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Popular summary

e magnetic resonance imaging (MRI) scanner is a remarkable medical imaging device,
capable of producing detailed images of the inside of the body. In addition to imaging
internal tissue structures, the scanner can also be used to measure various properties of the
tissue. If a tissue property is measured in every image pixel, the resulting property image (the
parameter map) can be displayed and used for medical interpretation — a concept referred
to as ‘quantitative MRI’. Tissue properties that are commonly probed include traditional
MR parameters such as T, T and proton density, as well as functional parameters such
as tissue perfusion, brain activation, diffusion and flow.

Quantitative MRI relies on the continuous development of new and improved ways to
acquire data with the scanner (pulse sequences), to model and analyze the data (post-
processing), and to interpret the output from a medical perspective. is thesis describes
methods that have been developed with the specific aim to improve certain quantitative
MRI techniques. In particular, the work is focused on improved analysis of perfusion MRI
data, and ways to handle the partial volume issue.

Constant delivery of oxygen and nutrients via the blood is vital for tissue viability. Perfusion
MRI is designed to measure the properties of the local blood delivery, and perfusion images
can be used as a marker for tissue health. Whereas rough estimates of perfusion properties
can suffice in some cases, more accurate information can provide improved medical research
and diagnostics. Most of the methods described in this work aim to provide tissue perfusion
information with higher accuracy than previous approaches.

One particular way to improve perfusion information is to account for the so-called partial
volume effect. is means that limited image resolution implies that a single pixel may
contain signal from more than one type of tissue. In other words, the signal can be
mixed, and the calculated perfusion represents a mixture of the underlying perfusion of
the different tissue types. By first using another quantitative MRI method that estimates
the partial volume of each tissue type in every pixel (referred to as partial volume mapping),
the partial volume effect can be corrected for by so-called partial volume correction.

Partial volume mapping also relates to the field of MRI segmentation, that is, methods
to segment an image into different tissue types and anatomical regions. is work also
explores and expands a new partial volume mapping and segmentation method, referred to
as fractional signal modeling, which seems to be exceptionally versatile and robust, as well
as simple to implement and use. A general framework is laid out, with the hope of inspiring
more researchers to adapt it and assess its value in different applications.

In conclusion, this work improved the quantification in different perfusion MRI methods,
as well as presented a new partial volume mapping method. e described methods will
hopefully yield value in medical applications in the future.



Populärvetenskaplig sammanfattning

Magnetkameran är en fantastisk medicinsk bildutrustning som kan producera detaljerade
bilder av insidan av kroppen. Förutom bilder av vävnaden och dess struktur så
kan magnetkameran också användas till att mäta olika egenskaper hos vävnaden.
Om en vävnadsegenskap mäts i varje bildpixel så kan den resulterande bilden
(parameterkartan) visas och användas för medicinsk bedömning, vilket kallas för kvantitativ
magnetresonansavbildning (kvantitativ MRI). Vävnadsegenskaper som vanligtvis mäts
inkluderar traditionella MR-parametrar såsom T, T och protontäthet (PD), men även
funktionella parametrar såsom vävnadsperfusion, hjärnaktivitet, diffusion och flöde.

Kvantitativ MRI kräver kontinuerlig utveckling av nya och förbättrade metoder för
insamling av data (pulssekvenser), för modellering och bearbetning av data, och för att tolka
resultaten ur ett medicinskt perspektiv. Denna avhandling beskriver nyutvecklade metoder,
specifikt framtagna för att förbättra resultaten inom vissa kvantitativa MRI-tekniker. Mer
specifikt så har arbetet fokuserat på förbättrad bearbetning av perfusions-MRI-data samt
metoder för att hantera svårigheten med partiella volymer.

Konstant inflöde av syre och näring via blodet är avgörande för att vävnaden ska
fungera. Perfusions-MRI är en teknik för att mäta det regionala inflödet av blod, och
perfusionsbilderna kan användas för att utvärdera vävnadens hälsotillstånd. Även om
ungefärliga perfusionsvärden kan vara tillräckligt i vissa fall, så kan mer korrekta värden
öppna möjligheter för bättre medicinsk forskning och diagnostik. Därför var ett centralt
syfte med detta avhandlingsarbete att utvärdera alternativa metoder som kan tillhandahålla
mer korrekta perfusionsvärden.

Ett sätt att förbättra perfusionsmätningar är att korrigera för den så kallade partialvolyms-
effekten, det vill säga att begränsad bildupplösning medför att en bildpixel kan innehålla
signal från flera olika vävnadstyper. Det betyder att signalen kan vara blandad, och det
beräknade perfusionsvärdet motsvarar en blandning av den faktiska perfusionen för de
olika vävnadstyperna. Genom att först använda en annan kvantitativ MRI-metod som
mäter volymen av varje vävnadstyp i alla pixlar (kallas partialvolymsmätning), så kan
partialvolymseffekten korrigeras genom så kallad partialvolymskorrigering.

Partialvolymsmätning relaterar även till så kallad MRI-segmentering, vilket betyder att dela
upp en bild i olika vävnadstyper. I detta arbete utvärderades och expanderades även en
ny metod för partialvolymsmätning och segmentering. Metoden visade sig vara mycket
användbar och robust, och samtidigt enkel att använda. En generell beskrivning presenteras
i denna avhandling, med förhoppningen att fler forskare ska kunna implementera och
utvärdera metoden och undersöka dess potential i olika applikationer.

Sammanfattningsvis presenterar detta arbete förbättringar inom kvantitativ perfusions-
MRI, liksom vidareutveckling av en ny metod för partialvolymsmätning. Metoderna
kommer förhoppningsvis vara värdefulla för medicinska applikationer i framtiden.
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Paper 

Deconvolution methods in model-free arterial spin labeling

Arterial spin labeling (ASL) perfusion quantification is usually accomplished using
single time-point data and parametric modelling of the microvascular blood flow. In
model-free ASL on the other hand, arterial and tissue signals are dynamically sampled,
and subsequent deconvolution yields model-free perfusion estimates (Petersen et al.,
). In Paper , different deconvolution methods were compared for model-free ASL.
In particular, singular value decomposition (SVD) deconvolution was compared with
nonlinear stochastic regularization (NSR) deconvolution. NSR produced more realistic
deconvolution results and was less prone to perfusion underestimation, compared to SVD.
e paper also included the use of T1 information for partial volume mapping, a concept
that was further exploited and expanded in Papers –.

Paper 

Partial volume correction in model-free arterial spin labeling

Partial volume correction (PVC) has been suggested to be an important post-processing
step for ASL perfusion imaging, especially when separation of tissue volume and perfusion
alteration is warranted. PVC in ASL relies on intravoxel partial volume (PV) estimates
of different tissue types, and most studies have used registration of segmentation results
from a high-resolution morphological scan as a proxy measure for PVs. In Paper , we
exploited the fact that the dynamic ASL sequence (used in Paper ) allows for PV mapping
in the native low-resolution space of the ASL data. Hence, PVC was accomplished with
the inherent ASL data only, that is, without registration or additional scans. e stuy
demonstrated that the methodology can produce good PVC results in line with, or better
than, the conventional approach.

Paper 

Tissue partial volume correction in dynamic susceptibility contrast MRI

Partial volume effects (PVEs) and PVC algorithms have been assessed in ASL perfusion
imaging. In Paper , we aimed to establish the impact of PVEs in dynamic susceptibility
contrast MRI (DSC-MRI), and to propose a corresponding simplified post-hoc PVC
method. Several simplifications yielded a mixed perfusion model identical to the one
commonly used in ASL, and established PVC algorithms could thus be applied. Errors
due to the simplifications were evaluated in simulations. In vivo DSC-MRI and ASL data
were used to assess the repeatability of and agreement between the perfusion modalities,
with and without PVC. e simplified PVC successfully reduced PVEs in DSC-MRI,
although the required assumptions introduced non-negligible uncertainties.



Paper 

Partial volume mapping based on spoiled gradient-recalled echo data

Automatic segmentation and PV mapping based on fractional signal modelling of an
inversion recovery acquisition has previously been proposed (Shin et al., ). is so-
called FRASIER method models the signal as a linear combination of contributions from
gray matter, white matter and cerebrospinal fluid. e FRASIER method was the main
method for PV mapping in Papers –. In Paper  we suggested that the partial signal
concept can be adapted to other quantitative MRI experiments, and demonstrated this
with a spoiled gradient-recalled echo acquisition with variable flip angles. Simulations were
used to demonstrate the accuracy and precision of the PV maps, and initial in vivo results
showed that the method performed well compared to the original FRASIER method.

Paper 

Intravoxel incoherent motion with variable flow-compensation

A intravoxel incoherent motion (IVIM) experiment is usually based on modelling the
signal attenuation in diffusion weighted data as the combined effects of molecular
diffusion (Brownian motion) and the psuedo-diffusion effect from blood moving through
the capillary system (perfusion). In Paper  we exploited that, if blood spins do not
change direction during the diffusion encoding, the dephasing due to perfusion can
be refocused using flow-compensation. Hence, for sufficiently fast motion encoding,
the signal attenuation due to perfusion can be turned on and off by changing the
gradient waveforms of the sequence. We showed in simulations that by acquiring data
at several diffusion encoding strengths (b-values) with and without flow-compensation,
the IVIM parameters can be estimated with improved accuracy and precision compared
to a conventional IVIM experiment. Nulling of the perfusion signal attenuation was also
demonstrated for in vivo brain data.
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Chapter 

Introduction and aims

Quantitative magnetic resonance imaging (MRI) refers to the process of measuring and
mapping an objects property, in numerical terms, using MRI. Historically, the term
quantitative MRI has often been assigned to the measurement of conventional magnetic
resonance (MR) parameters such as relaxation times and proton density, whereas it is used
in a broader sense in this thesis []. In medical applications, the measurements are used
to probe morphological or physiological properties of human tissue, which yields unique
contrast patterns that can be used in, for example, diagnosis or treatment planning and
evaluation. In addition, quantitative MRI can contribute to clinical research by aiding
scientists in the study of biological processes, diseases and treatments. e possibilities
in quantitative MRI seems endless, and well-established methods include, but are not
limited to, measurement of relaxation times, proton density, perfusion, diffusion, flow,
magnetization transfer (MT), brain activation (functional MRI; fMRI), concentration of
molecules (spectroscopic methods) and tissue volumes. ese techniques are continuously
developed and employed in research, and are also used in specific clinical applications.
While conventional morphological imaging is used to find pathologies by examining a
single MR image with a certain weighting, quantitative MRI is generally based on collecting
several MR images (raw data) from which maps of the properties (or parameters) of
interest are calculated. Hence, quantitative MRI involves the entire process from pulse
sequence development and data collection strategies to image processing, corrections,
biophysical modeling, data analysis and interpretation. e possibility to measure a
multitude of properties, and the existence of such a wide array of important components
in the quantification processes, might explain the MR researchers’ interest in testing and
suggesting new and improved methods.

e advent of quantitative MRI was when the MRI scanner was no longer seen purely
as a camera, and started to be used as a scientific measuring instrument []. In contrast
to conventional morphological imaging, it is not sufficient to have good image quality
and contrast. To be able to rely on and compare findings at different times, in different
parts of the body, in different patients, and even between different scanners, quantitative





measurements need to show good accuracy, precision, repeatability and reproducibility.
Even then, if the measurement has poor sensitivity or specificity, it might not be clinically
applicable. Another important factor is the complexity and cost of the method. A robust
and valuable method may still struggle to gain interest if it is difficult to implement or use,
or if it has a high cost in terms of, for example, resources or time. From these perspectives,
the studies presented in this thesis are focused on the assessment of accuracy, precision and
repeatability of both simple and advanced, automated quantitative methods. Specifically,
new techniques have been assessed in the fields of perfusion MRI and partial volume (PV)
mapping.

Perfusion MRI is widely used to map various microvascular properties. e perfusion
MRI methods discussed in this work are arterial spin labeling (ASL), dynamic susceptibility
contrast MRI (DSC-MRI) and intravoxel incoherent motion (IVIM) imaging. Since IVIM
imaging originates from diffusion MRI and employs a different type of analysis than in
conventional perfusion MRI, it is discussed in a separate chapter. PV mapping is a less
well-defined field, but used here to denote methods used to map volumes of different tissue
types. It is related to, and can be argued to pertain to, the fields of MRI segmentation and
volumetry.

