GaAs
and silicon and how it enables electrical control of the electron spin. In addition,
we describe the Hamiltonian for the piezoelectric interaction and deformation
potential, the two types of electron-phonon interaction which play a prominent
role in Paper IV.

For our work on the transport of electrons through nano-scale devices, the prin-
cipal tool has been the Markovian Quantum Master Equation, which is introduced
in Chapter 4.

In Chapter s the theory underlying electron counting statistics is described. In
particular, we show how to extend the Quantum Master Equation of preceding
chapter by including ’counting fields’. This technique allows us to study the trans-
port statistics in the quantum dot devices described in Papers I and II. Further-
more, we introduce the concept of current noise, in particular shot noise, and how
it is theoretically quantified. Shot noise plays a crucial role in our entanglement
detection schemes of transport electrons.

The second part of the thesis provides an overview of the main results of the ap-
pended papers. Here the papers are summarised separately in chapters 6 through
9, before concluding with an outlook in Chapter 10.



Chapter 2

Entanglement

Entanglement is a central notion which permeates the major part of this thesis.
As such this chapter is devoted to briefly introduce the concept and the formalism
which we have used in Papers I, II and III. While a rich topic, here the scope will
be limited to presenting the basics of the methods we have employed in our work,
pertaining to Papers I-III.

The term entanglement was introduced by Schrodinger in 1935 [21], to refer to
the peculiar property of states allowed by quantum mechanics, where the total
state of a composite system cannot be described as the product of states of its
constituent parts. While at first glance appearing to be an innocuous technicality,
the consequence of such states has led to some questioning the validity of quantum
mechanics as a complete description of physics.

Schrédinger’s investigation into these states was prompted by another famous pa-
per from the same year, authored by Einstein, Podolsky and Rosen (EPR) [22].
In their paper, they explore the implications of correlations made accessible by
quantum mechanics. They note that if two spatially separated systems A and B
had been interacting in the past, resulting in an entangled state, a measurement
of system A would unavoidably affect the uncertainty of system B, despite the
arbitrary distance between them. They voiced concern that quantum theory can
therefore not be considered a complete description of physical reality. To ensure a
consistent theory, a proposed general framework would have to abandon the idea
of wavefunctions as containing all physical information.



While the proposal of a more general theory at first appears to border on metaphys-
ics, it was found by J.S. Bell that in fact quantum mechanics enables a quantitative
test, which clearly differentiates quantum mechanics from the proposed theory.
Using the hypothesis of EPR he identified that a theory with a set of local hidden
variables (LHV) satisfies the criteria of the proposed complete theory, which he
compared with predictions of quantum mechanics. Using a reformulation of the
EPR thought experiment in terms of two atoms with known total spin zero, due
to D. Bohm [23], in his seminal work he proposes an experiment which uses the
correlation measurements of separate particles [24]. Bell showed that an upper
bound is obtained for correlations within a LHV theory, here referred to as clas-
sical correlations, which is violated by the predictions of quantum physics. The
violation of the so-called Bell inequality has since been studied in many experi-
ments to verify that in fact the correlations predicted by quantum mechanics, and
not by a LHV theory, agree well with experiments.

It should, however, be stressed, that the validity of applying the measurement
results straightforwardly to the Bell inequality, can be questioned. To fully prove
the absence of a LHV theory, many experimental imperfections have to be taken
into account to ensure that no possible loopholes exist which could again allow
for a LHV theory to be reformulated. Closing these loopholes is a current area of
research, with an increasing number of experiments reporting loophole-free Bell
inequality violations [25, 26, 27].

Aside from disproving LHV theories, there is a growing interest in studying cor-
relations with the primary intention to detect entangled states, disregarding loop-
holes which enable a LHV theory. For this purpose, new methods for entangle-
ment detection have emerged. A prime example is the approach of entanglement
witnesses, to be discussed later in this chapter. It is important to note that, since
not all entangled states imply a violation of the Bell inequality [28], the approach
of entanglement witnesses is more suited for the task of detecting entanglement.

So far, detecting the existence of entanglement has been presented here as a funda-
mental curiosity. In reality, an essential motivation for generating and detecting
entanglement is the possible technological applications. With the discoveries of
e.g. superdense coding, quantum teleportation and entanglement-assisted error-
correction [2], the role of entanglement was recognised to be the essential resource
for quantum information protocols. This aspect of entanglement, as a precious re-
source for future quantum information processing devices, has served as the prin-



cipal motivation for our work on entanglement detection in Papers I, II and III.

While there is active research into generation and detection of entanglement with
three or more particles [29], in this thesis we restrict ourselves to the phenomenon
of two-particle-, or bipartite entanglement.

2.1 Entanglement definitions

In accordance with Schrédinger’s observation, the definition of a pure entangled
state is a state which cannot be descibed as a product of its subsystems, that is

|Wg) # V) @ |Vp), (2.1)

where the non-entangled state is often referred to as separable. Here ® is the direct

product, which is implied when writing |4)|B), and |1;) is the state of subsystem
k.

Typically it is necessary to consider a statistical mixture of states, rather than a
single pure state. This is in particular the case for our work related to entanglement.
In Papers I, I and III we consider a small quantum system which is in contact with
a large reservoir of electrons. By tracing out the degrees of freedom of the large
reservoir, we obtain an effective description of the small subsystem in terms of a,
reduced, density matrix, which in general is not a pure state. The reduced density
matrix correctly describes the outcome of any measurement on the smaller system
[2]. A general density matrix p, can be decomposed into a sum of states [¢;),

weighted by their statistical probability p;,
p= Zl’i|7/’i><¢z’|, Z]’z' =1, p;=0. (2.2)

The density matrix operator is a convenient state representation, and corresponds
to a pure state when tr [p?] = 1 is satisfied. The expectation value of an operator
Vin a system described by a, possibly mixed, state p is (V) = tr[Vp].

In the density matrix picture the definition of entanglement for pure states, i.e.
product of states in the subsystems, is not straightforwardly applicable. Instead, as
introduced by Werner [28, 29], the definition is extended to density matrices, as
the state which cannot be decomposed as a mixture of separable pure states |¥? ),

Py = O Py ® s, 0y = [T (W], (2.3)



Before describing how entangled mixed states, i.e. states for which tr [pz] < 1,can
be detected, we introduce a convenient tool for studying entanglement of pure
states.

2.2 Schmidt decomposition

Using the Schmidt decomposition theorem [2] theorem we are able to decompose
the pure states of a composite system as

T) =" silwh) ), (2.4)
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which is called the Schmidt form. Here the number of ;s corresponds to the
Schmidt number, or rank, from which we can infer if a state is entangled. Spe-
cifically, a state is a product state if and only if its schmidt number is unity. As an
example, for the maximally entangled triplet state,

[Priplet) = ([11) +100))/v2, (2:5)

the Schmidt rank is naturally greater than unity. This Schmidt form decomposi-
tion is unique if and only if all 5;’s are different.

2.3 Bell inequality

Here we briefly describe the basic idea behind the Bell inequality, the first feasible
test of entanglement in terms of correlation measurements. The description here
follows [30, 31, and takes a pair of spin-1/2 particles A and B with a known total
spin zero, as our composite system.

The two correlated particles are sent in opposite directions where the spins of the
individual particles are detected at two spatially separated detectors A and B, along
variable spin quantisation axes a and b respectively. The expectation values of A
and B are 1, that is, the measured spin is either parallel or antiparallel to a and
b respectively.

The principal idea is, by presuming the existence of a hidden variable which is
responsible for the measured statistical correlations, we may write the resulting



correlation function as E(a,b) = [A(a, \)B(b, A)p(A)d\. Here it is implied
that the measurement outcomes at detector A (B) should only depend on the set-
tings of detector A (B) and the hidden variable ), as the detectors can be separated
arbitrarily far from each other. In addition, the probability distribution for the
ensemble of particle pairs being emitted towards the detectors should not depend
on the detector settings. From these assumptions it is possible to choose two ad-
ditional axes @’ and b’ to formulate a Bell inequality,

S = |E(a,b) — E(a,b’) + E(a',b) + E(a’,b’)| < 2, (2.6)

which specifies an upper bound for the statistical correlations in a LHV theory.
To measure this quantity in practice, in the proposed experiment, the correlation
functions E(a, b) correspond to

— Ny —n_yt+n__

E(a,b) = 2=+ .
n4 4 + n4 — + n—4 +n__

(2.7)

Here 74— denotes the coincidence detection, where spin along (spin opposite to)
the quantisation axis a (b) is measured at detector A (B), and other terms defined
analogously. If the resulting quantity § is greater than 2, the Bell inequality is
said to be violated, and LHV theories are ruled out. It can be shown that by
permitting a quantum mechanical treatment, the proper bound is the Tsirelson’s
bound! |S| < 2v/2 [32]. This upper limit is achieved for a certain set of states,

1 1
V2 V2

which are referred to as the Bell states, or maximally entangled states. Since a

(D £11), (£, (2.8)

violation of the Bell inequality will imply entanglement (in general the reverse
does not hold [28]), this constitutes a solid scheme for detecting entangled states.

2.4 Quantum state tomography

An alternative to the Bell inequality is to use information about the detected state,
in combination with the definition of an entangled state. For this it is possible to
employ quantum state tomography (QST). The fundamental idea is to relate the
matrix elements of the density matrix to an observable.

"Named after B.S. Tsirelson, or B.S. Cirel'son depending on transliteration.



Continuing with the picture of two spin 1/2-particles, in an ideal experiment an
identical state is prepared and repeatedly sent to two adjustable, spin sensitive,
detectors. After a series of measurements where an identical state is prepared re-
peatedly, the relative frequency of the outcome can be used to infer a density matrix
which would fully reproduce the measurement results [33]. That is, the state can
be represented as

p:(l—i—a-o-)(i@(l—l-b-a), O'Z(Ux,UyUz) (2.9)

where the vector components 4; (b;) denote spin measurements at detector A (B)
along direction i = x, y, z.

The clear benefit of QST is that complete information about the two-particle state
is made accessible. This in turn enables also entanglement tests which require non-
unitary operations [29]. An example is Peres criterion of separability, which has
a greater detection range than Bell’s inequality [34], where partial transposition is
used?. In addition, equipped with the two-particle state, entanglement measures,
discussed below, can be used to quantify the amount of entanglement present in
the system [35].

However, the amount of measurements necessary for a complete tomographic state
reconstruction, in conjunction with a possibility for inaccurate measurements,
forces a very stringent tolerance for measurement errors. In Paper I we further
discuss the viability of QST in cases of non-ideal detector efficiencies, where we
show how non-ideal detector efhciencies can lead to false signatures of entangle-
ment.

2.5 Concurrence

In addition to detecting the presence of an entangled state, it is possible to quantify
the amount of entanglement of a state p via an entanglement measure £(p). While
there are different measures for entanglement, they share a set of required proper-
ties. The most relevant properties for our work are

2Partial transposition is a non-unitary operation which transforms p = >, piply ® pj into the
Hermitian matrix 0 = Y, p;[p}]” ® pj. If p is separable, it holds that o is a density matrix. Hence
a negative eigenvalue of ¢ is a signature of an entangled state.

I0



* Vanish for product states. £(p; @ p2) =0

* Entanglement of a state is invariant under a local basis change. £(U; ®
UrpUl ® U}) = E(p)

* Entanglement does not increase under local operations and classical com-
munication (LOCC) operations.

In the Papers II and III we have used a convenient entanglement measure for
bipartite states, introduced by W. K. Wooters in Ref. [36]. The strength of the
so-called concurrence is its tractable expression for the entanglement of a state.
Explicitly for a pure state v, the concurrence reads,

C(T,ZJ) = 2|£‘00£‘11 —5‘10C01|, w = C00’00> —|—C10’10> —|—C01’01> —|—C11|11>. (Z.IO)

What makes concurrence particularly suitable for our work is that it can be straight-
forwardly extended to a statistical mixture of states. In this scenario concurrence
of a state takes the form,

Clp) = max(0,A; — (Ay + A3+ Ayg)), Ay > Ay, A3, Ay, (2.11)

where the A/’s are the eigenvalues of the operator,

R= 1/ Valo, @ 0y)p(0y @ 0,) V. (.12)

As an illustrative example, we consider the Werner state,

pu=2(110) = J01))((10] = (01)) + (1 = p) /4, (.13)

describing a statistical mixture of a singlet state with probability p and a completely
mixed state with probability (1 — p). The state p,, describes the typical scenario
where a singlet state is studied in a noisy environment. The interesting question
is; how much noise is permitted before the statistical mixture can be decomposed
as a mixture of separable states? Concurrence allows us to quantify this condition.
For example, the concurrence of p,, reads,

C(p) = max(0, 3])2_ 1). (2.14)

From this result we note that Werner states p,, are entangled if p > 1/3, and
equivalent to a combination of separable states otherwise.

II



2.6 Entanglement witness

By formulating Bell’s inequality in the form of Eq. (2.6), we can infer that an op-
erator exists which clearly differentiates classical correlations from quantum cor-
relations, on the basis of violating LHV theories. A natural question is then - if
we are only interested in detecting non-separable states, as opposed to also ruling
out a LHV theory, is it possible to construct an operator which directly targets the
non-separability of a state?

This describes the underlying principle for the alternative approach of entangle-
ment witnesses [35]. An entanglement witness W, or witness operator for short, is
a self-adjoint operator which is mathematically designed to fulfill the criterion,

min tr [Wp] > mintr [Wp] or maxtr[Wp| < max tr[Wp] (2.15)
0 P 0 p

That is, Wis an operator for which the expectation value of a given entangled state
pe lies outside the range of separable states . We stress here that it is enough to
consider pure separable states,

éng2<¢a|<¢b|‘vl¢a>’¢b> > Amin  OF a}’l%’i{<¢ﬂ|<d}b|m¢ﬂ>|d}b> < Amax, (2.16)

where Apin (Amax) is the smallest (largest) eigenvalue of the witness operator W.
Furthermore, it can be shown that a Bell inequality can be considered a non-
optimal witness [35], since there exist entangled states which permita LHV theory
and thereby cannot be detected. Meanwhile, in Ref. [37] the completeness of
witnesses was proved. This theorem implies that for each entangled state, there
exists an entanglement witness can detect it.

In addition to these properties, a witness operator allows in principle for an en-
tanglement detection scheme with fewer correlation measurements. The power of
witnesses in facilitating detection is what motivated our work resulting in Paper
I1I. There we employ the witness operator approach to investigate the minimum
amount of current cross correlation measurements required to detect entangled
states in electrical conductors.

12



Chapter 3

Lateral quantum dots

With the precision of current nanoscale fabrication methods, it is possible in semi-
conductors to design a confinement potential on a length scale comparable to
the wavelength of confined electrons. These artificial structures, referred to as
quantum dots, are a central component of this thesis. Specifically, we consider
lateral quantum dots. These dots can be electrostatically defined by applying a
negative voltage to metal gate electrodes, which deplete a local region of elec-
trons in a Two-Dimensional Electron Gas (2DEG) that is localised at the interface
of two semiconductors. One such heterostructure, which is frequently used, is
GaAs/AlGaAs. In current experiments the size of such a dot can be on the or-
der of 10—100nm in GaAs, which can be compared with the Fermi wavelength
AFermi ~ 40nm [15, 38].

Owing to the close confinement in all directions, quantum dots can display not-
able quantum effects. The energy spectrum is nearly discrete (broadened by, e.g.,
a finite lifetime of residing in the dot) and there is a sizable charging energy. Char-
ging energy corresponds to the energy required to introduce an additional electron
to the dot, which can result in a complete suppression of currents in transport ex-
periments, known as the Coulomb blockade.

The quantum effects of the dots are most prominent in nearly closed dots, where
the conductance G is much smaller than the quantum of conductance, that is
G < Gg = 2¢/h. 'This corresponds to a quantum dot structure with a very
narrow opening, resulting in a weak tunnel junction connecting the quantum dot
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and free electrons of the 2DEG outside it. Controlling the number of electrons on
a dot is experimentally feasible. Lateral quantum dots in the few electron regime
have already been demonstrated, where a complete depletion of the dot population
one electron at a time was achieved [39]. Theoretically, this is a desirable setup.
In this regime, fluctuations in dot occupation are suppressed, and we may employ
a picture where the dot state can be entirely described in terms of the number
of charges residing on the dots. We can accurately model this transport scenario
using a quantum master equation, which we will discuss in Chapter 4.

