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PID Synthesis under Probabilistic Parametric Uncertainty

Pedro Mercader1, Kristian Soltesz2, Alfonso Baños1

Abstract— In many system identification methods, process

model parameters are considered stochastic variables. Several

methods do not only yield expectations of these, but in addition

their variance, and sometimes higher moments. This paper

proposes a method for robust synthesis of the proportional–

integral–derivative (PID) compensator, taking parametric pro-

cess model uncertainty explicitly into account. The proposed

method constitutes a stochastic extension to the well-studied

minimization of integrated absolute error (IAE) under H1-

constraints on relevant transfer functions. The conventional

way to find an approximate solution to the extended problem is

through Monte Carlo (MC) methods, resulting in high compu-

tational cost. In this work, the problem is instead approximated

by a deterministic one, through the unscented transform (UT),

and its conjugate extension (CUT). The deterministic approx-

imations can be solved efficiently, as demonstrated through

several realistic synthesis examples.

I. INTRODUCTION

This paper considers robust synthesis of PID compensators
for process models described by transfer functions with a
stochastic parametrization p. It is assumed throughout that
p obeys a multivariate Gaussian distribution (although the
proposed method can be extended to any distribution with
symmetric probability density).

Situations with stochastic parametrization arise naturally
when system identification is performed on input–output
data. For instance, the use of gradient methods in the output
error framework, yield not only estimates of parameter ex-
pectations E[p], but also estimates of higher order moments,
such as the covariance V[p] [1]. If the signal-to-noise ratio of
the identification data is low (due to high noise levels or short
data sets), the parameter covariance significantly impacts the
outcome of the synthesis [2].

It is customary to formulate robust PID synthesis as a
constrained optimization problem

minimize
k

J(s,k,p),

subject to '(s,k,p)  0,

(1)

where s is the Laplace variable, k is the design (compen-
sator) parameter vector, and p is the stochastic vector of
process model parameters. Minimization of the objective J

aims at maximizing performance over k, while the constraint
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vector ' (with components 'i) is in place to ensure robust-
ness. Commonly used objectives and constraints are reviewed
in Section II. For now, it is sufficient to note that both J and
' are (possibly nonlinear) functions of the stochastic vector
p.

Since p is Gaussian, there is a finite probability of it attain-
ing any value, and generally it is not possible to guarantee the
constraints of (1). This can be addressed by propagating the
uncertainty of the process model parameters p through to the
objective J and constraints ', and formulating a stochastic
optimization problem

minimize
k

E[J(s,k,p)],

subject to
8'i2'

E['i(s,k,p)] + ↵

p

V['i(s,k,p)]  0.

(2)

This formulation is an extension of (1) in the sense that
the two formulations are equivalent for deterministic p. The
parameter ↵ in (2) enables the user to specify a confidence
for constraint fulfillment. While providing a feasible formu-
lation, it is typically not possible to solve (2) exactly, as there
exists no explicit way to evaluate the objective or constraints.
To see why this is the case, we introduce an arbitrary function
g, which takes on the role of J , or one of the components
of ' in (2).

Given (estimates of) the expectation E[p] and covariance
V[p] (and possibly higher moments) of a stochastic variable
p, together with its assumed joint probability density func-
tion (PDF) f , we want to evaluate the expectation E[g(p)],
covariance V[g(p)], and possibly higher moments. It is
typically not possible to obtain closed-form evaluations of
the corresponding expectation integrals. However, numeric
quadrature methods can be used to obtain approximations.

One option is the use of Monte Carlo (MC) quadrature.
That is, drawing many samples from the distribution gener-
ated by f , applying g to each sample, and computing the
ensemble mean, covariance, and possibly higher moments.
The drawback of the MC approach lies in its computational
burden. In order to produce approximations of adequate
confidence, a large number of samples is typically needed.

Another approach, utilized in the extended Kalman filter,
and adopted in [3] for robust synthesis, is to approximate g,
using a Taylor series expansion. While popular, this method
requires computation of the Jacobian (and Hessian) of g.

A third approach, adopted in this paper, relies on the use of
test-point methods, further explained in Section III. Rather
than approximating g through linearization, these methods
evaluate g(x) on a small set of cleverly chosen deterministic
test points, which can be pre-computed as they do not depend
on g.
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Fig. 1: Feedback control system, consisting of process P and
compensator K. Signals are: process output y, compensator
output u, load disturbance d and output disturbance (noise)
n.

The paper is organized as follows: The problem is for-
mulated in Section II, test-point methods are reviewed in
Section III. Section IV introduces a method for probabilistic
verification of constraint fulfilment. Three realistic synthesis
examples are performed and analyzed in Section V.