In Paper , a deconvolution algorithm is adopted from DSC-MRI to improve the
perfusion quantification in model-free ASL. In Paper , PVs are calculated from ASL
raw data allowing for partial volume correction (PVC) of perfusion values in model-free
ASL. In Paper , PVC is introduced in DSC-MRI, and the results are compared with
corresponding ASL results. A new PV mapping method is demonstrated and evaluated in
Paper . Paper  presents a new IVIM analysis approach to improve the quantification of
corresponding perfusion parameters. e aims of the papers were thus

. to improve perfusion estimation in model-free ASL,

. to incorporate and asses PVC in model-free ASL,

. to introduce and assess PVC in DSC-MRI,

. to propose and assess a new PV mapping method,

. to improve quantification in IVIM imaging.





Chapter 

Perfusion MRI

Perfusion¹ refers to the delivery of blood to the capillary systems in the tissue. Oxygenated
blood travels from the heart, through large arteries, to small arterioles, through the capillary
system, and exits on the venous side. Maintaining tissue perfusion is vital since the blood
carries oxygen and nutrients to the tissue, and transports carbon dioxide and waste material
away from the tissue. Autoregulation mechanisms are continuously engaged to uphold the
required blood delivery. us, perfusion is intricately coupled to, and can be seen as an
indirect marker of, tissue viability and metabolism. e load and unload (exchange) of
gas and substances between blood and tissue takes place in the capillary system (Figure
.). e capillary system, together with arterioles and venules, makes up an intricate mesh
of microscopic vessels embedded in the tissue, referred to as the microvascular system.
It is important to distinguish between macroscopic and microscopic blood flow, and the
corresponding MR techniques. e convention is that so-called flow MR techniques are
used to characterize macroscopic blood flow in large vessels, and that perfusion MRI
techniques are used to characterize the capillary blood supply. us, perfusion MRI is
often used to identify tissue with abnormal perfusion, whereas the cause may originate
from elsewhere (for example, an occlusion upstream) and be better visualized with another
technique.

Perfusion MRI can be used to measure different properties of the microvascular
system, the most central property naturally being the perfusion. As a physical quantity,
perfusion is normally described as the volume of blood flowing through the microvascular
system per unit time and per volume or mass of tissue. In addition, measurement of
microvascular blood volume and transit time (i.e., the time it takes for blood particles to
traverse the microvascular system) is possible with certain perfusion MRI techniques, as
will be described in this chapter. For additional reading on perfusion MRI, Refs. [–] are
recommended.

¹e word ’perfusion’ comes from the French word ’perfuser’ meaning ’pour over or through’, and refers
to the fact that the blood ’soaks’ or ’pours through’ the organ/tissue.
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Figure 2.1: The microvascular system consists of a mesh of arterioles, capillaries and venules, resulting in multiple pathways and
corresponding distribution of transit times for blood molecules traversing the system. The capillary blood constantly
exchange molecules with the interstitial fluid, and this exchange is part of the delivery of oxygen and nutrients to,
and removal of waste from, the tissue. Perfusion is the volume of blood delivered to the system per unit time per unit
volume or mass of tissue. The blood volume is the relative volume of blood in the system, and the transit time is the
time it takes for a particular blood particle to traverse the system. Adapted from Carolina Biological Supply/Access
Excellence.

Tracer kinetic modeling
In perfusion MRI, blood is used as the carrier of a tracer or and indicator that changes
the MRI signal contrast. It can be an injected contrast agent, as in DSC-MRI, or it can be
magnetization (labeled blood water), as in ASL. To infer properties of the microvascular
blood flow requires, in addition to data collection, biophysical modeling for analysis of the
data. Although steady-state experiments based on the Kety-Schmidt formalism [] have
been applied to perfusion MRI, most current methods are based on tracer kinetic modeling
according to the Meier-Zierler indicator-dilution theory [–]. Note that this theory is
neither specific to the brain nor to perfusion MRI.

e ideal system is a simplified model with a set of assumptions that allows for
derivation of very useful equations describing the tracer kinetics. e microvascular system
is modeled as system with a single input and a single output, with several different
pathways available for the tracer particles traversing the system. It is assumed that the tracer
distribution volume V and volumetric flow rate F (flow for short) are constant during the
experiment (i.e., the system is time-invariant), implying that the tracer can not be trapped
in the system. e time it takes for a particle to traverse the system is referred to as the
transit time. Different pathways and particle velocities results in a probability distribution
of tracer transit times h(t), and it is assumed that this distribution does not change during
the experiment (i.e., the system is stationary). Finally, it is assumed that the system is linear
and that the kinetic properties of the tracer mirrors those of the native fluid (normally
blood).
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e tracer concentration in arterial blood, ca(t), is the input to the system, and the
tracer concentration in venous blood, cv(t), is the output. e transit time distribution
h(t) can also be seen as the fractional washout rate of the tracer at time t (in units s−1).
us, for an ideal impulse (infinitely short) input, cv(t) directly corresponds to h(t). In real
experiments, however, ca(t) is a smoothly varying function of time (Fig. .). In this case,
the input is convoluted upon the characteristic transit time distribution, and the output is
given by

cv(t) = [ca(t)⊗ h(t)] =

ˆ t

0
ca(t)h(t− τ)dτ, [.]

where ⊗ denotes convolution. Equation . is known as the convolution integral, and is
commonly used in signal processing and electrical engineering. It can be interpreted as
follows: For a linear system, if the impulse response h(t) is known, the system response
(output) can be calculated for any input by convolution.

Considering an ideal impulse input, the cumulative fraction of the tracer that has left
the system at time t is given by

H(t) =

ˆ t

0
h(τ)dτ. [.]

e impulse residue function (residue function for short) R(t) specifies the fraction of
tracer that remains in the system at time t after an ideal impulse input. Hence, the residue
function is the complement of H(t), and related to the transit time distribution according
to

R(t) = 1−H(t) = 1−
ˆ t

0
h(τ)dτ. [.]

Since h(t) is a probability distribution, it is apparent that R(t) is a nonnegative
monotonically decreasing function of time that fulfills R(0) = 1 and limt→∞R(t) = 0
(Fig. .). Note that the shapes of h(t) and R(t) are important since they relate to the
tracer kinetic properties of the system.

e amount of tracer that remains in the system (tissue) at time t, qt(t), depends on
the flow and the difference in accumulated input and output, according to

qt(t) = Vtct(t) = F

[ˆ t

0
ca(τ)dτ −

ˆ t

0
cv(τ)dτ

]
, [.]

where Vt is the tissue volume and ct(t) is the tracer concentration in tissue. Combination
of Eqs. .–. yields an expression for the tissue tracer concentration according to [, ]
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ct(t) =
F

Vt

ˆ t

0
ca(t)

[
1−
ˆ t

0
h(υ)dυ

]
dτ

= ft

ˆ t

0
ca(t)R(t− τ)dτ = ft [ca(t)⊗R(t)] , [.]

where ft = F/Vt is the volume-specific flow, normally referred to as tissue perfusion.
Equation . shows that the tissue tracer concentration is given by the convolution of the
arterial tracer concentration and the residue function, scaled with tissue perfusion. e
graphs in Figure . illustrate this equation, as well as the relation between h(t) and R(t).
is is one of the most central equations in perfusion MRI, and the usefulness comes from
the fact that we can measure ct(t) and ca(t) using external monitoring, and estimate ft
and R(t) by means of deconvolution, i.e.,

ftR(t) = ca(t)⊗−1 ct(t), [.]

where ⊗−1 denotes deconvolution. is approach is common in DSC-MRI, whereas
measurement of ct(t) and modeling of ca(t) and R(t) also allows for estimation of ft,
which is common in ASL.

Equations .–. were well described by Zierler [], but the first record of Eq. .
is difficult to find. Lassen and Perl showed that the tracer residue in the system is given
by the convolution of the input and the impulse residue function, and that the single
compartment Kety model applied to washout of diffusible tracers can be written as Eq. .
(although that method assumes a specific residue function) []. e adoption to perfusion
MRI was probably inspired by work on tracer kinetic modeling in nuclear medicine and
computed tomography (CT) from the early ’s [–] (B. Rosen and R. Buxton,
personal communication).

e tracer distribution volume can be determined by

V = F

ˆ ∞

0
t h(t)dt = FT, [.]

which was elegantly derived by Zierler using deductive reasoning []. e integral in Eq.
. is the first moment of the transit time distribution, i.e., the mean transit timeT . e fact
that volume equals flow multiplied by mean transit time is known as the central volume
theorem [], which is a corollary of the Fick principle. Using Eq. ., it can further be
shown that

T =

ˆ ∞

0
t h(t)dt =

ˆ ∞

0
R(t)dt. [.]

By combining Eqs. .–. and integrating from zero to infinity, we find a useful expression
for the distribution volume fraction (volume-specific tracer distribution volume) in tissue
according to
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Figure 2.2: A schematic illustration of the tracer kinetic formalism used in perfusionMRI. The top row shows the perfusion-scaled
convolution of the arterial tracer concentration and the residue function, equaling the tissue tracer concentration
(Eq. 2.5). The bottom row shows the probability distribution and cumulative distribution of transit times, related to
the residue function according to Eq. 2.3.

vt =
V

Vt
=

´∞
0 ct(t)dt´∞
0 ca(t)dt

. [.]

Note that, for an intravascular (nondiffusible) tracer, V is related to the blood volume.
e organ most commonly studied with perfusion MRI is the brain, although the

principles described here are generally applicable to other systems as well. Note that the
tracer can be intravascular as in DSC-MRI (assuming an intact blood-brain barrier), or
extravascular as in ASL. e conventional quantities and units in brain perfusion MRI are
cerebral blood flow (CBF) in ml blood per  g tissue per minute [ml/g/min], cerebral
blood volume (CBV) in ml blood per  g tissue [ml/g] and mean transit time (MTT)
in seconds [s]. Note that, by convention, CBF and CBV are reported in mass-specific units.

Dynamic susceptibility contrast MRI
In the late s, Rosen and colleagues proposed to exploit dynamic susceptibility-
induced signal changes in T-weighted MRI sequences following an injection of a
paramagnetic contrast agent for perfusion imaging [–]. ey proposed the use of
lanthanide chelates as intravascular tracers, measured the relation between signal change
and tracer concentration, and proposed to use Meier-Zierler formalism with deconvolution
to quantify perfusion, all of which is the basis for DSC-MRI today. Based on experimental
results, they found that the signal decrease was primarily caused by the susceptibility
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Figure 2.3: A simulated tissue contrast agent concentration curve and the corresponding DSC-MRI signal with a 50% signal
drop (Eqs. 2.10–2.11). The simulation is based on the same input and system characteristics as in Figure 2.2, but
with added recirculation, steady-state different from baseline, and a limited temporal resolution and measurement
noise added to the signal (to mimic experimental data).

difference between the capillaries containing the contrast agent and the surrounding tissue.
In the middle of the s, Rempp et al. [] and Østergaard et al. [, ] made seminal
contributions that helped to disseminate and popularize the technique. Rempp et al.
suggested a data collection and processing approach, and demonstrated the first quantitative
in-vivo perfusion results with DSC-MRI []. Østergaard et al. stressed the importance of
appropriate post-processing, and especially focused on assessing different deconvolution
techniques [, ]. For more details on DSC-MRI, bolus-tracking and deconvolution in
perfusion imaging see Refs. [, , ].

eory

For a gradient-echo sequence, the change in MR signal S(t) is related to the change in
transverse relaxation rate and contrast agent concentration according to² []

S(t) = S0e
−TE∆R∗

2(t) = S0e
−TEr∗2c(t), [.]

where S0 is the baseline signal, TE is the echo time, ∆R∗
2(t) = r∗2c(t) is the change in

transverse relaxation rate, r∗2 is the transverse relaxivity of the contrast agent, and c(t) is the
contrast agent concentration (Fig. .).

e proportionality factor r∗2 is geometry dependent and can thus vary with vessel
diameter, between vessels and tissue, and between different tissue types. In particular, the
extravascular tissue protons are dephased by susceptibility-induced magnetic fields due to
the contrast agent in the blood, and has thus a fundamentally different dependence on
contrast agent (higher r∗2) than the blood []. Furthermore, r∗2 can vary with contrast
agent concentration, effectively yielding a nonlinear relation between ∆R∗

2 and c (as
demonstrated in whole blood) and subsequent erroneous concentration curve shapes [].