The above-mentioned effects are also essential ingredients for the entanglement
detection schemes proposed in Papers I and II. In particular, by i) Restricting
the quantum dot electron population to single occupancy, and ii) Suppressing
unwanted single particle transport on energetic grounds, leaving a dominant con-
tribution from a sought-after cotunneling process, where two electrons cooperate
and tunnel together.

Moreover, in addition to measuring the conductance, experiments are capable of
resolving the statistical profile of the current. For example, in Ref. [40], a quantum
point contact, placed in the vicinity of a quantum dot, senses single charge transfers
at a frequency of 30kHz. This scheme captures the complete statistical description
of an electric current up to / = 4.8fA (limited by the sampling rate), using what
is known as Full Counting Statistics. We introduce Full Counting Statistics (an
important notion in Papers I, II, and III), in Chapter s.

Another intriguing aspect of quantum dots is the spin degree of freedom of trapped
electrons. In their seminal paper [11], D. Loss and D. DiVincenzo proposed the dot
spin as a promising candidate to realise controllable qubits. A distinctive advantage
of using electron spins in a solid is the relatively long coherence time, a main
motivation for our focus on spin entanglement in Paper I. For lateral quantum
dots in GaAs, the coherence time for spin qubits is on the order of 1ps [15], in
contrast to ~ lns for a qubit using the charge states [13, 14]. .

The proposal of Loss and DiVincenzo stimulated extensive efforts to experiment-
ally achieve robust, controllable, spin qubits in semiconductor quantum dots.
Current experiments are able to routinely define a spin qubit using a quantum
dot [15]. The rotation of a single spin in lateral quantum dots via electron spin res-
onance has already been demonstrated [9], using an oscillating on-chip magnetic
field. An ability to address individual spins in a quadruple quantum dot structure
(16] has also been achieved using micromagnets.
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In addition, recent experiments have reported successful coherent manipulation of
the spin with an electric field in lateral quantum dots [41], using Electric Dipole
Spin Resonance (EDSR). In the EDSR scheme, to be discussed below, a local os-
cillating electric field manipulates the spin via the intrinsic spin-orbit interactions,
arising from bulk (Dresselhaus-type) [42] and structural asymmetry (Rashba-type)
[43]. Targeted spin rotation via EDSR opens up the possibility of an all-electrical
control of a spin qubit, where the local on-chip electric fields can be generated by
applying an oscillating voltage to electrodes near the target spin [44].

However, the intrinsic spin-orbit interaction also has a notable downside; namely,
the spin qubit becomes vulnerable to the charge fluctuations of its environment.
One such source of perturbation is the spin-orbit interaction mediated coup-
ling between the spin and lattice vibrations, or phonons. This, in general aniso-
tropic, coupling results in an additional spin relaxation channel. The competition
between coherent EDSR spin manipulation and phonon-induced spin relaxation
is the subject of Paper IV. Here we seek to optimise the product of the induced
Rabi frequency, discussed below, and the spin lifetime, which we designate as a
figure of merit for spin qubit devices.

In the following, we will introduce preliminaries for the model employed in Paper
IV. Starting with our model for a singly occupied quantum dot, we follow with
an introduction to the quasi-two-dimensional spin-orbit interaction. With the
spin-orbit interactions introduced, we describe the EDSR and relevant electron-
phonon couplings.

3.1 Quantum dot spin qubit

The quantum dot considered in Paper IV is a lateral quantum dot, where the
electrons of a 2DEG at the interface of two heterostructures are strongly confined
in the growth direction (which we take to be the z-axis). The dot is depleted of all
electrons but one, whose spin degree of freedom is used to define a spin qubit. The
two-dimensional biharmonic potential is a suitable model to describe the single
particle Hamiltonian of the trapped electron. With applied magnetic field B, for
now disregarding spin-orbit interactions, the Hamiltonian reads

(—ihV,+eA)> R [(¥* Y7\ gup
e AERTR A R i A ¢ :
2 2 é, + [j/ + P o ) (3.1)
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where 7" is the effective mass, A is the vector potential, o = (04, 0y, 0;) is the
vector of Pauli matrices and /s (/) is the confinement length along the dot major
(minor) axis ¥ (/). Here we distinguish the dot coordinates ¥’ and ' from the
crystallographic axes x || [100] and y || [010]. Owing to the strong confinement
along the growth direction, we can ignore any orbital effects by considering an

in-plane magnetic field, B = B(cos 3, sin 3, 0).

To study effects of anisotropy attributed to the confinement potential shape, we
introduce the ellipticity parameter € = 1 — (/y/s)%, where € = 0 describes a
circular geometry, and elliptical geometry for all € > 0. With these ingredients in
place, the effective potential which the trapped electron will experience is,

H= hw, <nx/ + ;) + hwy <n}/ + ;) + ‘%O’ - B. (3.2)
Here 7 and 7, correspond to the number operators of the two harmonic oscillat-
ors with characteristic frequencies wy = ii/m* lg, and wy = h)m* 1}2/ respectively.
From expression it is clear that A is diagonal in the eigenbasis of the harmonic
oscillators [, 1, s) = [ 7y)|s), where sis the spin projection along the applied
magpnetic field B. From the confinement Hamiltonian A, we note that an electric
field will not affect the spin. To obtain a coupling of the spin to an applied electric
field, the presence of spin-orbit interactions is crucial.

3.2 Spin-orbit interactions

The presence of an intrinsic spin-orbit coupling in semiconductor heterostructures
ensures that the spin and motion of an electron can no longer be considered de-
coupled. For lateral quantum dots defined at the heterostructure interface, due to
inversion asymmetry along the growth direction, a coupling term emerges,

h
HR = m(ﬁxay _pyo-x)- (33)
This term describes the Rashba-type spin-orbit coupling, and is directly applicable

to our effective two-dimensional model. Here we have introduced /, as the Rashba
spin-orbit length, to parametrise the spin-orbit strength.
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In Ref [45] it was further shown that bulk inversion asymmetry yields an additional
term in the Hamiltonian, the spin-orbit coupling

HY o pe(py = p2)0w + py (02 = p2)0y + pe(p? — p}) (3.4)

where x, y, and z are here oriented along the crystallographic directions [100],
[010], and [001], respectively. To obtain an effective two-dimensional Hamilto-
nian, H?DD is averaged along the growth direction. We obtain then a spin-orbit
interaction Hamiltonian with the linear,

h
HZDD X <P§>(P)/Ux _any) = M(ﬁx% _Pyay)a (3-5)

and cubic,
Hfg X PxP)Z,Ux _Pyppzco'yv (3.6)
Dresselhaus spin-orbit terms. In Paper IV we have disregarded the cubic Dressel-

haus term on the basis of strong confinement along the growth direction, such

that (p2) > p, py [15].

Here we remark on the presence of a Dresselhaus spin-orbit term for the quantum
dots in Si/SiGe considered in Paper IV. While the crystal structure of silicon does
not possess the bulk inversion asymmetry, a generalized Dresselhaus term appears
in the quasi-two-dimensional Hamiltonian [46]. The generalised Dresselhaus term
is identical in form to A2, and is therefore in this thesis referred to as simply the
Dresselhaus term.

3.3 Electric Dipole Spin Resonance

The robustness of spin in a solid is in part due to the lack of direct coupling between
electric fields and spin, the background charge noise cannot induce a transition
between the bare spin levels. This in turn also implies that to control the spin
requires a local magnetic field. Controlling the spin using electric fields is, how-
ever, possible with the aid of an indirect transition, mediated by the spin-orbit
interactions. For the quantum dots considered in Paper IV, the spin-orbit inter-
actions can be considered a weak perturbation, which leave the spin states almost
well defined. Before evaluating the perturbative correction, we first transform the
Hamiltonian using a unitary transformation,

U:exp(inm-a), n, = <x__)’ _y70> . (3-7)
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The spin-orbit vector n,, can be interpreted as a position dependent spin rotation
axis. The transformed Hamiltonian is,

o Dyt _hi 1+ Lo, 1-—lo,
Hyp = UHr+Hp )U' = p,(n, xB) - o 4m< 2 + 2 ),

(3.8)
where the orbital momentum [, = —i(x0, — yOx) is in units of hand p, = ¢" /2
is the effective magnetic moment. The first effective term is proportional to the ap-
plied magnetic field, with a proportionality which is small for the semiconductor
quantum dots we have studied. However, despite the negligible energy contribu-

tion, it plays an important role as it couples opposite spins.

In Paper IV we consider a spin qubit defined by the lowest spin pair, |¥4) and
|W)). An oscillating electric field E(z) is applied, which drives Rabi oscillations
between these states. We model the electric field with a dipole potential,

Hgipole = eB& - T cos wt. (3.9)

Treating g as a perturbation, we obtain the on-resonance Rabi frequency Q =
B~ (U4|eE - r|¥)) to leading order in the spin-orbit interaction,

Q:eZ<¢00T|E.r|¢a><¢a|HZ%|¢oo¢>< L T ) 510

€00, — € o0t — €a
a00] 004 a 00t — €a

where the notation o = {ny,n,,s} and & = {ny,n,, —s} is used. We have
used the so called Van Vleck cancellation method [47], which allows us to discard
some terms of the perturbative correction based on symmetry arguments. Here
7, denotes how operator o transforms under a time reversal operation. For the
quantum dots considered in Paper IV, the orbital excitation energy is far greater
than the Zeeman splitting energy. Then, since 7, = 1, we obtain that only the
term AT = 4 (ng, x B) - o gives a non-vanishing contribution. The Rabi
frequency is

Q=) <¢00T|€E'I’|¢a><¢a|l_¥§f|¢oo¢>;. (3.11)

Eoo0 — €
a7£00 00 VLN

With this result, we have obtained the expression for the Rabi frequency, Eq. (9)
in Paper IV, which we use to quantify the speed of spin qubit control.
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3.4 Electron-phonon interactions

When considering a spin qubit defined in a lateral quantum dot, it is necessary
also to take into account the perturbing influence of its environment. In Paper IV
we investigate in particular the role of phonons on the relaxation of a spin qubit.
Here we introduce the two important electron-phonon couplings which we have
studied in Paper IV, the coupling of longitudinal and transversal acoustic phon-
ons to electrons via deformation potential and piezoelectric coupling. Specifically,
our focus is on quantum dots defined in Si/SiGe and GaAs heterostructures. For
both electron-phonon couplings, the strain of the crystal is the core quantity. We
describe the strain in terms of a strain tensor £, with components defined as,

1 8ui+% (.12)
51]—2 o o, , 3.12

which, due to symmetry of the tensor, can be expressed in the six component

notation

€1 = Exx gy = 6},}, €3 = &gy (3.13)

€4 =€y = Eyy €5 = Exx = Exg €6 = Exy = Epxe

The strain tensor can further be expressed in terms of the quantised phonon modes
via the lattice displacement vector u,

— h 1 iqr
where bqg) is the phonon annihilation operator, V'is the crystal volume, p is the
mass density, and ¢}, is the speed of sound. Here q denotes the wave vector of the
phonon mode and A is the phonon polarisation, with / for longitudinal acoustic,
t1 and 2 being the two transversal acoustic modes. The unit polarization vectors
are

e=q (qnqq:), en=e,xefle;xel, ex=exeq (.15

where we choose e, to denote the growth direction of the heterostructures we
study.
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3.4.1 Deformation potential

The first electron-phonon coupling considered here, is the deformation potential.
While it appears in both GaAs and Si/SiGe dots, in the following, we will focus
on silicon, where it plays a more notable role. In the limit of long wavelengths,
the acoustic phonons will correspond to a deformation of the crystal. Deforma-
tion potential theory states that the deformation will result in energy shifts of the
conduction and valence bands [48]. To linear order in the deformation, we can
account for energy change with the strain tensor and express the energy shift of
the conductance band as,

6
SE= Z;, (3.16)
j=1

where Z; are the deformation potential coefficients, describing the energy shift
induced by the strain ;. In addition to the symmetries of the strain tensor, by
taking into account the symmetries of the crystal structure we limit the amount
of independent =; coefficients. Specifically, for silicon, the energy shift along the
conduction band minimum is expressed by only two terms [48, 49].

Moreover, the quantum dots we consider in Paper IV, are formed in a Si/SiGe
heterostructure grown along the crystal axis [001]. In such a structure, the degen-
eracy of the conduction band minimum in silicon' is naturally lifted by a lattice
mismatch at the interface of the Si/SiGe heterostructure. The six-fold valley de-
generacy is reduced to a two-fold band minimum along the growth direction [s3].
The remaining two-fold degeneracy can be further lifted by an asymmetric con-
finement potential [s4]. This allows an effective single valley treatment of the
Si/SiGe quantum dot, where the energy shift is of the form,

OE=E rlé] + E (k- € - K), (3.17)

where tr[é] = E?:l ¢; and K is a unit vector parallel to the crystallographic axis
[001], and £, =, are the associated deformation potential coefficients. Using the
expression for the lattice displacements in Eq. (3.14) together with the definition
of the strain tensor in Eq. (3.12), we obtain the deformation potential electron-

'The degeneracy of the conduction band minimum, referred to in literature as the valley degen-
eracy, is a known obstacle to using silicon-based quantum dots as spin qubits [so, s1, 52].
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phonon interaction Hamiltonian,

h ) )
£ . q A iqR QR
Hgiph = ZZ 20Ve Mq[bll,)\eq + é}f()\eq ]7 (318)
q7A p A
where
Mi\l = Edeé ’ ef:] + Eu(eé)z(eé)m (3.19)

is the anisotropic geometric factor of the deformation potential.

3.4.2 Piezoelectric phonons

In crystals without bulk inversion symmetry, an additional electron-phonon coup-
ling emerges. It is a consequence of strain being able to induce a polarization field,

P = /2, (3.20)

where 4 is the third-rank piezoelectric tensor, a material property describing how
the strain € induces a polarization P. In the limit of long phonon wavelengths,
the transversal component of the resulting electric field is vanishingly small due to
E| o (c)/c)? where cis the speed of light [55]. The phonon induced piezoelectric
field is thus given by

~

T

1
c = _;vﬁbpe(r)a (3~21)

where (42)|| denotes the longitudinal component of the combined piezoelectric
and strain tensor, and € is the material permittivity. The scalar potential reads,

Ppe(r) = —ii(;ié)u, (3.22)
g€

Inserting the expression for the strain tensor, we obtain the general piezoelectric
Hamiltonian

e
Hpe = _Zﬁ Z Gidlih jp- (3.23)
ik

Taking into account crystal symmetries, some terms vanish identically. Therefore,
before continuing with the derivation, we make a remark on the role of crystal
symmetries. We may limit which piezoelectric effects are possible by invoking
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Table 3.1: Symmetry elements of the point group for the zincblende structure, which describes the lattice structure
of GaAs. IV denotes the number of operations of a specific type [48].

N | Schénflies notation | Description

1|7 Identity

8 | G +7 rotation about axes [111], [T11], [111], [111]

3 | G 7 rotation about axes [100], [010], [001]

6 | & =7 improper rotation about axes [100], [010], [001]

6 | o Reflection about planes (110), (110), (101), (101), (011), (011)

Neumann’s principle; any physical property of a crystal is invariant under the sym-
metry operations of the crystallographic point group [56].

A point group contains the symmetry operations of the crystal, in which at least
one of the points remains fixed. These operations correspond to either proper
or improper rotations. As an example, see Table 3.1 for the point group of a
zincblende crystal, the crystal structure of GaAs. It follows from the assumption
that, since both phonons and electrons are invariant under symmetry operations of
the crystal, the electron-phonon coupling should abide the same rules. In the con-
text of this section, the physical property of the crystal is the piezoelectric tensor
d. Under a general symmetry transformation specified by coefficients ;; the trans-
formed piezoelectric tensor is

dy Pk = Ay jﬂk’kdijk' (3.24)

If the coefficients describe a symmetry operation of the crystal it must hold that
‘fz;‘k = djj. For crystals with inversion symmetry, the transformation gives &7, =
—d;, while Neumann’s principle states that d:;k = djj. 'This can only hold if
all component of the piezoelectric tensor vanish, which shows why there is no

piezoelectric effect in ideal silicon.