II. PROBLEM STATEMENT

Figure 1 shows the considered setting, with process model
P and compensator K. The process is modeled by the
arbitrary-order time-delayed transfer function

P (s,p) =

bms

m
+ bm�1s

m�1
+ · · ·+ b0

ans
n
+ an�1s

n�1
+ · · ·+ a0

e

�hs
, (3)

where p = [bm, bm�1, . . . , b0, an, an�1, . . . , a0, h]
> is the

stochastic process model parameter vector. The joint proba-
bilistic density function (PDF) of p will be denoted f(p) :

� 7! Rm+n+1, � being the support of the PDF.
A PID compensator described by the following transfer

function is considered

C(s, c) = kp +
ki

s

+ kds, (4)

where c = [kp, ki, kd]
> is a deterministic vector of its

parameters. In order to ensure high-frequency roll-of [4], the
second order low-pass filter

G(s, Tf ) =
1

s

2
T

2
f /2 + sTf + 1

, (5)

parametrized in Tf , is connected in series with C, forming

K(s,k) = G(s, Tf )C(s, c), (6)

where k = [c

>
, Tf ]

> is the (deterministic) vector of com-
pensator parameters.

The synthesis problem is formulated as a constrained
optimization problem, where the objective is to maximize
performance, under constraints ensuring robustness and noise
attenuation. In this paper, the objective is to maximize load
disturbance rejection. Two common ways to achieve this, is
through minimization of either the integrated error

IE(p, c) =
Z 1

0
e(t,p, c)dt, (7)

or the integrated absolute error

IAE(p, c) =
Z 1

0
|e(t,p, c)| dt. (8)

The error e in both (7) and (8) is caused by a unit load
disturbance step d, see Figure 1, applied with the control
system in an equilibrium state.

For well-damped systems, it holds that IE ⇡ IAE. How-
ever, oscillatory systems, with consecutive zero-crossings in
e can yield small IE. From a performance measure point,
this is not desired. Despite this, there remains one reason to
consider minimization of IE in favor of IAE. It was shown
in [5] that minimization of IE is equivalent to maximization
of the integral gain ki in (4). That is, IE minimization results
in a convex objective. Unfortunately this is not the case for
the IAE.

Robustness can be ensured by constraining the H1-norm
of the sensitivity function

S(s,p,k) =

1

1 + P (s,p)K(s,k)

. (9)

In order to attenuate measurement noise, an H1-constraint
is imposed on the noise sensitivity Q = �KS, being the
transfer function from measurement noise n to compensator
output u, see Figure 1. It is also straightforward to add
similar constraints on other transfer functions, such as the
complementary sensitivity T = 1� S (although this has not
been done in this paper, to keep the presentation simple).

The deterministic counterparts to IE or IAE minimization
under H1-constraints on S and Q have been thoroughly
studied. Early work focused on robustness constrained IE
minimization was presented in [5], [6]. Efficient convex-
optimization-based algorithms for solving the same prob-
lem were recently presented in [7]. Robustness constrained
minimization of IAE has been investigated in [8]. In [9],
efficient gradient-based algorithms for the same problem
were proposed. An extension for simultaneous compensator
and filter design was presented in [10].

By combining (2) of Section I, with the IAE objective (8),
and an H1-constraint Ms on (9), as proposed in this section,
we arrive at the stochastic optimization problem

minimize
k

E[IAE(p,k)],

subject to E[S(s,p,k)] + ↵

p

V[S(s,p,k)]  Ms.

(10)

It is straightforward to introduce additional constraints
on complementary sensitivity T and noise sensitivity Q.
By replacing the objective with its IE counterpart, defined
through (7), one arrives at a simpler problem with the
deterministic objective �J(k) = ki.

III. TEST-POINT METHODS

This section serves as an introduction to test-point meth-
ods. Two such methods, the unscented transform (UT) [11],
[12], and the conjugate unscented transform (CUT) [13],
[14], [15], are considered. Both the UT and CUT can be used
to obtain approximate solutions to optimization problems on
the form (2).

Consider an arbitrary (nonlinear) function g(x), where

x = [x1, x2, . . . , xn]
>
, (11)



is a multivariate Gaussian. It is well-known that any Gaussian
can be transformed into one with zero expectation and
unitary covariance, through an affine transformation. This
transformation can be applied to g, and consequently, it is
sufficient to consider x with E[x] = 0 and V[x] = I .