²e same relation can be used for spin-echo sequences, which would correspond to removing the ∗

superscripts .
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Even though failure to take these effects into account can lead to errors in perfusion and
blood volume estimates [], it is common to assume a global linear relationship since it
enables a tractable solution to a very complicated problem.

Eq. . can be rewritten as []

r∗2c(t) = ∆R∗
2(t) = − 1

TE
ln

(
S(t)

S0

)
, [.]

i.e., the dynamic signal decrease is converted to a relative contrast agent concentration (Fig.
.). Assuming a global linear relationship, r∗2 can be divided out, which yields the DSC-
MRI analogue of Eq. . according to

kHct(t) = ρft

ˆ t

0
ca(t)R(t− τ)dτ = ρft [ca(t)⊗R(t)] , [.]

where kH is a correction factor, ct(t) is the contrast agent concentration in tissue, ρ is the
brain tissue density, ft = F/(ρVt) is the CBF, and ca(t) is the contrast agent concentration
in the feeding artery, referred to as the arterial input function (AIF). e tissue density
ρ is introduced to obtain tissue perfusion in the conventional mass-specific units. e
correction factor is defined as kH = (1 − Hart)/(1 − Hcap), where Hart is the arterial
haematocrit (Hct) and Hcap is the capillary Hct, and this factor compensates for that the
contrast agent only distributes in blood plasma whereas we want to calculate properties of
whole blood.

Dynamic acquisition of gradient-echo or spin-echo data allows for calculation of ct(t)
from the tissue of interest and ca(t) from a feeding artery, using Eq. .. Deconvolution
then yields the perfusion-scaled impulse residue function Rf (t) = ftR(t) (cf. Eq. .).
Since R(0) = 1 and R(t) is monotonically decreasing, we obtain that

ft = Rf (0) = max[Rf (t)] [.]

and

R(t) =
Rf (t)

Rf (0)
=

Rf (t)

max[Rf (t)]
. [.]

In practice, the Rf (t) obtained by deconvolution might not be monotonically decreasing,
and it is therefore common to use max[Rf (t)] rather than Rf (0) in Eqs. . and ..
Calculation of MTT from the perfusion-scaled impulse residue function is known as
Zierler’s area-to-height relation:

T =

´∞
0 Rf (t)dt

max[Rf (t)]
. [.]

CBV can be calculated according to (cf. Eq. .)

vt = kH
V

ρVt
=

kH
ρ

´∞
0 ct(t)dt´∞
0 ca(t)dt

, [.]
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where the correction for Hct converts from distribution (plasma) volume fraction to whole
blood volume fraction.

Finally, it should be remembered that if two out of the three parameters (ft, vt and T )
are available, the third can be calculated using the central volume theorem, vt = ftT (Eq.
.). e alternative expressions thus become

ft =
kH
´∞
0 ct(t)dt max[Rf (t)]

ρ
´∞
0 ca(t)dt

´∞
0 Rf (t)dt

, [.]

vt =

ˆ ∞

0
Rf (t)dt, [.]

and

T =
kH
´∞
0 ct(t)dt

ρ
´∞
0 ca(t)dt max[Rf (t)]

. [.]

Arterial input function

Many of the challenges in DSC-MRI are related to the AIF, as comprehensively reviewed by
Calamante []. As mentioned previously, the relation between relaxation rate and contrast
agent concentration is different for the AIFs and the tissue curves, and this is important to
take into account if absolute values are warranted [, , ]. Another source of erroneous
AIF registration is PVEs, and several ways to correct the AIF area have been proposed [].
For example, in Paper , we used the prebolus approach in which the AIF is rescaled
to the area of a venous output function (VOF) acquired from a preceding single-slice
prebolus experiment []. Another approach towards quantification in absolute terms is to
use independent calibration measurements, for example, nuclear medicine based perfusion
or alternative MRI measurements of CBF or CBV [, , ].

Delay and dispersion

Delay between the registered AIF and tissue curves, as well as bolus dispersion during the
corresponding transit, may lead to severe CBF quantification errors []. e most common
ways to account for delay is to use a delay-insensitive deconvolution algorithm, to account
for delay in the model, or to employ local AIFs [, , ]. Bolus dispersion refers to the
continuous dilution of the tracer during the transit from the site of the measured AIF to
the site of the measured tissue curve, and this is a more delicate and difficult problem. It
manifests itself as a broadening of the bolus, and is caused by the variation in blood velocity
and the different pathways of the arterial system. A common way to model dispersion is
therefore to use a vascular transport function ha(t) which, similarly to the capillary transit
time probability distribution h(t), is the probability distribution of transit times from the
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site of the measured AIF to the tissue of interest. With this definition, if c∗ais the measured
AIF, the true AIF is given by ca(t) = c∗a(t)⊗ ha(t), and Eq.  can be modified to include
dispersion according to

ct(t) = ft [ca(t)⊗R(t)] = ft [c
∗
a(t)⊗ ha(t)⊗R(t)] = ft [c

∗
a(t)⊗R∗(t)] [.]

where R∗(t) = ha(t) ⊗ R(t) is the ’dispersed’ effective residue function obtained by
deconvolution if dispersion is not accounted for. Example of a vascular transport function,
and the effect on the AIF and the perfusion-scaled residue function, is shown in Figure ..
It can be seen that arterial dispersion leads to a distorted and non-physiological residue
function, with corresponding underestimation of CBF (Eq. .) and overestimation of
MTT (Eq. .). ese types of distortions are the reason why perfusion is usually estimated
from max[Rf (t)] rather than Rf (0).

From Eq. . it is apparent that it is very difficult to separate the effects of arterial
bolus dispersion and the microvascular distribution of the bolus given by the true residue
function. To improve quantification in the presence of delay and dispersion, Willats et
al. proposed the use of deconvolution methods able to recover a wider array of effective
residue function shapes [, ]. However, this does not correct for dispersion, and others
have attempted to model and estimate the amount of dispersion to correct for the effect
[–]. Several models for ha have been suggested in the DSC-MRI and ASL literature,
such as exponential [], Gaussian [, ] and gamma [, ].

As described later, both delay and dispersion were accounted for in Paper . In
particular, delay effects were minimized by shifting signal curves prior to deconvolution,
and dispersion was modeled in the form of an exponential function.

Deconvolution

Since deconvolution is a difficult operation prone to errors, some researchers have promoted
the use of qualitative (descriptive or summary) parameters. However, it has been shown that
deconvolution is required for reliable perfusion estimation [, ]. Many deconvolution
methods have been proposed in the literature and a brief overview is given here (see also,
for example, Refs. [, ]). Deconvolution methods can be divided into two groups; model
dependent (parametric) and model independent (nonparametric or model-free) methods.

Assuming that the contrast agent’s capillary transport can be described by an analytical
function, the deconvolution can be realized by nonlinear least squares fitting. e most
simple parametrization is based on the assumption of a vascular system corresponding to a
single well-mixed compartment, resulting in a mono-exponential residue function model
according to R(t) = e−t/T . Another approach is to model the transit time distribution, for
example using a gamma distribution []. Model-dependent deconvolution is uncommon
in DSC-MRI, primarily since it only yields reliable results if the true residue function is
well-described by the model [].
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Figure 2.4: Simulated effect of dispersion on the AIF and the estimated residue function (Eq. 2.20). The top row shows the
undispersed input, the vascular transport function (gamma kernel [41]), and the resulting dispersed input function.
The bottom row shows the true perfusion-scaled residue function, the vascular transport function, and the dispersed
residue function.

Model-free deconvolution methods can return residue functions that do not correspond
to a particular functional shape. e main issue with model-free deconvolution is that it is
an inverse problem, which tends to be ill-posed (no unique well-defined solution exists) and
ill-conditioned (small errors in the data are amplified in the solution), and many methods
are defined by the way in which they handle this issue. Transform methods are based on
the convolution theorem, most commonly for the Fourier transform [, , ]. ese
methods are very sensitive to noise, which is usually controlled for by applying a low-pass
filter that reduces high-frequency noise in the solution. Another approach for model-free
deconvolution is to employ a discrete reformulation of Eq. . according to []

kHct(tj) = ρft

ˆ tj

0
ca(t)R(t− τ)d ≈ ρft∆t

j∑
i=0

ca(ti)R(tj − ti), [.]

where ∆t is the temporal resolution and j denotes the time-point index. By writing Eq.
. in short hand ct = caR (the constants are included in the matrices), deconvolution
may be performed by minimizing ∥caR− ct∥22. As for the transform methods, this
approach is very sensitive to noise, which can be controlled by minimizing the regularized
problem ∥caR− ct∥22 + γ ∥LR∥22, where γ is the regularization parameter and L is
the regularization operator. e regularization operator is usually chosen to constrain the
resolved residue function to be a nonnegative, monotonically decreasing and/or smooth
function of time [, ].

Another common way to solve Eq. . is singular value decomposition (SVD) [].
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In SVD, ca is decomposed into two orthogonal matrices and a nonnegative diagonal
matrix, and ca

−1 is expressed as a matrix product and used to estimate R. A threshold
on the diagonal matrix is used to truncate values so that non-physiological oscillations are
suppressed in the solution (regularization). e most common deconvolution method in
DSC-MRI is block-circulant SVD (cSVD), which was proposed by Wu et al. to reduce the
sensitivity of SVD to delay []. In the same work, an adaptive thresholding approach was
also proposed, called oscillation-indexed block-circulant SVD (oSVD). e SVD-based
methods are characterized by low noise sensitivity and robust results, although the resolved
residue functions are not necessarily nonnegative or monotonically decreasing, and may
result in perfusion underestimation. Both cSVD and oSVD were used as reference methods
in Paper .

Several recent deconvolution methods are based on nonlinear fitting of Eq. .
in combination with regularization, using model-free residue functions defined on a
continuous time scale [, , ]. An example of this is nonlinear stochastic regularization
(NSR), proposed by Zanderigo et al. []. is is an advanced deconvolution method
which derives the shape of the residue function from a stochastic process (integral of white
noise), and employs Bayesian inference for parameter estimation. Prior information about
the residue function is included through the use of an exponential transform to ensure
nonnegative solutions, and Tikhonov regularization to reduce oscillations. e effective
residue function also includes a first order approximation of bolus dispersion (exponential),
i.e., ha(t) = δ−1e−t/δ, so that residue functions and perfusion values unaffected by
dispersion can be estimated. As further described below, NSR was adapted to and evaluated
for deconvolution in model-free ASL in Paper .

Arterial spin labeling
ASL is a noninvasive perfusion MRI technique, proposed by Detre et al. and Williams
et al. in  [, ]. e basic idea is to magnetically label arterial blood water using
radiofrequency (RF) pulses, so that the blood magnetization acts as an endogenous contrast
agent. In conventional ASL, inversion pulses are applied to large arteries upstream of
the tissue of interest. e labeled blood travels through the vascular tree and eventually
reaches the microvascular system, were the blood water exchanges with molecules in the
interstitial space. is results in a local tissue signal decrease, and the magnitude of this
decrease is proportional to local tissue perfusion. By acquiring complementary control
images without labeling, subtraction of the two yields a relative perfusion image known as
the magnetization difference ∆M (see Figure .). Since the magnetization is continuously
decaying by T relaxation and since the blood volume is small in the brain, the effect on the
signal is small and several repetitions are normally acquired to increase the signal-to-noise
ratio (SNR).

e ASL contrast can be obtained in many different ways, which has resulted in





28 control images

1 control image 1 label image ∆M

− =

28 label images Mean ∆M

− =

Figure 2.5: The basic concept of an ASL experiment. To the left is a standard sagittal MR image, with superimposed boxes
corresponding to the imaging slices (green), PASL labeling slab (blue), and (P)CASL labeling slice (red). The three
images on the top right show single control and label images, as well as the magnetization difference (∆M ) between
them. It is apparent that the result is very noisy for a single ASL acquisition. The three images on the bottom right
show the mean of 28 control and label images, and the corresponding mean ∆M . The result is much improved
compared to the single acquisition.

an abundance of different ASL pulse sequences and methods. e different techniques
are usually divided into different categories depending on the approach used for the
labeling module, the most common being continuous ASL (CASL), pulsed ASL (PASL)
and pseudo-continuous ASL (PCASL). In CASL, the arterial blood water is continuously
labeled in a thin slice proximal to the tissue of interest []. A long low-power RF pulse
(– seconds) is applied together with a magnetic field gradient yielding a flow-driven
adiabatic inversion of the spins flowing in the large arteries. is labeling type has largely
been abandoned in human ASL studies, partly due to the high demand on the RF hardware.
In PASL, a short RF inversion pulse (– ms) is applied in a thick slab []. Hence,
the entire bolus of labeled blood water is created instantly, which means that the amount
of labeled blood is determined by the spatial extent of the inversion slab. Furthermore,
compared to CASL, the labeled blood show a longer transit time on average. ese issues
lead to a shorter bolus, and a lower ASL signal due to T relaxation (Figure .). PCASL can
be seen as a pulsed version of CASL; it employs continuous labeling in a thin slice, although
the continuous RF pulse is exchanged for a train of many short RF pulses and magnetic
field gradients [, ]. Like CASL, the inversion is achieved through flow-driven adiabatic
inversion, although PCASL has higher labeling efficiency (high SNR), a manageable load
on the RF duty cycle, and less magnetization transfer effects. ese advantages have led
to a consensus that PCASL is the currently recommended ASL technique for clinical
applications []. For more details on labeling types and ASL techniques, see Refs. [, –
].