For crystal structures which permit a piezoelectric effect, the symmetry elements of
its point group specify which components of the piezoelectric tensor vanish. For
this thesis, the relevant non-centrosymmetric material is GaAs. Employing sym-
metry operations of the point group specified in Table. 3.1, yields a piezoelectric
tensor which satisfies

dije = (1 = 05)(1 = 0p) (1 — 0 )d. (3.25)

The piezoelectric coupling between electron and acoustic phonons coupling is then
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given by the interaction Hamiltonian,

1 h de )
H®  — i Za b b iar 26

where the anisotropic geometric factor Mf‘l is

My = —2ieh1aq> (4y9z 92qx: 4xy) - € (3.27)

Here we have introduced the piezoelectric coefficient eh14 = ed/e€, which is used
in Paper IV. We can see from the expression in Eq. (3.26) that for small ¢, the
piezoelectric coupling becomes the dominant electron-phonon coupling.
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Chapter 4

Quantum transport

In the previous chapter, we have considered a closed system of a single electron
being electrostatically confined in a quantum dot. Here instead we study a cur-
rent being driven through a nanoscale device comprising a set of tunnel-coupled
quantum dots and use the transport statistics as a probe of the nonequilibrium
processes taking place.

To describe the dynamics of the electron transport we have to consider an open
quantum system, where the surrounding macroscopic environment is integral to
the measurement outcomes. However, while the environment is an essential com-
ponent, in general we cannot fully describe it in terms of a total wavefunction.
Instead, we opt for a density matrix approach and study the resulting irreversible
dynamics of a smaller quantum system in contact with a macroscopic environ-
ment.

In the papers concerning quantum transport, we have limited ourselves to study-
ing devices composed of nearly closed quantum dots, where the conductance is
much smaller than the conductance quantum G < 2¢*/h. Owing to the small
conductance, the fluctuation in occupation number is suppressed. We may then
avoid the full quantum mechanical treatment by considering the number of elec-
trons of dots a well-defined classical variable. In this scenario, the ideal tool for
describing the quantum dynamics of the system is the Markovian quantum master
equation [s7]. The underlying assumption is that the correlations of the macro-
scopic environment decay rapidly, and we can therefore treat it as a semi-classical
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object.

The environment is assumed to be fully described by a constant known probability
distribution, in our case, the Fermi-Dirac distribution. This approach allows us
to study the transport in a strong Coulomb blockade regime, where the effects
of interactions between electrons within the smaller system becomes essential. In
particular, this aspect of the approach is crucial in e.g. Paper II, where we describe
how mutual Coulomb interaction between pairs of transport electrons generates
entanglement.

Before moving on, we make an important remark on the viability of the master
equation approach with an important result of S. A. Gurvitz and Ya. S. Prager.
Starting from the many-body Schrédinger equation in Ref. [58] they demonstrate
that resonant transport through a nanoscale device can, under certain conditions,
be accuratelly modelled using a master equation. As an important example for this
thesis, they show that in a high bias regime the dynamics of electrons transpor-
ted through a double barrier, or dot, structure with significant charging effects, is
entirely accessible within the framework of a master equation.

4.1 Lindblad equation

In the important work of Ref. [59] G. Lindblad shows that in general the irre-
versible dynamics of a reduced density matrix p;, which preserves the trace and
positivity of the density matrix, can be represented by a Lindblad-type equation
of motion [60],

n—1
dp + 1 +
Hm i ;T A iy 9 .
== pl+ E [ P, 2{%7 P} (4.1)

with {, } denoting the anti-commutator, ; is a general operator of the reduced
system and 7 denotes the dimension of the reduced density matrix. An equation
of motion describing the dynamics of transport electrons should ideally conform
to this equation. For our problems on electron transport it is possible to identify
the rates I'; with the injection or emission rates of electrons in the reduced system,
due to tunneling between the reduced system and a semi-classical lead. In addi-
tion, owing to the generality of the Lindblad equation, we can incorporate other
influences the environment exerts on the reduced system. Specifically, we use the

Lindblad equation in Papers I and II to model spin-flip scattering and dephasing.
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In this chapter we will briefly show how the Lindblad equation can be obtained
for a reduced system of quantum dots. In the remainder of this chapter, we will
employ units in which & = 1 is satisfied.

4.2 Transport through quantum dots

Here a physical basis for the Markovian equation of motion is sketched using a
microscopic model of several quantum dots each comprising a single accessible
level (constituting the isolated system) coupled to two leads, corresponding to
the macroscopic environment [61]. In our work relating to transport of electrons
through quantum dots we consider a local many body basis in second quantisation
formalism. The Hamiltonian of the reduced system can then be expressed as

Ho= Y eddi+ > Updlddd; + " |dydldy + M5 di] - (42)
i i i

where we have introduced the dot 7 creation (annihilation) operators dj (d)), sat-
isfying {dj ,d;} = 0;;. Here U is the Coulomb interaction strength and Aj; is the
tunneling amplitude between dots 7 and j. The interaction term connecting these
two subsystems is the tunneling Hamiltonian

Hr=Y" (;kdgc,ea n thZada) . (4.3)
k,a

To obtain the dynamics of the reduced state p;, we start with a Liouville equation
in the interaction picture,

dpi(r) _ d

P ZttrB[p[(t)] = —up [i[H[T(t)a P[(l‘)]] ; (4.4)
which follows from the interaction picture representation of H7r,
HY (1) = A () ) (4-5)

together with an analogous definition for the density matrix p/(#). By integrating
both sides and inserting the result back into the Liouville equation, we obtain an
integro-differential equation for the reduced density matrix,

! t
dp;it) = —itrg [H7(2), p(0)] — /0 dsteg [[HA(2), [HA5), p'9))]] - (4.6)
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Instead of repeating this proceedure to obtain higher order corrections, we will
turn Eq. (4.6) into a closed set of differential equations. To this end, we employ
the assumption that our relevant subsystem is much smaller in comparison to the
semi-classical leads and consider a coupling H7 between the two that is small.

Under these conditions the impact of the smaller state on the statistical properties
of the reservoir state is insignificant. We express this assumption by approximating
the total density matrix as p(#) =~ p,(#) ® pgp, the so-called Born approximation.
We further specify the constant pp as a state which is in thermal equilibrium,

on =TT [0,y 0les + [1 = £V 0l] . file) = — 7 (47

kyi 1+ e i

defining a temperature 7 for the system, with the introduction of the Fermi-Dirac
distribution function f;(¢) of contact i with chemical potential y, and kg is the
Boltzmann constant. Additionally, it is assumed that reservoirs and reduced system
were intially separated, that is p(0) = p;(0) ® pp. As a consequence, the first term
in Eq. (4.6) vanishes, leaving

dp;(2)
drt

_ /0 dsteg [H(2), [H(5), pi(s) ® ps]]] - 9)

Equation (4.8) is, however, still an integro-differential equation, the equation of
motion still includes memory effects. To investigate how these effects enter, we
focus on the first term of the nested commutator (other terms are analogously
obtained).

trg [H[T(t)H[T(f)P:(‘)pB] =
trp [Z/e/e/aa/m 14ty (1) car(2) el (5) o (9).(5) 5 } (49)
+trp [Z/e/ma//// fsz’flf/e/ () o f)dg(t)cak(t)p‘(s)%}

From the specified state of the bath in Eq. (4.7) we have e.g. trB[C;r, pClkPB] =
Si(Ey)0(k — K)0;p. We may therefore drop the mixed terms in the sum,

cea [0} HY(5)p.(5)pi) =
S, Vil (1) ()0, res [ pen() ()|

koo

+ % [0Pda ()l (90, ()rws [pac(9eu(s)]

kol

(4.10)
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In order to study the time evolution of the operators, we wish express the trace
in terms of operators at time # = 0. To this end, we insert the identity operator
1 =" |a)(a|, where |a) is a complete manybody basis of the reduced system.
The reduced system Hs = 3 . e+|7) (7 is diagonal in this basis, and consequently
we obtain,

ey [H () H(5)p,(5) o] =
2 66f2701) () 417751 8) (Bl ) el ) ee [ e
¢

+ 3 [l 5 d By (51 ) el s [pe 7 ]
¢

(4.11)
where 7 = t—sand de,, = €,—¢;. The short notation {(} = {4, b, ¢, , [, k} has
been introduced, to keep the expressions compact. We want to obtain a Markovian
equation of motion, where the dynamics of the reduced system can only depend
on the density matrix at the same time. This would correspond to discarding
memory effects, which would allow the subtitution ps(s) — p;(#) in the integral.
One scenario which enables this is the high bias limit, to which we have restricted
ourselves in our work on electron transport. In this regime two essential properties

are fulfilled:

* Constant Fermi function, allowing us to neglect temperature in the equa-
tion of motion.

* Memory effects of the reduced system vanish, giving a Markovian equation
of motion.

The first point is evident from the Fermi distribution function flx) = (1 +
ex=eV)/ks T)_l, where V is the applied bias. In the relevant energy interval, set
by the quantum dot energy levels, the Fermi functions are then roughly constant
and we may disregard the energy argument. Accordingly, in our transport prob-
lems the reservoirs act exclusively as either ‘drain’, absorbing electrons from the
reduced system, or ’source’, injecting electrons.

The second property requires further comments. To elaborate, we consider the
factors >°, |e|*AEr) e (€4=02227)5 from Eq. (4.11), which enter all nested com-
mutator terms. Within the flat conduction band approximation, where the dens-
ity of states v/(E) is assumed to be constant (}_, — [dEv(E) = [dEv), and
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with tunneling amplitudes independent of #4 this factor reads in the continuum
limit, ( :

i EV_(S‘E’YW/ T
AEfE) e E-0e0)T — op7 2 .
/ AE)e v sinh(zkpTT) (412)
That is, these factors will oscillate with a frequency (V' — de.,)/h. In contrast,
the reduced density matrix p; dynamics occur on a time scale set by H7. Thus with
a large applied bias, p, can be regarded as constant during the correlation time of
the bath, making the substitution p(s) — p(#) a valid approximation. With these
ingredients set, going back to Eq. (4.11), retreating to the original  operators and
expressing all operators in the Schrodinger picture gives !

tl_lglo [y dsteg [HHA) HI () ps(D)pp] = Se M dl dp, ()T fi™
+ Lt dqd p()Ti(1 — f;) .

(4.13)
Where we have introduced the rates I';; = 7Y, |4|*£6 (E}, — €), with the Fermi
function f; being unity for a source reservoir and zero for drain. Here it is used that
the lead density of states is constant on the energy scale set by €, which denotes
the possible energy differences of the reduced system. Gathering all the terms of
the nested commutator, we obtain an equation of motion of the reduced density
operator p; in the Schrodinger picture,

dp:{if) = —i[H,, ps(1)] + Z (F,'ﬁD[df,pj] +T,(1 — f)D[d, P:]) o (414)

where an extra term renormalizing the dot level energies is disregarded. The short-
hand notation D[ﬂf AR a;T pd; — {d]d; , s }/2, describes the dissipative process
of one electron from the source reservoir being injected onto the adjascent dot,
and D|d}, p,| analogously describes the process of an electron escaping to a drain
reservoir. With the result of Eq. (4.14), we have finally obtained the Lindblad-type
equation of motion, which is the basis for the transport theory of Papers I and II.

'Being interested in the stationary case, we let the upper limit of T-integrals in Eq. (4.8) go

. . .1 ¢ i(ep—ey+i0tyr _ . P _ .
to infinity and obtain lim, . [ dre v =g+ nd(er — €+), where ¢ is the

Dirac delta function and P is Cauchy’s principal value. The delta function gives the rates, while the

principal value will yield an effective correction to H;, which we neglect.
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4.3 Example: double quantum dot

An illustrative example of the Markovian Quantum Master Equation in practice is
the electron transport through a double quantum dot structure [58]. We consider
two quantum dots, tunnel coupled in series and with a strong on-site Coulomb
interaction U which prohibts double occupancy. The Hamiltonian for the reduced
system is,

Ho =" eiddi+ udy + iddy + " Udld;. (4.15)

i=1,2 i

where for simplicity, we consider a real tunneling amplitude z The left (right) dot
is in contact with a source (drain) reservoir. The equation of motion for the double
dot state p is

d,

% = —ilH,,p] + TuDld}. p| + DDl ) (416
Introducing a matrix notation, where the relevant density matrix elements are
placed in a vector p° = (po, p10, Po1, P11, Rprr, Sprr), with R (3) denoting
the real (imaginary) part. Here we define the diagonal matrix elements as p, =
(a|pla), and off-diagonal (coherences) as pg = (0|d) pdi\O). The equation of

motion can be formulated as the matrix equation,

d
Z5=Mp )
7" 0, (4.17)

where M is here referred to as the Lindblad matrix. In the basis described above,
the Lindblad matrix reads

-I'y 0 TI'x O 0 0
FL 0 —FR FR 0 2t
0 0 -I' 0 0 —2t
M=106 o 1, —Iz 0 0 ) 4.18)
0o 0 0 0 -T/2 —g
0 —t ¢t 0 o -Ir/2

where I' = I'; + ' and e = €5 — ¢ is the difference between the dot energies.
We obtain the nonequilibrium steady state pj, by finding the nullspace of A, that
is, finding the eigenvector which satisfies Mp,, = 0. Equipped with the normalised
Py (that is, tr[ps] = 1), the average current transport through the double dot
device is directly obtained as transmission rate I'g times the occupation probability
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of adjascent dot. For compactness considering the case I'; = I'g = 7, the current
through the double quantum dot is

2ev#

As it stands, the occupation probabilities of a nonequilibrium stationary state
provides us with the time averaged measurement. There is however a powerful
technique which, by modifying the equation of motion, allows us to access sys-
tematically the full statistical distribution of charge transport. The theory of Full
Counting Statistics, the subject of next chapter, is the main tool we have employed
when studying transport statistics in Papers I and II.
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Chapter s

Electron counting statistics

The aim of this chapter is to introduce the concept of Full Counting Statistics
(FCS), which enables us to theoretically investigate not only the average charge
current, but the full distribution of charge transfers taking place within a specified
time interval. In particular, FCS allows us to theoretically quantify current noise
that emerges once a voltage is applied across a quantum dot device. Quantify-
ing the noise of interest since, as will be discussed below, it provides insight into
correlations of the transported electrons.

The concept of FCS stems from the field of quantum optics [62, 61], where the
statistics of photon counting provides information about the light source. As the
name implies, by counting photons over a long time it is possible to infer a prob-
ability distribution which fully describes the statistical properties of the detected
photons.

With the seminal work of L. Levitov ez a/ [63], an electric analogue within the
scattering matrix formalism was made available for studying statistics of electron
transport in mesoscopic devices. The FCS of electron counting has since been
extended to the nonequilibrium Greens functions approach [64, 65] as well as
Master equations [57, 66], allowing for transport statistics to be studied in a variety
of mesoscopic devices. Moreover, the FCS has also been extended to study the
statistics of a general observable [67].

In the quantum master equation approach, used exclusively in this thesis, FCS
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is made accessible via a remarkably simple modification to the equation of mo-
tion which we introduced in the previous chapter. Before describing how electron
counting can be incorporated in the quantum master equation, we briefly review
the concept of a cumulant generating function.

5.1 Cumulant generating function

The key quantity when studying the statistics of electron transport is the probabil-
ity distribution Pa,(V), containing the probabilities of the transferring N electrons
over a measurement time Az

The statistical properties of the electron transport can be expressed in terms of
cumulants of the probability distribution. For example, the average current cor-
responds to the mean value, which is the first cumulant %, the second cumulant
k2, the width of the distribution, is similarly related to the current fluctuations.
Owing to the close relation between cumulants and measurements, it is conveni-
ent to work with the cumulants , directly, which collectively characterise the
probability distribution. See Fig. 5.1. To this end, we want to use the cumulant
generating function (CGF), which is a central component of Papers I and II. As a
preliminary, we first introduce the Fourier transform of the probability distribu-

tion PA:(A’), A( - .
X) = PadN)e™, (5.1)
N

which is called the characteristic function of Px,(NV). Here we have introduce
X, the conjugate variable of the transferred charges /V. The cumulant generating
function F(x) is then straightforwardly obtained as,

F(x) = In(A(x))- (5.2)

The clear benefit of working with F() is that it generates, as the name implies,
every cumulant k;, by
O*F(x)
Ke = W . (5.3)
x—0

An additional property of F(), which benefits our analysis, is that independent
stochastic events are divided into separate terms. In our work on charge trans-
port, we have targeted transport through weak tunnel junctions, where resulting
transport events are rare.
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Figure 5.1: A histogram of infrequent charge transfers and fitted Poisson distribution (dashed blue line). The first cu-
mulant «; corresponds to the average value, which for charge transport corresponds to average current.
The second cumulant x, corresponds to the variance, which can be related to the auto-correlations.
Higher order cumulants describe the non-gaussian features, e.g. k3 describing the skewness of the

distribution.