Denote by f the PDF of this distribution. The expectation
E[g(x)] is defined as

E [g(x)] =

Z

Rn

g(x)f(x)dx (12)

Test-point methods approximate E[g(x)] as a weighted
sum

E [g(x)] ⇡
N
X

i=1

wig(x
(i)
), (13)

where
x

(i)
=

h

x

(i)
1 , x

(i)
2 , . . . , x

(i)
n

i>
, (14)

are known as the test points. Note that MC can be considered
a test point method with weights !i = 1/N , and test points
x

(i) randomly generated by the underlying PDF. What makes
the UT, CUT, and related test-points methods interesting
is a clever choice of deterministic test-points and weights,
removing the requirement of many samples (large N ). Using
the Taylor series expansion of g(x) about the expected value
x = 0, (12) can be rewritten

E [g(x)] =

1
X

N1=0

· · ·
1
X

Nn=0

E
h

x

N1
1 · · ·xNn

n

i

N1! · · ·Nn!

@

N1+···+Nn
g

@x

N1
1 · · · @xNn

n

(0).

(15)
Combining (15) with (13) yields (16), to be found at the top
of the next page.

Equating (15) and (16) leads to a set of equations
N
X

i=1

wi

⇣

(x

(i)
1 )

N1 · · · (x(i)
n )

Nn

⌘

= E
h

x

N1
1 · · ·xNn

n

i

, (17)

referred to as the moment constraint equations (MCE). The
idea behind test-point methods is to choose test points
and corresponding weights, to fulfill all MCEs for which
N1 + · · ·+Nn  d, where d is referred to as the order of
the MCE. This allows for exact integration of monomials
up to order d, and Taylor approximation of other functions
through such monomials.

Due to the symmetry of the Gaussian PDF f , odd moments
are 0. The even moments up to order d = 6 are

E
⇥

x

2
i

⇤

= 1, E
⇥

x

4
i

⇤

= 3, E
⇥

x

2
ix

2
j

⇤

= 1,

E
⇥

x

6
i

⇤

= 15, E
⇥

x

4
ix

2
j

⇤

= 3, E
⇥

x

2
ix

2
jx

2
k

⇤

= 1,

(18)

for distinct i, j, k 2 {1, 2, . . . , n}.

A. Unscented transform

The unscented transform (UT) [11], [12] relies on the
selection of N = 2n + 1 test-points, satisfying the MCEs
(17) up to order d = 3. This leaves some degree of freedom
in choosing the test points. For the UT, they are constrained

to lie on the principal axes. The resulting test points and
corresponding weights are

x

(0)
= 0, w0 =



n+ 

,

x

(i)
=

p
n+ ei, wi =

1

2(n+ )

,

x

(i+n)
= �p

n+ ei, wi+n =

1

2(n+ )

,

(19)

where i = 1, 2, . . . , n, ei is the unit vector along the i

th

principal axis, and  is a tuning parameter. For Gaussian x,
the choice

n+  = 3 (20)

was recommended by Julier and Uhlmann [12]. Adopting
this recommendation, the test points and corresponding
weights of (19) satisfy

PN
m=1 wm = 1,

PN
m=1 wm

⇣

x

(m)
i

⌘2
= 1 = E

⇥

x

2
i

⇤

,

PN
m=1 wm

⇣

x

(m)
i

⌘4
= n+  = 3 = E

⇥

x

4
i

⇤

,

PN
m=1 wm

⇣

x

(m)
i

⌘2 ⇣

x

(m)
j

⌘2
= 0 6= E

⇥

x

2
ix

2
j

⇤

= 1,

(21)
for distinct i, j 2 {1, 2, . . . , n}. With the choice (20), the
UT fulfills one of the 4

th order MCEs through E[x4
i ] = 3.

However, due to the fact that all UT test points lie along the
principal axes, all cross moments are 0, as can be seen in
the last equation of (21). Furthermore, the weight w0 corre-
sponding to the central point is negative for n > 3, leading
to higher quadrature error compared to an equivalent method
with positive weights [16]. These two aspects motivate the
introduction of additional test points, not lying along the
principal axes.

B. Conjugate unscented transform

The conjugate unscented transform (CUT) [13], [14], [15]
proposes an extension of the UT test point set, by adding
test points along conjugate coordinate axes. The conjugate-
m axes lie in the directions of the vectors c

(i)
m , generated

by
⇢

c

(i)
m , 1  i  2n

✓

n

m

◆�

= FS
⇥

[1, . . . 1

| {z }

m

, 0, . . . , 0

| {z }

m�n

]

>⇤
. (22)

The FS [·] operator generates a fully symmetric set, closed
under all sign and coordinate permutations. For instance, the
unit vectors ei along the principal axes together with their
negated counterparts �ei, used in the UT, are generated by

n

s

(i)
, 1  i  2n

o

= FS
⇥

[1, 0, . . . , 0]

>⇤
. (23)

Including test points along conjugate coordinate axes enables
solving the MCEs up to an arbitrary order d, while main-
taining positive weights. This comes at the cost of additional



E [g(x)] ⇡
1
X

N1=0

· · ·
1
X

Nn=0

N
X

i=1

wi

⇣

(x

(i)
1 )

N1 · · · (x(i)
n )

Nn

⌘

N1! · · ·Nn!