ASL is usually implemented as a single time-point experiment with a post-label delay
(PLD; the time between end of labeling and readout) of .– seconds to allow for
most of the labeled blood to reach the tissue of interest. e bolus length is ~.–
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Figure 2.6: Simulation of the tracer kinetics in (P)CASL and PASL experiments using the standard model (Eq. 2.23). The left
graph shows the input functions where (P)CASL yields a box-car bolus shape, whereas PASL yields a shorter bolus
that decreases with the T1 of blood. The middle graph shows the combined effects of the residue function and
magnetization decay by T1 relaxation. The right graph shows the resulting ASL signals. The functions start to decay
after the entire bolus has been delivered, and the stars indicate approximately when imaging is performed for a
single time point experiment.

seconds for PCASL and ~.– seconds for PASL. e experiment is repeated, usually
until – control-label pairs have been acquired. Tissue signal suppression and crushing
of macrovascular signal can be used to improve the quality of the perfusion images, and
a reference PD image is usually acquired for calibration (i.e., determination of M0a as
described below). For multiple time-point (multi-TI) acquisitions, the post-label delay is
usually varied between  and  seconds.

e general kinetic model

As mentioned in the ’Tracer kinetic modeling’ section, steady-state like experiments have
been used in perfusion MRI, and the original ASL implementation is an example of this.
Continuous labeling was applied until steady-state was reached in the tissue of interest,
and subsequent perfusion estimation was achieved using the Bloch equations modified to
include the effect of the labeled blood water [, ]. In this context, perfusion contrast
was identified as a change in the apparent T of tissue. Later on, it became more common
to use a delay between labeling and imaging, and the PASL techniques also became more
common. erefore, the ASL analysis shifted towards a more bolus experiment oriented
approach. Buxton et al. generalized this by describing ASL from the perspective of tracer
kinetic modeling, which is summarized in the so-called general kinetic model for ASL []:

∆M(t) = 2αM0a ft

ˆ t

0
ca(t)r(t− τ)m(t− τ)dτ

= 2αM0a ft {ca(t)⊗ [r(t)m(t)]} . [.]

Here, ∆M(t) is the perfusion weighted tissue signal, r(t) is the residue function, m(t) is
the magnetization relaxation of the labeled water, and 2αM0aca(t) constitutes the input
function of labeled water, where α is the inversion efficiency, M0a is the equilibrium
magnetization of arterial blood, and ca(t) is the fractional AIF. Note the analogy with
the tissue signal model in general tracer kinetics (Eq. .) and DSC-MRI (Eq. .). e
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advantage of this general description is that it can be used to derive signal equations for
many different labeling techniques and exchange models. Figure . displays a noise-free
simulation of the tracer kinetics in (P)CASL and PASL experiments.

e standard model

e standard model is a simplified ASL model, based on a set of assumptions, leading to
tractable ASL signal equations []. In short, it is assumed that labeled blood arrives at the
voxel after a delay time ∆t (arrival time), that the water exchange between blood and tissue
is described by a well-mixed single-compartment, and that the labeled water upon arrival
to the voxel starts to decay with the T of tissue (T1t) rather than the T of arterial blood
(T1a). ese assumptions can be formulated in terms of the time-dependent functions in
Eq. . according to

ca(t) = 0 t < ∆t

e−∆t/T1a ∆t < t < ∆t+ τ [(P )CASL]

e−t/T1a ∆t < t < ∆t+ τ [PASL]
0 t > ∆t+ τ

r(t) = e−ftt/λ

m(t) = e−t/T1t , [.]

where τ is the label duration³ (length of the bolus) and λ is the brain-blood partition
coefficient of water. Figure . displays these functions, together with the resulting ASL
signal (Eq. .). By inserting these expressions into the general kinetic model (Eq. .),
we obtain analytical signal equations that can be applied to single- or multi-TI ASL data.
In single time-point analysis, perfusion is usually estimated by directly solving the equation
for f , whereas in multi-TI analysis, the signal equation is fitted to the measured ∆M(t)
curve.

By assuming that the entire bolus has been delivered to the tissue (t − τ > ∆t), that
there is no outflow, and that the label only decays with T1a, a very basic model for single
time-point ASL is obtained according to []

∆M = 2αM0aT1aft e
−w/T1a(1− e−τ/T1a) [(P )CASL]

∆M = 2αM0aτft e
−TI/T1a [PASL] [.]

where w = t − τ is the PLD in (P)CASL, and TI = t is the inversion time (i.e., the
time between labeling and readout) in PASL. Note that many different assumptions are
required to arrive at these simple and convenient signal equations, which naturally makes
them prone to errors.

³e label duration is often denoted TI1 in PASL experiments.
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Figure 2.7: Example of deconvolution results in a single voxel, from Paper . (a) NSR yields more reasonable residue function
shapes compared to SVD, especially when correcting for dispersion (NSRcd). Heavy truncation, as for oSVD in this
case, may cause severe perfusion underestimation. (b) Measured and fitted tissue signals, ∆M(t), for the different
deconvolution methods. The unphysiological solutions of the SVD-based deconvolution methods are the results of
overfitting, whereas NSR trades larger residuals for smoother solutions.

Model-free arterial spin labeling

Whereas Eq. . represents one of the most simplified ways to quantify perfusion with
ASL, model-free ASL, devised by Petersen et al. [], is at the other end of that spectrum.
It attempts to relax and reduce the number of assumptions by employing a more advanced
pulse sequence that acquires additional data, allowing for quantification by means of model-
free deconvolution [].e sequence is called QUASAR, and is designed to dynamically
acquire both arterial input curves ca(t) and tissue curves ∆M(t). Similar to DSC-MRI,
deconvolution of Eq. . yields the perfusion-scaled effective residue function Rf (t) =
ftR(t) = ftr(t)m(t), from which a model-free perfusion estimate is obtained. e
reproducibility of model-free ASL was tested in a large test-retest study including  sites
and  healthy subjects, using automatic planning to yield consistent slice positioning
[]. In an alternative approach, Chappell et al. suggested a model-based analysis of
QUASAR data, including modeling of arterial dispersion []. e results of that study
indicated the presence of substantial dispersion effects in QUASAR data.

e QUASAR sequence employs pulsed labeling and saturation recovery (SR) Look-
Locker readout. e application of arterial crushers allows for estimation of ca(t) curves by
subtraction of∆M(t)with and without crushers. By identifying local AIFs with reasonable
shape and SNR, voxel-wise AIFs can be calculated by appropriate scaling []. e SR
signal evolution of the control images allows for mapping of M0a and T1t, which are used
in the quantification. Furthermore, in Paper , we exploited the SR data to obtain PV
estimates, subsequently used to produce tissue region of interests (ROIs) and improve the
M0a estimation.

Due to the similarity with model-free quantification in DSC-MRI, results from model-
free ASL are expected to be dependent on the applied deconvolution method, and be
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sensitive to delay and dispersion. erefore, in Paper , we assessed the dependence of
model-free ASL on the choice of deconvolution method, and the possibility to correct
for delay and dispersion. Specifically, SVD-based deconvolution was used in the original
model-free ASL work [], whereas we adapted the NSR deconvolution method (described
above) []. Even with truncation, the SVD-based deconvolution methods generates
solutions with unphysiological oscillations and negative values, and the NSR deconvolution
was shown to improve this also for model-free ASL. Figure . displays residue functions
and signal fits for the NSR and SVD deconvolution methods. NSR with dispersion
correction (NSRcd) clearly results in more physiologically plausible residue functions, i.e.,
monotonically decreasing nonnegative solutions.

A central motivation for this work was that truncated SVD generates can lead to
perfusion underestimation [], whereas NSR has been shown to better resolve the
perfusion-scaled residue function in DSC-MRI []. is was verified in Paper  using
simulations, and the more advanced NSR deconvolution method also yielded in vivo results
in better agreement with literature perfusion values. NSR is delay sensitive, which was
accounted for by employing edge detection and temporal shifting of the concentration
curves prior to deconvolution. Finally, NSR includes simple dispersion modelling, and
initial results suggested that NSR deconvolution can potentially correct for dispersion
effects in model-free ASL. Figure . shows examples of the in vivo results from Paper
, including dependence on the applied deconvolution method, the relation between
dispersion and arrival time, and PV maps. Model-free ASL was also used in Paper , which
will be further discussed in Chapter .
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Figure 2.8: Example of group averaged (10 subjects) parameter maps in MNI space, from the model-free ASL results in Paper .
The top row shows CBF obtained with (a) NSR deconvoution, (b) SVD deconvolution and (c) the difference between
the two. There is a considerable difference and, in particular, higher gray matter values are obtained with NSR. The
second row shows (d) the arrival time ∆t, (e) the amount of dispersion δ, and (f) the correlation between these
parameters. The high correlation suggests that the dispersion modeling worked as intended, since more dispersion
is expected for blood that has traveled longer. The bottom row displays PV maps for (g) gray matter, (h) white matter,
and (i) cerebrospinal fluid, obtained using the SR data (see Chapter 3).
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Chapter 

Partial volume mapping

e partial volume effect (PVE) in MRI refers to the intravoxel mixing of signals from
different components that occurs due to the limited spatial resolution []. PVE-based
segmentation, or PV mapping, is a type of image segmentation in which this effect is taken
into account, so that the amount of each tissue type is estimated in every voxel []. Since
PV mapping estimates tissue volume at a sub-voxel level, it is more versatile than hard
binary segmentation and can be used to improve volume metrics and quantitative MRI.
For example, a PV mapping method referred to as ’fractional signal modeling’ (FSM) was
used in Paper  for improved M0a estimation, as well as in Papers – for PVC of ASL
and DSC-MRI data. Furthermore, a new FSM method was proposed in Paper . FSM is
based on quantitative relaxometry, as will be described later in this chapter.

Segmentation
Image segmentation is the process of dividing an image into different segments (and
sometimes to classify those segments) based on features such as intensity, pattern or other
properties. Segmentation is a very broad issue which has attracted a lot of attention in
digital image processing, including medical imaging and in particular MRI [, ]. A
detailed discussion about methods and applications is outside the scope of this thesis, and
we will only briefly discuss human brain segmentation. Brain segmentation often refers to
automatic segmentation of a brain image into three different tissue types, i.e., gray matter
(GM), white matter (WM), and cerebrospinal fluid (CSF), although the concept may
also include other processes such as brain extraction (skull stripping) and segmentation of
lesions/pathologies []. Many different segmentation methods exist, and the more robust
methods are often advanced and may be difficult to implement. Fortunately, easy-to-use
tools are freely available as part of standard software packages for brain image processing.