To qualitatively describe the typical CGF for such a transport scenario, we consider
here a generic example of rare charge transfers onto two sets of spatially separated
detectors. During a time interval ¢ two, rare, independent charge transfers are
possible. Either individual electrons are transferred at a rate 7, and g towards
the two sets of detectors o and 3, or a pair of electrons are split and transferred
with a rate I', 3. Here rare transport events imply, 47y, 03 < 1. Measuring
the currents over a time Az = NJ#, we can sum up the processes of transferring
one electron to detector v, P, = 0#Y, two onto both o and 3, Pog = 6’ or
none transferred, Po = 1 — >~ 5(0fl'ap + 6#7a). Using the definition in Eq.
(5.2) the CGF is then,
N

At . At .
FXarXg) =In | [14 D (Yo (X0 — 1) + Tag— (fXotxs) — 1

a#f
(5.4)

In limit of N — 00, we obtain the CGF describing two types of independent

Poisson processes,

F(Xa,X8) = Atz {’ya (¢Xe — 1) 4+ Tap (ei(X“JrXB) - 1)} . (s.5)
aFf

These types of processes are characteristic for the transport statistics we have in-
vestigated in our work. In particular, the second term yields the current cross-
correlations, a quantity we make extensive use of in Papers I, IT and III. The CGF
in Eq. (5.5) shows the type of transport statistics that occurs. To quantify the
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current cross-correlations, we need to obtain the rates I g, which can depend on
structure of the transport system. In the following, we show that the full CGE
with explicit expressions for the transfer rates 7, and I' 3, is obtained by studying
a modified equation of motion of the reduced system.

5.2 Modified equation of motion

In the following we describe how the transport statistics is obtained by including
electron counting in the Lindblad equation. For simplicity, we consider here a
single level quantum dot placed between a left (source) and right (drain) contact
in the high bias limit.

d_ 1
dt h
where d is the dot annihilation operator of the dot, H; is the Hamiltonian of the

reduced system and D[d, p| = [dpd' — {d'd, p} /2] is the Lindblad dissipation

operatotr.

To this end, we consider a microscopic derivation, loosely following the approach
detailed in Ref. [68], which is close to the original idea of L. Levitov ¢z a/. The
starting point is to include a measurement device in the Hamiltonian of the prob-
lem. Here an auxiliary 1/2-spin is introduced, which monitors the current flowing
through the device. Heuristically, the counting mechanism works as follows; the
magnetic field, originating from the electric current, induces a precession angle of
the spin which counts the number of transported electrons.

The transport Hamiltonian comprises the reduced system H; tunnel coupled via
Hy with the left and right contacts, described by H; and H,, respectively. The
1/2-spin measurement device is accounted for by the last term in,

h i

Hy = H+Hr+ H+ H— =Xol, I=—i[Hon—n], ()
where 0 is the Pauli matrix, #; (n,) is the number operator of the left (right)
contact. Studying the precession angle of the counting spin (see Appendix B for

details), averaging over the electronic degrees of freedom, we obtain the quantity

i

FH_8)| = <exp(%1t)>e. (5.8)

i
tr, exp(—ﬁHXt)p(O) exp(
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We find that (exp(ixV)), = Y 5 P(IN)éXY = A(x), corresponds to the charac-
teristic function of probability distribution P,(V) [63]. We further remark that it
only depends on the degrees of freedom of the electronic system, and the coupling
variable y is the conjugate variable to the amount of transfered charges V.

The effect of a current probe can be included in the Lindblad equation in Eq.
(5.6) by transforming the dissipation operators D[d, p|. Specifically, we show in
Appendix B, an extra phase factor ¢X appears in the term which describes a change
in occupation number. That is, the transformation to the modified dissipation
operator with counting fields x reads,

DId, p| — DX[d, p] = [dpd" exp(ix) — {d'd, p}/2] (5.9)

In the long time limit, the modified Lindblad equation provides us access to the
full transport statistics. To see this, we can formulate the equation of motion as
the matrix differential equation,

dp

— 06 0) = M)A 1). (5.10)

In contrast to the matrix differential equation in the previous chapter, here all
quantities now depend on X, referred to as the counting field. Assuming the typ-
ical case of a unique stationary state, we can express the formal solution to the
differential equations in terms of the right eigenvectors of M(x),

plx, Ar) = 0%y, 0) = MY 5 (x, 0 +Z MO B (x, 0), (5.am)

For all non-stationary states the eigenvalues, A\; # A, have a negative real part,
ensuring they vanish in the long time limit. Letting the measurement time Az —
00, we obtain!

tr[p(x, AP)] = (exp(iH_\Af) exp(iH\AE)), = A7, (5.12)

That is, the measurement time Az times the eigenvalue of the Lindblad matrix
M(x) which vanishes for x — 0, corresponds to the generating function F(x) of
the transport problem.

"Here we disregard the coefficient ¢ (defined by p(ix,0) = >, cifi(x,0)), which contains
information about the initial state. In the long time limit, it has no impact on the CGE.
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The discussion above has dealt with a setup where only one drain contact is present,
or one terminal system. For transport with 7 terminals, the transport probability
distribution is Pa,(N1, NV, ..., N,,), with the associated cumulant generating func-
tion F(X1, X2, .---X»)- The transport statistics in this scenario is made accessible
by introducing a phase factor X; to each corresponding tunnel-coupling between
terminal 7 and its adjacent quantum dot. We conclude this section by specifying a
Lindblad-type equation of motion for quantum dot systems with counting fields
in a multiple terminal setup.

dp
L 0+ ZFD doc P %jwf YIRRNCEE)
jbo

where o is the spin index, a (3) corresponds to dots connected to the source
(drain) lead and DX/[d, p| = [dpd' exp(ix;) — {d'd, p}/2]. The Lindblad op-
erator with counting fields is the principal tool we have used in Papers I and II,
to study the current and current noise in transport through quantum dot devices.
Before concluding this section we mention an alternative approach of deriving the
modified Lindblad equation, which does not need an explicit detector apparatus
[66, 69]. Here instead a number resolved master equation is Fourier transformed,
where the counting field enters naturally as the conjugate variable of number of
transferred charges.

5.3 Current Noise

The transport of electrons through a nanoscopic device is a stochastic process, a
fact evident from typical conductance measurements, which fluctuate randomly
in time. To obtain a clear signal, we would need to average out these fluctuations.
However, in doing so we lose valuable information about the current.

To explain this statement, we need to distinguish different types of current noise.
Here we consider two relevant sources 2. The first source, Thermal or Johnson-
Nyquist noise, is ubiquitous for systems with finite temperatures even when no
bias is applied. The fluctuations in occupation number that result from finite

21/f, or flicker noise, is an additional type of unavoidable noise source due to unknown random
processes in the background. The name 1/f hints of its importance for low frequencies, where below
~ 10kHz this source becomes important [70, 71]. We disregard this source as in typical quantum
transport experiments it is possible to focus on higher frequencies.
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temperature will result in a fluctuating conductance because of the fluctuation-
dissipation theorem [70]. As such, this noise provides no further information
about the system than what is available from conductance measurements.

The second type of electric noise appears once a voltage is applied over an elec-
trical conductor. This non-equilibrium noise, termed shot noise, emerges as a con-
sequence of the discreteness of electron charge, and is the dominant noise source in
the so-called shot noise limit, ¢V >> £7. To understand shot noise, it is instructive
to consider the theoretical study which discovered the phenomenon.

The role of shot noise as a diagnostic tool was discovered by W. Schottky in 1918
[72], when he investigated the emission of electrons from the cathode in a vacuum
tube. Under the assumption that emission is rare, independent and random, he
noted that the fluctuations of the electron counts at the anode should be related
to the average value. In the ideal case, where the electron emission is the only
stochastic element, a Poisson distribution accurately models the count probab-
ility. Owing to the properties of the Poisson distribution, the fluctuations are
proportional to the time averaged value of the current,

S = 2el. (5.14)

This relation, called the Schottky formula, shows that current noise provides also
the electric charge being transferred at each event, information which is not avail-
able by only studying the average current. In general when studying charge trans-
port, the Schottky formula does not necessarily hold, interactions inside the sys-
tem and the statistics of the transported particles affect the noise. Conversely, this
implies that the shot noise also provides insight into which transport events are

taking place.

Equipped with a complete statistical description of the current, we can quantify
shot noise theoretically by studying the current-current correlation functions. In
our work, the main interest has been the stationary cross correlations in the shot
noise limit. The correlation function of currents measured at contacts v and [3 at
two points in time, here taken as # = 0 and # = 7, is,

Sa5(r,0) = S {Sa(r). 51500, 816 = 1A — (H®). G19)

The Fourier tranform of this quantity yields the noise power S 5(w),

Sap(w) = /00 dre“T Sop(T,0). (5.16)
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The transport problem we are studying here can be characterised by the probability
distribution, Pa,(Nq, Ng), describing the transfer of V, (V) electrons to con-
tacts « (3), during a measurement time Az. The joint cumulant of Pa,(No, N3)
reads after a long measurement time [65],

A o0
Wyt = 2 / {61 (7). 3T5(0))). (5.17)

By comparing with Eq. (5.16), we note that the zero-frequency current noise in

. .. . .. af
a transport experiment is directly proportional to the joint cumulant K, of the

distribution Pa,(Ne, N3). That is,

28 o

Sap(0) = A

(5.18)

This relation in Eq. (5.18) has been the basis for our investigations in Papers I, II
and II1. Here we employ the zero frequency shot noise as an experimentally access-
ible tool for probing correlations of electron pairs in spatially separated currents. In
particular, using the equations of motion with counting fields, we relate the joint
cumulant to the two particle density matrix of transported electron pairs. Ow-
ing to Eq.(5.18), we have been able to use shot noise to formulate a Bell inequality
(see Papers I, II), tomographically reconstruct the state of a coherently transported
electron pair (see Paper I) and as the building block for an entanglement witness
(See Paper III).

s.4 Example: FCS of double quantum dot

To show the workings of Full Counting Statistics with a Lindblad equation, we
consider again the transport problem specified in the previous chapter, but with
counting fields [69]. In the following we employ units where 2 = 1. After a long
time, a steady state electric current traverses two quantum dots which are tunnel-
coupled in series. The equation of motion for the reduced dot system state p, with
counting field X, then reads,

d _

: 1
= —ilHe pl + TDld]. pl + T |depdipe™ — ~{dydr, p}| . (519)
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As in the former case, we formulate the equation of motion as a system of linear
equations and obtain an eigenvalue problem. In particular for the eigenvector pi,
satisfying lim, o gy = ps, the eigenvalue problem reads,

Mxﬁx = F(X)ﬁx- (5.20)

The Lindblad matrix is nearly identical to that of Eq. (4.18), with the exception
of extra phase factor for matrix elements describing the emission of an electron.

Explicitly the left-hand side of Eq. (5.20) is,

—T'; 0 TgeX 0 0 0 00
FL 0 —FR FRKiX 0 2t PL
I () 0o —-I' o0 0 —2t PR
Mbx=106 o 1, -Is 0 0 0 ’
0 0 0 0 —F/2 —d¢e ngLR
0 —t t 0 de —1“/2 %pLR

(5.21)
where the basis and definitions are identical to the example studied in the previous
chapter. To obtain compact expressions we consider the case I'y = I'p = 7.
Solving this eigenvalue problem, the CGF for this transport system is,

Fx) = —v+ \/p + \/q—l— 16722 (ex — 1). (5.22)
where p = (—0e* + v* — 4#)/2 and ¢ = (de* + * + 47) /4. From F(x) we
can straightforwardly recover the current expression from the previous chapter

27e

) = —tedx B0 = S gp

However, in contrast to the example of previous chapter, by virtue of FCS, we

(5.23)

posses complete information about the transport statistics and can easily obtain
the higher order cumulants beyond the average current. For instance, the second
cumulant, corresponding to a auto-correlation measurement, reads
281y
2 2, .22 20252 .2 4
S= —e28XF1X%0 = 67 [(55 +9°)° + 2¢7(30e” — 7)) + 81‘] . (5.24)
As a passing remark, we consider the scenario when the tunneling between the
dots is weak. The cumulant generating function to leading order in 7

v

_ X _
2552 e (¢ 1), (5.25)

F(x)
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corresponds to a typical Poisson process. We infer two interesting points from
this expression. First, the coherent evolution is a vital component to the transport
statistics. Second, the statistics of a weak tunnel junction allows us to relate the
measured current and auto-correlations to electrons entirely localised in the dots
adjacent to the contact. We make use of the second point in Paper I, to pinpoint
the measured spin correlations to spin properties of transported electron pairs.
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Chapter 6

Overview of Paper 1

Motivated by experiments on Cooper pairs splitters [73, 74, 75, 76, 77, 78], in Pa-
per I we present an entangler-detector model which can be used to unambiguously
test the spin entanglement of the spatially split Cooper pairs. While an efficient
splitting of Cooper pairs has been demonstrated using current cross correlations
[76], it remains to demonstrate a conclusive signature that the split pairs are en-

tangled.

Ideally the Cooper pair splitter works by emitting a pair of spin entangled elec-
trons, which are then split whilst preserving their coherence. To verify the latter
part, it is insufficient to only look at charge current cross-correlations, instead a set

il
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Figure 6.1: (From Paper I) Schematic figure of the setup considered in Paper I. A generic entangler emits independ-
ent particles (dashed line) and split pairs of particles (solid line) onto a set of detector dots with spin
degenerate energies 4, 5. The emission is given by a spin dependent rate, described by the matrices
44, 45 for independent particles and 445 for pairs of particles. Detector dots A and B are tunnel coupled
with a rate I'4 and I'g to a anti-collinear pair of ferromagnetic contacts
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of spin sensitive detectors are required. With this in mind, we use a set of ferromag-
netic (FM) contacts with anti-collinear polarisations to probe the spin properties
of the transport state [79, 80, 81] without spin polarising the dot density of states.
In addition, it is necessary to take into account the possible non-idealities in the
system. The setup we consider comprises an unknown entangler, and a detector
system consisting of two spatially separated quantum dots tunnel-coupled with
two pairs of anti-collinear FM contacts. See Fig. 6.1. In the paper, we specifically
address two important questions:

*  How are the spin properties of the pair emitted by the entangler manifested in
the cross-correlators of the currents at the FM-leads?

*  How can system parameters and detector settings be optimized to allow for an
unambiguous detection of entanglement of the emitted state?

To obtain insight into these questions, we study the full transport statistics in the
context of transport of entangled electrons [82, 83]. Here we restrict ourselves to
the scenario of infrequent charge transport, and employ FCS to provide a clear
picture of the contributing transport processes, and effects of perturbation on the
detected spin state. In the following, the main results are detailed before briefly
describing the model we have used.

6.1 Main results

The main result of Paper I is our expression for the cumulant generating function
for the probability distribution Pa,(Nyy, Na—, Np+, Np—), describing the trans-
fer of N,,, electrons from detector dot &« = A, B onto the FM contact am of
the entangler-detector system, during a long measurement time Az Introducing a
counting field X4, for each FM contact, the cumulant generating function reads

FO) = A | Gdal (@ = 1)

; ; (6.1)
+ A Zn,m tr (ch‘ln X Q%m)ﬁyAB} (ei(XAn"rXBm) _ 1)

Here 44 (Y4p) are Hermitian matrices containing all single (two) particle rates,
Qﬁn = (i + (4a - o), where (, is the overall efficiency of detector & and a (b)
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is the polarisation vector of FM contact A+ (B%£) . The expression clearly dis-
plays the two types of independent Poissonian transport processes that make up
the long time transport statistics. The first term describes the unwanted transfer
of an independent single charge, emitted by the entangler and detected at the fer-
romagnetic contact azz. The second term corresponds to the coincident detection
of an emitted two-particle state at the FM contacts Az and Bm. From Eq. (6.1) we
obtain that the current cross-correlations measured at FM contacts A+ and B+
are,

ngt =T [(i ta-0)® (i + (gb - o-)p] ,  I'=tr[yap) (6.2)
where p = v4p/I is the spin state of an electron pair emitted from the entangler.