@

N1+···+Nn
g

@x

N1
1 · · · @xNn

n

(0). (16)

TABLE I: Test-points for CUT4 (first three rows) and CUT6
(all rows).

Test points Weights

Central x

(0) = 0 w0

Principal x

(i) = r1s(i) 1  i  2n w1

Conjugate-n x

(i+2n) = r2c
(i)
n 1  i  2n w2

Conjugate-2 x

(i+2n+2n) = r3c
(i)
2 1  i  2n(n� 1) w3

test points. To illustrate, we will consider the CUT4 method,
which fulfills all MCEs up to order d = 4 (actually d = 5).
It has N = 1 + 2n+ 2

n test points:

• 1 central test point x(0)
= 0 with weight w0,

• 2n principal test points x

(i)
= r1s

(i) with weight w1,
• 2

n conjugate-n test points r2c
(i)
n with weight w2.

The scaling factors r1, r2, and weights w1, w2 for n > 2

utilized by CUT4 are given by

r1 =

r

n+ 2

2

, r2 =

r

n+ 2

n� 2

,

w1 =

4

(n+ 2)

2
, w2 =

(n� 2)

2

2

n
(n+ 2)

2
, w0 = 0.

(24)

For n  2 numerical values are presented in [13].
The CUT4 method corresponds to the first three rows of

Table I. It is evident from the table that CUT4 is an extension
of the UT (with different weights and scaling factors).

By adding 2n(n� 1) conjugate-2 test points, one arrives
at the CUT6 method, corresponding to rows 1–4 of Table I.
Numeric values of corresponding weights and scaling factors
can be found in [13]. The same work also presents parame-
ters values for the CUT8 method.

IV. PROBABILISTIC VERIFICATION

Section III has provided tools, namely the UT and the
CUT, to approximate stochastic optimization problems of
the form (2), such as (10), by deterministic ones. It is of
particular interest to investigate how such approximations
affect the probability by which the resulting design violates
constraints.

In the notation of (2), the probability of violating the i

th

constraint is 1� p'i , where p'i is the constraint fulfillment
probability

p'i = Pr

�

'i(s,k,p)  0

�

. (25)

There exists a framework known as randomized algorithms
(RA), see for example [17], [18], which can be used to
provide estimates p̂'i of p'i , lying within a priori specified
accuracy ✏ 2 (0, 1), with probability 1� �. This is formally
states as

Pr

� |p'i � p̂'i |  ✏

� � 1� �. (26)

A simple RA for constraint verification can be obtained
through the MC method. The constraint fulfillment proba-
bility estimates p̂'i are defined as

p̂'i =

1

M

M
X

j=1

I
h

'i(s,p
(j)

,k)  0

i

, (27)

where I [·] is 1 when its argument is true, and zero otherwise.
The samples p

(1)
, . . . ,p

(M) are generated by the PDF f of
p. A lower bound on the number of samples required to meet
(26) is given by the so-called Chernoff bound

1

2✏

2 log

2

�

 M. (28)

The use of the RA, defined through (27) and (28), to
compute posterior constraint violation probabilities, will be
demonstrated in Section V-A.

V. DESIGN EXAMPLES

This section is devoted to demonstrate the use of the
introduced test-point methods for robust PID synthesis. Three
realistic examples, highlighting different design aspects, will
be considered.

In Example 1, the design of an ideal PI compensator for
a first-order time-delayed process model is considered. The
IE (7), defined in Section II, is minimized. Robustness is
enforced through an H1-constraints on sensitivity. Feasible
regions in compensator parameter space generated by UT,
CUT4, and MC are compared. Confidence intervals for
constraint violation of the CUT4 solution are computed
using the RA of Section IV. These confidence intervals
are compared to those obtained for a design disregarding
parameter uncertainty (by assuming p = E[p]). Example 2
illustrates the advantage of minimizing IAE (8), when the
process model is weakly damped. Finally, the role of the
constraint on noise sensitivity Q = �KS is demonstrated in
Example 3.