Generally speaking, segmentation is a difficult problem due to measurement noise,
image artifacts, bias fields, complex anatomical structures and limited spatial resolution.
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On the other hand, MRI has excellent soft tissue contrast and the main intracranial tissue
types are few and generally form continuous shapes, which makes brain segmentation
feasible with some work. Although this chapter is focused on automatic segmentation, it is
important to note that manual delineation of ROIs is very common in clinical routine.

Most brain segmentation methods are based on the use of image intensity or
quantified tissue properties. is is intuitively reasonable because many MRI sequences
yield signal intensities that differ between GM, WM and CSF. e simplest intensity-based
segmentation is to threshold the image, so that all voxels within a certain intensity range
are assigned to a certain tissue type, but this approach generally leads to poor segmentation
results. Inclusion of several different images is likely to improve the results (i.e., multi-
spectral segmentation), for example, using multi-contrast or quantitative images together
with predefined regions in feature space [–]. e advantage of using quantitative
images is that the algorithm do not have to account for arbitrary and biased signal values
(which can depend on hardware and protocol). Since the segmentation methods rely on
tissue-specific signals, the characteristics needs to be pre-defined or estimated from the
image (feature extraction).

A more advanced approach is to model the signal from each tissue type with a
probability distribution (e.g., Gaussian mixture models), and to include regularization by
spatial prior information to make the segmentation less noise sensitive. us, each voxel is
assigned a probability of belonging to a certain class, based on the relative contribution of
the distribution at the given intensity value, accounting for the prior information. Note
that these probability values are continuous on the scale –, and relate to the PVE-
based segmentation methods discussed below. A traditional prior is to assume that most
voxels are surrounded by voxels of the same class, which can be incorporated using Markov
random field theory []. Another common regularization technique is to use registration
to a stereotactic standard brain (spatial normalization), and subsequent segmentation
using population-based priors/atlases []. is technique is employed within a statistical
framework in the segmentation tool included in the SPM software package [], which
was used in the reference method in Paper . Population-based atlases also allow for further
parcellation of structures (i.e., to label subregions within the different tissue types, such as
cortical regions and deep gray matter structures).

Many segmentation methods have been based on modelling the PVE []. Although
simple methods exists, such as consecutively nulling different tissue types [], most
methods are rather advanced from a technical perspective (e.g., Refs. [, , ]). Most
of the methods are based on a mixed model, i.e. the measured signal intensity I in a voxel
is given by a weighted sum of signal intensities Ik of the different tissue types [, , ]:

I =
∑
k

αkIk, [.]

where αk ∈ [0, 1] is the fraction of tissue type k. Normally, the intensities Ik (and
consequently I) are assumed to be Gaussian random variables so that the problem is
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software, IR-based FSM and VFA-based FSM. The FSM methods produce more nuanced images including mixture of
tissue types, whereas thresholding and the SPM software results in more traditional and binary segmentation.

tractable with statistical approaches []. e FSM methods discussed later can be seen
as an extension of the model in Eq. ., but with the individual Ik being functions of
acquisition and tissue parameters, modelled according to MR signal equations.

Intensity-based segmentation is difficult, not only due to signal overlap and mixed
voxels, but also due to noise and bias fields. erefore, denoising and bias field correction is
normally included in the preprocessing. In summary, most current segmentation algorithms
operate in a few well-defined steps, namely pre-processing (e.g., denoising, inhomogeneity
correction and skull-stripping), feature extraction, and segmentation/classification. Many
more and advanced segmentation methods exist that are not discussed here, e.g. fuzzy logics,
Bayesian inference and Markov random fields [, ].

Traditional applications of brain segmentation includes identification of ROIs for
diagnosis or treatment/surgical planning, preprocessing for subsequent image processing,
abnormality detection, and for regional analysis of MRI data []. More recent
applications based on PV mapping include volumetry [], diagnosis and prognosis of
neurodegenerative diseases [], and improvements in quantitative MRI (see Chapter ).
e FSM implementation described in Paper  could be used in any type of application,
whereas examples of FSM applications can be found in Papers –.
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Fractional signal modeling
FSM is a new and emerging PV mapping and segmentation technique [, ], originally
proposed by Shin et al. []. Only a few methodological papers exist at this point, i.e., Ref.
[] and Paper , but the technique has shown great potential so far (see Fig. .). For
example, the algorithms are robust and simple, based on conventional quantitative MRI,
and have already proved valuable in perfusion MRI (see Papers – and Refs. [, ]) and
fMRI [, ]. Although all studies so far have employed T-based FSM, and separation
of GM, WM and CSF specifically, we derive a more general framework here, applicable to
different types of data and any number of tissue types (or components).

e central idea in FSM is that the observed voxel signal, as a function of one or
more acquisition parameters, is modeled as a linear combination of the characteristic signal
patterns expected from the different tissue types. us, the general FSM model can be
written as

S(x) =
∑
i

Si(x) =
∑
i

simi(x;θi), [.]

where S(x) is the MR signal as a function of acquisition parameter x, Si(x) is the signal
contribution from tissue i, si is the fractional signal¹ of tissue type i, and mi(x;θi) is the
relative signal model (characteristic signal pattern) of tissue type i, given the tissue-specific
parameters θi. It is straightforward to make the model multi-dimensional by including
additional independent variables, e.g. S(x, y) and mi(x, y;θi). A couple of things are
worth noting:

• Successful PV mapping relies on that θi differs between tissue types, and that
variation of acquisition parameter x alters the tissue contrast.

• e models for the different tissue types need not be the same (indicated by the
subscript i on the function m) but usually are.

• Tissue-specific parameters θi are measured or assumed a priori (and usually fixed to
single values).

If the si values are the only unknowns, Eq. . can be solved by means of linear least squares
estimation, where the minimum number of required data points is given by the number of
tissue types. Although Eq. . could be solved with different means (e.g., nonlinear least
squares and statistical methods), only the linear least squares solution is described here.

e number of tissue types is denotedLwith corresponding indexing variable i, and the
number of measured data points is denoted N with corresponding index j. If the measured
signal at discrete time points j is written as Sm = [S(x1) . . . S(xN )]T, we can write Eq.
. in discrete matrix form according to

Sm = Xs+ ϵ, [.]

¹e fractional signal si ∈ [0,M0] can be interpreted as the contribution of tissue i to the voxel equilibrium
magnetization M0.
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where Xji = mi(xj ;θi), s = [s1 . . . sL]
T and ϵ is a N × 1 noise vector. Now, Eq. .

can be solved for s with linear least squares estimation. Since si values are nonnegative
and sum up to M0, the estimation can benefit from using constrained least squares, i.e.,
minimization of ∥Xs− Sm∥22 subject to s ≥ 0 and/or

∑
i si = M0.

PV estimates in units of relative voxel volume, pi ∈ [0, 1], can be obtained from
the fractional signal estimates by accounting for tissue-specific water densities ρi and
normalizing:

pi =
si/ρi∑
i si/ρi

. [.]

An interesting feature of FSM is that, as long as unique characteristic tissue signals can
be reasonably established, the PV estimates do not depend on quantitative values for θi,
and they are insensitive to spatially varying scaling factors such as B−. However, any spatial
variation of the true characteristic curves (e.g., due to spatial variations in θi or B+) will
lead to errors unless accounted for. is leads us to one of the most crucial parts of FSM,
namely how to determine the θi values.

For T-based FSM, a few different ways to set the tissue specific T values (T1i) have
been suggested. e most simple approach is to use fixed literature values []. However, this
approach is highly sensitive to inter-subject variations and, therefore, Shin et al. suggested
to estimate T1i values subject-wise by employing standard T mapping and subsequent
analysis of the whole-brain histogram, as a pre-processing step (see Figure . and Ref.
[]). However, due to the small CSF volume, literature values are often used for CSF
(one exception being Paper  in which CSF T was estimated from a ventricle region).
In a low-resolution application, Petr et al. argued that the resolution was too low to allow
for estimation of GM T from the histogram analysis, and instead adopted a least squares
iterative estimation []. Even ifT1i values are estimated on a subject basis, the within-tissue
T1i values are fixed, which corresponds to an assumption that representative values exists
for each tissue type. To relax this assumption, Oliver suggested to let GM T vary spatially
(regularizing the problem by constraining the value to be fixed in a local region), which
improved classification of deep GM structures []. Further investigation and development
of the handling of θi in FSM analysis is needed, which could include assessment of spatial
priors and statistical approaches.

We want to stress the impressive robustness, in relation to its simplicity, that FSM
exhibits. While most segmentation methods discussed above require many different
processing steps, and are very complex and difficult to implement (which leads to higher
demand on expertise and less accessible code []), the FSM technique is, in its basic form,
very simple. For example, FSM can be implemented with just one extra processing step
added to a standard T quantification script. Although multiple acquisitions are required,
the data can be acquired with conventional and widely available pulse sequences. Another
advantage is that FSM is, to a large extent, independent on hardware and protocol settings
and does not rely on predefined tissue maps or features, which makes it applicable to a
wider range of individuals such as different ages and patient groups [].
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Inversion and saturation recovery acquisition

e most common method to date has been T-based FSM, in particular using inversion
recovery (IR) and SR data. Assuming that the repetition time TR ≫ T1 and disregarding
T-weighting, the signal equation for a standard IR or SR sequence is given by S(t) =
M0(1 − Ae−t/T1), where M0 is the equilibrium magnetization, and A = (1 − cos θ),
where θ is the flip angle of the preparation pulse. us, A = 2 for an ideal inversion
and A = 1 for an ideal saturation, and t is usually denoted TI and TS for IR and SR,
respectively. By using the standard signal equation as a basis for mi(x;θi), the IR/SR-
based FSM model becomes

S(t) =
∑
i

sim(t;T1i) =
∑
i

si (1−Ae−t/T1i), [.]

where T1i is the T of tissue i. Note that M0 is included in the si values rather than
m(t;T1i). As an example of FSM analysis, a post-processing pipeline for SR-based FSM
is summarized graphically in Figure .. In contrast to many signal intensity based
segmentation algorithms, the widths of the different peaks in the histogram are not used
here.

In the original paper, Shin et al. used a special IR sequence with Look-Locker EPI
readout in steady-state, and called that FSM implementation ’fractional signal mapping
from inversion recovery’ (FRASIER) []. e Look-Locker readout employs a train of
low flip angles to rapidly acquire images at different times t. is results in a steady state
magnetization given by

M∗
0 = M0

1− e−∆T/T1

1− cosϕ · e−∆T/T1
, [.]

and a corresponding apparent longitudinal relaxation time given by
1

T ∗
1

=
1

T1
− ln(cosϕ)

∆T
, [.]

where∆T is the time between successive RF pulses, and ϕ is the flip angle of those pulses. If
the inversion pulse is applied at steady state, and including the effects of the Look-Locker
readout, the signal recovery follows S(t) = M∗

0 (1 − Ae−t/T ∗
1 ), and the corresponding

FSM model becomes []

S(t) =
∑
i

si
1− e−∆T/T1i

1− cosϕ · e−∆T/T1i
(1−Ae−t/T ∗

1i), [.]

which can be solved by linear least squares estimation as described above.
is implementation of FSM was proposed in [], and was employed in Papers –

and Refs. [–]. In Paper , simulations suggested good performance of FSM applied to
native low-resolution ASL data. It should be noted that Shin et al. assumed ideal inversion
preparation (A = 2) and excitation pulses [], whereas we accounted for non-ideal
saturation preparation and spatial variation of ϕ in Papers –.





Figure 3.2: The FSM concept exemplified with an SR-based approach. The top row displays a conventional voxel-wise signal
equation fit producing a T1 map. The bottom row describes how T1 histogram analysis is used to estimate tissue-
specific T1 values, and how subsequent FSM analysis yields PV maps. The example voxel FSM fit yielded an estimated
mixture of GM and WM (blue and red lines), and very little CSF (green line).

Variable flip angle acquisition

is is an alternative T-based FSM method, originally described in Paper . In this work,
we suggested to adapt FSM to the conventional T mapping by variable flip angle (VFA)
technique [, ]. Omitting T*-weighting, the signal equation for a spoiled gradient-
recalled echo (SPGR) as a function of flip angle θ is given by

S(θ) = M0 sin θ
1− e−TR/T1

1− cos θ · e−TR/T1
, [.]

and the corresponding VFA-based FSM model becomes

S(θ) =
∑
i

sim(θ;T1i) = sin θ
∑
i

si
1− e−TR/T1i

1− cos θ · e−TR/T1i
, [.]