The efficiency parameter (, quantifies how well the spin state is resolved when
a particle is detected at the FM contacts. For example, an electron spin reaching
detector A+ is projected along the axis defined by a and with probability (4 leaves
for either A+ or A—, while with probability 1 — (4 the spin is emitted towards
both A+ and A— with the same rate. An immediate conclusion from Eq. (6.2)
is that for an ideal setup, that is {4 = (3 = 1, the cross correlators allow for a
full tomographic reconstruction of the emitted state from the generic entangler.
As has been proposed in earlier works [84, 81]. It follows also from Eq. (6.2)
that the spurious current of independent single charges does not contribute to the
cross-correlation measurements.

Our results further show how nonidealities of the detector setup, here accoun-
ted for by a local spin-flip rate 7 of electrons in the detector dots and non-ideal
polarisation p,, of the FM contacts, enter as an overall reduction of the detector
efficiency (. In particular for detector «v the efficiency is,

Ca = pa(1=1a);, 7Ma=n/(Ta+mn). (6.3)

Accounting for nonidealities allows us to address the first question, namely how
the detected spin state is related to the spin properties of an emitted electron pair.
Specifically, from our result in Eq. (6.2) we note that tomographically reconstruct-
ing a state p with a set of current cross-correlation measurements yields,

AT [(i +¢a-0)® (1+(b- o)p] =T [(i ta-o)@(1+b- o)o] .

(6.4)
That is, tomographic reconstruction of a state p with non-ideal detectors is equi-
valent to reconstructing the state 0 = p{4Cp— (1 —C4(B) 1 /4 with ideal detectors.
In the following, we briefly describe the model used to obtain these results.
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6.2 Effective Lindblad equation

A big strength of our model is the ability to study transport statistics with an
unknown entangler, which is tunnel-coupled to two detector dots. We achieve
this with the main technical detail of Paper I, the effective equation of motion for
state of the detector dots p,

b _ . X

5, = Lulp) + La(p) + L2(p) + L (p) + Liu(p). (6.5)
Here L£(p) denotes the free evolution of the dots, £1(p) (L2(p)) describes the
emission of a single particle (two particles) from the entangler onto the detector
dots. The remaining two terms describe local spin-flips of electrons residing on
the detector dots and emission of the detector dot particles towards the FM con-
tacts. The main result is obtained by solving the eigenvalue equation, described
in Chapter s, using the perturbative scheme outlined in Appendix E. To leading
order in y/T", where y (I') denotes the emission rates from the entangler (detector
dots), we obtain Eq. (6.1). We now briefly discuss the last four terms.

6.2.1 Effective single- and two particle emission

A principal assumption for our model is that particle emission from the entangler
is a rare event. Trapped inside the entangler, the electrons are assumed to evolve
into a stationary state, which is unaffected by the subsequent tunneling onto the
detector dots. Thus, the function of the entangler is to ideally act as a reservoir
which coherently emits entangled two-particle states, with infrequent emission of
single uncorrelated particles.

Therefore, to account for these single- and two-particle tunneling processes we
introduce two phenomenological Lindblad-type operators £5(p) and L (p), re-
spectively. See Appendix. A for an alternative argument for this model. The two
Lindblad-type equations for the detector dot state p read,

oo’ 1
El(ﬂ) = Z Vo |:d£capda0’ - 2{dagld’famp}:| ) (6.6)

aoo’

! ! 1
Lolp)= D i’ [dlgd;pdgffd/{gf —z{dBT/dAa/dLgd;,p}] (67)

Tot!o!
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We enforce that these equations preserve the positivity and trace of the density
matrices, the hallmark of a Lindblad equation. The effective single particle (pair)
emission rates from the entangler are then restricted to being the matrix elements

/ i~ .. . A A
Y77 (v95° T ) of a Hermitian matrix 4; (Y43).

6.2.2 Non-idealities

We incorporate two non-idealities in the proposed entangler-detector system, which
in conjunction contribute to an overall reduction of the detection efficiencies
C4, Cp. The first perturbation is the process of local spin-flips at the detector dots,
due to e.g. fluctuating nuclear spins. We include this perturbing source by adding

a Lindblad-type operator
1
£4(0) =15 [dords = 3 dhoror)] (©9)

where 7 is the spin-flip rate, assumed to be the same in both detector dots. De-
tector dot dynamics due to the FM contacts is accounted for by,

‘o 1
‘C;gM(p) = Z Lo [dagpdla’ nggezxam - z{dggdamp}] : (6'9)

amoo’!

'The effect of non-ideal polarisations is contained in the matrix elements Q%.9, of
the 2-by-2 matrix Qum = (1 4+ pa - @). Here |pa| = po < 1 is introduced
to account for nonideal polarisations of FM contacts av£. A fully polarised FM
contact & corresponds to |pa| = 1, accepting only spins along the quantization
axis of P, while |po| = 0 describes a normal contact which absorbs electrons
irrespective of spin.

6.3 Remarks on operating regime

It is presumed that the generic entangler has been engineered such that the two-
particle emission from the entangler is the dominant contribution to the current,
such that ’yggl’”, > 777 is satisfied. The operating regime is instead focused
on ensuring that the setup works as an entanglement detection device. That is,

we need to ensure that measured cross-correlations at the ferromagnetic contacts
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are directly related to the two-particle state which has been emitted. We therefore
want to minimise any back-action from the detector dots to the entangler.

UO'/,TT/

To this end, we consider ’yg"/ /To < 1and 7, /T'o < 1 and choose anti-
collinear pairs of FM contacts. The first condition ensures that charge pair being
transferred to the detector dots cannot tunnel back, as they are rapidly absorbed
by the detector leads. The effect of the latter condition can be seen explicitly in
the term Lrp(p). We note that, if both FM contacts are equally coupled to the
adjacent detector dot, without the counting fields x 4, and X g, the spin-sensitive
matrix vanishes as ), Qum = 1. The anti-collinear FM contacts act therefore
as an effective normal contact, which ensures that the spin state of the electron
residing in the detector dots is not affected by the readout.

6.4 Applying the effective model

In practice, to apply our effective model, it is necessary to find an expression for
the matrix rates. For this purpose, a T-matrix approach to time-dependent per-
turbation theory [85] is viable. Focusing on the key quantity for our setup, the
two-particle rate matrix is,

2 I'y+1Tp

T(EA +ep—E):+ (T4 +T35)2/4 (6.10)

Yap =

Here it is assumed that the energy of the entangler £, is well defined. The matrix 7
is identified as the two-particle matrix golden rule rate, where its matrix elements
are

(?—)UO'/,TT/ = Tr{PeH(;)‘UATB> <T]I30-1/‘1’H(7%)}7 (6'11)

with p, being the reduced density matrix of the isolated entangler. Using this
approach, we have tested our effective model by comparing our current and current
cross-correlation expressions to known results. Specifically we have considered the
Andreev entangler of Ref. [86] and triple dot entangler [87]. See Fig. 6.2. The
effective two-particle tunnelling Hamiltonians are,

H1<42n)dr€e1} :j(bo [dqud}L% - djud;rﬁ]) + h.c.

(6.12)
HY), = 2% (dadyldlydy, — dyydiy]) + be

3dor — Ar2ABL — 241 %Ry
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Figure 6.2: Schematics of a) the Andreev entangler and b) triple dot entangler in a transport setup. a) Cooper pairs
escape the superconducting (SC) contact via tunneling amplitude J to two spatially separated detector
dots, before being absorbed by the ferromagnetic (F) leads at rates T'4, I's. b) The entangler dot is
populated by a normal contact (N) with the tunneling rate T's. Due to single particle energies being off
resonant, the dominant transport is due to a two-particle tunneling events

Here, using the notation to our entangler-detector model, ,, denotes the anni-
hilation operator of an electron in detector dot o« = A, B (entangler dot o = e)
with spin 0. The effective two-particle tunneling amplitude / describes the tunnel-
ing of a Cooper pair between the superconductor and spatially separated dot pair
and ¢ is the tunneling amplitude between the entangler and detector dots and U
onsite Coulomb interaction of the entangler dot. The operator &y is annihilates a
cooper-pair in the superconductor, where the expectation value (6y) = 1, for the
superconducting ground state. We find in our operating regime that the resulting
two-particle rate matrices,

2 Andreev __ 2/ (L4+Ts)
AyﬁB - (€A+EB)2+EIFA‘5FB)Z/4|\I]S><\I/S| (6.13)

23dot __ 84 44T
i = Gt a7 V) (0l

reproduce the known expressions for the current and cross-correlations. Here |¥s)
denotes the spin singlet state.
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Chapter 7

Overview of Paper 11

The downside of spin entanglement detection is that it requires a versatile spin
sensitive detector. Such a detector, as proposed in Paper I, constitutes a big exper-
imental challenge. An alternative scheme based on the orbital degree of freedom,
such as the charge state in a quantum dot system, is in this regard more suit-
able. However, the orbital degree of freedom for electrons in a solid state device is
plagued by a rapid decoherence rate, presenting a challenge to realise orbital-based
quantum information processing.

However, despite the high susceptibility to charge noise, recent experiments [88,
89, 90] have demonstrated control of quantum dot charge qubit on a time scale
orders of magnitude shorter than the decoherence time. These findings present
an opportunity to investigating a scheme for detecting and generating pairs of
orbitally entangled transport electrons. An interesting question is thus,

o [s there an entanglement scheme which enables the generation and detection on
a sub decoberence time scale?

In this work, we propose such a scheme which, in the same nanoscale device, gen-
erates and detects orbitally entangled states with the usage of a co-tunneling pro-
cess. The attractive properties of resonant co-tunneling are, i) it is a demonstrably
coherent process [91, 92], and ii) it occurs on a time scale of picoseconds. In con-
trast, the decoherence time is reported to be on the order of nanoseconds [13, 14].
Specifically, we have proposed an entangler-detector device in Paper I, illustrated
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Figure 7.1: Schematic figure of the entangler-detector setup proposed in Paper Il. The structure can be divided into
an entangler (E) part, with quantum dots 1 and 2, and two spatially separated detectors (A) and (B)
comprising dots A+, A— and B+, B—. The solid lines show the participating tunnel couplings between
entangler- and detector dots. The dashed lines indicate the role of leads, as either source or drain.

schematically in Fig. 7.1, consisting of six weakly tunnel-coupled quantum dots.
Due to strong on-site Coulomb repulsion, none of the dots permits double oc-
cupation. By detuning the energy level of the individual quantum dots, we can
obtain an ideal operation, where single particle tunnelling events are suppressed,
leaving a dominating contribution from the transport of electron pairs. Similar to
our work in Paper I, we explore the ramification of these cotunneling processes on
the current cross-correlation measurements by studying the transport statistics.

7.1 Main results

The key result of Paper I1 is the cumulant generating function for the charge trans-
port through the entangler-detector system

F) = (e exm) 7
af

The long time transport statistics are clearly displayed, with four separate contrib-
uting Poisson processes. The contributions correspond to electrons emitted from
leads 1 and 2 (counted by fields x; and x2) populate entangler dots 1, 2, which are
subsequently transferred in pairs to detector leads @« = A+ and 8 = B+ (counted
by fields X and x ) with transfer rate,

p g ?(Ta + T +Ty)
Oéﬁ - h2

; (7.2)
ETa+Tg+Ty)2+ z-:fmﬁ
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where I, is the tunnelling rate from detector dot « to the neighbouring lead, I'y,
is the dephasing rate, 7,32 is an effective two-particle tunnelling amplitude, and
€12a3 denotes the energy away from the two-particle resonance. Equipped with
Eq. (7.2), we formulate a Bell inequality in terms of current cross-correlations, to
detect orbitally entangled states. Identifying the probability for an electron pair
initially populating the entangler dots 1 and 2, to be detected at leads o and 3 as
Eap = Pap(d_, ¢ Py, ¢)”", we express the CHSH function [29, 35] in terms of
cross correlation measurements

S = |Eqp — Egp — Eqp — Egp|. (7:3)
Here the correlation functions for the different settings A, B, A', B’ are defined as,
Eap = Egy p+ — Eayr p— — Ea—pyr + E4— . (7-4)

As discussed in Chapter 2 for classical correlations there is an upper bound for
the CHSH function, S < 2. Under ideal operation, two resonant co-tunneling
events are possible. Namely, an electron initially residing in entangler dot 1 can
leave for detector dots in A, while the electron in dot 2 leaves for a detector dot
in B, and the reverse. The resulting orbitally entangled state due to two-particle
interference then reads,

|[)ent = sin(6/2)[1)4[2) 8 — cos(6/2)[2)4[1) 5, (7-5)

where |1) 4 describes an electron being emitted from entangler dot 1 to detector
subsystem A with analogous definition for e.g. |2)5. In Ref. [93] it was shown
that choosing optimal detector settings A, A’, B, B, the CHSH operator will yield

S = 2¢/1 +sin? 0. That is, in an ideal setup all pure entangled states can be
detected.

In addition to using the long time statistics, it is possible to formulate a Bell in-
equality in terms of short-time properties of the charge current. To this end, we
have obtained an expression for the electronic analogue of Glauber’s second degree
of coherence [94],

T.ls &

(2) ~ P (g Tar LT 6
gaﬁ (T) aﬁ Fa + Fﬁ [a[ﬁ (8 + e )7 (7 )

(

where terms on the order of unity have been neglected. The function gazﬁ) (1) de-
scribes the conditional probability that an electron is emitted towards the lead o or
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B at time 7, given that an electron was detected at lead 5 or o at time t=0, respect-
ively. This opens up the possiblity for detecting entanglement by monitoring the
detector dot population in real time, by e.g. placing quantum point contacts in
close proximity to the detector dots. To clarify how we obtain the primary results,
below we will discuss our model.

7.2 Model

7.2.1  Effective Hamiltonian

The entangler-detector system is described by the Hamiltonian

H=Hy+V= > edd +> tydidy+he, (7.7)
y=12,a8 y#Y

where Hy describes the single particle dot energies and V" describes the tunnel
coupling between different quantum dots. Here we use the notation from the
paper, where indices « = A+, A— and 3 = B+, B— label the four detector dots,
while entangler dots are labelled 1 and 2.

Due to growing size of the Lindblad matrix, discussed in Chapter 4, account-
ing for all possible contributing processes in a transport setup is a computation-
ally demanding task. Instead, we will restrict our analysis to a parameter regime
where sequential tunnelling between the dots is very slow, and study an effective
Hamiltonian which only reproduces co-tunneling correctly. The effective picture
becomes a valid approximation by tuning the single dot energy levels to satisfy

€a+Eg+Ua5%€1+52+U12, (7.8)

whilst keeping all intermediate steps, describing a single particle tunnelling, off
resonant. Under these conditions, we can from the outset recognise that sequential
tunnelling is suppressed and employ a Schrieffer-Wolff transformation [95]. The
resulting effective Hamiltonian,

Hyp = UHU' ~ Hy + VoI, (7.9)

where we have discarded the slow single particle tunnelling part, which signific-
antly reduces the complexity of the problem. For details about the transformation
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see Paper II and Appendix C. The transformed Hamiltonian includes an effective
two-particle tunneling part,

Bitar  tal?
L > (tﬁazldjgdgdzdl + /M‘) oy = Blo2 _ falfp2

o AEg,  AE.g
(7.10)
The dependence of the effective two-particle tunneling on the dot energies enters
via AE,g,
1
AE. 3 = .
af Z c — 51', (7.11)

v,i

where 7 runs over the resonant states of both entangler dots being populated, and
both electrons residing detector dots o and 3. The energies ¢; in the sum corres-
pond to the energies of intermediate states when an electron from dot 1 leaves for
dots o, and an electron from dot 2 to dots 3. We obtain the definition of AEg,, by
exchanging o and /3. As a passing remark, it is interesting to note that the effect-
ive two-particle tunnelling amplitude 7,21 describes the coherent superposition
of two individual paths taken by the electron pair.

7.2.2 Transport statistics

The transport measurements we consider, are conducted in a high-bias regime.
The dynamics of the dot system are then described well by the Lindblad equation,

%:coﬁzplx + ) D} [dyp +ZD¢4%, | (7.12)

y=a,8 7=12

where DY[d, p] = T [exp(ix)dpd' — {d'd, p} /2], and Lop = — L[V, p] de-
scribes the free evolution of the system without leads. The second and third term
describe the absorption of electrons residing in the detector dots and injection
onto the entangler dots respectively. We further include a source of dephasing of
the orbital state, which corresponds to the last term.