A. Example 1: First-order time-delayed process

Consider the process model

P (s,p) =

b

s+ a

e

�sh
, (29)

where p = [b, a, h]

> is a Gaussian, defined through E [p] =

[1, 1, 1]

> and V [p] = 0.05I3. Synthesis of an ideal PI
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Fig. 2: Boundary of the feasible region in (kp, ki)-space
corresponding to (30), for MC with 10

4 samples (solid), UT
(dashed line), and CUT4 (dash-dot line).

compensator C(s, c) = kp+ki/s with c = [kp, ki]
> is inves-

tigated. Due to the lack of oscillatory modes, minimization
of the expected IE is performed (through maximization of
ki). Robustness is ensured by imposing the (industrially rel-
evant) constraint level Ms = 1.6. The resulting optimization
problem is given below.

minimize
c

� ki,

subject to

E [kS(s,p, c)k1] +

p

V [kS(s,p, c)k1]  1.6.

(30)

Feasibility boundaries in (kp, ki)-space, obtained as contour
plots corresponding to Ms = 1.6, are shown in Figure 2 for
UT, CUT4, and MC. The MC, using 10

4 samples, results
in a non-compact feasible region with uneven boundary.
Doubling the number of sample points improved the situation
only marginally, indicating the need for a significant increase
in samples. However, already with 10

4 samples, the MC
takes 15 min to execute.

The execution time of each method is approximately
proportional to the number of samples or test points. The
CUT4 method (with 14 test points) executed 720 times
faster than MC (with 10

4 samples). UT (with 6 test points)
was twice as fast as CUT4. The actual execution time for
each method is machine-dependent, but the CUT4 version
executes in < 1 s on a standard computer. Consequently, we
recommend the use of CUT4, as it executes sufficiently fast,
while having the potential for better approximation than the
UT.

The CUT4 solution of (30) is copt = [0.34, 0.29]

>.
Figure 3 compares load disturbance attenuation of this so-
lution to that of cnom = [0.46, 0.51]

>, obtained when the
uncertainty is ignored (by assuming p = E[p]).

Using the RA of Section IV, we find a high confidence
for the probability of constraint fulfillment with copt to be
93 %:

Pr (|Pr (kS(s,p, copt)k1  1.6)� 0.93|  0.02) � 0.98.

However, the solution cnom obtained without considering the
uncertainty of p can only provide equal confidence for the
much lower probability of 51 %. Furthermore, there is a
significant probability of 18 % for cnom violating Ms = 2.0

0 5 10 15 20

0

0.5

1

0 5 10 15 20

0

0.5

1

t

y

Fig. 3: Median load disturbance step responses for copt (solid)
and cnom (dashed). Grey areas indicate the 5–95 % quantiles
over 104 MC simulations.

(corresponding to poor closed-loop robustness):

Pr (|Pr (kS(s,p, cnom)k1  2.0)� 0.82|  0.02) � 0.98.

The effect of neglecting the stochastic nature of p gets
even worse for this example when PID (as opposed to PI)
compensator design is considered.

B. Example 2: Oscillatory process

Consider the process model

P (s,p) =

b

s

2
+ s+ a

e

�sh
, (31)

where p = [b, a, h]

> is a multivariate Gaussian with expected
value E [p] = [5, 5, 0.1]

> and variance

V [p] =

2

4

0.25 0.1 0

0.1 0.25 0

0 0 10

�5

3

5

. (32)

The nominal process model has a strongly oscillative mode,
with relative ratio ⇣ = 0.22.

Using CUT4 to design an ideal PID compensator on
the form (4) results in cIE = [1.38, 5.70, 0.81]

>, with
objective and constraints according to (30) of Example 1.
It is well-known that minimization of the IE is not suitable
for oscillatory processes [8], for which minimization of the
IAE is preferential. (However, the IE minimizing solution
can be used to warm-start the IAE minimization.) Replacing
the objective �ki of (30) for E [IAE(p, c)] yields cIAE =

[1.76, 3.46, 0.72]

>. A comparison of load step responses
between cIE and cIAE is shown in Figure 4.

C. Example 3: Measurement noise filtering

We will anew consider the uncertain process model of
Example 1. This time, the process model is subject to
additive white measurement noise of zero mean and stan-
dard deviation �n = 0.1. Performing the design for an
ideal PID compensator (4) using (30) results in k1 =

[0.53, 0.47, 0.26, 0]

>, where the last zero corresponds to the
filter G(s, 0) = 1, see (5). As shown in Figure 5b, k1
results in unacceptably high compensator output activity.
Consequently, an additional constraint is imposed on the