Since the flip angle is the independent variable, this approach is very sensitive to B+

variations and, therefore, local flip angle variations should be considered. In Paper , we
successfully demonstrated the feasibility of this approach, dubbed SPGR-SEG, using a D
SPGR sequence and local flip angle correction. In vivo PV maps were of good quality, and in
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CSF GM WM

Figure 3.3: Example of T2-based FSM results achieved using T2-preparation (unpublished data). The T2 contrast between GM
and WM is smaller than the corresponding T1 contrast, but T2-based FSM still seems feasible.

good agreement with IR-based FSM (Figure .). Simulations suggested good performance
at reasonable SNR levels, and indicated that separation of a fourth component (e.g., a
lesion) would be challenging with the current protocol.

Note that different types of linearizations of Eq. . exist, which could be used for faster
T mapping and be incorporated in the FSM model. However, such transforms leads to a
non-symmetric noise distribution which makes the fitting less straight-forward.

Variable T weighting

By acquiring images with different T weightings (e.g., different echo times or T-
preparation), T-based FSM can be achieved. For a standard spin or gradient multi-echo
acquisition, S(TE) = M0e

−TE/T
(∗)
2 , and the T-based FSM model becomes

S(TE) =
∑
i

simi(TE ;T
(∗)
2i ) =

∑
i

si e
−TE/T

(∗)
2i , [.]

In a preliminary study, low-resolution T-based FSM by variable T-preparation yielded
reasonable results (see Figure .).

Other contrasts and multi-dimensional acquisition

Any variable weighting that yields sufficient contrast between different tissue types can,
in theory, be used for FSM-based PV mapping and segmentation. In addition to T-
and T-weighting, magnetization transfer contrast might be a potential contender. As
for conventional segmentation approaches, FSM is likely to benefit from employment
of a multi-spectral approach, for example, combining variable T- and T-weighting.
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is could potentially enable separation of more components or improve segmentation
of challenging structures such as deep GM.

Diffusion MRI has a long history of multi-component modeling approaches similar to
FSM, although these have often been focused on improving diffusion metrics rather than
estimating volumes. Although CSF-to-parenchyma contrast is high in diffusion MRI, it
is difficult to separate GM and WM based solely on the diffusion coefficient. However,
diffusion contrast can differ between other components, and this has been exploited using,
for example, bi-exponential fitting with low b-values to separate blood and tissue (see
Chapter ), bi-exponential fitting using high b-values to separate fast and slow diffusion
compartments [], or fitting of multiple tensor models to separate intra-cellular, extra-
cellular and free water [, ].







Chapter 

Partial volume correction in perfusion
MRI

e partial volume effect
As described in the previous chapter, PVEs occur due to the limited spatial resolution
relative to the size of the features that are being imaged. Hence, the signal does not only
depend on the experimental settings and the intrinsic properties of a given tissue, but also
on the relative contribution of each tissue type to the mixed voxel signal []. For example,
in nuclear medicine, the effective spatial resolution is determined by a combination of
the voxel size and the point spread function []. e corresponding PVEs are known as
the sampling effect and spill-in/spill-out effects, respectively. In MRI, on the other hand,
the spatial resolution is often determined exclusively by the voxel size, because the point
spread function is often smaller than the voxel size []. is means that we usually do
not have to consider signal components originating from neighboring voxels influencing
the voxel of interest (one exception being readout modules that yields substantial spatial
blurring). In general, functional imaging techniques tend to employ lower resolution than
morphological imaging, leading to more severe PVEs. For example, PVEs impede the
interpretation of brain perfusion MRI, especially in thin cortical GM. Errors in tissue
perfusion estimates can thus occur due to a mixture of GM and WM perfusion signals,
or due to contamination with non-perfused tissue such as CSF.

Arterial spin labeling

Due to the limited SNR, ASL experiments include repeated data collection with low spatial
resolution, of which the latter results in considerable PVEs (see Fig. .). e mixed ASL
signal can be modelled according to [, ]

∆M =
∑
i

pi∆Mi = pGM∆MGM+pWM∆MWM+pCSF∆MCSF+pa∆Ma, [.]





where pi represents the PV values and ∆Mi is the magnetization difference of tissue
i (which can be modeled as a function of time for multi-TI applications []). Note
that ∆MCSF is usually set to zero, and most studies also omit the arterial blood signal
contribution (pa∆Ma), which is valid if the arterial blood signal is negligible or properly
crushed. In the original ASL PVC paper, Asllani et al. also included tissue-specific
equilibrium magnetizations (M0i) in the PVE model [], whereas most subsequent studies
have settled with only estimating ∆Mi, which has the benefit of simplifying the post-
processing.

e PVE for the voxel perfusion can in turn also be modeled as a weighted sum
according to

ft =
∑
i

pi
∆Mi

M0a
Gi =

∑
i

pifi, [.]

where Gi includes the factors needed to convert ∆Mi/M0a to perfusion values fi (i.e., the
remaining part of the ASL model, including tissue-specific and acquisition parameters).
is model is convenient since it is immediately seen that if, for example, the arterial blood
is not crushed and not accounted for, tissue perfusion will be overestimated in proportion
to the partial volume of arterial blood. If we set ∆MCSF and ∆Ma to zero, and assume
that GGM = GWM , a simplified PVE perfusion model is obtained according to

ft = pGMfGM + pWMfWM . [.]

is simplification was used in Papers –.

Dynamic susceptibility contrast MRI

All previous PVC studies in perfusion MRI have been focused on ASL. Although DSC-
MRI generally employ higher resolution than ASL, PVEs could still be a source of error in
tissue-specific perfusion estimation. erefore, in Paper , we wanted to assess the PVEs
and the possibility to perform PVC in DSC-MRI. e mixed DSC-MRI signal can be
written as (cf. Eq. .)

S(t) =
∑
i

piSi(t) = S0

∑
i

pi e
−TE [R2i+∆R∗

2i(t)]

= S0

∑
i

pi e
−TE [R2i+r∗2ici(t)], [.]

where subscript i denotes tissue-specific quantities. is model could potentially be fitted
to the data as is, although we opted for a simpler approach in the form of a post-hoc PVC,
based on a simplified PVE model.

First, we assumed that r∗2 is equal in GM and WM, as predicted by simulations [].
By factoring out the native relaxation rates R2i, and acknowledging that cCSF (t) = 0,
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ASLMPRAGE

Figure 4.1: PVE examples for different spatial resolutions. The same slice of the same subject is shown for a high-resolution
anatomical image (left) and a low-resolution ASL perfusion map (right). The panels at the bottom display zoomed
parts (red box). The limited resolution of the ASL data results in an abundance of mixed voxels, which results in severe
PVEs in the perfusion image. Adapted from Ref. [80].

combining Eqs. . and . yields

e−TEr∗2c(t) = pGMe−TEr∗2cGM (t) + pWMe−TEr∗2cWM (t) + pCSF . [.]

Using a first-order Taylor expansion, we obtain

1− TEr
∗
2c(t) ≈ pGM [1− TEr

∗
2cGM (t)] + pWM [1− TEr

∗
2cWM (t)] + pCSF

⇔ c(t) ≈ pGMcWM (t) + pGMcWM (t), [.]

where we have used the fact that
∑

i pi = 1. is constitutes a linear approximation of
the mixed tissue tracer concentration. By further assuming similar temporal tracer kinetic
patterns in GM and WM, and use that c(t) ∝ f , we end up with the same simplified
mixed perfusion model as for ASL, i.e., ft = pGMfGM + pWMfWM (Eq. .). It should
be emphasized that several assumptions had to be made, and potential errors associated
with this simplified model were therefore assessed. In particular, it was found that the
linear approximation and different R2i values lead to the largest uncertainties (in terms
of bias), whereas the assumption of similar tracer kinetic patterns in GM and WM yielded
negligible errors. Note that these simulations only considered the PVE model, i.e., not how
the uncertainties propagate into PV corrected perfusion estimates.





Partial volume correction
As seen above, uncorrected perfusion values actually reflect a combination of underlying
tissue perfusion and local tissue volume. Depending on the clinical question, it can be
of considerable importance to separate these two quantities. is is especially true for
the study of conditions in which a volumetric tissue alteration is plausible, for example,
cerebral atrophy in the elderly or in connection with neurodegenerative diseases [, ].
Furthermore, PVC could potentially reduce the inter- and intra-subject variation of
perfusion values since it reduces variability originating from tissue volume and PVEs. For
example, it has been reported that ASL-based fMRI is improved when PVC is applied
[]. PVC might also improve perfusion estimation when using readout modules with
non-negligible spatial blurring [].

Partial volume correction methods

Several ways to correct for PVEs, i.e., PVC methods, have been proposed in the literature,
for example in nuclear medicine [, , ] and volumetric MRI [, , ]. For PVC
in perfusion MRI, the following methods are available:

• Rescaling with a fixed tissue perfusion ratio: is is a simple and straight-forward
correction, suggested for PVC of ASL by Johnson et al. []. It is based on an
assumed global GM-to-WM perfusion ratio, e.g., r = fGM/fWM = 2.5. is
means that if the voxel perfusion and partial volumes are known, PV corrected tissue
perfusion values can be estimated according to fGM = ft/(pGM + pWM/r) and
fWM = ft/(pGMr + pWM ).

• Linear regression (LR): With this method, ∆MGM and ∆MWM are estimated
using a local LR approach, as proposed by Asllani et al. []. is means that tissue
signals ∆Mi are assumed to be constant in a n × n × 1 region around each voxel,
which stabilizes the otherwise underdetermined problem. In practice, we first write
Eq. . in matrix form according to ∆M = P δm, where δm contains the ∆Mi

and P contains the partial volumes pi. Adding the local constraint by assuming that
δm = δm̄ over a n × n × 1 regression kernel, the problem can be formulated
as ∆Mm = P δm̄ + ϵ, where ∆Mm is a column vector containing all measured
difference signals in the kernel, P is a n2 × 3 matrix formed by stacking the pi
values in the kernel, δm̄ is a column vector with the tissue-specific magnetization
differences, and ϵ is a noise column vector. is equation can be solved for δm̄
by means of linear least squares estimation, and tissue-specific perfusion values can
then be calculated using conventional ASL models. e local consistency assumption
introduces a spatially varying smoothing of the resulting fi maps (larger kernels
results in more pronounced smoothing) and all methods listed below aim to reduce
this smoothing effect.





• Bayesian inference: is PVC approach was originally proposed by Chappell et al.
for multiple time-point ASL data []. ey modeled ∆M(t) as a weighted sum of
the individual kinetic tissue signals (including the macrovascular component), which
in turn were based on standard ASL models. e Bayesian inference was based on a
Markov random field including several parameter priors, as well as adaptive spatial
priors on fGM and fWM , meaning that the amount of smoothing is inferred from
the data and can vary across the brain. e adaptive spatial priors were implemented
specifically to minimize the smoothing effect inherent to the LR method.

• Modified least trimmed squares (mLTS): is method, proposed by Liang et al [],
is similar to LR but uses iterative ranking of residuals and matrix trimming. For an
n×n kernel, an initial subset is built by successively adding ∆M values that are close
to the central kernel value, until rank  is reached. Initial ∆Mi estimates are then
obtained by standard LR on that subset. Next, the residuals are calculated and sorted,
and the n×n×α voxels with smallest residuals are used to form a new subset, where
α is the trimming factor. e estimation, ranking and trimming is then repeated a
fixed number of times, and the final ∆Mi estimates are used to calculate fi values.
As with the Bayesian approach, mLTS has been shown to yield a lower degree of
smoothing compared to LR.

• Expectation maximization and linear regression (EM-LR): Liu et al. suggested a
PVC method exploiting temporal information in terms of the repeated acquisitions
in ASL []. A statistical model is used so that each single ∆M (from the repeated
acquisition) is considered to be an observation of a random Gaussian variable for
which the mean and standard deviation are parameters to be estimated. Since the
sum of two Gaussian variables is Gaussian, the problem can be solved numerically
with a conventional EM estimation. Spatial information was indirectly incorporated
by using the LR method on each measured ∆M for calculation of voxel-wise initial
parameter estimates, which yielded better results and faster convergence compared
to EM with fixed initial estimates. Note that no regression kernel is used for the EM
estimation.