Similar to the operating regime studied in Paper I, we consider the limit 'y, I'g >>
I'1,T'2 > 8421/ h to eliminate unwanted back-tunneling from detector dots onto
the entangler dots, and the ensure that only one pair at a time is contributing to
the cross-correlation measurement. In this regime, once the detector dots have
been populated, the electrons immediately leave for the neighbouring leads one
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Figure 7.2: a) A schematic of the effective beamsplitter, with the resulting orbitally entangled state leaving dot 1 (2)
for a detector dot in A and B (B and A). b) The effective beamsplitter for an electron moving towards A.
The electron path is uninterrupted (solid line) for 8, = = /2, whereas they are entirely reflected (dotted
line) for 6,4 = 0.

after another before the entangler dots are repopulated. Further, it is assumed that
hl' > tapa—, hI'g > tpy g and we accordingly neglect any tunnelling between
the detector dots.

To find the cumulant generating function specified in the main results section, we
solve the eigenvalue equation to leading order in the tunnelling amplitude #3421 .

7.2.3 Effective beam splitter

As a consequence of the high bias regime, and suppressed back-tunneling from
detector dots to entangler dots, the charge transport is unidirectional. We can then
interpret the ideal transport scenario as an orbitally entangled pair of electrons
passing through effective beam splitters, specified by the tunnelling amplitudes,
before finally arriving at the detector dots.

Specifically, by tuning the dot energies to ensure two-particle resonance, then for
a parameter regime where AE,3 = AE4p and AEg, = AEp4, we can parametrise
the tunnelling amplitudes as, for example, tan4 = #4_1/t411. See Fig. 7.2.
Operating with the co-tunneling Hamiltonian on the intially populated entangler
dots yields the unnormalised state,

o = =3 2 a)]5) +Zt5”‘” )18). (7.9
af

These two terms can be identified as the orbitally entangled state,

[ W) ent = 2112)4|1) 5 — c12|1)4]2) 5, (7.14)
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where |7) denotes the emission of an electron from entangler dot i towards de-
tector dot «, with a scattering matrix. The coeflicients ¢;; and ¢}, correspond
to tp1taz/Aap and tpta1/Aup respectively. See Appendix D for details. In this
picture the resulting state is described by

(7.15)

W) ot = (S4 @ S5) | Whene, S = ( sinf; cos#; > |

cosf; —sind;

The transport process is thus, an entangled pair of electrons, emitted towards the
detector, locally rotated in orbital space by the effective beam splitter S; before
arriving at the detector dots in 7. The angle characterising the beam-splitter, e.g.
tan@4 = t4-1/tay1, can in principle be varied by adjusting the tunneling bar-
riers, from 6; = x/2 for a transparent beam splitter and #; = 0, where the
electrons are completely reflected. If these are adjusted optimally, we obtain an
expectation value of the CHSH function & = S, = 24/1 + sin?(2¢), with

¢ = arctan(ciz/c21)[93].

7.3 Short time properties

In addition to the long time statistics, in Paper II we also investigate a short-time
property of charge transport. Specifically, we study an electronic analogue of the
second order correlation function ¢ (7) of Quantum Optics [94]. In our sys-
tem, ¢?)(7) corresponds to the conditional probability that an electron is emitted
towards a drain contact at a particular time #+ 7, given that an electron was trans-
ferred at time 7.

In particular, aiming to provide a real-time entanglement test, we are interested in
the correlated transport of electrons emitted towards leads & = A+ and 8 = B+.
Within the framework of a Markovian quantum master equation, this function is
obtained as [96]

_ ((Fad"" T)) + (T Ta))
2({(Ja))({T8)) '

where, using the vector notation introduced in Chapter 5, we have

(7.16)

(Ua)) = ”axa ,Ox;‘ -0
(acr T5)) = il or 2t 77

T oxa xS lxa,xg—0’
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where 77, is defined to satisfy #7p = tr[p] = 1. To obtain the result specified in
the main results section, we evaluate Eq. (7.16) to leading order in the tunneling
amplitudes #421. In this limit, the factor M7 = /WT|Z'£Q21—)O and we obtain,

_p . Lalp &
N aﬁl—‘a—l-rﬂzla[g

gur(7) (exp(~Tar) + exp(-Tp7)), (719
where an additional term on the order of unity is disregarded. Here the electron
pair transport taking place can be described as, once an electron has left for de-
tector «, the second electron, unable to tunnel to any of the other dots, leaves
subsequently for detector 3, leaving room for the next pair. This is reflected by
the exponential decay of cross correlations attributed to the transport of pairs.

The ggﬂ) (7) expression provides insights into how a short time Bell test would
work. Importantly, Eq. (7.18) displays a principal limitation of using real-time
joint detection probabilities to detect entanglement. In contrast to the long time
correlation measurements, where all the electrons will be contributing to the cur-
rent cross-correlation, the short-time correlations have a decay time set by the rates
I'o, I'g, resulting in non-ideal detection efficiencies. To accurately detect correl-
ated pair transport real-time monitoring would need to resolve dot occupations
on a time # < I'y,I'g. In practice, the measurement resolution is set by a finite
bandwidth Aw of the detector, that is, for e.g. detecting dot populations in dot

the non-ideal efficiency is 7o, = ¢ Fo/A%,
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Chapter 8

Overview of Paper 111

Assignificant obstacle to realising an entanglement detection scheme in a nanoscale
solid state device is the necessity for a highly versatile detector which allows for a
set of distinct cross-correlation measurements. A prime example of this is a con-
ventional Bell test, as the CHSH function outlined in Paper II. To experimentally
verify a violation of a Bell inequality using the CHSH function, it is necessary to
perform sixteen distinct cross-correlation measurements.

With the work of Papers I and II as a basis, where we formulate Bell inequalities
using current cross-correlations, in Paper III we seek to facilitate the entanglement
detection with a more measurement conservative detection scheme. To this end,
we use the concept of entanglement witnesses (See Chapter 2). In contrast to a Bell
inequality, the entanglement witness approach targets specifically to distinguish
separable states from the non-separable. This is however not a serious drawback,
since we cannot rule out any LHV theories in a nanoscale transport setup. We are
only interested in detecting entangled, or non-separable, states. The main question
we have aimed to address is

* Employed with only current cross-correlation measurements, what is the most
efficient scheme to detect the presence of non-separable states faithfully?

To answer this question, we consider a general entanglement detection scheme,

consisting of an entangler emitting pairs of electrons with a rate I'. These pairs
pass through two beamsplitters with splitting efficiencies (4 and (g prior to being
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detected at the detector leads. From Paper I, we know that the current cross-
correlation measurement at detectors A+ and B+ is of the form

Sy = Tu[(l£¢a-o)@(1£b-o)p]. (8.1)

We identify (14 (4a-0) @ (14 (gb- o), which has been the basic building block
in our entanglement detection schemes, as the current cross-correlation operator.
With this starting point, in Paper III we formulate an entanglement witness as
a sum of different cross correlation measurements. That is, an /N-measurement
entanglement witness is,

N
WA :Z(i+cAai.a)®(i+§Bbi-a). (8.2)
=1

Equipped with W), we can reformulate the main question as the following fun-
damental questions:

o What is the minimum amount of current cross-correlation measurements neces-
sary for W) 1o constitute an entanglement witness? That is,

a{ WV p} > max a{ W} or a{Wpl < n})in a{ W} (83)

Additionally, since a specific entanglement witness only specifies that there exists
a state which satisfies the above stated conditions, a natural follow up question is:

o Which entangled states can be detected by such a witness?

Answers to these two questions, discussed below, are the main results of this paper.

8.1 Main results

Our most important result answers the first question. We find it is sufficient to
carry out two distinct cross-correlation measurements to detect entangled states.
That is, W2 is an entanglement witness, that can detect entangled states which
violate both the upper and lower bound,

a{ W2 p} > max wr{Wp} and wu{W¥p} < n})in w{Wp}.  (8.4)
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Figure 8.1: Optimal detection margin AY™ for states o = A1/4 + (1 — A)p¢ as a function of concurrance C and
. The separation between o being separable and entangled is indicated by the dashed line

To answer the second question, which entangled states can be detected, we con-
sider first the case of pure states. We find the interesting result that the detection
range of our minimal witness W?) consists of all entangled states, except the max-
imally entangled Bell states. Extending our analysis to the more general mixed
states, we find a significant reduction in detection range. In Fig. 8.1 this effect is
demonstrated by considering the mixed state

o=A/4+(1-Npc, 3.5)

where 1/4 is a completely mixed separable state and p¢ is an entangled state
with concurrence C. The state o is within the detection range for A < (1 +
ALVi/]A%Vi\)’l, whereas it is entangled for A < (1 + (2€)~!)~!. Here A/‘)WJr
(AXV_) denotes the maximal distance between upper (lower) bound for separable
states p; and the full spectrum of WA2),

AV =t [Wp] — max, tr [W2)p]

A;Vf — —¢r [W{z)p] + min,, o [W(z)p;] . (8.6)

We note from Figure 4 that the detection range is more strict, from which it follows
that not all entangled mixed states are detected.

Owing to the importance of Bell states, for example when studying the Cooper
Pair Splitters discussed in Paper I, we have further investigated how many measure-
ments are required to also resolve maximally entangled states. We find, following
the same approach, it is enough to introduce a third measurement in the same
plane to obtain a witness operator WA3) whose detection range contains also the
maximally entangled states.
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In addition to this, with W3) we reproduce the lowest efficiency ( = 1/ V3
required to detect the Bell states, found in Paper I and e.g., Ref. [97]. In the
following, we briefly describe how we have reached the conclusions stated above.

8.2 Showing that WAN) is a witness

To show the first result, we focus here on the lower boundary. For W2 1o be a
witness, the smallest eigenvalue A\; must be smaller than min,, tr[WA) p]. This, in
turn, is possible only if A; is a non-degenerate eigenvalue, and the corresponding
eigenvector describes an entangled state[98]

To show that WA2) is an entanglement witness it is sufficient to consider the case
of symmetric settings, thatis (4 = (3 = ( and 84 = 0p = 6, where the angles are
defined as cos 84 = a; - a; and cos 63 = by - by. We first minimise the expecta-
tion value for separable states min,, tr[ W) p,] = min,, y, (xal Os] W | xa) | X5)-
This minimisation can be carried out by e.g., parametrising the spinor as |x;) =
(cos ¢;, exp(i;) sin ¢;). Solving this minimisation problem gives two solutions,
valid in different parameter regimes,

. 2y 1 | 2(1—=Ccos (%))2
)= { 307Gy 7

where switching between the two solutions occurs as they intersect. Second, we
study the minimal eigenvalues of WA2). One particularly convenient representa-
tion is

W2 =2 [:tsAsBax Qo+ (i +c40,) ® (i + cAaz)} , (8.8)

which gives the minimal eigenvalue A\ = 2(1 + cqcp — \/(CA +¢g)? + 555%),
where ¢, = (4 c08(04/2) and s = (o sin(fa/2). This eigenvalue is unique
for all angles 0, except for = 7, where it becomes equal to the second smallest
eigenvalue. The associated eigenstate is also a nonseparable state for all parameters,
except § = 0 and ( = 0. Comparing the minimised values shows that operators
of the form WA?) satisfy the criteria of an entanglement witness.

To show that three measurements are sufficient to detect Bell states, we consider
the symmetric detector settings a; - a = 0 and a; - a3 = —1, and similarly for
detector B. Using the same approach as for WA2), the minimum expectation of
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Figure 8.2: Optimal splitting efficiency ¢, and polarisation orientation 6,,, of the detector which maximise A/‘f/*
and Ag/_, as a function of concurrence C.

WA3) for separable states reads

_[8/3-2> 1/3<¢<1
[W(s)p‘]_{u(l—g)i’- 0<¢<1/3"

min tr
s

(8.9)

where again the two minimal solutions switch as they intersect. The minimal
cigenvalue of W) similarly

‘ B 3(1_C2) 1/\/§§C§1
min er [W@P} —{ 3+ -20/1+¢ 0<(¢<1/V3,

switches between two eigenstates. Crucially, for ( > 1/+/3, the eigenstate corres-
ponding to the smallest eigenvalue is a maximally entangled singlet state. That s,

(8.10)

WA3) resolves the maximally entangled states. Interesting to note, this is the same
lower bound on the efficiency as found in Paper 1.

8.3 Optimal witness

For our claims regarding which states can be detected, we must find W2) which
also optimises the detection margin A;Vi, To this end, we have investigated which
parameters optimise our entanglement witness and how these parameters vary for
different states. Using that a general pure two qubit state can be uniquely charac-
terised by its concurrence [99], we investigate the expectation value of the entan-
glement witness for a state of concurrence C,

tr [W(z)pc] =tr [W(z)ﬁc} , (8.11)

where pc denotes the two qubit state where the local basis of A and B, has been
rotated to bring the state, which gives the smallest eigenvalue, into a Schmidt form
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[0) =S o=t.| Coo|00). Numerically it is found that maximising the detector
margin, is possible with WA?) of the form described in Eq. (8.8) with symmetric
settings (4 = (p = (and 04 = 0 = 0. The optimal parameters are then obtained
as the parameters which maximise the detection margin ALW = —u [me] +

min,, tr[ W) p,]. This condition translates into the set of equations

8<AXF = 4cos § cos 2x — 2¢ (2 + cos f'sin 2x + cos 2x) = 0,

_ 8.12
69A;V = —2( cos 2xsing +sin 6 + ¢?sin @ sin 2x = 0, (8.12)

where we have used the notation of the paper sin 2x = C. Solving these equations,
we obtain the optimal parameters displayed in Fig. 8.2. To obtain the optimal
parameters for a violation of the upper bound, which instead maximise AW},
one proceeds in a similar fashion.

In Figure 8.2, it is also seen how the optimal witness fails to resolve states which
are maximally entangled, that is, states for which C = 1. For maximally entangled
states, the optimal setting @ = 7 results in the minimal (maximal) eigenvalue to
be degenerate and wA2) stops being an entanglement witness. Before concluding,
we point out another interesting detail seen in Fig. 8.2, namely for an optimal
witness which violates the lower bound, a non-optimal efficiency ( is required to
detect entangled states. Moreover, with an ideal detector efficiency ¢ the optimal
detection margin is zero.
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Chapter 9

Overview of Paper IV

Quantum dot based spin qubits in semiconductor heterostructures are a prom-
ising candidate for storing and processing quantum information. In particular
for this purpose spins in lateral GaAs [100, 101, 19, 102, 103, 104] and Si/SiGe
[105, 106, 107, 108, 109, 110] quantum dots have seen promising results. Owing
to the presence of spin-orbit interactions in these materials, by applying a mag-
netic field it is possible to coherently manipulate a localised spin via EDSR, as has
already been experimentally demonstrated[41]. However, the spin-orbit mediated
coupling of spin and electric field also enables a notable spin relaxation due to
acoustic phonons [111, 112, 113, 114, II5, 116, 117].

A recent experiment on EDSR with a GaAs quantum dot [1o1] verified the the-

Figure 9.1: (From Paper IV) Schematic figure of the EDSR setup considered in Paper IV. An electron from the 2DEG
at the interface is trapped in a biharmonic trap potential. The orientation of the dot is specified by
the angle § between the major axis, and crystallograpic axis [100]. An inplane magnetic field B =
(cos B, sin 3, 0) is applied.
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oretical predictions that, due to the anisotropy of the spin-orbit interactions, the
phonons induce a spin relaxation which depends on the orientation of the mag-
netic field and the direction of the dot. This prompted us to, with the work of
Paper IV, investigate optimising EDSR control of a spin, by varying the control-
lable parameters of the setup. See Fig. 9.1.

We define the optimal EDSR scheme as allowing for the maximum amount of
single qubit operations, quantified by the induced Rabi frequency Q, under the
constraint of a finite spin lifetime 7. To this end we introduce a figure of merit
for the spin qubit device, ¢ = 7€, and examine how the geometry of the dot and
orientation of the applied magnetic field can be used to optimise this quantity.
Before addressing the main results of the paper, we briefly introduce our model.