• Weighted ridge regression (WRR): To reduce the smoothing effect of LR, a smaller
kernel can be used. However, this reduces the amount of available data leading to
rank deficiency and high sensitivity to noise. In ridge regression, this is circumvented
by introducing a bias in the estimator, i.e., trading some bias for a reduction in
variance. In weighted regression, different data points are given different weights,
usually to account for outliers and variable uncertainty in data. e weights can be
predetermined (e.g., a Gaussian function) or estimated from the data (e.g., robust
regression). Weighted ridge regression (WRR) combines the two, and the biased and
weighted estimator can be formulated as β̂WRR = (XTWX + λI)−1XTWY,
where X is the design matrix, W is a diagonal matrix containing the weights, λ is
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Figure 4.2: Consistency graph of GM perfusion versus GM volume in ten healthy subjects scanned four times each, from the
results in Paper . The x-axis corresponds to different 10% intervals of GM PVs (10–20%,..., 90–100%), and the
different curves correspond to uncorrected perfusion values (blue), intrinsic GM perfusion values using PV estimates
from SPM segmentation of an MPRAGE image (red), and intrinsic GM perfusion values using FSM-based PV estimates
from the ASL raw data. The curves correspond to mean values across all 40 scans, and ± one standard deviation is
shown as dashed lines enclosing colored fields.

the regularization parameter, I is the identity matrix and Y is the measured data
points. Determination of λ is delicate, and two main approaches can be identified:
() λ can be determined before the analysis, so that it works like a prior, or () λ
can be calculated from the data, which corresponds to no prior information but an
adaptive amount of regularization. Figure . displays initial results with this method
(unpublished data).

e above methods can be used with Eq. . or Eq. ., and although these methods where
suggested for PVC in ASL, the concepts are not limited to that technique. In Paper , for
example, we applied both LR and mLTS to DSC-MRI. Modifications and extensions to
some of these methods have been suggested, for example, Chappell et al. [] and Petr et
al. [] applied LR to multi-TI data, Oliver performed PVC with a D kernel and adapted
the Bayesian approach to single-TI data [], and in the current thesis projects, circular
instead of square kernels were employed (Papers –). Furthermore, acquisition of PV
estimates using FSM in native space has been shown to improve PVC in ASL (see Ref. []
and Paper ).

Method evaluation, comparison and consistency assessment

It is important to evaluate any new PVC method, and to assess the results of PVC
applied to a specific subject. Evaluation of PVC methods has mostly been done using
simulations, e.g., assessing the performance in terms of accuracy []. Simulation of hypo-
and hyperintensities has also been used to demonstrate the improved preservation of





boundaries of the Bayesian, mLTS and EM-LR methods, as compared to LR [, , ].
It is difficult to assess a PVC method applied to in vivo data since no ground truth is

available and, therefore, many researchers have used a reference PVC method or setting for
comparison. For example, a good kernel size or preferred PV mapping technique can be
informed by root mean square deviation of the PVC regression [, ], and the amount of
smoothing can be compared with a reference method using an image gradient score [].
Most PVC studies display the consistency of mean tissue perfusion values across different
intervals of tissue volume, as shown in Figure .. is is a compact and intuitive way
to demonstrate the dependence of the perfusion estimates on tissue volume. In Paper 
it was found that PV mapping based on native space ASL data improved the consistency
compared to segmentation of a high-resolution anatomical image (Fig. .), in agreement
with Ref. []. is type of plot was also used in Paper , where it was found that PVC
based on LR showed a higher consistency than mLTS. Note that, due to the smoothing
effect of some PVC methods, and since the true underlying perfusion is not necessarily
independent on PV values, a straight line cannot unequivocally be regarded as the ground
truth.

Similar to how Shin et al. evaluated IR-based FSM [], Kuijer et al. suggested to
validate PVC results by artificially lowering the spatial resolution through downsampling
and smoothing of both PV and perfusion data []. e idea here is that, if the PVC works
as intended, tissue-specific perfusion estimates should not be altered upon downsampling
or smoothing. e authors found that, while simulated data passed this consistency check,
in vivo data did not (downsampling and smoothing increased GM perfusion estimates).
Whereas the reason for this failure was unclear, it did not seem to be due to spatial mismatch
or a non-ideal point spread functions, which is in agreement with another study on the
robustness of PVC in ASL with respect to mismatch and resolution issues [].

Interpreting partial volume corrected perfusion

Figure . displays examples of parameter maps obtained from an ASL PVC analysis. Some
variety can be found in the reporting of PV corrected perfusion estimates, for example,
tissue-specific perfusion values have been reported both in terms of partial tissue perfusion
values pifi, and in terms of intrinsic tissue perfusion values fi. e two definitions originate
from two different ways of acknowledging PVEs.

e former approach views PVC as a way to separate the perfusion contribution from
different components. is has a strong connection to nuclear medicine where the total
number of counts or the total radioactivity for a specific tissue type or region is of interest.
In the case of perfusion MRI, this approach can be used if estimation of the total blood
delivery to a specific tissue type is of interest. Note that pifi values can be misleading
since they do not reflect the underlying perfusion, but rather the contribution to the voxel
perfusion estimate originating from tissue i.

e latter approach acknowledges that the PVEs perturb the estimation of tissue
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Figure 4.3: Example of parameter maps from an ASL PVC analysis. PV estimates pi are shown in the left-hand column, intrinsic
tissue perfusion values fi in the second column (unmasked), and partial tissue perfusion values pifi in the third.
The column to the far right displays the measured perfusion (top) and the recombined voxel perfusion using the
PVC results (bottom). In this particular case, PCASL with 2D EPI readout was employed, PV estimates were acquired
with SR data and T1-based FSM using the same readout as the ASL sequence, and PVC was achieved by WRR with
a 3 × 3 kernel, Gaussian weights (σ2 = 1 voxel), and λ = 0.01.

perfusion in volume- or mass-specific units. is approach should be used if one wants to
separate the effects of tissue perfusion and tissue volume. It should be noted that the fi maps
tend to look unnatural, since much of the morphological information has been removed.
Yet another quantity is the recombined voxel perfusion, i.e., pGMfGM + pWMfWM ,
corresponding to a filtered version of the measured perfusion map, which reintroduces
the PVEs. e recombined map can be compared with the measured perfusion map as a
simplistic assessment of the quality of the PVC fit.
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Chapter 

Incoherent flow imaging

Intravoxel incoherent motion
In , Le Bihan et al. introduced the term IVIM to highlight that diffusion-sensitized
MRI is sensitive to many different types of motion, i.e., not only molecular diffusion []¹.
For example, diffusion MRI signals can include effects of motions such as flow of blood or
other fluids. is eventually led to the concept of separating and quantifying diffusion and
perfusion, based on diffusion MRI data []. Since then, IVIM imaging has been known
as a method for probing perfusion using the contamination from microvascular blood flow
in diffusion MRI. By making certain assumptions about the capillary network, perfusion
parameters obtained from the IVIM concept may be linked to traditional perfusion
parameters such as blood volume and blood flow [–]. Hence, IVIM imaging has
been suggested as a potential way to measure blood volume noninvasively, and the clinical
potential is high [, ]. However, widespread use of the technique has, particularly
in brain applications, been prevented by the fact that the analysis demands high SNR
[, ], and the validity the method and and interpretation of the parameters is still
under debate [].

eory

In contrast to the perfusion MRI techniques previously discussed, IVIM imaging does not
rely on tracer kinetic modeling, but on spin dephasing. Spins with varying velocity vectors
(amplitude and/or direction) lead to phase dispersion when a diffusion-encoded sequence
is employed. is dephasing manifests as a signal attenuation, which can be modelled
depending on the type of motion. In the simplest IVIM approach, the measured signal

¹is article actually presented the first human in vivo diffusion MRI results (excluding conference
abstracts), and it also introduced the well-known b-value and apparent diffusion coefficient (ADC) notations.
e term ADC was proposed in particular to highlight that in vivo diffusion measurements are sensitive to all
types of IVIMs.





Figure 5.1: Schematic figure (not to scale) of the intricate network of highly tortuous and pseudorandomly oriented microvessels
in a voxel (left). The fractional microvascular volume is on the order of a few percent in the brain. The two figures
on the right visualize the two most common models for incoherent blood flow dephasing. In these figures, the
red filling in the vessels corresponds to the pathway that a certain blood particle has traveled during the motion-
encoding period. For the diffusive regime (model 1), the blood particles travels relatively long distances and passes
several bends of the capillaries. In contrast, for the ballistic regime (model 2), the blood particles travels only a short
distance and in a mostly straight path.

is modelled as a weighted sum of signal contributions from two components, i.e., () static
tissue exhibiting molecular diffusion, and () blood water flowing through the capillary
system []:

S(b) = S0

[
(1− f)e−bDt + fe−bD∗

]
, [.]

where b is the diffusion weighting factor (b-value) reflecting the degree of diffusion
encoding, S0 is the signal for b = 0, f is the normalized fractional signal of water
flowing in perfused capillaries (’perfusion fraction’), (1 − f) is the normalized fractional
signal of static tissue (’tissue fraction’), Dt is the diffusion coefficient in tissue, and D∗ is
the pseudodiffusion coefficient, i.e., the apparent diffusion coefficient of blood, including
effects of microvascular flow. Note that the perfusion attenuation factor, F = e−bD∗ , has
the same functional form as the attenuation factor due to diffusion.

e b-value is given by

b =

ˆ TE

0
q(t)2dt, [.]

where

q(t) = γ

ˆ t

0
G(t′)dt′ [.]

is the dephasing function, G(t) is the effective gradient waveform, and γ is the
gyromagnetic ratio.
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is model assumes that, although blood flow corresponds to motion on a larger
scale than diffusion, the motion through the intricate capillary system is pseudorandom
and mimics a diffusion process (referred to as pseudodiffusion). Taking this analogy even
further, the psuedodiffusion coefficient can be modeled as D∗ = l̄v̄/6, where l̄ is the
mean capillary segment length and v̄ the mean blood velocity []. In other words, this
assumption corresponds to the situation where blood water molecules change velocity (due
to bends of capillaries) several times during the motion-encoding (’Model : Diffusive
regime’ in Fig. .).

By acquiring the diffusion-signal at three or more different b-values, separate estimation
of Dt and f is feasible based on the IVIM model []. e analysis can be performed in
different ways, for example, by nonlinear fitting of Eq. . or step-wise analysis. Step-wise
(or segmented/asymptotic) analysis is accomplished by first estimating Dt from high b-
value data, and then estimating f (and sometimes D∗).

Spatially incoherent flow
Independently of the IVIM concept, Nalciouglu et al. derived a formalism for incoherent
motion in terms of random directional flow []. ey noted that, while mean bulk flow
in a voxel gives rise to a net phase shift of the MR signal, random directional flow gives
rise to an extra magnetization dephasing. is dephasing decreases the magnitude of the
signal, and the size of the attenuation depends on the velocity distribution of the flowing
spins. is concept can be used to model the effect of perfusion on the motion-encoded
MRI signal, and Ahn et al. applied it to in vivo data to calculate ’capillary density maps’
[]. is model corresponds to the assumption that microvascular blood molecules flow
in many different directions, but never change velocity during the motion-encoding period
(’Model : Ballistic regime’ in Fig. .). Note that whereas the conventional IVIM model
is focused on temporal incoherence, the random directional flow model is based purely on
spatial incoherence.

eory

Similarly to the diffusion weighting factor (b-value) used in diffusion MRI, the flow
weighting factor α can be defined according to

α = −
ˆ TE

0
q(t)dt = γ

ˆ TE

0
tG(t)dt, [.]

which specifies how sensitive the signal is to flow. If we consider a single tube with direction
k̂ in which particles flow with a velocity distribution fk(v), the signal attenuation due to
the flow is given by []

Ftube =

ˆ ∞

−∞
fk(v)e

iαvk̂dv, [.]
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where the flow weighting factor is written in bold typeface to signify that the encoding
direction is preserved. Summing over all tubes in a voxel, and defining θk as the angle
between α and k̂, we get the signal attenuation

F =
∑
k

ˆ ∞

−∞
fk(v)e

iαv cos θkdv =

ˆ
f(θ)

[ˆ ∞

−∞
f(v)eiαv cos θdv

]
dθ, [.]

where the last sign of equality is based on the assumption of identical velocity distributions
in all tubes, i.e., fk(v) = f(v), and f(θ) is the orientation distribution. For an isotropic
orientation distribution, i.e., f(θ) = sin(θ)/2 for θ ≤ π, the expression is further
simplified to

F =

ˆ ∞

−∞
f(v) sinc(αv)dv, [.]

where sinc(x) = sin(x)/x. Equation . is a convenient expression from which analytical
expressions can be derived for different velocity profiles. For example, plug flow with mean
velocity v0 yields a signal attenuation according to F = sinc(αv0), whereas laminar flow
(parabolic profile) with mean velocity v0 = vmax/2 yields F = Si(2αv0)/(2αv0), where
Si is the sine integral [].