9.1 Model

The lateral quantum dots we study are defined by a bi-harmonic oscillator potential
in a quasi-two dimensional system, owing to the strong confinement along the
growth direction. We apply a magnetic field B = bB in-plane to avoid any orbital
effects, and consider the Zeeman split lowest spin pair [¥4), |U4) as the spin qubit
states. To ensure that only these states are populated, we consider temperatures
which are well below the energy separation of orbital states 7'<< h?/2m* 2. Here
the confinement length /of the dot is on the order of 10nm, and 7* is the effective
electron mass. We account for non-circular dots by introducing an ellipticity €
parameter which relates the confinement length along the major /s = /and minor

axis Jy = (1 — €)l/4,

As discussed in Chapter 3, in the quasi-two dimensional picture the spin-orbit
Hamiltonian is approximated by the two dimensional linear Rashba and Dressel-
haus spin-orbit interactions. The main consequence of this interaction, present in
both GaAs and Si/SiGe dots, is the emergence of a finite dipole moment d, which
couples the spin qubit states

d = (U4fr|0,) = %v, v=) Gm,xble (0
50 =y

where ¢* is the electron g-factor, s is the Bohr magneton and 4, = (& + /2 )2,
with /.(/;) being the spin-orbit length of the Rashba-type (Dresselhaus-type) spin-
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orbit interaction. The vectors n’, are defined by expressing n,, = (xsinv +
ycos v, —xcosv — ysinv) in the dot coordinates (', /), that is, n,, = ¥'n?, +
y n,. Here we have introduced the spin-orbit mixing angle v = arctan(/,//;),
which is ¥ = 0 for dominant Rashba term and v = /2 for dominant Dressel-
haus. We note that the dimensionless vector v gives rise to an anisotropic dipole
moment, defined by spin-orbit interactions and dot geometry.

With the finite dipole moment d in place, we achieve electric control of the spin
by applying an oscillating electric field E = Eg coswt. To leading order in the
spin-orbit coupling, the electric field, tuned to be on resonance, induces Rabi
oscillations with a Rabi frequency

E
Q= =0dl. (9.2)

To evaluate the spin relaxation rate due to acoustic phonons we use Fermi’s golden
rule with zero temperature. For instance, in the case of piezoelectric acoustic phon-
ons, the spin relaxation rate reads,

Ty = pVZ”MK' (R — ). (93)

The experiment we model, consists of a quantum dot whose confinement length
is much smaller than the wavelength of phonons corresponding to the Zeeman
splitting energy €,. We accordingly limit our analysis to the dipole limit, where
KR~ 1+ (K- R). The factor | Mi|? in Eq. (9.3) is the anisotropic geometric
factor introduced in Chapter 3.

9.2 Measure of spin qubit quality

To quantify the efficiency of a controllable spin qubit via EDSR we consider a
figure of merit ¢

(=QT= ——, (9-4)

where I'pyp, is the dipolar charge noise contribution to 7, I', is introduced to ac-
count for additional decay channels, and Q is the Rabi frequency

Qx |E-v| (9.5)

67



We find that the expression for the figure of merit can be simplified. Despite
a generally anisotropic electron-phonon interaction in GaAs and Si/SiGe, in the
dipole limit, the phonon induced relaxation rate can be approximated as

Tpn ~ 7|v]%. (9.6)

This proportionality is a consequence of the crystal symmetries of GaAs and Si/SiGe,
and is argued for in detail in the appendices B and C of Paper IV. It is further shown
to be a good approximation for magnetic fields up to order of Tesla. In addition,
we consider an applied electric field in the direction E || d, since a misalignment
only yields an overall reduction to the Rabi frequency. The key quantity of Paper
IV, the EDSR figure of merit, then reads

vl

C=ONEY T

(9.7)

From this expression we note that the anisotropy of the figure of merit is entirely
contained within the dimensionless vector v, defined in Equation (9.1).

9.3 Main results

With the model and definitions formulated, we pose the core questions of Paper
IV as follows:

o [s it possible to improve the figure of merit by varying the magnetic field orient-
ation?

o For elliptical quantum dots, is there a preferred major axis?

o Are there designs with elliptical quantum dots for which ¢ can be maximized

by only orienting the magnetic field?

To answer these questions we maximize the figure of merit with respect to the
controllable parameters, that is, the orientation of the magnetic field and major
dot axis, relative to the crystallographic axes. We find then that optimal magnetic
field- and dot orientation, 3,,; and d,,, are the angles for which the dimensionless
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vector is given by,

1+ |sin2v|, if%>l+\sin21/|
v|={ V1+[sin2v[(1—e), if 22 <(1—[sin2v])(1-€)* = (9.9)

%, otherwise,
With this expression, together with the magnitude of the spin-orbit vector in the

dot coordinate system,
[v[> = [n x b|> + (1 — €)*|n), x b|%, (9.9)

we draw a series of conclusions, which can be seen qualitatively in Fig. 9.2 for
elliptical dots. To answer the first question, we find that the figure of merit ¢ can be
improved by properly orienting the magnetic field, with the exception of circular
dots if either Rashba- or Dresselhaus spin-orbit interaction is absent. When the
spin relaxation is due to piezoelectric and deformation potential acoustic phonons
is dominant, that is v > I'¢, the figure of merit is maximised by the magnetic
field orientation ,,, = sgn(l/y)7/4. This corresponds to applying a magnetic
field along the [110] axis when the Rashba and Dresselhaus spin-orbit terms share
the same sign, [110] otherwise.

When the rates 7, I'y are comparable, for elliptical dots we find that the orientation
of the major axis becomes important. Importantly, as an answer to the second
question, we note for a major axis direction 6 = sgn(/y/,)7/4, we are able to
obtain the global maximum of ¢ by varying only the magnetic field orientation.
This ideal dot geometry would correspond to aligning the major axis along the
crystallographic axes [110] or [110] depending on the relative sign of /,4,.

To address the last question we study quantum dot devices for different spin-orbit
strengths. We find the answer to be yes, there are devices where it is sufficient to
reorient the magnetic field. We notice that for elliptical quantum dots, when either
Rashba- or Dresselhaus-type spin-orbit interaction is dominant, the figure of merit
only depends on the relative angle between magnetic field- and dot orientation,
thatis (9, 8) = ((B8—09). This effect starts to emerge in the left and right column
of Fig. 9.2b.
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Figure 9.2: (From Paper IV) (a) Left (right) figure shows the tunability 7 = 1 — ming s ¢/ maxg,s ¢ (maximal
quality @ = maxg,s (/o) of the figure of merit. Each blue point, specifying a spin-orbit mixing
angle v and ratio T'y /~, gives the parameters of the corresponding figure in (b). (b) Normalized ¢ as a
function of magnetic field and dot orientation. In all figures an elliptic dot with e = 0.75 is considered,
and ,, > 0. The vertical dashed line is the optimal dot orientation and the red points correspond to
the optimal device configuration.
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Chapter 10

Summary and outlook

In this thesis we have presented our work on two closely related topics. The first
topic concerns the coherent control of a quantum dot based spin qubit, using
EDSR. Specifically, we have studied how dot geometry and orientation of the
magnetic field affect the efficiency of an EDSR setup. In Paper IV our results show
the emergence of a robust, unique, dot orientation, despite a generally anisotropic
electron-phonon coupling. With the setup considered in Paper IV being in line
with current experiments, we predict our results relevant for future experiments
on EDSR control of spin qubits.

The second topic concerns the presence of entanglement in the constituent elec-
trons of an electric current, with an emphasis on facilitating entanglement de-
tection in non-ideal devices. To this end, we have in Paper I proposed a generic
entangler-dot model, in a hybrid nanoscale device consisting of quantum dots
coupled to ferromagnetic contacts. In addition to this, in Paper II we have pro-
posed a scheme for generating and detecting orbitally entangled states using a co-
tunneling processes to circumvent the well-known difficulty of short decoherence
time for orbital coherences.

To obtain a physically clear picture, we have employed the tools of Full Counting
Statistics to identify the contributing transport events as the collection of Pois-
sonian stochastic processes, a distinctive sign of independent discrete transfers of
charge. Finally, following this route we have used our primary quantity, the cur-
rent cross-correlator, to go beyond the conventional means of detecting entangle-
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ment in pursuit of a more efficient scheme. In doing so, we have come across a
minimal detection scheme consisting of only two current cross-correlation meas-
urements.

During our work we have encountered new questions, in part due to our schemes
not yet being within reach of current experiments, and in part because of inter-
esting results which are not fully understood. Based on these questions, in the
following we present possible extensions to our work.

In Paper I, our entangler-detector model provides a physically transparent picture,
which relates the measured current correlations to the spin properties of entangled
electron pairs being transported. However, the required versatility, the ability to
actively manipulate the spin density of states of the ferromagnetic contact, puts
the model outside what is currently feasible. This motivates a further study into
alternative methods of realising a non-invasive spin sensitive measurement.

We avoid the difficulty of realising devices with adjustable spin-sensitive contacts,
by focusing on the orbitally entangled states in Paper II. However, to ensure that
the co-tunneling process which generates the entangled state is dominant, the
scheme requires an array of six well-defined and tunable quantum dots. An in-
teresting extension is to study the possibility of simplifying the structure. The
proposed device can be considered a proof of principle, to be used as a basis to
investigate a minimal scheme which can employ cotunneling events to generate
and detect orbitally entangled states.

During our work with entanglement witnesses in Paper III, we found an inter-
esting detail, namely the inability of resolve the maximally entangled states using
two correlation measurements, while all other pure entangled states were within
the detection range. This thought-provoking result invites a further investigation
to understand the underlying reason. In addition, we may consider non-linear
witness operators [118, 119] as a means of expanding the detectable range of en-
tangled states. In particular this extension would be of interest when studying the
entanglement of mixed states, where detection range of linear witness operators is
limited. While there is room for improvement, with the recent advances of fabric-
ating multiple controllable quantum dots devices [18, 16, 17], we believe the future
prospects for experimentally realising our proposed schemes are promising.

In conclusion, while many obstacles remain to achieving the ambitious goal of
quantum information processing in solid-state devices, it is a personal hope of the
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thesis’ author that our work presents a step in the right direction. In particular,
by advancing future work on coherent control of quantum dot spin qubits, and
by providing a solid platform for unambiguous entanglement detection in future
solid-state devices.
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Appendix A: Derivation of effective equation of motion of

Paper I.

Using the notation of Paper I, the proposed effective equation of motion reads,

P e Ll + £2(0) 4 £2(0) 4 Lolo) + L) A
The second and third terms have been heurestically argued for as effective Lindblad-
type operators, describing the emission of independent single and two particles,
respectively. Here we show that these terms can be obtained by using a general-
ized Schrieffer-Wolff transformation [120]. Because the main quantity is the cross
correlator, where the single particle emission is missing, the following derivation
is going to focus on the effective two-particle rate.

The system comprises two sub-systems - one entangler (E) and one detector (D)
part. For simplicity, the explicit system will be the triple dot entangler considered
in Paper I but the approach allows for a more general setup. The essential criteria
for our effective treatment are

* 'The entangler state is independent of the electron transport.
* The single particle energies are highly off-resonance, resulting in a dominant

co-tunneling contribution to the overall charge transport.

The proceedure of obtaining an effective equation of motion for the detector dots
is as follows,

e Partition the full Hilbert space into a high and low energy set of states.
Obrtain an effective two particle tunneling Hamiltonian.

* Dartition the equation of motion into an equation of motion leaving the
entangler state constant and its complement. Obtain an effective equation
of motion.

* Trace out the entangler degrees of freedom.

Our starting point is the initial Lindblad-type equation of motion for the states in
both entangler and detector dots. In units which satisfy 2 = 1, the equation of
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motion reads,

dp

i [HD+HE+HED, ]-i—DE(p) +'Dl>§(p) = —z'[HED, p] +Lo(p). (A2)

where dissipation operators are

Di(p) = Te 32, | ~{ehes, p} + 26096}

D) — i P (A.3)
0(p) = Tu Sy | ~Adodh, p} + 24l pdye|

Here Hp, H, are the Hamiltonians of the isolated dot and entangler part respect-
ively, Dg(p) describes the process of injecting additional electrons into the entan-
gler to ensure that it can return to its initial state. The dissipation term Dp(p) is
a measurement event as the particles tunnel from the detector dots onto the leads.
The entangler-dot tunnelling Hamiltonian is given by

Hpp=Y <Adf,e0 + A*ej,dg) . (A.4)

[

We may decompose the Hilbert space into a set of low energy states P, with an
intial’ 7 and one final’ state projection 7, and its complement Q. This decom-
position can be understood as P being the low energy sector, the complement
Q constituting the high energy sector. The extra energy required to populate the
virtual states in Q, here labelled U, corresponds to the separation between these
two spaces.

P = {|2)F ®00)p, |0)r® [11)p} (A.s)

Using the projection approach outlined in Ref. [121], a two-particle tunneling
Hamiltonian can then be deduced

1, .
=P+ P)Hgp l H HppP + = H Hppl (A.6)
This results in four separate terms
v o= 3PN, |APebdy L de, P
ey Azdl-e% dieT
+IPS (AF)%e dge o (A7)
iy, \A|241,305]_H0 d )z
= Wi B b
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where 4 and 47 describe a two-particle tunneling. Here a compact notation has
been introduced, where #* and 4/ denote the terms which are diagonal and off-
diagonal in the low energy states, respectively.

Additionally, we introduce a shorthand notation for commutators. Here H, EDp =
—i[HEgp, p] where a dimensionless small parameter, € < 1, is introduced, Hpp =
eVl We separate the density matrices into two sets, Pp and the complement Qp.
We remark here that two types of projection operators have been introduced. In
the state space, the projection operators are denoted P and Q, while projections in
the Liouville space are specified as P and Q.

Similar to the starting point of deriving the Markovian master equation with pro-
jection operators, the projection P to the ’relevant’ density matrices is defined

by
Pp=~®@wglp]=p, Qp=(1-P)p (A8)

where 7 is a two-electron density matrix of the entangler. This incorporates the
aforementioned criterion for our entangler-model

* The entangler state is unchanged on the transport time scale.

Since, despite including counting fields, by operating with P on the unperturbed
equation of motion, it must be satisfied that 2

PLy=LyP =0 (A.9)
The effective superoperator is [120]
W = EPVOLy QVP. (A.10)

In our case, v will have no diagonal terms, that is, PvP = QvQ = 0. The com-
plement projection in W accordingly be set to identity and the effective equation
of motion reads,

Wp = P f/ﬁo_l Vp. (A.11)

!In the considered setup, we may identify the parameter as € = A/ U. The single particle energies
being off-resonance is the principal blockage of the transport scheme.

2Note that this means we must look at the stationary solution when solving this effective eq. of
motion
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Evaluating now factor by factor, in the following order of h and p is important.

50 —Vp=i £10 v, 7] = 5 < Wp— L’prh ) (A.12)
Next step,
vt = v (3 (¥~ o)) Ay
The first term and second term are respectivley
%ﬁi{f (b + WY p — BPp (K + h)) (A.14)
3 7 (K" + K" ph — ph (b + b)) (A.xs)

We may throw away terms which are of the form 4 because of the last P-
projection. This follows from

PHp) ~ PP - Pp) = v & trg[P - - - Plp] = 0. (A.16)
Going back,
VE VA = 53 (W — W) = § Ly (Wb — o) =

‘ , (A17)
1 (E,, 1,) Wikt + 1 [ﬁlg/ﬂfbﬂﬁ n Elgﬁhlfhﬁ] .
The unperturbed Lindblad operator Ly is diagonal in the Q-space. In particular
we have that

ﬁjg = Lo[|0)£|11) p(2[£(00|p] = ( i — 71 - 72) 0) £[11) p(2[£(00| p,

£ = L£o[12)£/00) (0] (11|p] = (15 71 - 72> 12)£100) (0] £(11]p.
(A.18)
where § = €200 — €011, is the off-resonance energy of the two low energy states.
Here €,,, ,,,», denotes the energy of the dot system with 7, (7; and #,) particles in
the entangler dot (left and right dots, respectively). As such,

R 1 B (FT + 1 N i0
2T ) )

(A.19)
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Equipped with these expressions, we obtain an effective equation motion of the
form, o 4 '
PVEVIl = ?R[c%g]P (W ph! — 3{HH, p}) a
. ; _ .20
+z%[£%g]73[bfhﬁ, p|.
Using the projection operator definitions and expressions for the 4 terms, we can
obtain an explicit form of our effective equation of motion. Starting with the first
term,

P (W ph)
=7 trE{/)ﬁﬁ/ﬂlf}
4
= % 7 trE{( oo Tr€7'> ¥ & pp <€T,6llo-/€j_,d7_/)}
Al oro'T! (A21)
= ‘U‘2 Z e trE{ede‘r’Yea/f }ﬂﬁ ﬂ’j—de d

407’07’
:‘Aﬁ Z ’Y®707dd’rde rdrr,

oto!T!
where it has been used that all intermediate steps (occupying the virtual states) cost

U energy, 727, is the matrix element trE[eoeT'yeIr, ei,] and trg[p] = pp denotes
the dot state. Analogously for the second term

P ({H', p})
- %'P <{ 2, ei/da/ei/dT’diteadierap}>

4
= %’7 Qg |:{ Z Ez,,do-/ej_,dﬂdl—fa—dj—fr, ﬁ}:|
oro!t!

= > e |d e dudsesdiens + pelidyeldoidyesdie;

oro!T!

- ¥ e (trE [eameg/@} {doyrdlyedl dﬂPD})

oro!T!

= > Yyeazn {dedodid oo}

oro!T!

(A.22)
The last term can be obtained analogously by following the steps of the anti-
commutator term,

4
P[blfbﬁaﬁ] - Z ‘[A]L’Y ® P)/g’:-’ [da’dT’dejwpD} . (A-23)

oro’T!
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The effective equation of motion for the detector density matrix is then, using the
normalization condition trz[y] = 1, given by

o = g Lo(p) + W(p)]
= wg[—i[Hp + Hg, p] + De(p) + D(p) + W(p)]
—i[Hp, pp] + DY(pp) + treW(p)]

[
= Z[HDva] +D ( )

4
+%%[£§] <U§T oL dbd ppdyd, — L {d dyid] dT,pD}>
+BESIL) ¥ g |dedidhdtpo) .
0 oro't!

(A.24)
To compare the above expression with the effective equation of motion in Paper
I, we redefine the matrix elements of 7y as

Al* (T{/2+T4)2)
U2 (6% 4 (T{/2+T14/2)?)

Vo = AT (A25)

and exclude energy renormalization term o< §. Finally, the effective equation of
motion with only two particle emission is

o = i[Hp, pp] + D(pp) X
v Y 7 (ddpodpds 4 dpdudsdi pp)) P2

orol'T!
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Appendix B: Lindblad equation with counting fields

Here we show how the counting field enter the Lindblad equation by considering
a minimally coupled current-sensor attached to the transport system consisting
of quantum dots tunnel-coupled to drain and source contacts. We consider the
minimal coupling, X < 1, which makes the spin precess as an electron leaves the
dot for the drain contact. The Hamiltonian for such a system is

h o,
H=H;+ H,+ Hr — %1:H4+H,+HT+ ZUZX

[H, N] (B.1)

where N = N, — N;and N, is the number of electrons in contact ov. Here Hy
is the tunneling Hamiltonian, describing tunneling between the quantum dot

and lead /,

Hr= Z [t/dgclk + t}kc;rkda] s (B.2)
akl

where we have assumed that the tunneling amplitude is independent of # and a.
We may identify the current probe term as the result of a unitary transformation,

Hy+ %sz[’]-l,]\ﬂ = UWU' = SWe S = W+ [S, W]+ O(x%).  (Bj3)

Noting that all terms except H7 commute with the number operator &, that is
[H,N| = [H;+ H, + Hy, N| = [Hr, N] we are able to identify

S= —%UZN, W= Hy. (B.4)
Keeping in mind that U commutes with all other terms, we obtain that

X

H=UHU = Hj+ H,+ ¢ > NH7e N = Hy+ H + Hr(y). (B.s)

That is, the current probe enters as an additional phase factor in the tunneling
Hamiltonian.

Spin precession angle

The total density matrix of the reduced electronic system and the probing spin
degree of freedom is denoted by 0. Assuming the spin state ¢ and electronic
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system p were decoupled before measurement started at # = 0, at which point the
spin was in a superposition state. We can express the total density matrix in the
interaction picture, after a measurement time ¢,

o (0 e hH>7<‘ o+ (0 g%[ﬁxt
o(f) = ( _;[ﬂtm( ) 11(0) . Be
4

Hr g 4 (0)en T a,,(0)

where we have introduced Hx. = (1 |H7(x)| 1) and H;X = (| [Hr(x)| |). We
note that that the off-diagonal matrix elements when averaged over all electronic
states, yield the function,

A(X) =t [ FH5p(0)eH ] (B.7)

which is the characteristic function of the probability distribution Ps,(N), dis-
cussed in Chapter 5. Note that the constant g4 (0) is dropped to normalise
Pp:(N). In order show how the counting fields appear in the Quantum Master
Equation, we need to take care of two points.

X i
* Obtain explicit expression for e~ 115 p(0)en !

* Derive an equation of motion for the density matrix with the probe.

To address the first point, we use the Baker-Campbell-Hausdorff identity to lead-
ing order in X,

HY = e NHpe N = Hr + XN, Hy] + O(x?)

i i , . (B.8)
H;X = gTXNHTgTXN: HT— %[M HT] + O(Xz)

Carrying out the commutator

[N’ HT(X)] = Z |:th Clp — £ C[k :| (B-9)

ak

For a minimally coupled probe, that is by discarding higher order x-terms, we
obtain 1 # iy = ¢%X. The new tunneling Hamiltonian then reads,

H?X = Z {t/f’X/zdr 4 £/ Td ] (B.10)
ak
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Equation of motion

For the second point, we start by introducing an operator p,, which satisfies the
condition tr[py] = A(x). Studying the equation of motion in the interaction
picture,

dzf = %e‘éHT(X)’peéHT(‘X” =~ (Hr()p = pHr(=X)) = -~ [Hr: plx.
(B.1x)
where the last equality serves as the definition for a modified Liouville equation.
Identifying A as modified density matrix with counting fields, we can use Eq.
(B.11) as the starting point for the derivation of the Lindblad equation in Chapter
4. We obtain then nested commutators of the form,

[Hﬂ [HT, psps), . (B.12)

We then note that only terms H7(x)psH7(—X) have a x-dependence. These
correspond to the terms in the Lindblad equation which change the occupation
number of the reduced system by +1.

Following the derivation of the Lindblad equation in Chapter 4, with the modified
Liouville equation, we obtain the Lindblad equation with counting fields. As an
example, a Lindblad equation for transport via one single level quantum dot, reads

do _ 1

B o L[]+ T |dod ¥ - %{dfd, p}] 4Ty [dfpde—w - %{daﬁ, o}

(B.13)
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Appendix C: Schrieffer-Wolff transformation

The Schrieffer-Wolff (SW) transformation is a unitary transformation which makes
it possible to obtain an effective low-energy Hamiltonian. In particular for our
work in Paper II, we have been interested in obtaining an effective two-particle
tunneling Hamiltonian. Here we sketch how the approach of SW transformation
is used in Paper II. Given a Hamiltonian A,

H= Hy+ Hr, (C.1)

where H7 describes a single particle tunneling Hamiltonian. By introducing a
unitary transformation U = ¢$He™5, by virtue of the Baker-Hausdorff identity,
the transformed Hamiltonian can be expressed as,

UHU' = Hy-+Hy+[S, Ho| +[S, Hy + % 1S, [S, Fo)) + %[5, (S, Hyl] ... (C.2)

We note then, if [S, Hy] = —H7 we obtain that the transformed Hamiltonian
UHU' = Heg
1 1
Het = Ho + 5[5, Hrl + 315,18, Hrl] + .. (C.3)
Since [S, Hy] = —H7, it must hold that S is proportional to the tunneling para-

meter. From this, we identify the second term as containing the two-particle tun-
neling Hamiltonian, and discard higher order terms in S. The remaining task is
then, find an operator S, which satisfies [S, Hy| = —H7, and identify the term in
[S, H7] which corresponds to a two-particle tunneling contribution.

Derivation of effective two-particle tunneling Hamiltonian

In the supplementary material of Paper II, the effective tunneling Hamiltonian is
obtained by finding a suitable operator S, which satisfies the commutator relation
as stated above.

Here we provide an alternative derivation of the effective Hamiltonian using a
projection operator approach [122, 121]. Starting with the Hamiltonian

H= Y eydidy+ 3 Udiddpd, + Y (rydidy + )
v=12,a,8 ¥ Y#Y
(C.49)
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we restrict ourselves to a regime which ensures that the spectrum of A can be
separated into two groups of states. A low energy sector consiting of the set of states
{|1100), |00c3) }, where we denote both entangler dots occupied as [1100) =
|E), detector dots v and 3 populated [00a3) = | D). We introduce the projection
operator P = |e) (e| + |d) (d]
Q =1 — P, where 1 is the identity operator.

, for the relevant low energy space and its complement

We represent the unitary transformation U = exp(S), where Sis an anti-hermitian
operator taken to be off-diagonal. That is, PSP = QPQ = 0. Expressing the

transformed Hamiltonian in the low energy states we obtain,
H.g = PSHe 5P = HyPo + ePVP + & P[S;, QVP + PVQ|P. (C.s)

Here the second term vanishes identically since V'is the tunneling portion of
Hamiltonian A, which is by definition off-diagonal. To obtain an expression for
the third term, we need to find an expression for S; (V) = [S;, V]. To this end, we
introduce the operator R which satisfies

X
RO = 3 L. o)
ij 4T
Here Hy|j) = Ej|j) and X'is an off diagonal operator, Equipped with R we obtain
the effective Hamiltonian,
Heg = HyP+ ¢’ P[R(V), VIP. (C7)

. . . . 2
The second term corresponds to the higher-order tunneling Hamiltonian H(T)

HY = () {d){el[R(V), VId) + |dy (el (d[R(V), VI]e) (C8)

plus a renormalization of the single particle energies 0
OH = |e)(el(e[R(V), Vl|e) + |d)(d|(d][R(V), V]|d). (C.9)

_— o . 2
Here we will disregard the renormalization terms and instead focus only on H(T).
Each term of the tunneling Hamiltonian depends on factors

R = S et bhitrid { 1y - 2 (o
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where Ep = e1+¢e2+4 Uiz, Ep = o +eg+Uyp and v runs over all states in Q. The
only nonvanishing terms are when v = |10)|a0), [10)|03), |01)|a0), |01)|03).
Carrying out the calculations term by term,

(R, Vld) = —natis ( 5o — Bom—t

11
+t25t1a Er—Ei008 Er008—ED (C II)

1 1 '
Ttatap Eg—Eoia0  Eota0—Ep

1 1
~hpha Eg—FEpop 5010[1'—ED> ’
With this result, going back to Eq. (C.8) we obtain the expression
HP = | {dltapn + |d) (el (C12)

where 7,371 denotes an effective two-particle tunneling amplitude,

_ 1 1 1 1
fap21 = hHahp {EE_EIOO,B + Ep—Eyoop + Eg—Eprao + EE—Eomo} (C.13)
i 1 1 1 1 ’
hpha Eg—E1000 + Ep—Eioao + Eg—Eo08 + Ep—Epop | -

As a final step, we can express everything in terms of creation and annihilation op-
erators, e.g. |e)(d| = dJ{ dgdadg. With this we reproduce the tunneling Hamilto-
nian from the supplementary material,

HY =" (tapndididads + v dyddry). (Cu14)
ap
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Appendix D: Effective beam splitter

Here we discuss how the detector dot state after operating with the cotunneling
Hamiltonian, can be expressed in terms of an entangled orbital state. Using the
notation from Paper II, we parametrise the tunneling amplitudes as

tir1 =t cosb;, iy =tpsing;, ti, = —tpsin€;, t_, = tpcosb;
(D.1)
where |£41]* = |t441]* + |4—1|*. Starting from the initial state where both entan-
gler dots are occupied, operating with the co-tunneling Hamiltonian we obtain

[Bhaos x = Y L)) + Y B2 |)|B) = [0y + [0)Er (D-2)
aB AB aB BA

Using the parametrisation defined above, the first and second terms become

U)ot = —%[ — sinfp cos 04| +)a|+)p — sinOpsin 64| —)4|+) 5
cos Opcos O04|+)4|—)p + cosOpsin 04| —) 4| —) 5]
(D.3)
) dor = B2 cosOp(—sinfa)[4-)al+) s + cos O cos O =) al+) 5
sin Op(—sinb,)|+)a|—) 5 + sinOpcos 04| —) 4| —) 5]
(D.4)

These relations can be expressed in terms a scattering matrix of subsystem 7, relating
the detector dot states |/£) to the orbital states |1);, |2),, describing an electron
from dot 1 or 2 being emitted towards detector i. Using the basis of Paper II,

|=); \ _ [ sin6; cosb; 1),
< |+); )\ cos@; —sinb; |2); D-5)
We note then that by expressing the resulting detector states |t)4,) in terms of the

orbital states we obtain

IB1t42
AEBA

_ IpatAl
AEAB

V) dot = 11)4l2)5 + 12)4l1) 5 (D.6)

From this expression we can identiy the coefficients of the entangled orbital state
in Paper IT as ¢j5 = tBQIAl/AEAB and 1 = tp; tAz/AEBA
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Appendix E: Perturbative schemes

Solving the full eigenvalue problem analytically becomes cumbersome quickly as
the dimensions of matrix M grow. In some cases it is possible to make the problem
tractable by, instead of the full CGF F(x) = F, obtain only the cumulants using
a perturbation expansion [66]. By expanding the steady state eigenvalue equation
on both sides in terms of the counting field 7y,

OM. 9 OF Ipy x> O°F
Mp+ix < al; px t an/;‘) + zxa Px ’XFazX X?a(z'x)2p><+
(E.n)
Letting x — 0, identifying terms order by order and introducing the vector 77,
satisfying 79 = > /(d|p|d) = 1, where d runs over all states, we can obtain
expressions for the different cumulants. As an example, expressions for the current

and current correlations at contacts # and / read,

Ly=c¢ trglM 0
B ) } (E.2)
Su =€ ii(3 Finedin; +3 dix e QM QU5 g — 1)+ ke )P s

where Q = 1 — P with P = p, %, a projection operator taking a general state in
vector form p'to the stationary state. As an example, applying this to the case of a
double quantum dot (see Chapter s for details) we find

7r=(1,1,1,1,0,0) .
(2,022 + 42 + 2,2, 2, 5et, — 1) (E:3)

= 1
p= 02+~ 447

which reproduces the expressions of current / in Eq. (5.23) and auto-correlation §
in Eq. (5.24),

2t275
55+’y +472 (E4)

§ =39 [(8% +77)% + 22(30¢% — 7?) + 84 .

Cumulant generating function with small emission rate

For cases where the source emission rate 7y is small compared to a drain absorption
rate I', we can obtain an expression for the cumulant generating function F to
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leading order in 7y/T". The starting point is the eigenvalue equation
pX = M*p* = FpX, (E.5)

In Papers I and II we consider charge transport where at most two particles are
present in the reduced system. Moreover, we decompose the system into an A and
B part, for example the two detector dots in our generic entangler-detector model
of Paper I. For a stationary current, the eigenvalue equation can then be expressed
in the block form,

M,, My, My, M, Po Po

Ma,o Ma,a Mz)z(,b lezb ﬁtl —F ﬁa (E 6)
My, My, My, M, Pb Pb '
Mab,o Mab,a Mab,b Mﬂ/? ab ﬁﬂb ﬁab

Here the different block matrices M;; denote the matrix elements relating 9,0;
to pj, where the superscript X denotes which matrix elements contain a counting
field. The vector g, (p)) denotes the vector of density matrices describing part
A (B) being populated, and g, (p,) denoting both (none) being occupied. The
general structure of the Lindblad matrix is

M,, AX
(B T ex ) (E.7)

Instead of directly solving the eigenvalue equation, we can consider the block mat-
rix determinant identity,

det(M—I-F) = det(CX —I- F) det(M, ,— F— AX(CX—I-F)"'B) = 0 (E.8)

Now we employ the condition of a small emission rate y. We note that the
factors F, Band M, , ~ . As such, the second factor becomes det(M,, — F —
AX(CX)71B) = 0. We find then the cumulant generating function,

F=M,,— AX(C)"'B. (E.9)

Following this approach, we find that to leading order in the small emission rate
7, the cumulant generating function in terms of the block matrices ;; from Eq.
(E.6) is given by,

Fe Moy = > MMy (Mo = M M M| (E.10)

a,ab
a=a,b
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Using this method, we have obtained the cumulant generating function describ-
ing the long time transport statistics in the Papers I and II. By combining the
approaches of this appendix, we could in Paper I relate the emitted state from the
entangler and detector dot state.
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