In a slightly different approach, used in Paper , it can be noted that a tube with
mean velocity ν̄k contributes to the signal according to e−iφk = e−iαν̄k , where φk is the
cumulative phase for the entire tube. Summing over all tubes yields the signal attenuation
according to

F =
∑
k

e−iαν̄k =

ˆ ∞

−∞
f(ν̄)e−iαv̄dν̄, [.]

where f(ν̄) is the distribution of mean velocities. Equation . is also convenient, since we
can choose the velocity distribution on a voxel level rather than specifying a global velocity
profile. For example, a Gaussian velocity distribution with zero mean and width v̄ yields
an exponential signal attenuation according to F = e−α2⟨v̄2⟩/2 where ⟨v̄2⟩ is the average
mean squared velocity []. A slight generalization of this attenuation factor was used in
Paper  according to F = e−α2v2d where vd is a measure of velocity dispersion, which
scales with velocity depending on the particular dispersion model, e.g., v2d = ⟨v̄2⟩/2 for a
Gaussian velocity distribution.

e same results can be obtained from both of the above approaches, in certain cases.
For example, for a Gaussian velocity distribution on the voxel level g(v̄), the corresponding
tube velocity distribution is given by the Maxwell–Boltzmann distribution of speeds;
f(v) = 4πv2g(v).

General model and intermediate regime
e two models described above can be regarded as extreme cases of the same phenomenon
which, by analogy to Brownian motion, can be referred to as the diffusive and ballistic
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limits. From the perspective of turbulent flow studies, Kennan et al. suggested a general
model for the effect of perfusion on motion-encoded MRI []. e model was derived
from the concept of velocity autocorrelation, with a characteristic autocorrelation time T0

describing the average time it takes for a blood particle to change velocity. e resulting
equations were analogous to those of Stepišnik, derived from a frequency domain analysis
of Brownian motion in the short-time limit []. e general model reduces to the models
for the diffusive and ballistic limits when T0 is very short or long compared to the encoding
time, whereas the complete description can be used to characterize incoherent motion in the
intermediate regime. Using IVIM data acquired with different encoding times, Wetscherek
et al. found that microvascular blood flow in liver and pancreas was characterized as motion
pertaining to the intermediate regime [].

Flow compensated intravoxel incoherent motion
In the ballistic limit, signal loss due to spatially incoherent flow can be recovered using
flow compensation. Ahn et al. exploited this fact to generate capillary density maps from
the signal difference between a diffusion sequence with no flow compensation (NC) and
a sequence with flow compensation (FC) , i.e., SNC − SFC []. Maki et al. extended
on this approach by acquiring NC and FC data with the same diffusion and relaxation
weighting, and suggested the quantity 1− SNC/SFC as a perfusion weighted map [],
whereas Fujita et al. applied the method of Ahn et al. and demonstrated in vivo brain results
[].

e FC is only complete if all blood particles move along straight lines during the
encoding. e actual regime of the blood flow motion depends on the relation between
T0 and the total encoding time (observation time), which gives the researcher a certain
degree of control in this regard. Hence, to shift the motion towards the ballistic limit, the
encoding time was kept as short as possible in Paper . Note that the relative amount of
compensation (full, partial or none) observed in the data can potentially be used to infer
the temporal regime of the motion.

Even though the IVIM and the spatially incoherent flow concepts were developed
independently, they are basically two sides of the same coin (as described above). us,
it seems reasonable to assume that also the IVIM technique might benefit from FC. e
concept, presented in Paper , is that joint analysis of NC and FC multi-b-value data should
stabilize the fitting and yield improved IVIM parameter estimates. is approach can be
interpreted as a multi-dimensional data collection and analysis, since both the diffusion
weighting (b-value) and the flow weighting (α-value) is varied. e data were acquired
using a single-refocused double diffusion encoding (DDE) sequence with bipolar gradient
waveforms, which assured identical relaxation and diffusion weighting in the NC and FC
data. Hence, the flow weighting varied with the diffusion weighting², and could be set to

²e use of more advanced gradient pulse designs would allow for independent variation of b- andα-values.
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Figure 5.2: Scheme of the pulse sequence used in Paper . The top row shows RF pulses and the signal readout, G(t) is the
gradient waveforms, q(t) is the dephasing function (see Eq. 5.3), and the two bottom rows show the time-integrals
that equals the flow weighting α and diffusion weigthing b at the time of acquisition (TE). Solid and dashed lines
corresponds to the NC and FC acquisitions, respectively.

zero by reversing the polarity of the second gradient block (Figure .).
By assuming that the capillary blood flow pertains to the ballistic motion regime, the

IVIM signal can be modeled according to

S(b, α) = S0

[
(1− f)e−bDt + fe−bDbe−α2v2d

]
, [.]

where Db is the diffusion coefficient of blood, and α = 0 for the FC acquisition.
Comparing to the conventional IVIM model (Eq. .), the pseudo-diffusion coefficient
in the ballistic limit can be expressed as

D∗ = Db +
α2

b
v2d. [.]

is is an important relation since it shows that, for the ballistic limit, the pseudo-diffusion
coefficient is dependent on the gradient pulses according to α2/b, which can be optimized
for increased sensitivity to flow.

Simulations suggested a distinct improvement in performance, in terms of accuracy
and precision of IVIM parameter estimates, using the proposed technique. Brain data were
acquired in healthy volunteers, and a clear rephasing effect was demonstrated, suggesting
that the microvascular blood flow was closer to the ballistic limit than the diffusive limit,
for an encoding time of  ms. Example data and corresponding model fits are shown in
Figure ..

In a related approach, Wetscherek et al. proposed to acquire NC and FC IVIM data
with varied encoding times, and to include T0 in the estimation []. Rather than deriving
a model for the signal attenuation due to perfusion, they generated a library of phase
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Figure 5.3: Example of results from Paper . The left graph shows acquired in vivo data (circles) and the corresponding model
fits (solid lines) for NC (blue) and FC (red), and the resulting IVIM parameter estimates. The data points originate
from a WM ROI of a healthy volunteer, indicated in the inset figure. The graph to the right shows the corresponding
information for a stationary water phantom. A clear rephasing effect was seen for the in vivo FC data, whereas the
water phantom resulted in mono-exponential signal attenuation and no separation of the NC and FC data.

distributions from random-walk simulations, which was then fitted to the data. is
approach is appealing because it does not rely on the assumption of a Gaussian phase
distribution, and since it applies to motions pertaining to any temporal regime. On the
other hand, a velocity profile still needs to be assumed, and the absence of an analytical
signal model may impede the accessibility of the method.
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Chapter 

Conclusions and future aspects

Reliable quantitative MRI requires continuous development and improvement of the
corresponding methods. is includes the entire process from data collection and sequence
optimization, to method validation, data analysis approaches and interpretation of results.
e current thesis presents novel implementations designed to improve measurements of
perfusion and partial volumes in MRI. e doctoral projects have focused on testing the
feasibility of the methods, and to assess the reliability of the output.

e methods presented in this work should primarily be viewed upon as basic MRI
research, in the sense that the primary goal was to further develop and improve certain
quantitative MRI techniques. A secondary goal was, obviously, that these techniques
will yield value in clinical applications in the future. Accurate perfusion quantification
is particularly important for certain clinical research questions, for example, in studies
investigating the relation between regional perfusion levels and diseases, studies on global
perfusion changes, or in longitudinal studies (e.g., in connection with monitoring or follow-
up of various kinds of therapy). Reducing errors caused by arterial dispersion and delay, or
related to various mathematical issues, is an important task in improving the interpretability
of perfusion estimates. In addition to improving the perfusion estimates, such corrections
also provide metrics related to the amount of delay and dispersion, which may show clinical
value by themselves. e results of Paper  are encouraging in these aspects, and ASL is an
especially attractive method since it is noninvasive. Although single time-point PCASL
is the currently suggested ASL technique for clinical routine, time-resolved ASL is more
robust in many situations and can provide additional information. us, time-resolved
ASL is expected to be an important technique for certain applications also in the future.
Furthermore, improved QUASAR variants with higher SNR are being developed [],
which make the present results important in guiding future research on model-free ASL.

e exact value of PVC in perfusion MRI is still a fairly open question, although it is
clear that separation of the effects of intrinsic tissue perfusion and tissue volume enables
improved parameter interpretation in cases where alteration of both quantities may be
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present. Since PV-corrected perfusion values are less affected by variability in tissue content,
they may also be more sensitive to perfusion changes and group-wise differences. us, PVC
might become an essential part of perfusion MRI post-processing, at least for certain clinical
questions. e FSM approach has been shown to be particularly suitable for PV mapping
in low resolution native space. In Paper , the obvious advantage of obtaining PV maps
from the inherent ASL data was accompanied by a suggested improvement in PVC results.
Furthermore, in Paper , we demonstrated that PVEs are detectable and relevant also in
DSC-MRI. ese results constitute modest but important steps towards the establishment
of PVC in perfusion MRI, which we expect will result in improved clinical information.
Although we still lack a consensus with regard to which PVC algorithm to use, the most
crucial question is arguably in which situations and applications that PVC will be most
valuable.

e FSM technique is very new, and it is, at this point, difficult to determine its
importance. It is indeed a very attractive method with great potential, especially since it is
robust and simple. Apart from the potential to be used for conventional segmentation and
volumetry applications, several studies have already employed FSM to improve different
quantitative MRI methods. As an important step forward, in Paper , we suggested that
the FSM concept can be adapted to different types of quantitative MRI data, and in
Chapter , FSM was further generalized by the description of a comprehensive approach.
is perspective of FSM being a general concept to which several different types of MRI
sequences and data types can be applied opens up a slew of new possible implementations,
and also emphasizes the potential of the method. e most obvious challenge is the
determination of representative tissue parameters, but several improved approaches have
already been proposed and this issue is expected to be further investigated in the future.
Similarly, the particular model fitting approach is expected to be further improved.

A reliable noninvasive blood volume MRI technique remains to be recognized, but
IVIM imaging is a important contender, although there are still challenges to address. e
multi-dimensional approach described in Paper  enables a more robust analysis, and is
thus an important part of the continued discussion on the possibilities of IVIM imaging.
In particular, FC improved the accuracy and precision of the IVIM parameters, and in vivo
data supported that many blood particles move along straight lines during the encoding.
We believe that additional development of data acquisition, modeling and analysis will
further improve the quality and interpretation of IVIM parameters. For example, temporal
regime exploration, including autocorrelation time analysis, might provide new blood flow
information and markers in the future.
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e main conclusions of the papers included in this thesis were:

. NSR deconvolution is feasible for model-free ASL, and improves residue function
characterization and perfusion estimation.

. PVs can be estimated from QUASAR ASL data, and used for subsequent PVC of
perfusion values. Estimating PVs from data acquired with the same readout as the
ASL data improves the output of the PVC, compared to using segmentation of a
high resolution anatomical image.

. PVEs are not negligible in DSC-MRI, and a simplified post-hoc PVC is feasible
as a first-order approximation. A more elaborate PVC scheme is expected to furher
improve the results.

. PV mapping using VFA-based FSM is feasible, and yields comparable results to IR-
based FSM. e FSM approach is expected to gain more traction, because it yields
robust PV maps with simple tools.

. Cerebral microvascular blood flow is approximately ballistic for short encoding
times. Joint analysis of NC and FC data stabilizes the IVIM analysis, and yields
more robust and reliable parameter estimates.
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